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Position of the problem

Ow + b(x)up =0 in ]0, +oo[xM
Ouy = by(x)f in 0, +oo[xM (S)

Initial Data in (H? x H') x (H! x L?)

— (M, g) compact Riemannian manifold without boundary.

— O =097 —A,.
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@ f is the control.
@ b(x), by(x) both real and smooth, and b(x) > 0.

@ Notice the shift between the two energy levels.

Denote
O ={x € M, b(x) > 0} coupling set

w={x €M, by(x) # 0} control set
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@ f is the control.
@ b(x), by(x) both real and smooth, and b(x) > 0.

@ Notice the shift between the two energy levels.

Denote
O ={x € M, b(x) > 0} coupling set

w={x €M, by,(x) # 0} control set

The Goal

@ Exact controllabilty at ( some fixed ) time T.

@ Analysis ( quantization ) of the HUM optimal control operator.
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Some References

F. Alabau-Boussouira ( starting from 99" ).

F.Alabau-Boussouira-M.Leautaud (11'): symmetric systems, long

control time.

L.Rosier - L.de Teresa (11'):1-D , geometric but not sharp control
time.

A.Benabdallah et al ( thermo-elasticity 96', reaction-diffusion 07,
systems of parabolic equations 10')

D-Lebeau (09'): quantization of the HUM control operator for the
scalar wave equation.
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Some References

e F. Alabau-Boussouira ( starting from 99" ).

e F.Alabau-Boussouira-M.Leautaud (11'): symmetric systems, long
control time.

@ L.Rosier - L.de Teresa (11'):1-D , geometric but not sharp control
time.

@ A.Benabdallah et al ( thermo-elasticity 96', reaction-diffusion 07’,
systems of parabolic equations 10')

@ D-Lebeau (09'): quantization of the HUM control operator for the

scalar wave equation.

The crucial point: what are the geometric constraints on the open sets
O and w and the control time T 7
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Preliminary remarks: Exact controllabilty fails:
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Preliminary remarks: Exact controllabilty fails:

@ In any energy space if one of the open sets O or w does not satisfy
(GCCQ) of Bardos-Lebeau-Rauch.
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Preliminary remarks: Exact controllabilty fails:

@ In any energy space if one of the open sets O or w does not satisfy
(GCCQ) of Bardos-Lebeau-Rauch.

@ In the usual energy space (H? x H) x (H! x L2?) if the propagation
speeds of the two waves are different ( no condition on O and w ).
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Preliminary remarks: Exact controllabilty fails:

@ In any energy space if one of the open sets O or w does not satisfy
(GCCQ) of Bardos-Lebeau-Rauch.

@ In the usual energy space (H? x H) x (H! x L2?) if the propagation
speeds of the two waves are different ( no condition on O and w ).

Y #L
(02 — A)uy = —b(x)us H? x H!
(07 — Ay = by(x)f HY x L2

For f € 12 (0, T[xM), u, € H? outside {12 = 72 |¢|*}.
Therefore, starting from (0,0), u; € H3(]0, T[xM).
Actually, u; € C(]0, T[, H3) n CL(Jo, T[, H?).

= We can not reach any given state in H> x H! |
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Theorem

Assume that @ N O does not satisfy GCC and 7y # 1.
For all s > 1 and all T > 0, there exists (u?, u}) € HSTL(M) x H*(M)
such that for all f € L?(]0, T[x M), the solution to system

(02 — A)uy + b(x)up =0
(0 = ¥?A)up = by (x)f
(Ulyatul)u:o = (U?:U%)
(U2yatu2)\t=0 = (0,0)

satisfies (uy(T),d¢ur(T), up(T),0:u2(T)) # (0,0,0,0).

