An "exterior approach" to solve the inverse obstacle problem for the Stokes system

Laurent Bourgeois (with Jérémi Dardé) Laboratoire POEMS, ENSTA

Workshop on "Control of Fluid-Structure System and Inverse Problems"

Toulouse, 25-28/06/2012

Inverse obstacle problem (Dirichlet)

- $\mathcal{O} \subseteq \mathcal{D}$ (bounded) $\subset \mathbb{R}^d$ (d = 2, 3)
- $\Gamma \subset \partial \mathcal{D}$ (Γ open with measure > 0)
- $\Omega := \mathcal{D} \setminus \overline{\mathcal{O}}$ connected

For $(\boldsymbol{g}_0, \boldsymbol{g}_1)$, find \mathcal{O} s.t. $(\boldsymbol{u}, p) \in (H^1(\Omega))^d \times L^2(\Omega)$ and

$$-\nu \Delta \boldsymbol{u} + \nabla p = 0 \quad \text{in } \Omega$$
$$\operatorname{div} \boldsymbol{u} = 0 \quad \text{in } \Omega$$
$$\boldsymbol{u} = \boldsymbol{g}_0 \quad \text{on } \Gamma$$
$$\sigma(\boldsymbol{u}, p) \cdot n = \boldsymbol{g}_1 \quad \text{on } \Gamma$$
$$\boldsymbol{u} = 0 \quad \text{on } \partial \mathcal{O}$$

 $e(\boldsymbol{u}) = \frac{1}{2} (\nabla \boldsymbol{u} + \nabla^T \boldsymbol{u})$ $\sigma(\boldsymbol{u}, p) = 2\nu e(\boldsymbol{u}) - pI$

Uniqueness : for $(\boldsymbol{g}_0, \boldsymbol{g}_1)$ with $\boldsymbol{g}_0 \neq 0$ and $\boldsymbol{u} \in (C^0(\overline{\Omega}))^d$, there exists at most one obstacle \mathcal{O}

Assume that two obstacles \mathcal{O}_1 et \mathcal{O}_2 are compatible with $(\boldsymbol{g}_0, \boldsymbol{g}_1)$

D̃ := connected component of *D* \ *O*₁ ∪ *O*₂ in contact with Γ *V* := *D* \ (*O*₁ ∪ *D̃*)

 \mathcal{D} \mathcal{O}_1 \mathcal{O}_2

Γ

We have $\boldsymbol{u}_1 = 0$ on $\partial \mathcal{O}_1$ Unique continuation implies $\boldsymbol{u}_1 = \boldsymbol{u}_2$ on $\partial \tilde{\mathcal{D}}$ Hence $\boldsymbol{u}_1 = 0$ on $\partial \mathcal{O}_2 \cap \partial \tilde{\mathcal{D}}$ Finally $\boldsymbol{u}_1 = 0$ on $\partial \mathcal{V}$, that is $(\boldsymbol{u}_1 \text{ continuous}) \ \boldsymbol{u}_1 \in (H_0^1(\mathcal{V}))^d$ and $\int_{\mathcal{W}} (-\nu \Delta \boldsymbol{u}_1 + \nabla p_1) \cdot \boldsymbol{u}_1 \, dx = 0 = \int_{\mathcal{W}} \nu |\nabla \boldsymbol{u}_1|^2 \, dx$

Hence $\boldsymbol{u}_1 = 0$ in \mathcal{V} , and $\Rightarrow = 0$ in $\mathcal{D} \setminus \overline{\mathcal{O}_1} \rightarrow$ incompatible with $\boldsymbol{g}_0 \neq 0$

Some contributions on IP with Stokes system

- Unique continuation for Stokes (with nonsmooth potential) : Fabre & Lebeau (96)
- Quantification of unique continuation for Stokes : Lin, Uhlmann & Wang (10), Boulakia, Egloffe & Grandmont (12)
- Uniqueness and stability of the inverse obstacle problem
 for fluids : Alvarez, Conca, Fritz, Kavian & Ortega (05), Ballerini (10), Conca, Malik, Munnier (10), Conca, Schwindt, Takahashi (12)
- Data completion for Stokes : Ben Abda, Ben Saad, Hassine (09)
- Numerical methods for the inverse obstacle problem : Martins & Silvestre (08) (parametrization), Alvarez, Conca, Lecaros & Ortega (08), Badra, Caubet & Dambrine (11), Caubet, Dambrine, Kateb & Timimoun (12)(shape derivative), Ben Abda, Hassine, Jaoua, Masmoudi (10) (topological gradient)

