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Inverse obstacle problem (Dirichlet)

• O ⋐ D (bounded) ⊂ R
d (d = 2, 3)

• Γ ⊂ ∂D (Γ open with measure > 0)

• Ω := D \ O connected
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D

For (g0, g1), find O s.t. (u, p) ∈ (H1(Ω))d × L2(Ω) and

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−ν∆u+∇p = 0 in Ω

divu = 0 in Ω

u = g0 on Γ

σ(u, p) · n = g1 on Γ

u = 0 on ∂O

e(u) =
1

2
(∇u+∇T

u)

σ(u, p) = 2νe(u)− pI



Uniqueness : for (g0, g1) with g0 6= 0 and u ∈ (C0(Ω))d,

there exists at most one obstacle O
Assume that two obstacles O1 et O2 are

compatible with (g0, g1)

• D̃ := connected component of

D \ O1 ∪ O2 in contact with Γ

• V := D \ (O1 ∪ D̃)

Γ

Ω

D

O1

O2

V

We have u1 = 0 on ∂O1

Unique continuation implies u1 = u2 on ∂D̃

Hence u1 = 0 on ∂O2 ∩ ∂D̃

Finally u1 = 0 on ∂V, that is (u1 continuous) u1 ∈ (H1
0 (V))

d and
∫

V

(−ν∆u1 +∇p1) · u1 dx = 0 =

∫

V

ν|∇u1|
2 dx

Hence u1 = 0 in V, and ⇒= 0 in D \ O1 → incompatible with g0 6= 0



Some contributions on IP with Stokes system

• Unique continuation for Stokes (with nonsmooth potential) :

Fabre & Lebeau (96)

• Quantification of unique continuation for Stokes : Lin,

Uhlmann & Wang (10), Boulakia, Egloffe & Grandmont (12)

• Uniqueness and stability of the inverse obstacle problem

for fluids : Alvarez, Conca, Fritz, Kavian & Ortega (05), Ballerini

(10), Conca, Malik, Munnier (10), Conca, Schwindt, Takahashi (12)

• Data completion for Stokes : Ben Abda, Ben Saad, Hassine (09)

• Numerical methods for the inverse obstacle problem :

Martins & Silvestre (08) (parametrization),

Alvarez, Conca, Lecaros & Ortega (08), Badra, Caubet & Dambrine

(11), Caubet, Dambrine, Kateb & Timimoun (12)(shape derivative),

Ben Abda, Hassine, Jaoua, Masmoudi (10) (topological gradient)



The exterior approach

An iterative approach that couples a quasi-reversibility method and

a level set method → no optimization

• Step 1 : given the current

obstacle On, find an

approximation un of solution u

in Ωn = D \ On with the

method of quasi-reversibility

• Step 2 : given the approximate

solution un in Ωn, update the

obstacle On with a

level set method

Γ

(g0, g1)

O

D

u
O0

On On+1



A new level set method

Velocity V ∈ H1(D) s.t. V |O ∈ H1
0 (O)







V = |u| =
√

∑d

i=1 u
2
i in Ω

V ≤ 0 in O

For f ≥ ∆V in H−1(D)







O ⊂ O0 ⋐ D

On+1 = {x ∈ On, φn(x) < 0}







∆φn = f in On

φn = V on ∂On

Theorem (convergence of level sets) : if the On are uniformly

Lipschitz, for the Hausdorff distance

◦
︷ ︸︸ ︷
⋂

n

On = O



A new level set method (cont.)

Proposition : if O ⊂ O0, the sequence of On converges

(Hausdorff distance) to Õ := interior of ∩nOn, with O ⊂ Õ

Proof : The sequence of On is decreasing ⇒ convergence of On

(Hausdorff distance) to Õ.

We show by induction that O ⊂ On:

ψn = φn − V is solution in H1
0 (On) of ∆ψn = f −∆V .

Weak maximun principle : f −∆V ≥ 0 ⇒ ψn ≤ 0 in On.

Hence φn = ψn + V ≤ V in On.

Since V ≤ 0 in O ⊂ On, we have φn ≤ 0 in O, then O ⊂ On+1.

Inclusion is conserved by Hausdorff convergence ⇒ O ⊂ Õ.



A new level set method (cont.)