Remark: No control in any energy space !
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Theorem

For any bicharacteristic curve I' of the wave operator [J and any s > 1,
there exists a finite energy solution u of

Ou=0 in )0, T[xM
{ (u(0),9:u(0)) € H' x L2

such that WFu =T (resp. WF*u =T).
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Theorem

For any bicharacteristic curve I' of the wave operator L1 and any s > 1,
there exists a finite energy solution u of

Ou=0  in]0, T[xM
{ (1(0),.u(0)) € H x L2

such that WFu =T (resp. WF*u =T).

Theorem

| A

There exists a sequence of solutions u¥ , such that

2

Iimian(uk(O) ,atuk(O))‘ >1, ok —0 inH(0, T[xM)

Hlx 2

and the H'— microlocal defect measure i of u* satisfies supp(u)C T.
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Assumption

Dehman et al ()

(0, To)

and

(w, Tw)

Systems

satisfy (GCC)
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Assumption

(0, To) and (w,Ty) satisfy (GCC)

The optimal control time

Definition

Tw—0—w is the infimum of the times T > 0 satisfying the following:
Every geodesic travelling with speed 1 in M meets w in a time tp < T,
then meets O in a time t; € (tp, T) and meets again w in a time
the(t, T).
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1 I
Tw—rt?—ru.i
fo |- ______ ___
72
- ts — 1)
T _____,:':A'/:_ ______ ___
0,
I fo =1y
fo |- o0 - ——_
'llll
t=10 .
o ) w LY
Remarks
In general

4 Tu}%o%a} 7é TOHwHO-
@ max(Tw, To) < Tp—0—w < 2Tw+ To.
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( D-Le Rousseau-Leautaud )
Assume that w and O both satisfy (GCC). Then system (S) is controlable

if T > Ty_0—w and is not controlable if T < T, _.0_w-
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( D-Le Rousseau-Leautaud )
Assume that w and O both satisfy (GCC). Then system (S) is controlable

if T > Ty_0—w and is not controlable if T < T, _.0_w-

Remarks

@ No condition on the set O Nw.
@ The optimal control time only depends on the geometry of (Q), w, O).

e Case of a smooth domain of R? : work in progress.
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The observability estimate

The adjoint system
vy =0 in 0, T[xM
Ov, + b(x)vi =0 in 10, T[xM (5*)

I.D in (H1x H2) x (L2x H™1)

T
Efl(vl) + Eo(VQ) < CA //\/] ’ wa2|2 dxdt

where
2
E_k(v) = [[(v,0ev) (O) [} pykn
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Change of functions

le(l—A)fl/zvl, Wo = vy

Owy =0 in ]0,+T[xM
Ow, + b(x)(1 — A)%w; =0 in 0, T[xM

l. D in (L2x H™ 1) x (L2 x H7Y)

Observability Estimate

-
Eo(wi) + Eg(wo) < C/O /M | bows|® dxdt
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Sketch of the proof

Relaxed Observability Estimate

T
Eo(Wl) + Eo(WQ) <q A /I\/I ‘ wa2|2 dxdt + CQ(Ef]_(W]_) + Efl(Wg))
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Sketch of the proof

Relaxed Observability Estimate

T
Eo(Wl) + Eo(WQ) <q /0 /I\/I ‘ wa2|2 dxdt + CQ(Ef]_(W]_) + Efl(Wg))

Contradiction argument

Eo(wf) + Eo(wy) = 1

Jo Ju | bowk | dxdt + E_y(wf) + E-v(wf) < 1/k

(wf) is bounded in L?(]0, T[x M) and converges to 0 in H*(]0, T[xM).
Hence

wf—=0 in L[2(J0, T[xM) weakly
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It remains to:
a) Prove the strong convergence ( propagation of the m.d.m'’s ).

b) Drop the compact term in the RHS of the relaxed observabilty
estimate. ( unique continuation ).
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Proof of b) assuming a).
T 2
Eo(w1) + Eo(wa) < c/ / | bowa2dxdt 777
o Jm

