An "exterior approach" to solve the inverse obstacle problem for the Stokes system

Laurent Bourgeois (with Jérémi Dardé)

Laboratoire POEMS, ENSTA

Workshop on "Control of Fluid-Structure System and Inverse Problems"

Toulouse, 25-28/06/2012

Inverse obstacle problem (Dirichlet)

- $\mathcal{O} \Subset \mathcal{D}$ (bounded) $\subset \mathbb{R}^{d}(d=2,3)$
- $\Gamma \subset \partial \mathcal{D}(\Gamma$ open with measure $>0)$
- $\Omega:=\mathcal{D} \backslash \overline{\mathcal{O}}$ connected

For $\left(\boldsymbol{g}_{0}, \boldsymbol{g}_{1}\right)$, find \mathcal{O} s.t. $(\boldsymbol{u}, p) \in\left(H^{1}(\Omega)\right)^{d} \times L^{2}(\Omega)$ and

$$
\left\{\begin{array}{rlll}
-\nu \Delta \boldsymbol{u}+\nabla p & =0 & & \text { in } \Omega \\
\operatorname{div} \boldsymbol{u} & =0 & & \text { in } \Omega \\
\boldsymbol{u} & =\boldsymbol{g}_{0} & & \text { on } \Gamma \\
\sigma(\boldsymbol{u}, p) \cdot n & =\boldsymbol{g}_{1} & & \text { on } \Gamma \\
\boldsymbol{u} & =0 & & \text { on } \partial \mathcal{O}
\end{array}\right.
$$

$$
\begin{aligned}
& e(\boldsymbol{u})=\frac{1}{2}\left(\nabla \boldsymbol{u}+\nabla^{T} \boldsymbol{u}\right) \\
& \sigma(\boldsymbol{u}, p)=2 \nu e(\boldsymbol{u})-p I
\end{aligned}
$$

Uniqueness : for $\left(\boldsymbol{g}_{0}, \boldsymbol{g}_{1}\right)$ with $\boldsymbol{g}_{0} \neq 0$ and $\boldsymbol{u} \in\left(C^{0}(\bar{\Omega})\right)^{d}$, there exists at most one obstacle \mathcal{O}

Assume that two obstacles \mathcal{O}_{1} et \mathcal{O}_{2} are compatible with $\left(\boldsymbol{g}_{0}, \boldsymbol{g}_{1}\right)$

- $\tilde{\mathcal{D}}:=$ connected component of $\mathcal{D} \backslash \overline{\mathcal{O}_{1}} \cup \overline{\mathcal{O}_{2}}$ in contact with Γ
- $\mathcal{V}:=\mathcal{D} \backslash\left(\overline{\mathcal{O}_{1}} \cup \overline{\mathcal{D}}\right)$

We have $\boldsymbol{u}_{1}=0$ on $\partial \mathcal{O}_{1}$
Unique continuation implies $u_{1}=u_{2}$ on $\partial \tilde{\mathcal{D}}$
Hence $\boldsymbol{u}_{1}=0$ on $\partial \mathcal{O}_{2} \cap \partial \tilde{\mathcal{D}}$
Finally $\boldsymbol{u}_{1}=0$ on $\partial \mathcal{V}$, that is (\boldsymbol{u}_{1} continuous) $\boldsymbol{u}_{1} \in\left(H_{0}^{1}(\mathcal{V})\right)^{d}$ and

$$
\int_{\mathcal{V}}\left(-\nu \Delta \boldsymbol{u}_{1}+\nabla p_{1}\right) \cdot \boldsymbol{u}_{1} d x=0=\int_{\mathcal{V}} \nu\left|\nabla \boldsymbol{u}_{1}\right|^{2} d x
$$

Hence $\boldsymbol{u}_{1}=0$ in \mathcal{V}, and $\Rightarrow=0$ in $\mathcal{D} \backslash \overline{\mathcal{O}_{1}} \rightarrow$ incompatible with $\boldsymbol{g}_{0} \neq 0$

