Exact Controllability for a System of Coupled Wave Equations on a Compact Manifold¹

B. DEHMAN

Faculté des Sciences de Tunis & Enit-Lamsin Toulouse, june 2012

Dehman et al () Systems 1 / 28

Position of the problem

 $\rightarrow (M, g)$ compact Riemannian manifold without boundary.

$$ightarrow \Box = \partial_t^2 - \Delta_g$$

Dehman et al () Systems 2 / 2

- f is the control.
- b(x) , $b_{\omega}(x)$ both real and smooth, and $b(x) \geq 0$.
- Notice the shift between the two energy levels.

Denote

$$O = \{x \in M, b(x) > 0\}$$
 coupling set

$$\omega = \{x \in M, \ b_{\omega}(x) \neq 0\}$$
 control set

Dehman et al. () Systems 3 / 28

- f is the control.
- b(x), $b_{\omega}(x)$ both real and smooth, and $b(x) \geq 0$.
- Notice the shift between the two energy levels.

Denote

$$O=\{x\in M,\, b(x)>0\}$$
 coupling set $\omega=\{x\in M,\,\,b_{\omega}(x)
eq0\}$ control set

The Goal

- Exact controllabilty at (some fixed) time T.
- Analysis (quantization) of the HUM optimal control operator.

Systems

3 / 28

Some References

- F. Alabau-Boussouira (starting from 99').
- F.Alabau-Boussouira-M.Leautaud (11'): symmetric systems, long control time.
- L.Rosier L.de Teresa (11'):1-D, geometric but not sharp control time.
- A.Benabdallah et al (thermo-elasticity 96', reaction-diffusion 07', systems of parabolic equations 10')
- D-Lebeau (09'): quantization of the HUM control operator for the scalar wave equation.

Dehman et al () Systems 4 / 28

Some References

- F. Alabau-Boussouira (starting from 99').
- F.Alabau-Boussouira-M.Leautaud (11'): symmetric systems, long control time.
- L.Rosier L.de Teresa (11'):1-D, geometric but not sharp control time.
- A.Benabdallah et al (thermo-elasticity 96', reaction-diffusion 07', systems of parabolic equations 10')
- D-Lebeau (09'): quantization of the HUM control operator for the scalar wave equation.

The crucial point: what are the geometric constraints on the open sets O and ω and the control time T?

Dehman et al ()

Preliminary remarks: Exact controllabilty fails:

Dehman et al () Systems 5 / 2

Preliminary remarks: Exact controllability fails:

• In any energy space if one of the open sets O or ω does not satisfy (GCC) of Bardos-Lebeau-Rauch.

Dehman et al () Systems 5 / 28

Preliminary remarks: Exact controllability fails:

- In any energy space if one of the open sets O or ω does not satisfy (GCC) of Bardos-Lebeau-Rauch.
- In the usual energy space $(H^2 \times H^1) \times (H^1 \times L^2)$ if the propagation speeds of the two waves are different (no condition on O and ω).

Dehman et al () Systems 5 / 2

Preliminary remarks: Exact controllability fails:

- In any energy space if one of the open sets O or ω does not satisfy (GCC) of Bardos-Lebeau-Rauch.
- In the usual energy space $(H^2 \times H^1) \times (H^1 \times L^2)$ if the propagation speeds of the two waves are different (no condition on O and ω).

$$\gamma^2
eq 1$$
,

$$\begin{cases} (\partial_t^2 - \Delta)u_1 = -b(x)u_2 & H^2 \times H^1 \\ (\partial_t^2 - \gamma^2 \Delta)u_2 = b_{\omega}(x)f & H^1 \times L^2 \end{cases}$$

For $f \in L^2$ ($]0, T[\times M)$, $u_2 \in H^2$ outside $\{\tau^2 = \gamma^2 |\xi|^2\}$. Therefore, starting from (0,0), $u_1 \in H^3(]0, T[\times M)$. Actually, $u_1 \in C(]0, T[, H^3) \cap C^1(]0, T[, H^2).$

 \Rightarrow We can not reach any given state in $H^2 \times H^1$!

