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Inverse obstacle problem (Dirichlet)

e O @D (bounded) C R? (d = 2, 3)
e ' C 0D (I" open with measure > 0)
e ():= D\ O connected

For (g,,9,), find O s.t. (u,p) € (H'(2))* x L*(92) and

[ —vAu+Vp = 0 in ()
divu = 0 in () 1 .
< w — g, onl e(u) = i(Vu + V' u)
o(u,p)-n = g, onl o(u,p) = 2ve(u) — pl
\ u = 0 on 00



Uniqueness : for (g,,g;) with g, # 0 and u € (C°(Q))¢,

there exists at most one obstacle O

Assume that two obstacles O et D> are

compatible with (g,,g;)

e D := connected component of
D\ O; UO; in contact with T’

oV =D\ (0; UD)

We have u; = 0 on 00,
Unique continuation implies w1 = us on 9D

Hence w1 = 0 on 003 N OD
Finally u; = 0 on 0V, that is (u; continuous) uw; € (Hj(V))? and

/(—VA’LH +Vp1) -urde =0 = / v|Vauy | do
v %

Hence u; = 0 in V, and = = 0 in D\ O; — incompatible with g, # 0



Some contributions on IP with Stokes system

Unique continuation for Stokes (with nonsmooth potential) :
Fabre & Lebeau (96)

Quantification of unique continuation for Stokes : Lin,
Uhlmann & Wang (10), Boulakia, Egloffe & Grandmont (12)

Uniqueness and stability of the inverse obstacle problem
for fluids : Alvarez, Conca, Fritz, Kavian & Ortega (05), Ballerini
(10), Conca, Malik, Munnier (10), Conca, Schwindt, Takahashi (12)

Data completion for Stokes : Ben Abda, Ben Saad, Hassine (09)

Numerical methods for the inverse obstacle problem :
Martins & Silvestre (08) (parametrization),

Alvarez, Conca, Lecaros & Ortega (08), Badra, Caubet & Dambrine
(11), Caubet, Dambrine, Kateb & Timimoun (12)(shape derivative),
Ben Abda, Hassine, Jaoua, Masmoudi (10) (topological gradient)



The exterior approach

An iterative approach that couples a quasi-reversibility method and

a level set method — no optimization

e Step 1 : given the current ) (90, 91)
obstacle O,,, find an ' /
approximation u,, of solution u " Oo
in Q, =D\ O, with the e e N
method of quasi-reversibility On\*c .

:"‘ :'“\V:', ,: ’,E ,,:
e Step 2 : given the approximate © @
solution u,, in €2,,, update the 4 _____ s
obstacle O,, with a ST

D

level set method




A new level set method
Velocity V € H'(D) s.t. V]p € H}(O)

(
V= |u| = \/ijl u? in Q

\ V<0 in O
For f > AV in H_I(D)
<( OcCc OygecD ; Ao, =f in O,
\ On+1 ={x € Opn, o¢n(z) <0} \ o=V on 00,

Theorem (convergence of level sets) : if the O,, are uniformly

Lipschitz, for the Hausdorft distance

(10, =0

n



A new level set method (cont.)

Proposition : if O C O, the sequence of O,, converges
(Hausdorff distance) to O := interior of N, 0,,, with O c O

Proof : The sequence of O,, is decreasing = convergence of O,,
(Hausdorff distance) to O.

We show by induction that O C O,,:

WV, = ¢, — V is solution in H}(O,,) of Ay, = f — AV.

Weak maximun principle : f — AV >0 =1, <0in O,,.

Hence ¢, =, + V <V in O,,.

Since V< 0in O C O,,, we have ¢,, < 0 in O, then O C O,, 1.

Inclusion is conserved by Hausdorff convergence = O ¢ O.



A new level set method (cont.)

H; (D) .
Lemma : ), — 1 when n — +o00 with

Vv, € H3(Oy) Ay, = f— AV

v € Hy(O) Ay =f—AV

Proof : “O,, oL + “0O,, uniformly Lipschitz”, see (Henrot &
Pierre, 05)

End of the proof of the theorem : we alreary have @ C O,
assume that R := O \ O # (). From the lemma, by passing to the
limit on sequence (1), ¢ =1 +V < 0 in O. We hence have
V=|u<V—-—¢p=—yinR. But » =0 on 90 and u = 0 on 9O.

Hence uw = 0 on 0R. We conclude as for uniqueness.



The standard method of quasi-reversibility:
the case of Laplacian

A regularization technique to solve ill-posed Cauchy problems
(Lattes & Lions, 67)

Vy = {ve H* Q)| v=go, v =g1 on T}
Vo = {U c H*(Q)| v=0, 0,v=0o0nT}

e Second-order ill-posed problem : r

(90-/ 91)

find u eV, s.t. Au=20 /

e Fourth-order well-posed problem :
find u. € V, s.t. for all v € Vj
(Aug, AU)L2(Q) + €(U€, U)HQ(Q) =0

Theorem (convergence of QR) : lim._,¢ ||u: — || g2(0) =0



A mixed formulation of quasi-reversibility

e Ill-posed Cauchy problem : find v € H'(Q) s.t.

y

Au=0 in €

\ u|r = go anu|r — g1

Wy ={ve H'(Q), vlr = go}, Wo={ve H(Q),v[r=0}
Wo={pnecH(Q), plr =0}, T=0Q\T

e Well-posed mixed problem : find (u. o, A\ o) € W, X Wy s.t.

y

5/Vug,,y-Vvdx—l—/VU-V)\g,de:O, Vv € Wy
Q

Q
/Vusﬁ-v,uda:—fy/V)\gﬁ-v,udazz‘/gl,udI’, Y € Wo
\ Q Q T

/N

Theorem : if lim. ,ge/v(c) =0, lim._o(uz~, Ae ) = (u,0) in
HY Q) x H'(Q)



A mixed formulation of QR (cont.)