Again by contradiction, one gets that the weak limit (wy, wy) satisfies

Owr =0 in 0, T[xM
Ow, + b(x)(1 — A)Y2w; =0 in 0, T[xM (L.S)

wy =0 in )0, T[xw

N(T) = {(w1,0ewi, wo, 9:w2) € (L* x H™1)?, solution of (L.S)}
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N (T) is of finite dimension and stable by the action of 9/dt.
Awy = A°wy

Awy — b(x)(1 — A 2wy = A%y
/ b(x) (1~ A)1/2W1‘2 —0
M

So wi; = wy = 0. Contradiction since the weak limit satisfies the relaxed
estimate
1< CQ(E_l(W1> + E_l(W2>) =0
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Proof of a)
Owf =0

Owk + b(x)(1—A)2wf =0

wx — 0 in  L2(]0, T[xw)

#; a microlocal defect measure attached to (wy) in L2(]0, T[x M)

Bl o to (wk) in ...
g oo to (Wi, wy) in oo,
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Hppy =0
Hppy = 2b 0| Im py,

HpImpy, = by py

L HpRe‘u12 =0
And
Hy =1, =0 over |0, T[xw

Take p € B C §*(]0, T[x O) where B is a small borelian set of
S*(]o, T[xM).

T>

Im 15(®-7,(B)) ~ 1m gy (@7,(8))) = [ byl py (@s(8)) s = 0

Hence p &supp( #;).....and conclude by (GCC).

Dehman et al () Systems 18 / 28



Quantization of the HUM control operator

An abstract control

— exp(itA), t > 0, a semi-group of contractions on a hilbert space H .
— B bounded operator on H and g € L}([0, T], H)

(3; — iA)f = Bg,  f(0)=0

We choose g solution of

(0: —iA*)g =0, g(T) =g

T )
/ H B*e—ltA*h
0

The inverse of the HUM optimal control operator (Gramian) is given by

Observation ,
> C k|2
‘H dt > C||h[y

T . )
MT — / eltABB*e—ltAdt — A—l
0
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Notations
(ej, w?)j>0 the spectral elements of M,  (wg = 0),

—Ae=wie,  lellzn) =1

J

A =A(x,Dy) = V=A, A(x, Dy) Z ajej = ijajej

H (M) ={u=) a¢, Y (1+w}) 3" <o} =D((-A)"?)

j=0 j>0
Iy ) ae =) 36, Mo ) aj¢j = e
j>0 j>1 j>0

L2(M) =T14L3(M)

A, T1g and I1; are pseudodifferential operators of order 1 and 0 ( use the
Helffer-Sjostrand formula ).

Dehman et al () Systems 20 / 28



Change of space, splitting and identification
(HYXH ) X (Px H Y e— (Px H Y x (12 x HY)

(vi,0¢vi, v2,0:v2) «—— ((1— A)_l/Qvl,at(l - A)_1/2v1, V2,0t V2)
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Change of space, splitting and identification
(HYXH ) X (Px H Y e— (Px H Y x (12 x HY)

(vi,0¢vi, v2,0:v2) «—— ((1— A)_l/zvl,at(l - A)_l/zvl, V2,0t V2)

For (W, wi), (Wl w3) € L2 x H™' = 2 x H ' @ C?, wet set

W{) = h+ + h_ + Co€p
Wl1 = I)L(h+ - h,) + c1e

with hy € L2, and (cp, c1) € C2. And similarly

{ Wg = 8+ +g7+d0e0
wy = iA(g+ —g-) + dieg

This gives an identification between (L2 x H™1)2 and (L3 (M))* & C* by
an elliptic pseudodifferential operator.
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More precisely, we use the identification

(L2 x H™1)?

(wi, wi, wa, w;)

(L3 (M)* e Ct
(hy gy h_, g, . c1, dy,dp)

—
—
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More precisely, we use the identification

(L2 x H™1)?

(wi, wi, wa, w;)

(L3 (M)* e Ct
(hy gy h_, g, . c1, dy,dp)

—
—

We will express the Gramian Mt and the HUM control operator A in the
space
H= (2 (M))*acC
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More precisely, we use the identification

(L2 x H™1)?