Some contributions on IP with Stokes system

- Unique continuation for Stokes (with nonsmooth potential) : Fabre \& Lebeau (96)
- Quantification of unique continuation for Stokes: Lin, Uhlmann \& Wang (10), Boulakia, Egloffe \& Grandmont (12)
- Uniqueness and stability of the inverse obstacle problem for fluids : Alvarez, Conca, Fritz, Kavian \& Ortega (05), Ballerini (10), Conca, Malik, Munnier (10), Conca, Schwindt, Takahashi (12)
- Data completion for Stokes : Ben Abda, Ben Saad, Hassine (09)
- Numerical methods for the inverse obstacle problem : Martins \& Silvestre (08) (parametrization),
Alvarez, Conca, Lecaros \& Ortega (08), Badra, Caubet \& Dambrine (11), Caubet, Dambrine, Kateb \& Timimoun (12)(shape derivative), Ben Abda, Hassine, Jaoua, Masmoudi (10) (topological gradient)

The exterior approach

An iterative approach that couples a quasi-reversibility method and a level set method \rightarrow no optimization

- Step 1 : given the current obstacle \mathcal{O}_{n}, find an approximation \boldsymbol{u}_{n} of solution \boldsymbol{u} in $\Omega_{n}=\mathcal{D} \backslash \overline{\mathcal{O}}_{n}$ with the method of quasi-reversibility
- Step 2: given the approximate solution \boldsymbol{u}_{n} in Ω_{n}, update the obstacle \mathcal{O}_{n} with a level set method

A new level set method

Velocity $V \in H^{1}(\mathcal{D})$ s.t. $\left.V\right|_{\mathcal{O}} \in H_{0}^{1}(\mathcal{O})$

$$
\left\{\begin{array}{cl}
V=|\boldsymbol{u}|=\sqrt{\sum_{i=1}^{d} u_{i}^{2}} & \text { in } \quad \Omega \\
V \leq 0 & \text { in } \mathcal{O}
\end{array}\right.
$$

For $f \geq \Delta V$ in $H^{-1}(\mathcal{D})$
$\left\{\begin{array}{c}\mathcal{O} \subset \mathcal{O}_{0} \Subset \mathcal{D} \\ \mathcal{O}_{n+1}=\left\{x \in \mathcal{O}_{n}, \quad \phi_{n}(x)<0\right\}\end{array} \quad\left\{\begin{array}{ccc}\Delta \phi_{n}=f & \text { in } & \mathcal{O}_{n} \\ \phi_{n}=V & \text { on } & \partial \mathcal{O}_{n}\end{array}\right.\right.$
Theorem (convergence of level sets) : if the \mathcal{O}_{n} are uniformly
Lipschitz, for the Hausdorff distance

$$
\overbrace{\bigcap_{n} \mathcal{O}_{n}}^{0}=\mathcal{O}
$$

A new level set method (cont.)

Proposition : if $\mathcal{O} \subset \mathcal{O}_{0}$, the sequence of \mathcal{O}_{n} converges
(Hausdorff distance) to $\tilde{\mathcal{O}}:=$ interior of $\cap_{n} \mathcal{O}_{n}$, with $\mathcal{O} \subset \tilde{\mathcal{O}}$

Proof : The sequence of \mathcal{O}_{n} is decreasing \Rightarrow convergence of \mathcal{O}_{n} (Hausdorff distance) to $\tilde{\mathcal{O}}$.
We show by induction that $\mathcal{O} \subset \mathcal{O}_{n}$:
$\psi_{n}=\phi_{n}-V$ is solution in $H_{0}^{1}\left(\mathcal{O}_{n}\right)$ of $\Delta \psi_{n}=f-\Delta V$.
Weak maximun principle : $f-\Delta V \geq 0 \Rightarrow \psi_{n} \leq 0$ in \mathcal{O}_{n}.
Hence $\phi_{n}=\psi_{n}+V \leq V$ in \mathcal{O}_{n}.
Since $V \leq 0$ in $\mathcal{O} \subset \mathcal{O}_{n}$, we have $\phi_{n} \leq 0$ in \mathcal{O}, then $\mathcal{O} \subset \mathcal{O}_{n+1}$.
Inclusion is conserved by Hausdorff convergence $\Rightarrow \mathcal{O} \subset \tilde{\mathcal{O}}$.