The exterior approach

An iterative approach that couples a quasi-reversibility method and a level set method \rightarrow no optimization

• Step 1 : given the current obstacle \mathcal{O}_n , find an approximation \boldsymbol{u}_n of solution \boldsymbol{u} in $\Omega_n = \mathcal{D} \setminus \overline{\mathcal{O}}_n$ with the method of quasi-reversibility

• Step 2 : given the approximate solution \boldsymbol{u}_n in Ω_n , update the obstacle \mathcal{O}_n with a level set method

A new level set method Velocity $V \in H^1(\mathcal{D})$ s.t. $V|_{\mathcal{O}} \in H^1_0(\mathcal{O})$ $\begin{cases} V = |\boldsymbol{u}| = \sqrt{\sum_{i=1}^d u_i^2} & \text{in } \Omega\\ V \leq 0 & \text{in } \mathcal{O} \end{cases}$

For $f \ge \Delta V$ in $H^{-1}(\mathcal{D})$

$$\begin{cases} \mathcal{O} \subset \mathcal{O}_0 \Subset \mathcal{D} \\ \mathcal{O}_{n+1} = \{ x \in \mathcal{O}_n, \phi_n(x) < 0 \} \end{cases} \begin{cases} \Delta \phi_n = f & \text{in } \mathcal{O}_n \\ \phi_n = V & \text{on } \partial \mathcal{O}_n \end{cases}$$

Theorem (convergence of level sets) : if the \mathcal{O}_n are uniformly Lipschitz, for the Hausdorff distance

$$\overbrace{\bigcap_{n}^{\circ}}^{\circ} \mathcal{O}_{n} = \mathcal{O}$$

A new level set method (cont.)

Proposition : if $\mathcal{O} \subset \mathcal{O}_0$, the sequence of \mathcal{O}_n converges (Hausdorff distance) to $\tilde{\mathcal{O}}$:= interior of $\cap_n \mathcal{O}_n$, with $\mathcal{O} \subset \tilde{\mathcal{O}}$

Proof : The sequence of \mathcal{O}_n is decreasing \Rightarrow convergence of \mathcal{O}_n (Hausdorff distance) to $\tilde{\mathcal{O}}$. We show by induction that $\mathcal{O} \subset \mathcal{O}_n$: $\psi_n = \phi_n - V$ is solution in $H_0^1(\mathcal{O}_n)$ of $\Delta \psi_n = f - \Delta V$. Weak maximum principle : $f - \Delta V \ge 0 \Rightarrow \psi_n \le 0$ in \mathcal{O}_n . Hence $\phi_n = \psi_n + V \le V$ in \mathcal{O}_n . Since $V \le 0$ in $\mathcal{O} \subset \mathcal{O}_n$, we have $\phi_n \le 0$ in \mathcal{O} , then $\mathcal{O} \subset \mathcal{O}_{n+1}$.

Inclusion is conserved by Hausdorff convergence $\Rightarrow \mathcal{O} \subset \tilde{\mathcal{O}}$.

A new level set method (cont.)

Lemma :
$$\psi_n \xrightarrow{H_0^1(\mathcal{D})} \psi$$
 when $n \to +\infty$ with

$$\begin{cases} \psi_n \in H_0^1(\mathcal{O}_n) & \Delta \psi_n = f - \Delta V \\ \psi \in H_0^1(\tilde{\mathcal{O}}) & \Delta \psi = f - \Delta V \end{cases}$$

Proof : " $\mathcal{O}_n \xrightarrow{\mathcal{H}} \tilde{\mathcal{O}}$ " + " \mathcal{O}_n uniformly Lipschitz", see (Henrot & Pierre, 05)

End of the proof of the theorem : we alreary have $\mathcal{O} \subset \tilde{\mathcal{O}}$, assume that $\mathcal{R} := \tilde{\mathcal{O}} \setminus \overline{\mathcal{O}} \neq \emptyset$. From the lemma, by passing to the limit on sequence (ψ_n) , $\phi := \psi + V \leq 0$ in $\tilde{\mathcal{O}}$. We hence have $V = |\boldsymbol{u}| \leq V - \phi = -\psi$ in \mathcal{R} . But $\psi = 0$ on $\partial \tilde{\mathcal{O}}$ and $\boldsymbol{u} = 0$ on $\partial \mathcal{O}$. Hence $\boldsymbol{u} = 0$ on $\partial \mathcal{R}$. We conclude as for uniqueness.