(wi, wi, wa, w;)

(L3 (M)* e Ct
(hy gy h_, g, . c1, dy,dp)

—
—

We will express the Gramian Mt and the HUM control operator A in the
space
H= (2 (M))*acC

For (x,¢,t,T,) € T*M\0, T = ||, , denote

s — Tt = (Ve (ES), t—sT7,7T) s€R

the bicharacteristic curve of the wave operator issued from

(x. &t T =gl

Dehman et al () Systems 22 /28



Theorem

Assume that w and O satisfy GCC and T > T,,_,0_.w; then in the
splitting above, the Gramian operator takes the form

ME 0
MT:H+< OT M>H++RT
T

where Rt is a 1-smoothing operator and MjTE is an elliptic
pseudo-differential operator of order 0.
In addition, the principal symbol 0o(M7) of M¥ is given by

LT R (D) (g b((yH)ds)?dt =% [T B2 () (Jif b((vE)ds)dt

3 Jo B2y bU(7¥)ds)dt ST B (7 )t

and

der(aoMp) =3 [ [T EODROD( [ b(lr)as) e
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Corollary

Under the assumptions above and with L+ = (M%)*l, the HUM control
operator A\ takes the form

L. 0 ~
A:H+<O+ L_>H++RT

where R is a I-smoothing operator.
In particular, A is an isomorphism on (H* x HS)? for every s € R.

Remarks

@ Notice the explicit reading of the geometric condition
(wy Ov T(U*?O*)OJ)
A preserves the WF set(s) of the data to be controlled.
A "commutes" to spectral localization...

Rt is a Fourier Integral Operator of order (—1).

Key: Egorov Theorem.
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Egorov Theorem

{ deu = iA(x;

D, ) inRx M
u(0) =
— A=A+ A, A1 (x; €) € S} real, Ao(x;é') S
— A1(x; &) homogeneous in ¢ for || > 1
u(t, x) = exp(itA)ug

exp(itA) is bounded on each H7 (M), with inverse exp(—itA).
Egorov Theorem
If Po = po(x, D) € OPS[",, then for every t, the operator

P(t) = exp(itA) Py exp(—itA)

belongs to OPS[';, modulo a smoothing operator. The principal symbol of
P(t) (mod S'y") at (x0, o) is equal to po(y(t)) where 7 is the
bicharacteristic of A; issued from (xg, &y).
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The case of two different speeds

Theorem

Let iy # 1. For every initial data (u9, ul) € H® x H? , (U9, u}) € H! x L2
and F € L*(0, T; L?), the usual solution of system

(02 — A)uy + b(x)up =0
L (68— oy Gr)

satisfies the additional regularity
u € N3_,CK(0, T; H37K)

and we have the continuity estimate

G < C || Datal|

2{| oo (0, 75H14)
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Lemma

Let o, B € R, a # B, and b(x, D) a 0-order pseudodifferential operator.
Then the operator defined by

A(t) = /Ot exp(—iasA)b(x, Dy) exp(iBsA)ds

satisfies A(t) € C°( R, L(HY, H"1)), for every o € R.
In particular, A(t) is 1-smoothing.
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Lemma

Let w,B € R, a # B, and b(x, D) a O-order pseudodifferential operator.
Then the operator defined by

A(t) = /Ot exp(—iasA)b(x, Dy) exp(iBsA)ds

satisfies A(t) € C°( R, L(HY, H"1)), for every o € R.
In particular, A(t) is 1-smoothing.

Integration by parts:

(«— BAA() = B /0 exp(—iasA)[b, A] exp(iBsA)ds — ib(x, D)
+iexp(—iatA)b(x, D) exp(iBtA)
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Assume that w N O satisfies GCC; than system (S,) is exactly controlable

in the space (H?® x H?) x(H' x L?), in a time T > max(T}-o. T.)0)-

w
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