Dehman et al ()

Assume that $\overline{\omega} \cap \overline{O}$ does not satisfy GCC and $\gamma \neq 1$. For all $s \geq 1$ and all T > 0, there exists $(u_1^0, u_1^1) \in H^{s+1}(M) \times H^s(M)$ such that for all $f \in L^2(]0, T[\times M)$, the solution to system

$$\begin{cases} (\partial_t^2 - \Delta)u_1 + b(x)u_2 = 0 \\ (\partial_t^2 - \gamma^2 \Delta)u_2 = b_{\omega}(x)f \\ (u_1, \partial_t u_1)_{|t=0} = (u_1^0, u_1^1) \\ (u_2, \partial_t u_2)_{|t=0} = (0, 0) \end{cases}$$

satisfies $(u_1(T), \partial_t u_1(T), u_2(T), \partial_t u_2(T)) \neq (0, 0, 0, 0)$.

Remark: No control in any energy space!

Dehman et al () Systems 6 / 28

For any bicharacteristic curve Γ of the wave operator \square and any s>1, there exists a finite energy solution u of

$$\left\{ \begin{array}{l} \square u = 0 & \text{in }]0, T[\times M] \\ (u(0), \partial_t u(0)) \in H^1 \times L^2 \end{array} \right.$$

such that $WFu = \Gamma$ (resp. $WF^su = \Gamma$).

Dehman et al. () Systems 7 / 28

For any bicharacteristic curve Γ of the wave operator \square and any s>1, there exists a finite energy solution u of

$$\begin{cases}
\Box u = 0 & \text{in }]0, T[\times M] \\
(u(0), \partial_t u(0)) \in H^1 \times L^2
\end{cases}$$

such that $WFu = \Gamma$ (resp. $WF^su = \Gamma$).

Theorem

There exists a sequence of solutions u^k , such that

$$\liminf \left\| \left(u^k(0) , \partial_t u^k(0) \right) \right\|_{H^1 \times I^2}^2 \ge 1, \qquad u^k \rightharpoonup 0 \quad \text{in } H^1(]0, T[\times M)$$

and the H^1 – microlocal defect measure μ of u^k satisfies supp $(\mu) \subset \Gamma$.

Assumption

$$(O, T_O)$$
 and (ω, T_ω) satisfy (GCC)

Dehman et al () Systems 8 / 2

Assumption

$$(O, T_O)$$
 and (ω, T_ω) satisfy (GCC)

The optimal control time

Definition

 $T_{\omega \to O \to \omega}$ is the infimum of the times T>0 satisfying the following: Every geodesic travelling with speed 1 in M meets ω in a time $t_0 < T$, then meets O in a time $t_1 \in (t_0, T)$ and meets again ω in a time $t_2 \in (t_1, T)$.

Dehman et al () Systems 8 / 28

Remarks

In general

•
$$T_{\omega \to O \to \omega} \neq T_{O \to \omega \to O}$$
.

•
$$\max(T_{\omega}, T_{O}) \leq T_{\omega \to O \to \omega} \leq 2T_{\omega} + T_{O}$$
.

(D-Le Rousseau-Leautaud)

Assume that ω and O both satisfy (GCC). Then system (S) is controlable

if $T > T_{\omega \to O \to \omega}$ and is not controlable if $T < T_{\omega \to O \to \omega}$.

Dehman et al () Systems 10 / 28

(D-Le Rousseau-Leautaud)

Assume that ω and O both satisfy (GCC). Then system (S) is controlable

if $T > T_{\omega \to O \to \omega}$ and is not controlable if $T < T_{\omega \to O \to \omega}$.

Remarks

- No condition on the set $O \cap \omega$.
- The optimal control time only depends on the geometry of (Ω, ω, O) .
- Case of a smooth domain of \mathbb{R}^d : work in progress.

Dehman et al () Systems 10 / 28

The observability estimate

The adjoint system

$$\left\{ \begin{array}{cccc} \Box v_1=0 & \text{in} &]0, T[\times M\\ \\ \Box v_2+b(x)v_1=0 & \text{in} &]0, T[\times M\\ \\ \text{I. D} & \text{in} & (H^{-1}\times H^{-2})\times (L^2\times H^{-1}) \end{array} \right. \tag{S*}$$

$$E_{-1}(v_1) + E_0(v_2) \le c \int_0^T \int_M |b_\omega v_2|^2 dxdt$$

where

$$E_{-k}(v) = \|(v, \partial_t v)(0)\|_{H^{-k} \times H^{-k-1}}^2$$

Change of functions

$$w_1 = (1 - \Delta)^{-1/2} v_1$$
, $w_2 = v_2$

$$\left\{ \begin{array}{cccc} \Box w_1 = 0 & \text{in} &]0, +T[\times M \\ \\ \Box w_2 + b(x)(1-\Delta)^{1/2}w_1 = 0 & \text{in} &]0, T[\times M \\ \\ \text{I. D} & \text{in} & (L^2 \times H^{-1}) \times (L^2 \times H^{-1}) \end{array} \right.$$