A new level set method (cont.)

Lemma : $\psi_{n} \xrightarrow{H_{0}^{1}(\mathcal{D})} \psi$ when $n \rightarrow+\infty$ with

$$
\begin{cases}\psi_{n} \in H_{0}^{1}\left(\mathcal{O}_{n}\right) & \Delta \psi_{n}=f-\Delta V \\ \psi \in H_{0}^{1}(\tilde{\mathcal{O}}) & \Delta \psi=f-\Delta V\end{cases}
$$

Proof : "O $\mathcal{O}_{n} \xrightarrow{\mathcal{H}} \tilde{\mathcal{O}} "+" \mathcal{O}_{n}$ uniformly Lipschitz", see (Henrot \& Pierre, 05)

End of the proof of the theorem : we alreary have $\mathcal{O} \subset \tilde{\mathcal{O}}$, assume that $\mathcal{R}:=\tilde{\mathcal{O}} \backslash \overline{\mathcal{O}} \neq \emptyset$. From the lemma, by passing to the limit on sequence $\left(\psi_{n}\right), \phi:=\psi+V \leq 0$ in $\tilde{\mathcal{O}}$. We hence have $V=|\boldsymbol{u}| \leq V-\phi=-\psi$ in \mathcal{R}. But $\psi=0$ on $\partial \tilde{\mathcal{O}}$ and $u=0$ on $\partial \mathcal{O}$.
Hence $u=0$ on $\partial \mathcal{R}$. We conclude as for uniqueness.

The standard method of quasi-reversibility: the case of Laplacian

A regularization technique to solve ill-posed Cauchy problems (Lattès \& Lions, 67)

$$
\begin{aligned}
V_{g} & =\left\{v \in H^{2}(\Omega) \mid v=g_{0}, \partial_{n} v=g_{1} \text { on } \Gamma\right\} \\
V_{0} & =\left\{v \in H^{2}(\Omega) \mid v=0, \partial_{n} v=0 \text { on } \Gamma\right\}
\end{aligned}
$$

- Second-order ill-posed problem :
find $u \in V_{g}$ s.t. $\Delta u=0$
- Fourth-order well-posed problem : find $u_{\varepsilon} \in V_{g}$ s.t. for all $v \in V_{0}$

$$
\left(\Delta u_{\varepsilon}, \Delta v\right)_{L^{2}(\Omega)}+\varepsilon\left(u_{\varepsilon}, v\right)_{H^{2}(\Omega)}=0
$$

Theorem (convergence of QR) : $\lim _{\varepsilon \rightarrow 0}\left\|u_{\varepsilon}-u\right\|_{H^{2}(\Omega)}=0$

A mixed formulation of quasi-reversibility

- Ill-posed Cauchy problem : find $u \in H^{1}(\Omega)$ s.t.

$$
\begin{gathered}
\left\{\begin{array}{c}
\Delta u=0 \quad \text { in } \Omega \\
\left.u\right|_{\Gamma}=\left.g_{0} \quad \partial_{n} u\right|_{\Gamma}=g_{1}
\end{array}\right. \\
W_{g}=\left\{v \in H^{1}(\Omega),\left.v\right|_{\Gamma}=g_{0}\right\}, \quad W_{0}=\left\{v \in H^{1}(\Omega),\left.v\right|_{\Gamma}=0\right\} \\
\tilde{W}_{0}=\left\{\mu \in H^{1}(\Omega),\left.\mu\right|_{\tilde{\Gamma}}=0\right\}, \quad \tilde{\Gamma}=\partial \Omega \backslash \bar{\Gamma}
\end{gathered}
$$

