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Presentation

O = F(t) ∪ S(t) ⊂ R2 or R3.

F(t)

S(t)

The Lagrangian mapping XS of the solid defines

S(t) = XS(S(0), t),

and we denote

F(t) = O \ S(t).



Presentation

The mapping XS is decomposed into two parts, as follows

XS(y , t) = h(t) + R(t)X ∗(y , t), y ∈ S(0).

• h(t) : the position of the solid’s center of mass.
• R(t) : the rotation associated to its angular velocity ω, satisfying

dR

dt
= S (ω)R

R(0) = IR3 ,
with S(ω) =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 .

• We define

w∗(x∗, t) =
∂X ∗

∂t
(Y ∗(x∗, t), t), x∗ ∈ X ∗(S(0), t),

w(x , t) = R(t)w∗(R(t)T (x − h(t)), t), x ∈ S(t).



The main system

∂u

∂t
− ν∆u + (u · ∇)u +∇p = 0, x ∈ F(t), t ∈ (0,T ),

div u = 0, x ∈ F(t), t ∈ (0,T ),

u = 0, x ∈ ∂O, t ∈ (0,T ),

u = h′(t) + ω(t) ∧ (x − h(t)) + w(x , t), x ∈ ∂S(t), t ∈ (0,T ),

Mh′′(t) = −
∫
∂S(t)

σ(u, p)ndΓ, t ∈ (0,T ),

(Iω)′ (t) = −
∫
∂S(t)

(x − h(t)) ∧ σ(u, p)ndΓ, t ∈ (0,T ),

u(y , 0) = u0(y), y ∈ F(0), ω(0) = ω0 ∈ R3,

h(0) = h0 ∈ Rd , h′(0) = h1 ∈ Rd , .



The regularity on the control X ∗

We denote S = S(0) and F = F(0).
We consider W0,m(0,T ;S) - with m > 2 if d = 2 and m > 5/2 if
d = 3 - defined as

X ∗ ∈ W0,m(0,T ;S)⇔
∂X ∗

∂t
∈ L2(0,T ;Hm(S)) ∩Hm/2(0,T ;L2(S)),

X ∗(y , 0) = y − h0,
∂X ∗

∂t
(y , 0) = 0 ∀y ∈ S.

This class of functions allows in particular to consider controls X ∗

lying in C 1(S).



The constraints that X ∗ must satisfy

The deformation X ∗(·, t) must be a C 1-diffeomorphism from
S(0) onto S∗(t).

The conservation of the volume :∫
∂S

(cof ∇X ∗)
∂X ∗

∂t
· ndΓ = 0.

The conservation of momenta (to guarantee the self-propelled
nature of the deformation) :∫

S
X ∗(y , t)dy = 0,∫

S
X ∗(y , t) ∧ ∂X ∗

∂t
dy = 0.
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Rewriting the main system in fixed domains

We extend the Lagrangian mapping induced by X ∗ to the whole
domain O, in a mapping denoted X̃ .
We set

X (y , t) = h(t) + R(t)X̃ (y , t), y ∈ F(0),

and we consider the following change of unknowns

ũ(y , t) = R(t)Tu(X (y , t), t), h̃′(t) = R(t)Th′(t),
p̃(y , t) = p(X (y , t), t), ω̃(t) = R(t)Tω(t).

We also set

û(y , t) = eλt ũ(y , t), ĥ′(t) = eλt h̃′(t),
p̂(y , t) = eλt p̃(y , t), ω̂(t) = eλt ω̃(t).



The linearized system

∂Û

∂t
− λÛ− ν∆Û +∇P̂ = 0, in (0,T )×F(0),

div Û = 0, in (0,T )×F(0),

Û = 0, in (0,T )× ∂O,

Û = Ĥ′(t) + Ω̂(t) ∧ y + eλt
∂X ∗

∂t
(y , t), y ∈ ∂S(0), t ∈ (0,T ),

MĤ′′(t)− λMĤ′(t) = −
∫
∂S
σ(Û, P̂)ndΓ, t ∈ (0,T ),

I0Ω̂
′(t)− λI0Ω̂(t) = −

∫
∂S

y ∧ σ(Û, P̂)ndΓ, t ∈ (0,T ),

Û(y , 0) = u0(y), y ∈ F(0), Ĥ′(0) = h1 ∈ Rd , Ω̂(0) = ω0 ∈ R3.



The main result

Let us define

Hcc =
{

(u0, h1, ω0) ∈ L2(F)× Rd × R3 |

divu0 = 0, u0 = h1 + ω0 ∧ y on ∂S} .

Theorem
For all λ > 0, and all (u0, h1, ω0) ∈ Hcc , there exists a control
X ∗ ∈ W0,m(0,∞;S) with m ≥ 3, satisfying the constraints
aforementioned, such that the solution to the linear system above
obeys

‖(Û, Ĥ′, Ω̂)‖L2(0,∞;Hcc ) < ∞.
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