Observability Estimate

$$E_0(w_1) + E_0(w_2) \le c \int_0^T \int_M |b_\omega w_2|^2 dx dt$$

Dehman et al. () Systems 12 / 28

Sketch of the proof

Relaxed Observability Estimate

$$E_0(w_1) + E_0(w_2) \le c_1 \int_0^T \int_M |b_\omega w_2|^2 dx dt + c_2(E_{-1}(w_1) + E_{-1}(w_2))$$

Dehman et al. () Systems 13 / 28

Sketch of the proof

Relaxed Observability Estimate

$$E_0(w_1) + E_0(w_2) \le c_1 \int_0^T \int_M |b_\omega w_2|^2 dx dt + c_2(E_{-1}(w_1) + E_{-1}(w_2))$$

Contradiction argument

$$\left\{ \begin{array}{c} E_0(w_1^k) + E_0(w_2^k) = 1 \\ \\ \int_0^T \int_M \left| \ b_\omega w_2^k \right|^2 dx dt + E_{-1}(w_1^k) + E_{-1}(w_2^k) \le 1/k \end{array} \right.$$

 (w_j^k) is bounded in $L^2(]0, T[\times M)$ and converges to 0 in $H^{-1}(]0, T[\times M)$. Hence

$$w_j^k
ightharpoonup 0$$
 in $L^2(]0, T[imes M)$ weakly

Dehman et al () Systems 13 / 2

It remains to:

a) Prove the strong convergence (propagation of the m.d.m's).

 ${f b}$) Drop the compact term in the RHS of the relaxed observabilty estimate. (unique continuation).

Dehman et al () Systems 14 / 28

Proof of b) assuming a).

$$E_0(w_1) + E_0(w_2) \le c \int_0^T \int_M |b_\omega w_2|^2 dxdt$$
 ???

Again by contradiction, one gets that the weak limit (w_1, w_2) satisfies

$$\left\{ \begin{array}{cccc} \square w_1=0 & \text{ in } \quad]0,\, T[\times M \\ \\ \square w_2+b(x)(1-\Delta)^{1/2}w_1=0 & \text{ in } \quad]0,\, T[\times M \\ \\ w_2=0 & \text{ in } \quad]0,\, T[\times \omega \end{array} \right. \tag{L.S}$$

$$\mathcal{N}(T) = \{(w_1, \partial_t w_1, w_2, \partial_t w_2) \in (L^2 \times H^{-1})^2, \text{ solution of (L.S)}\}$$

Dehman et al () Systems 15 / 2

 $\mathcal{N}(T)$ is of finite dimension and stable by the action of $\partial/\partial t$.

$$\begin{cases} \Delta w_1 = \lambda^2 w_1 \\ \Delta w_2 - b(x)(1-\Delta)^{1/2} w_1 = \lambda^2 w_2 \end{cases}$$

$$\int_M b(x) \left| (1-\Delta)^{1/2} w_1 \right|^2 = 0$$

So $w_1=w_2\equiv 0$. Contradiction since the weak limit satisfies the relaxed estimate

$$1 \le c_2(E_{-1}(w_1) + E_{-1}(w_2)) = 0$$

(ロ) (型) (差) (差) (差) (2) (2)

Dehman et al () Systems 16 /

Proof of a)

$$\begin{cases} H_{p}\mu_{1} = 0 \\ H_{p}\mu_{2} = 2b |\eta| \text{ Im } \mu_{12} \\ H_{p} \text{ Im } \mu_{12} = b |\eta| \mu_{1} \\ H_{p} \text{ Re } \mu_{12} = 0 \end{cases}$$

And

$$\mu_2=\mu_{12}=$$
 0 over]0, $T[imes\omega$

Take $\rho \in B \subset S^*(]0, T[\times O)$ where B is a small borelian set of $S^*(]0, T[\times M)$.

$$\operatorname{Im} \mu_{12}(\Phi_{-T_1}(B)) - \operatorname{Im} \mu_{12}(\Phi_{T_2}(B))) = \int_{-T_1}^{T_2} b |\eta| \, \mu_1(\Phi_s(B)) ds = 0$$

Hence $ho
otin \operatorname{supp}(\ \mu_1)$and conclude by (GCC).