The standard method of quasi-reversibility: the case of Laplacian

A regularization technique to solve ill-posed Cauchy problems (Lattès & Lions, 67)

$$V_g = \left\{ v \in H^2(\Omega) | v = g_0, \ \partial_n v = g_1 \text{ on } \Gamma \right\}$$
$$V_0 = \left\{ v \in H^2(\Omega) | v = 0, \ \partial_n v = 0 \text{ on } \Gamma \right\}$$

- Second-order ill-posed problem : find $u \in V_g$ s.t. $\Delta u = 0$
- Fourth-order well-posed problem : find $u_{\varepsilon} \in V_g$ s.t. for all $v \in V_0$ $(\Delta u_{\varepsilon}, \Delta v)_{L^2(\Omega)} + \varepsilon(u_{\varepsilon}, v)_{H^2(\Omega)} = 0$

Theorem (convergence of QR) : $\lim_{\varepsilon \to 0} ||u_{\varepsilon} - u||_{H^2(\Omega)} = 0$

A mixed formulation of quasi-reversibility

• Ill-posed Cauchy problem : find $u \in H^1(\Omega)$ s.t.

$$\Delta u = 0 \quad \text{in} \quad \Omega$$
$$u|_{\Gamma} = g_0 \quad \partial_n u|_{\Gamma} = g_1$$

$$W_g = \{ v \in H^1(\Omega), v|_{\Gamma} = g_0 \}, \quad W_0 = \{ v \in H^1(\Omega), v|_{\Gamma} = 0 \}$$
$$\tilde{W}_0 = \{ \mu \in H^1(\Omega), \, \mu|_{\tilde{\Gamma}} = 0 \}, \quad \tilde{\Gamma} = \partial \Omega \setminus \overline{\Gamma}$$

• Well-posed mixed problem : find $(u_{\varepsilon,\gamma}, \lambda_{\varepsilon,\gamma}) \in W_g \times \tilde{W}_0$ s.t.

$$\begin{cases} \varepsilon \int_{\Omega} \nabla u_{\varepsilon,\gamma} \cdot \nabla v \, dx + \int_{\Omega} \nabla v \cdot \nabla \lambda_{\varepsilon,\gamma} \, dx = 0, \quad \forall v \in W_0 \\ \int_{\Omega} \nabla u_{\varepsilon,\gamma} \cdot \nabla \mu \, dx - \gamma \int_{\Omega} \nabla \lambda_{\varepsilon,\gamma} \cdot \nabla \mu \, dx = \int_{\Gamma} g_1 \mu \, d\Gamma, \quad \forall \mu \in \tilde{W}_0 \end{cases}$$

Theorem : if $\lim_{\varepsilon \to 0} \varepsilon / \gamma(\varepsilon) = 0$, $\lim_{\varepsilon \to 0} (u_{\varepsilon,\gamma}, \lambda_{\varepsilon,\gamma}) = (u, 0)$ in $H^1(\Omega) \times H^1(\Omega)$

A mixed formulation of QR (cont.)

Advantages : the mixed formulation enables us

- to solve the ill-posed problem for standard regularity $H^1(\Omega)$ (instead of $H^2(\Omega)$) for exact solution
- to use standard Lagrange (instead of Hermite) finite elements

Drawback : we have to introduce a second regularization term with $\gamma > 0$: the bilinear form

$$\begin{cases} \{v \in H^1(\Omega), v|_{\Gamma} = 0\} \times \{\mu \in H^1(\Omega), \mu|_{\tilde{\Gamma}} = 0\} \to \mathbb{R} \\ (v, \mu) \mapsto \int_{\Omega} \nabla v \cdot \nabla \mu \, dx \end{cases}$$

does not satisfy the inf-sup condition (because the Cauchy problem is ill-posed !)

