A Lipschitz stability estimate for the Stokes system with Robin boundary condition

Anne-Claire Egloffe

Toulouse Workshop 2012 - June 25-28, 2012

L Introduction

1 Introduction

- 2 State of the art
- 3 Main result

Motivations

Molding of human lung realized by E. R. Weibel.

- airflow in the lungs,
 - [Baffico, Grandmont, Maury '10],
- blood flow in the cardiovascular system,

[Quarteroni, Alessandro '03], [Vignon-Clementel, Figueroa , Jansen, Taylor '06].

Reconstructed bronchial tree,

[Baffico, Grandmont, Maury '10].

Let $\Omega \subset \mathbb{R}^d$, d = 2, 3 be a bounded connected open set.

$$\begin{cases} -\Delta u + \nabla p &= 0, \quad \text{in } \Omega, \\ div \ u &= 0, \quad \text{in } \Omega, \\ u &= 0, \quad \text{on } \Gamma_l, \quad (P_q) \\ \frac{\partial u}{\partial n} - pn &= g, \quad \text{on } \Gamma_0, \\ \frac{\partial u}{\partial n} - pn + qu &= 0, \quad \text{on } \Gamma_{out}. \end{cases}$$

Let $\Omega \subset \mathbb{R}^d$, d = 2, 3 be a bounded connected open set.

$$\begin{cases} -\Delta u + \nabla p &= 0, \quad \text{in } \Omega, \\ div \ u &= 0, \quad \text{in } \Omega, \\ u &= 0, \quad \text{on } \Gamma_l, \quad (P_q) \\ \frac{\partial u}{\partial n} - pn &= g, \quad \text{on } \Gamma_0, \\ \frac{\partial u}{\partial n} - pn + qu &= 0, \quad \text{on } \Gamma_{out}. \end{cases}$$

Let $\Omega \subset \mathbb{R}^d$, d = 2, 3 be a bounded connected open set.

$$\begin{cases} -\Delta u + \nabla p &= 0, \quad \text{in } \Omega, \\ div \ u &= 0, \quad \text{in } \Omega, \\ u &= 0, \quad \text{on } \Gamma_l, \quad (P_q) \\ \frac{\partial u}{\partial n} - pn &= g, \quad \text{on } \Gamma_0, \\ \frac{\partial u}{\partial n} - pn + qu &= 0, \quad \text{on } \Gamma_{out}. \end{cases}$$

Let $\Omega \subset \mathbb{R}^d$, d = 2, 3 be a bounded connected open set.

$$\begin{cases} -\Delta u + \nabla p &= 0, \quad \text{in } \Omega, \\ div \ u &= 0, \quad \text{in } \Omega, \\ u &= 0, \quad \text{on } \Gamma_l, \quad (P_q) \\ \frac{\partial u}{\partial n} - pn &= g, \quad \text{on } \Gamma_0, \\ \frac{\partial u}{\partial n} - pn + qu &= 0, \quad \text{on } \Gamma_{out}. \end{cases}$$

Let $\Gamma \subseteq \Gamma_0$ and (u_j, p_j) be solution of (P_{q_j}) for j = 1, 2.

- **Uniqueness:** Does $\mathcal{M}_{\Gamma}(u_1, p_1) = \mathcal{M}_{\Gamma}(u_2, p_2)$ implies $q_1 = q_2$?
- **Stability:** Is it possible to obtain stability estimate like

$$||(q_1 - q_2)|_{\Gamma_{out}}|| \le f (||(u_1 - u_2)|_{\Gamma}|| + ||(p_1 - p_2)|_{\Gamma}||),$$

where $f : \mathbb{R}^+ \to \mathbb{R}^+$ is an increasing function such that $\lim_{x\to 0} f(x) = 0$?

_____State of the art

1 Introduction

2 State of the art

3 Main result

State of the art

$$\begin{cases} -\Delta u + \nabla p &= 0, \quad \text{in } \Omega, \\ div \ u &= 0, \quad \text{in } \Omega, \\ \frac{\partial u}{\partial n} - pn &= g, \quad \text{on } \Gamma_0, \\ \frac{\partial u}{\partial n} - pn + qu &= 0, \quad \text{on } \Gamma_{out}. \end{cases} (\mathcal{P}_q)$$

 $\label{eq:Gamma-constraint} \begin{array}{l} \bullet \ \ \Gamma_0 \cup \Gamma_{out} = \partial \Omega, \\ \bullet \ \ \overline{\Gamma}_0 \cap \overline{\Gamma}_{out} = \emptyset. \end{array}$

Figure: Example of such an open set Ω in dimension 2.

State of the art: logarithmic stability estimates

→ Logarithmic stability estimates (Boulakia, E., Grandmont).

We point out the main differences between the logarithmic stability estimates obtained:

Regularity on Ω	Regularity needed on (u, p)	Valid in dimension
$\mathcal{C}^{3,1}$	$(u,p) \in H^4(\Omega) \times H^3(\Omega)$	2
locally \mathcal{C}^{∞}	$(u,p)\in H^{2+k}(\Omega)\times H^{1+k}(\Omega)$	in any dimension
	for $k \in \mathbb{N}^*$ such that $k+2 > \frac{d}{2}$	

Main result

1 Introduction

- 2 State of the art
- 3 Main result

An identifiability result

$$\begin{cases} -\Delta u + \nabla p &= 0, \quad \text{in } \Omega, \\ div \ u &= 0, \quad \text{in } \Omega, \\ u &= 0, \quad \text{on } \Gamma_l, \quad (P_q) \\ \frac{\partial u}{\partial n} - pn &= g, \quad \text{on } \Gamma_0, \\ \frac{\partial u}{\partial n} - pn + qu &= 0, \quad \text{on } \Gamma_{out}. \end{cases}$$

As a corollary of a unique continuation result proved by Fabre and Lebeau '96, we obtain the following proposition.

Proposition

Let $x_0 \in \Gamma_0$, r > 0 and $(u_j, p_j) \in H^1(\Omega) \times L^2(\Omega)$ be solution of (P_{q_j}) for j = 1, 2. We assume:

• $u_1 = u_2$ on $\Gamma_0 \cap \mathcal{B}(x_0, r)$.

Then, $q_1 = q_2$.

Main result: a Lipschitz stability estimate

Let $\eta > 0, \Gamma \subseteq \{x \in \Gamma_0 \setminus d(x, \partial \Omega \setminus \Gamma_0) > \eta\}$ be a non empty set. Under some regularity assumption

- locally on the open set Ω ,
- on the data,
- and under the *a priori* assumption that the **Robin coefficient** q is **piecewise constant**,

we prove that there exists C > 0 such that

$$\begin{aligned} \|q_{1} - q_{2}\|_{L^{\infty}(\Gamma_{out})} \\ &\leq C\left(\|u_{1} - u_{2}\|_{L^{2}(\Gamma)} + \|p_{1} - p_{2}\|_{L^{2}(\Gamma)} + \left\|\frac{\partial p_{1}}{\partial n} - \frac{\partial p_{2}}{\partial n}\right\|_{L^{2}(\Gamma)}\right) \end{aligned}$$

Main tools

The main tools are:

- estimates for the unique continuation properties of the Stokes system,
- a sequence of balls $(B_k)_{k \in \mathbb{N}}$ whose center approach the boundary,
- local Hölder regularity.

Figure: Figure illustrating how informations spread.

└─Main result

Thank you!