Advantages : the mixed formulation enables us

e to solve the ill-posed problem for standard regularity H'(Q))
(instead of H?(0)) for exact solution

e to use standard Lagrange (instead of Hermite) finite elements

Drawback : we have to introduce a second regularization term

with v > 0 : the bilinear form

)
{v € H'(Q), vl = 0} x {5 € H'(Q), plp. = 0} — R
(v, 1) — / Vv -Vypdzr
Q

\

does not satisfy the inf-sup condition (because the Cauchy problem

is ill-posed !)



A mixed formulation of QR (cont.)

Proof (convergence of mixed formulation) : notice that u is the

exact solution iff u € W, and

/Vu-v,udx:/gl,udF, Y € Wo
Q T

The approximate solution (ue, Ac) := (U (e), Ae,y(c)) SOLVeS

.

€/Vu€-Vvdx+/Vv-V)\gd:c:O, Vv € Wo
Q Q

/"

/V(ug—u)-v,udaz—vfV)\g-V,uda::O, Vi € Wo
Q Q
Choose v = u. —u and p = Ao, we obtain

/Vug —u)dx—l—'y(s)/ IVA|? dz = 0,
Q
|uellgr < Nullgr [ Aellmr < Ve/v(e) lullm



A mixed formulation of QR (cont.)

Proof (continuation) :

e we extract a subsequence u. — w in H'(Q), with w € W, since W,

is weakly closed
e \. -~ 0in H'(Q) when e — 0

Passing to the limit € — 0 in the second equation of QR formulation,

/Vw-V,ud:C:/gl,udF, Y € Wo
Q r

In conclusion, w = u.

From identify
ue — |7 = (e, e —u) g1 — (U, ue —u) g1 < — (U, Ue — ) g1,

weak convergence implies strong convergence and u. — u in H'(Q).



The mixed formulation : extension to the
Stokes system

The ill-posed Stokes problem :
For (go,g,), find (u,p) € (H'(2)) x L3(Q) s.t.

y

—vAu+Vp = 0 in €2
1
< divu = 0 in Q e(u) = §(Vu + Vi)
— I'
o 7(u, p) = 2ve(w) — pI
o(u,p)-n = g onl
\

Theorem (uniqueness property) :

(90791) — (070) implies (’u,,p) — (070)



The mixed formulation for the Stokes system

Wy ={v e (H Q) vlr =go}, Wo={ve (H(Q)vr=0}

Wo = {p € (H'(Q))?, plp =0}

Well-posed mixed problem : find (uc~, Az ) € W, X Wy s.t.

/

\

2V€/ e(us~) :e(v)dr +/ divu. , divo dx
Q Q

—i—21// e(v) :e(Aey)dxr =0, Vvelp
Q
Q € Ja

oy [ e iewydz= [ gl Ve T
0 r

Theorem : for p. ., = divA. - /¢, if lim._,ge/v(e) =0,

1im(u8,%pe,’yv>‘€,’y) = (u,p,0) € (Hl(Q))d X LQ(Q) X (Hl(Q))d

e—0



Back to the exterior approach
The algorithm :

1. Initial guess Oy : O C Oy € D

2. First step : for O,, given, compute the solution of

quasi-reversibility u,, in Q,, ;=D\ O,
3. Second step : for u,, given in (),,, compute the Poisson solution
¢n in O,, with velocity V,, = |u,,|

y

Ao, =C in O,
On = |u,| on 00,

\

and update O,, 1

4. Back to the first step until stopping criteria is reached



Numerical experiments

Artificial data obtained for :
e D=DB(0,1) C R?
e Dirichlet data u = (1, —1)/v/2 on 0D
e First obstacle :
x(t) = 0.25cos(t) — 0.3
y(t) = 0.2sin(t) — 0.3

Second obstacle : Two discs of radius R = 0.2, of center
(0.4,0.4) and (—0.3,—0.3)



Artificial data

Vec Value IsoValue

W0.359132
W0.448914
W0.538697
W0.62848

W0.718263
W0.808046
W0.897829
Ig.987612

First obstacle : velocity field and pressure field



[dentification results
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Artificial data

Vec Value IsoValue

W0.45019
W0.600253

-3.6959
H-0.0231551
W 3.64959

Second obstacle : velocity field and pressure field



[dentification results
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3D example with Laplace equation




Conclusions
Main advantages of the exterior approach :
e No optimization
e The number of obstacle is a priori unknown
e Lew iterations
e A single mesh for “exterior” and “interior” problems
e Partial Cauchy data
Extensions :

e Other boundary conditions : |Vu| =1 (detection of plastic

zone)
e Other level set method : eikonal equation

e The unsteady case for the heat equation and the Stokes system