A mixed formulation of QR (cont.)

Proof (convergence of mixed formulation) : notice that u is the exact solution iff $u \in W_g$ and

$$\int_{\Omega} \nabla u \cdot \nabla \mu \, dx = \int_{\Gamma} g_1 \mu \, d\Gamma, \quad \forall \mu \in \tilde{W}_0$$

The approximate solution $(u_{\varepsilon}, \lambda_{\varepsilon}) := (u_{\varepsilon,\gamma(\varepsilon)}, \lambda_{\varepsilon,\gamma(\varepsilon)})$ solves

$$\begin{cases} \varepsilon \int_{\Omega} \nabla u_{\varepsilon} \cdot \nabla v \, dx + \int_{\Omega} \nabla v \cdot \nabla \lambda_{\varepsilon} \, dx = 0, \quad \forall v \in W_{0} \\ \int_{\Omega} \nabla (u_{\varepsilon} - u) \cdot \nabla \mu \, dx - \gamma \int_{\Omega} \nabla \lambda_{\varepsilon} \cdot \nabla \mu \, dx = 0, \quad \forall \mu \in \tilde{W}_{0} \end{cases}$$

Choose $v = u_{\varepsilon} - u$ and $\mu = \lambda_{\varepsilon}$, we obtain

$$\varepsilon \int_{\Omega} \nabla u_{\varepsilon} \cdot \nabla (u_{\varepsilon} - u) \, dx + \gamma(\varepsilon) \int_{\Omega} |\nabla \lambda_{\varepsilon}|^2 \, dx = 0,$$

$$\Rightarrow \quad ||u_{\varepsilon}||_{H^1} \leq ||u||_{H^1} \quad ||\lambda_{\varepsilon}||_{H^1} \leq \sqrt{\varepsilon/\gamma(\varepsilon)} \, ||u||_{H^1}$$

A mixed formulation of QR (cont.) **Proof** (continuation) :

- we extract a subsequence $u_{\varepsilon} \rightharpoonup w$ in $H^1(\Omega)$, with $w \in W_g$ since W_g is weakly closed
- $\lambda_{\varepsilon} \to 0$ in $H^1(\Omega)$ when $\varepsilon \to 0$

Passing to the limit $\varepsilon \to 0$ in the second equation of QR formulation,

$$\int_{\Omega} \nabla w \cdot \nabla \mu \, dx = \int_{\Gamma} g_1 \mu \, d\Gamma, \quad \forall \mu \in \tilde{W}_0$$

In conclusion, w = u. From identify

$$||u_{\varepsilon} - u||_{H^1}^2 = (u_{\varepsilon}, u_{\varepsilon} - u)_{H^1} - (u, u_{\varepsilon} - u)_{H^1} \le -(u, u_{\varepsilon} - u)_{H^1},$$

weak convergence implies strong convergence and $u_{\varepsilon} \to u$ in $H^1(\Omega)$.

The mixed formulation : extension to the Stokes system

The ill-posed Stokes problem :

For $(\boldsymbol{g}_0, \boldsymbol{g}_1)$, find $(\boldsymbol{u}, p) \in (H^1(\Omega))^d \times L^2(\Omega)$ s.t.

$$\begin{cases} -\nu\Delta \boldsymbol{u} + \nabla p &= 0 & \text{in } \Omega \\ \text{div}\boldsymbol{u} &= 0 & \text{in } \Omega \\ \boldsymbol{u} &= \boldsymbol{g}_0 & \text{on } \Gamma \\ \sigma(\boldsymbol{u}, p) \cdot n &= \boldsymbol{g}_1 & \text{on } \Gamma \end{cases} \qquad \boldsymbol{e}(\boldsymbol{u}) = \frac{1}{2}(\nabla \boldsymbol{u} + \nabla^T \boldsymbol{u}) \\ \sigma(\boldsymbol{u}, p) = 2\nu \boldsymbol{e}(\boldsymbol{u}) - p\boldsymbol{I} \end{cases}$$

Theorem (uniqueness property) :

 $(\boldsymbol{g}_0, \boldsymbol{g}_1) = (0, 0)$ implies $(\boldsymbol{u}, p) = (0, 0)$