- Well-posed mixed problem : find $\left(u_{\varepsilon, \gamma}, \lambda_{\varepsilon, \gamma}\right) \in W_{g} \times \tilde{W}_{0}$ s.t.

$$
\left\{\begin{array}{c}
\varepsilon \int_{\Omega} \nabla u_{\varepsilon, \gamma} \cdot \nabla v d x+\int_{\Omega} \nabla v \cdot \nabla \lambda_{\varepsilon, \gamma} d x=0, \quad \forall v \in W_{0} \\
\int_{\Omega} \nabla u_{\varepsilon, \gamma} \cdot \nabla \mu d x-\gamma \int_{\Omega} \nabla \lambda_{\varepsilon, \gamma} \cdot \nabla \mu d x=\int_{\Gamma} g_{1} \mu d \Gamma, \quad \forall \mu \in \tilde{W}_{0}
\end{array}\right.
$$

Theorem: if $\lim _{\varepsilon \rightarrow 0} \varepsilon / \gamma(\varepsilon)=0, \lim _{\varepsilon \rightarrow 0}\left(u_{\varepsilon, \gamma}, \lambda_{\varepsilon, \gamma}\right)=(u, 0)$ in $H^{1}(\Omega) \times H^{1}(\Omega)$

A mixed formulation of QR (cont.)

Advantages : the mixed formulation enables us

- to solve the ill-posed problem for standard regularity $H^{1}(\Omega)$ (instead of $H^{2}(\Omega)$) for exact solution
- to use standard Lagrange (instead of Hermite) finite elements

Drawback : we have to introduce a second regularization term with $\gamma>0$: the bilinear form

$$
\left\{\begin{array}{c}
\left\{v \in H^{1}(\Omega),\left.v\right|_{\Gamma}=0\right\} \times\left\{\mu \in H^{1}(\Omega),\left.\mu\right|_{\tilde{\Gamma}}=0\right\} \rightarrow \mathbb{R} \\
(v, \mu) \mapsto \int_{\Omega} \nabla v \cdot \nabla \mu d x
\end{array}\right.
$$

does not satisfy the inf-sup condition (because the Cauchy problem is ill-posed !)

A mixed formulation of QR (cont.)

Proof (convergence of mixed formulation) : notice that u is the exact solution iff $u \in W_{g}$ and

$$
\int_{\Omega} \nabla u \cdot \nabla \mu d x=\int_{\Gamma} g_{1} \mu d \Gamma, \quad \forall \mu \in \tilde{W}_{0}
$$

The approximate solution $\left(u_{\varepsilon}, \lambda_{\varepsilon}\right):=\left(u_{\varepsilon, \gamma(\varepsilon)}, \lambda_{\varepsilon, \gamma(\varepsilon)}\right)$ solves

$$
\left\{\begin{array}{c}
\varepsilon \int_{\Omega} \nabla u_{\varepsilon} \cdot \nabla v d x+\int_{\Omega} \nabla v \cdot \nabla \lambda_{\varepsilon} d x=0, \quad \forall v \in W_{0} \\
\int_{\Omega} \nabla\left(u_{\varepsilon}-u\right) \cdot \nabla \mu d x-\gamma \int_{\Omega} \nabla \lambda_{\varepsilon} \cdot \nabla \mu d x=0, \quad \forall \mu \in \tilde{W}_{0}
\end{array}\right.
$$

Choose $v=u_{\varepsilon}-u$ and $\mu=\lambda_{\varepsilon}$, we obtain

$$
\begin{aligned}
& \varepsilon \int_{\Omega} \nabla u_{\varepsilon} \cdot \nabla\left(u_{\varepsilon}-u\right) d x+\gamma(\varepsilon) \int_{\Omega}\left|\nabla \lambda_{\varepsilon}\right|^{2} d x=0 \\
& \Rightarrow \quad\left\|u_{\varepsilon}\right\|_{H^{1}} \leq\|u\|_{H^{1}} \quad\left\|\lambda_{\varepsilon}\right\|_{H^{1}} \leq \sqrt{\varepsilon / \gamma(\varepsilon)}\|u\|_{H^{1}}
\end{aligned}
$$

A mixed formulation of QR (cont.)