Quantization of the HUM control operator

An abstract control

- $\rightarrow \exp(itA), t \ge 0$, a semi-group of contractions on a hilbert space H.
- $\rightarrow B$ bounded operator on H and $g \in L^1([0,T],H)$

$$(\partial_t - iA)f = Bg, \qquad f(0) = 0$$

We choose g solution of

$$(\partial_t - iA^*)g = 0, \qquad g(T) = g_0$$

Observation

$$\int_{0}^{T} \left\| B^* e^{-itA^*} h \right\|_{H}^{2} dt \ge C \|h\|_{H}^{2}$$

The inverse of the HUM optimal control operator (**Gramian**) is given by

$$M_T = \int_0^T \mathrm{e}^{itA}BB^*\mathrm{e}^{-itA}dt = \Lambda^{-1}$$

Notations

$$(e_j,\omega_j^2)_{j\geq 0}$$
 the spectral elements of M , $(\omega_0=0)$, $-\Delta e_j=\omega_j^2 e_j, \qquad \|e_j\|_{L^2(\Omega)}=1$

$$H^{s}(M) = \{u = \sum_{j} a_{j}e_{j}, \quad \sum_{j} (1 + \omega_{j}^{2})^{s} |a_{j}|^{2} < \infty\} = \mathcal{D}((-\Delta)^{s/2})$$
 $\lambda = \lambda(x, D_{x}) = \sqrt{-\Delta}, \qquad \lambda(x, D_{x}) \sum_{j \geq 0} a_{j}e_{j} = \sum_{j \geq 0} \omega_{j}a_{j}e_{j}$
 $\Pi_{+} \sum_{j \geq 0} a_{j}e_{j} = \sum_{j \geq 1} a_{j}e_{j}, \qquad \Pi_{0} \sum_{j \geq 0} a_{j}e_{j} = a_{0}e_{0}$

$$L_+^2(M) = \Pi_+ L^2(M)$$

 λ , Π_0 and Π_+ are pseudodifferential operators of order 1 and 0 (use the Helffer-Sjöstrand formula).

4□ > 4♬ > 4 ½ > 4 ½ > ½

Change of space, splitting and identification

$$\left\{ \begin{array}{l} (H^{-1}\times H^{-2})\times (L^2\times H^{-1})\longleftrightarrow (L^2\times H^{-1})\times (L^2\times H^{-1}) \\ \\ (v_1,\partial_t v_1,v_2,\partial_t v_2)\longleftrightarrow ((1-\Delta)^{-1/2}v_1,\partial_t (1-\Delta)^{-1/2}v_1,v_2,\partial_t v_2) \end{array} \right.$$

Dehman et al () Systems 21 / 2

Change of space, splitting and identification

$$\left\{ \begin{array}{l} (H^{-1}\times H^{-2})\times (L^2\times H^{-1})\longleftrightarrow (L^2\times H^{-1})\times (L^2\times H^{-1}) \\ \\ (v_1,\partial_t v_1,v_2,\partial_t v_2)\longleftrightarrow ((1-\Delta)^{-1/2}v_1,\partial_t (1-\Delta)^{-1/2}v_1,v_2,\partial_t v_2) \end{array} \right.$$

For
$$(w_1^0, w_1^1)$$
, $(w_2^0, w_2^1) \in L^2 \times H^{-1} = L_+^2 \times H_+^{-1} \oplus \mathbb{C}^2$, wet set
$$\left\{ \begin{array}{c} w_1^0 = h_+ + h_- + c_0 e_0 \\ w_1^1 = i\lambda(h_+ - h_-) + c_1 e_0 \end{array} \right.$$

with $h_{\pm} \in L^2_+$, and $(c_0, c_1) \in \mathbb{C}^2$. And similarly

$$\begin{cases} w_2^0 = g_+ + g_- + d_0 e_0 \\ w_2^1 = i\lambda(g_+ - g_-) + d_1 e_0 \end{cases}$$

This gives an identification between $(L^2 \times H^{-1})^2$ and $(L^2_+(M))^4 \oplus \mathbb{C}^4$ by an elliptic pseudodifferential operator.