Lemma : ψn

H
1
0 (D)−→ ψ when n→ +∞ with







ψn ∈ H1
0 (On) ∆ψn = f −∆V

ψ ∈ H1
0 (Õ) ∆ψ = f −∆V

Proof : “On
H→ Õ” + “On uniformly Lipschitz”, see (Henrot &

Pierre, 05)

End of the proof of the theorem : we alreary have O ⊂ Õ,

assume that R := Õ \ O 6= ∅. From the lemma, by passing to the

limit on sequence (ψn), φ := ψ + V ≤ 0 in Õ. We hence have

V = |u| ≤ V − φ = −ψ in R. But ψ = 0 on ∂Õ and u = 0 on ∂O.

Hence u = 0 on ∂R. We conclude as for uniqueness.



The standard method of quasi-reversibility:
the case of Laplacian

A regularization technique to solve ill-posed Cauchy problems

(Lattès & Lions, 67)

Vg =
{

v ∈ H2(Ω)| v = g0, ∂nv = g1 on Γ}

V0 =
{

v ∈ H2(Ω)| v = 0, ∂nv = 0 on Γ}

• Second-order ill-posed problem :

find u ∈ Vg s.t. ∆u = 0

• Fourth-order well-posed problem :

find uε ∈ Vg s.t. for all v ∈ V0

(∆uε,∆v)L2(Ω) + ε(uε, v)H2(Ω) = 0

Γ

Ω

(g0, g1)

Theorem (convergence of QR) : limε→0 ||uε − u||H2(Ω) = 0



A mixed formulation of quasi-reversibility

• Ill-posed Cauchy problem : find u ∈ H1(Ω) s.t.






∆u = 0 in Ω

u|Γ = g0 ∂nu|Γ = g1

Wg = {v ∈ H1(Ω), v|Γ = g0}, W0 = {v ∈ H1(Ω), v|Γ = 0}
W̃0 = {µ ∈ H1(Ω), µ|Γ̃ = 0}, Γ̃ = ∂Ω \ Γ

• Well-posed mixed problem : find (uε,γ , λε,γ) ∈Wg × W̃0 s.t.














ε

∫

Ω

∇uε,γ · ∇v dx+

∫

Ω

∇v · ∇λε,γ dx = 0, ∀v ∈ W0
∫

Ω

∇uε,γ · ∇µdx− γ

∫

Ω

∇λε,γ · ∇µdx =

∫

Γ

g1µdΓ, ∀µ ∈ W̃0

Theorem : if limε→0 ε/γ(ε) = 0, limε→0(uε,γ , λε,γ) = (u, 0) in

H1(Ω)×H1(Ω)



A mixed formulation of QR (cont.)

Advantages : the mixed formulation enables us

• to solve the ill-posed problem for standard regularity H1(Ω)

(instead of H2(Ω)) for exact solution

• to use standard Lagrange (instead of Hermite) finite elements

Drawback : we have to introduce a second regularization term

with γ > 0 : the bilinear form






{v ∈ H1(Ω), v|Γ = 0} × {µ ∈ H1(Ω), µ|Γ̃ = 0} → R

(v, µ) 7→
∫

Ω

∇v · ∇µdx

does not satisfy the inf-sup condition (because the Cauchy problem

is ill-posed !)



A mixed formulation of QR (cont.)

Proof (convergence of mixed formulation) : notice that u is the

exact solution iff u ∈ Wg and
∫

Ω

∇u · ∇µdx =

∫

Γ

g1µdΓ, ∀µ ∈ W̃0

The approximate solution (uε, λε) := (uε,γ(ε), λε,γ(ε)) solves














ε

∫

Ω

∇uε · ∇v dx+

∫

Ω

∇v · ∇λε dx = 0, ∀v ∈ W0
∫

Ω

∇(uε − u) · ∇µdx− γ

∫

Ω

∇λε · ∇µdx = 0, ∀µ ∈ W̃0

Choose v = uε − u and µ = λε, we obtain

ε

∫

Ω

∇uε · ∇(uε − u) dx+ γ(ε)

∫

Ω

|∇λε|
2 dx = 0,

⇒ ||uε||H1 ≤ ||u||H1 ||λε||H1 ≤
√

ε/γ(ε) ||u||H1



A mixed formulation of QR (cont.)

Proof (continuation) :

• we extract a subsequence uε ⇀ w in H1(Ω), with w ∈ Wg since Wg

is weakly closed

• λε → 0 in H1(Ω) when ε → 0

Passing to the limit ε → 0 in the second equation of QR formulation,
∫

Ω

∇w · ∇µdx =

∫

Γ

g1µdΓ, ∀µ ∈ W̃0

In conclusion, w = u.