Proof (continuation) :

- we extract a subsequence $u_{\varepsilon} \rightharpoonup w$ in $H^{1}(\Omega)$, with $w \in W_{g}$ since W_{g} is weakly closed
- $\lambda_{\varepsilon} \rightarrow 0$ in $H^{1}(\Omega)$ when $\varepsilon \rightarrow 0$

Passing to the limit $\varepsilon \rightarrow 0$ in the second equation of QR formulation,

$$
\int_{\Omega} \nabla w \cdot \nabla \mu d x=\int_{\Gamma} g_{1} \mu d \Gamma, \quad \forall \mu \in \tilde{W}_{0}
$$

In conclusion, $w=u$.
From identify

$$
\left\|u_{\varepsilon}-u\right\|_{H^{1}}^{2}=\left(u_{\varepsilon}, u_{\varepsilon}-u\right)_{H^{1}}-\left(u, u_{\varepsilon}-u\right)_{H^{1}} \leq-\left(u, u_{\varepsilon}-u\right)_{H^{1}},
$$

weak convergence implies strong convergence and $u_{\varepsilon} \rightarrow u$ in $H^{1}(\Omega)$.

The mixed formulation : extension to the Stokes system

The ill-posed Stokes problem :
For $\left(\boldsymbol{g}_{0}, \boldsymbol{g}_{1}\right)$, find $(\boldsymbol{u}, p) \in\left(H^{1}(\Omega)\right)^{d} \times L^{2}(\Omega)$ s.t.

$$
\left\{\begin{array}{rlll}
-\nu \Delta \boldsymbol{u}+\nabla p & =0 & \text { in } \Omega & \\
\operatorname{div} \boldsymbol{u} & =0 & \text { in } \Omega & \\
\boldsymbol{u} & =(\boldsymbol{u})=\frac{1}{2}\left(\nabla \boldsymbol{u}+\nabla^{T} \boldsymbol{u}\right) \\
\sigma(\boldsymbol{u}, p) \cdot n & =\boldsymbol{g}_{0} & \text { on } \Gamma & \\
\boldsymbol{g}_{1} & \text { on } \Gamma & & \sigma(\boldsymbol{u}, p)=2 \nu e(\boldsymbol{u})-p I
\end{array}\right.
$$

Theorem (uniqueness property) :

$$
\left(\boldsymbol{g}_{0}, \boldsymbol{g}_{1}\right)=(0,0) \text { implies }(\boldsymbol{u}, p)=(0,0)
$$

The mixed formulation for the Stokes system

$$
\begin{gathered}
W_{g}=\left\{\boldsymbol{v} \in\left(H^{1}(\Omega)\right)^{d},\left.\boldsymbol{v}\right|_{\Gamma}=\boldsymbol{g}_{0}\right\}, \quad W_{0}=\left\{\boldsymbol{v} \in\left(H^{1}(\Omega)\right)^{d},\left.\boldsymbol{v}\right|_{\Gamma}=0\right\} \\
\tilde{W}_{0}=\left\{\boldsymbol{\mu} \in\left(H^{1}(\Omega)\right)^{d},\left.\boldsymbol{\mu}\right|_{\tilde{\Gamma}}=0\right\}
\end{gathered}
$$

Well-posed mixed problem : find $\left(\boldsymbol{u}_{\varepsilon, \gamma}, \boldsymbol{\lambda}_{\varepsilon, \gamma}\right) \in W_{g} \times \tilde{W}_{0}$ s.t.