4 □ ▶ 〈문 ▶ 〈토 ▶ 〈토 ▶ 〈토 ▶ ○ 돌 · ♡

More precisely, we use the identification

$$\begin{array}{ccc} (L^2 \times H^{-1})^2 & \to & (L_+^2(M))^4 \oplus \mathbb{C}^4 \\ (w_1^0, w_1^1, w_2^0, w_2^1) & \to & (h_+, g_+, h_-, g_-, c_0, c_1, d_0, d_1) \end{array}$$

Dehman et al () Systems 22 / 28

More precisely, we use the identification

$$\begin{array}{ccc} (L^2 \times H^{-1})^2 & \to & (L_+^2(M))^4 \oplus \mathbb{C}^4 \\ (w_1^0, w_1^1, w_2^0, w_2^1) & \to & (h_+, g_+, h_-, g_-, c_0, c_1, d_0, d_1) \end{array}$$

We will express the Gramian M_T and the HUM control operator Λ in the space

$$H=(L^2_+(M))^4\oplus \mathbb{C}^4$$

Dehman et al. () Systems 22 / 28

More precisely, we use the identification

$$\begin{array}{ccc} (L^2 \times H^{-1})^2 & \to & (L_+^2(M))^4 \oplus \mathbb{C}^4 \\ (w_1^0, w_1^1, w_2^0, w_2^1) & \to & (h_+, g_+, h_-, g_-, c_0, c_1, d_0, d_1) \end{array}$$

We will express the Gramian M_T and the HUM control operator Λ in the space

$$H = (L_+^2(M))^4 \oplus \mathbb{C}^4$$

For $(x, \xi, t, \tau,) \in T^*M \setminus 0$, $\tau = |\xi|_x$, denote

$$s
ightarrow \gamma_s^\pm = (\gamma_{(x, \xi)}(\pm s), t - s au, au) \quad s \in \mathbb{R}$$

the bicharacteristic curve of the wave operator issued from $(x, \xi, t, \tau = |\xi|_x)$.

Dehman et al () Systems 22 / 28

Assume that ω and O satisfy GCC and $T > T_{\omega \to O \to \omega}$; then in the splitting above, the Gramian operator takes the form

$$M_T = \Pi_+ \left(egin{array}{cc} M_T^+ & 0 \ 0 & M_T^- \end{array}
ight)\Pi_+ + R_T$$

where R_T is a 1-smoothing operator and M_T^\pm is an elliptic pseudo-differential operator of order 0. In addition, the principal symbol $\sigma_0(M_T^+)$ of M_T^+ is given by

$$\left(\begin{array}{ccc} \frac{1}{4} \int_0^T b_\omega^2(\gamma_t^+) (\int_0^t b((\gamma_s^+) ds)^2 dt & -\frac{1}{2i} \int_0^T b_\omega^2(\gamma_t^+) (\int_0^t b((\gamma_s^+) ds) dt \\ \\ \frac{1}{2i} \int_0^T b_\omega^2(\gamma_t^+) (\int_0^t b((\gamma_s^+) ds) dt & \int_0^T b_\omega^2(\gamma_t^+) dt \end{array} \right)$$

and

$$\det(\sigma_0(M_T^+)) = \frac{1}{8} \int_0^T \int_0^T b_\omega^2(\gamma_{t_1}^+) b_\omega^2(\gamma_{t_2}^+) (\int_{t_1}^{t_2} b((\gamma_s^+) ds)^2 dt_1 dt_2$$

Dehman et al () Systems 23 / 28

Corollary

Under the assumptions above and with $L_{\pm}=(M_T^{\pm})^{-1}$, the HUM control operator Λ takes the form

$$\Lambda = \Pi_+ \left(egin{array}{cc} L_+ & 0 \ 0 & L_- \end{array}
ight) \Pi_+ + \widetilde{R}_{\mathcal{T}}$$

where R_T is a 1-smoothing operator. In particular, Λ is an isomorphism on $(H^s \times H^s)^2$ for every $s \in \mathbb{R}$.