From identify

||uε − u||2H1 = (uε, uε − u)H1 − (u, uε − u)H1 ≤ −(u, uε − u)H1 ,

weak convergence implies strong convergence and uε → u in H1(Ω).



The mixed formulation : extension to the
Stokes system

The ill-posed Stokes problem :

For (g0, g1), find (u, p) ∈ (H1(Ω))d × L2(Ω) s.t.







−ν∆u+∇p = 0 in Ω

divu = 0 in Ω

u = g0 on Γ

σ(u, p) · n = g1 on Γ

e(u) =
1

2
(∇u+∇Tu)

σ(u, p) = 2νe(u)− pI

Theorem (uniqueness property) :

(g0, g1) = (0, 0) implies (u, p) = (0, 0)



The mixed formulation for the Stokes system

Wg = {v ∈ (H1(Ω))d, v|Γ = g0}, W0 = {v ∈ (H1(Ω))d, v|Γ = 0}

W̃0 = {µ ∈ (H1(Ω))d, µ|Γ̃ = 0}
Well-posed mixed problem : find (uε,γ ,λε,γ) ∈Wg × W̃0 s.t.


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







































2νε

∫

Ω

e(uε,γ) : e(v) dx+

∫

Ω

divuε,γ divv dx

+2ν

∫

Ω

e(v) : e(λε,γ) dx = 0, ∀v ∈ V0

2ν

∫

Ω

e(uε,γ) : e(µ) dx−
1

ε

∫

Ω

divλε,γ divµ dx

−γ

∫

Ω

e(λε,γ) : e(µ) dx =

∫

Γ

g1 · µ dΓ, ∀µ ∈ Ṽ0.

Theorem : for pε,γ := divλε,γ/ε, if limε→0 ε/γ(ε) = 0,

lim
ε→0

(uε,γ , pε,γ ,λε,γ) = (u, p, 0) ∈ (H1(Ω))d × L2(Ω)× (H1(Ω))d



Back to the exterior approach

The algorithm :

1. Initial guess O0 : O ⊂ O0 ⋐ D

2. First step : for On given, compute the solution of

quasi-reversibility un in Ωn := D \ On

3. Second step : for un given in Ωn, compute the Poisson solution

φn in On with velocity Vn = |un|






∆φn = C in On

φn = |un| on ∂On

and update On+1

4. Back to the first step until stopping criteria is reached



Numerical experiments

Artificial data obtained for :

• D = B(0, 1) ⊂ R
2

• Dirichlet data u = (1,−1)/
√
2 on ∂D

• First obstacle :






x(t) = 0.25 cos(t)− 0.3

y(t) = 0.2 sin(t)− 0.3

Second obstacle : Two discs of radius R = 0.2, of center

(0.4, 0.4) and (−0.3,−0.3)



Artificial data

Vec Value
0
0.0897829
0.179566
0.269349
0.359132
0.448914
0.538697
0.62848
0.718263
0.808046
0.897829
0.987612
1.07739
1.16718
1.25696
1.34674
1.43653
1.52631
1.61609
1.70588

IsoValue
-20.6277
-17.5948
-15.5728
-13.5508
-11.5289
-9.5069
-7.48494
-5.46297
-3.441
-1.41903
0.602939
2.62491
4.64688
6.66884
8.69081
10.7128
12.7348
14.7567
16.7787
21.8336

First obstacle : velocity field and pressure field



Identification results
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First obstacle



Artificial data

Vec Value
0
0.150063
0.300127
0.45019
0.600253
0.750316
0.90038
1.05044
1.20051
1.35057
1.50063
1.6507
1.80076
1.95082
2.10089
2.25095
2.40101
2.55108
2.70114
2.8512

IsoValue
-38.5869
-33.0778
-29.4051
-25.7324
-22.0596
-18.3869
-14.7141
-11.0414
-7.36864
-3.6959
-0.0231551
3.64959
7.32233
10.9951
14.6678
18.3406
22.0133
25.686
29.3588
38.5406

Second obstacle : velocity field and pressure field



Identification results
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3D example with Laplace equation

X Y

Z

X Y

Z



Conclusions

Main advantages of the exterior approach :

• No optimization

• The number of obstacle is a priori unknown

• Few iterations

• A single mesh for “exterior” and “interior” problems

• Partial Cauchy data

Extensions :

• Other boundary conditions : |∇u| = 1 (detection of plastic

zone)

• Other level set method : eikonal equation

• The unsteady case for the heat equation and the Stokes system