$$
\left\{\begin{array}{c}
2 \nu \varepsilon \int_{\Omega} e\left(\boldsymbol{u}_{\varepsilon, \gamma}\right): e(\boldsymbol{v}) d x+\int_{\Omega} \operatorname{div} \boldsymbol{u}_{\varepsilon, \gamma} \operatorname{div} \boldsymbol{v} d x \\
+2 \nu \int_{\Omega} e(\boldsymbol{v}): e\left(\boldsymbol{\lambda}_{\varepsilon, \gamma}\right) d x=0, \quad \forall \boldsymbol{v} \in V_{0} \\
2 \nu \int_{\Omega} e\left(\boldsymbol{u}_{\varepsilon, \gamma}\right): e(\boldsymbol{\mu}) d x-\frac{1}{\varepsilon} \int_{\Omega} \operatorname{div} \boldsymbol{\lambda}_{\varepsilon, \gamma} \operatorname{div} \boldsymbol{\mu} d x \\
-\gamma \int_{\Omega} e\left(\boldsymbol{\lambda}_{\varepsilon, \gamma}\right): e(\boldsymbol{\mu}) d x=\int_{\Gamma}^{\boldsymbol{g}_{1} \cdot \boldsymbol{\mu} d \Gamma, \quad \forall \boldsymbol{\mu} \in \tilde{V}_{0} .}
\end{array}\right.
$$

Theorem : for $p_{\varepsilon, \gamma}:=\operatorname{div} \boldsymbol{\lambda}_{\varepsilon, \gamma} / \varepsilon$, if $\lim _{\varepsilon \rightarrow 0} \varepsilon / \gamma(\varepsilon)=0$,

$$
\lim _{\varepsilon \rightarrow 0}\left(\boldsymbol{u}_{\varepsilon, \gamma}, p_{\varepsilon, \gamma}, \boldsymbol{\lambda}_{\varepsilon, \gamma}\right)=(\boldsymbol{u}, p, 0) \in\left(H^{1}(\Omega)\right)^{d} \times L^{2}(\Omega) \times\left(H^{1}(\Omega)\right)^{d}
$$

Back to the exterior approach

The algorithm :

1. Initial guess $\mathcal{O}_{0}: \mathcal{O} \subset \mathcal{O}_{0} \Subset \mathcal{D}$
2. First step : for \mathcal{O}_{n} given, compute the solution of quasi-reversibility u_{n} in $\Omega_{n}:=\mathcal{D} \backslash \overline{\mathcal{O}_{n}}$
3. Second step : for \boldsymbol{u}_{n} given in Ω_{n}, compute the Poisson solution ϕ_{n} in \mathcal{O}_{n} with velocity $V_{n}=\left|\boldsymbol{u}_{n}\right|$

$$
\left\{\begin{array}{ccc}
\Delta \phi_{n}=C & \text { in } & \mathcal{O}_{n} \\
\phi_{n}=\left|\boldsymbol{u}_{n}\right| & \text { on } & \partial \mathcal{O}_{n}
\end{array}\right.
$$

and update \mathcal{O}_{n+1}
4. Back to the first step until stopping criteria is reached

Artificial data obtained for :

- $\mathcal{D}=B(0,1) \subset \mathbb{R}^{2}$
- Dirichlet data $\boldsymbol{u}=(1,-1) / \sqrt{2}$ on $\partial \mathcal{D}$
- First obstacle :

$$
\left\{\begin{array}{l}
x(t)=0.25 \cos (t)-0.3 \\
y(t)=0.2 \sin (t)-0.3
\end{array}\right.
$$

Second obstacle : Two discs of radius $R=0.2$, of center $(0.4,0.4)$ and ($-0.3,-0.3$)

Artificial data

First obstacle : velocity field and pressure field

Identification results

First obstacle

Artificial data

Second obstacle : velocity field and pressure field

Identification results

Second obstacle

3D example with Laplace equation

Conclusions

Main advantages of the exterior approach :

- No optimization
- The number of obstacle is a priori unknown
- Few iterations
- A single mesh for "exterior" and "interior" problems
- Partial Cauchy data

Extensions:

- Other boundary conditions: $|\nabla u|=1$ (detection of plastic zone)
- Other level set method : eikonal equation
- The unsteady case for the heat equation and the Stokes system