Remarks

- Notice the explicit reading of the geometric condition $(\omega, O, T_{\omega \to O \to \omega})$.
- ullet Λ preserves the WF set(s) of the data to be controlled.
- ullet Λ "commutes" to spectral localization...
- \widetilde{R}_T is a Fourier Integral Operator of order (-1).
- Key: Egorov Theorem.

Dehman et al () Systems 24 /

Egorov Theorem

$$\begin{cases} \partial_t u = iA(x; D_x)u & \text{in } \mathbb{R} \times M \\ u(0) = u_0 \end{cases}$$

$$\rightarrow A = A_1 + A_0,$$
 $A_1(x;\xi) \in S^1_{cl}$ real, $A_0(x;\xi) \in S^0_{cl}$

ightarrow $A_1(x;\xi)$ homogeneous in ξ for $|\xi| \geq 1$

$$u(t,x) = \exp(itA)u_0$$

 $\exp(itA)$ is bounded on each $H^{\sigma}(M)$, with inverse $\exp(-itA)$.

Egorov Theorem

If $P_0 = p_0(x, D) \in OPS_{1,0}^m$, then for every t, the operator

$$P(t) = \exp(itA)P_0 \exp(-itA)$$

belongs to $OPS_{1,0}^m$, modulo a smoothing operator. The principal symbol of P(t) (mod $S_{1,0}^{m-1}$) at (x_0,ξ_0) is equal to $p_0(\gamma(t))$ where γ is the bicharacteristic of A_1 issued from (x_0,ξ_0) .

The case of two different speeds

Theorem

Let $\gamma \neq 1$. For every initial data $(u_1^0, u_1^1) \in H^3 \times H^2$, $(u_2^0, u_2^1) \in H^1 \times L^2$ and $F \in L^1(0, T; L^2)$, the usual solution of system

$$\begin{cases} (\partial_t^2 - \Delta)u_1 + b(x)u_2 = 0\\ (\partial_t^2 - \gamma^2 \Delta)u_2 = F \end{cases}$$
 (S_{\gamma})

satisfies the additional regularity

$$u_1 \in \cap_{k=0}^3 C^k(0, T; H^{3-k})$$

and we have the continuity estimate

$$\sum_{k=0}^{3} \left\| \partial_t^k u_1 \right\|_{L^{\infty}(0,T;H^{3-k})} + \sum_{k=0}^{1} \left\| \partial_t^k u_2 \right\|_{L^{\infty}(0,T;H^{1-k})} \leq C \left\| \text{Data} \right\|$$

Dehman et al () Systems 26 / 28

Lemma

Let $\alpha, \beta \in \mathbb{R}$, $\alpha \neq \beta$, and b(x, D) a 0-order pseudodifferential operator. Then the operator defined by

$$A(t) = \int_0^t \exp(-i\alpha s\lambda)b(x, D_x)\exp(i\beta s\lambda)ds$$

satisfies $A(t) \in C^0(\mathbb{R}, \mathcal{L}(H^{\sigma}, H^{\sigma+1}))$, for every $\sigma \in \mathbb{R}$. In particular, A(t) is 1-smoothing.

Dehman et al () Systems 27 / 28

Lemma

Let $\alpha, \beta \in \mathbb{R}$, $\alpha \neq \beta$, and b(x, D) a 0-order pseudodifferential operator. Then the operator defined by

$$A(t) = \int_0^t \exp(-i\alpha s\lambda)b(x, D_x)\exp(i\beta s\lambda)ds$$

satisfies $A(t) \in C^0(\mathbb{R}, \mathcal{L}(H^{\sigma}, H^{\sigma+1}))$, for every $\sigma \in \mathbb{R}$. In particular, A(t) is 1-smoothing.

Integration by parts:

$$(\alpha - \beta)\lambda A(t) = \beta \int_0^t \exp(-i\alpha s\lambda)[b,\lambda] \exp(i\beta s\lambda) ds - ib(x,D) + i\exp(-i\alpha t\lambda)b(x,D) \exp(i\beta t\lambda)$$

Dehman et al () Systems 27 / 28

Assume that $\omega \cap O$ satisfies GCC; than system (S_{γ}) is exactly controlable

in the space $(H^3 \times H^2) \times (H^1 \times L^2)$, in a time $T > \max(T^1_{\omega \cap O}, T^{\gamma}_{\omega \cap O})$.

Dehman et al () Systems 28 / 28