The mixed formulation for the Stokes system

$$W_{g} = \{ \boldsymbol{v} \in (H^{1}(\Omega))^{d}, \, \boldsymbol{v}|_{\Gamma} = \boldsymbol{g}_{0} \}, \quad W_{0} = \{ \boldsymbol{v} \in (H^{1}(\Omega))^{d}, \, \boldsymbol{v}|_{\Gamma} = 0 \}$$
$$\tilde{W}_{0} = \{ \boldsymbol{\mu} \in (H^{1}(\Omega))^{d}, \, \boldsymbol{\mu}|_{\tilde{\Gamma}} = 0 \}$$

Well-posed mixed problem : find $(\boldsymbol{u}_{\varepsilon,\gamma}, \boldsymbol{\lambda}_{\varepsilon,\gamma}) \in W_g \times \tilde{W}_0$ s.t.

$$\begin{cases} 2\nu\varepsilon \int_{\Omega} e(\boldsymbol{u}_{\varepsilon,\gamma}) : e(\boldsymbol{v}) \, dx + \int_{\Omega} \operatorname{div} \boldsymbol{u}_{\varepsilon,\gamma} \operatorname{div} \boldsymbol{v} \, dx \\ + 2\nu \int_{\Omega} e(\boldsymbol{v}) : e(\boldsymbol{\lambda}_{\varepsilon,\gamma}) \, dx = 0, \quad \forall \boldsymbol{v} \in V_{0} \\ 2\nu \int_{\Omega} e(\boldsymbol{u}_{\varepsilon,\gamma}) : e(\boldsymbol{\mu}) \, dx - \frac{1}{\varepsilon} \int_{\Omega} \operatorname{div} \boldsymbol{\lambda}_{\varepsilon,\gamma} \operatorname{div} \boldsymbol{\mu} \, dx \\ -\gamma \int_{\Omega} e(\boldsymbol{\lambda}_{\varepsilon,\gamma}) : e(\boldsymbol{\mu}) \, dx = \int_{\Gamma} \boldsymbol{g}_{1} \cdot \boldsymbol{\mu} \, d\Gamma, \quad \forall \boldsymbol{\mu} \in \tilde{V}_{0}. \end{cases}$$

Theorem : for $p_{\varepsilon,\gamma} := \operatorname{div} \lambda_{\varepsilon,\gamma} / \varepsilon$, if $\lim_{\varepsilon \to 0} \varepsilon / \gamma(\varepsilon) = 0$,

 $\lim_{\varepsilon \to 0} (\boldsymbol{u}_{\varepsilon,\gamma}, p_{\varepsilon,\gamma}, \boldsymbol{\lambda}_{\varepsilon,\gamma}) = (\boldsymbol{u}, p, 0) \in (H^1(\Omega))^d \times L^2(\Omega) \times (H^1(\Omega))^d$

Back to the exterior approach

The algorithm :

- 1. Initial guess \mathcal{O}_0 : $\mathcal{O} \subset \mathcal{O}_0 \subseteq \mathcal{D}$
- 2. First step : for \mathcal{O}_n given, compute the solution of quasi-reversibility \boldsymbol{u}_n in $\Omega_n := \mathcal{D} \setminus \overline{\mathcal{O}_n}$
- 3. Second step : for \boldsymbol{u}_n given in Ω_n , compute the Poisson solution ϕ_n in \mathcal{O}_n with velocity $V_n = |\boldsymbol{u}_n|$

$$\begin{aligned}
\Delta \phi_n &= C \quad \text{in} \quad \mathcal{O}_n \\
\phi_n &= |\boldsymbol{u}_n| \quad \text{on} \quad \partial \mathcal{O}_n
\end{aligned}$$

and update \mathcal{O}_{n+1}

4. Back to the first step until stopping criteria is reached

Numerical experiments

Artificial data obtained for :

- $\mathcal{D} = B(0,1) \subset \mathbb{R}^2$
- Dirichlet data $\boldsymbol{u} = (1, -1)/\sqrt{2}$ on $\partial \mathcal{D}$
- First obstacle :

$$x(t) = 0.25\cos(t) - 0.3$$
$$y(t) = 0.2\sin(t) - 0.3$$

Second obstacle : Two discs of radius R = 0.2, of center (0.4, 0.4) and (-0.3, -0.3)

Artificial data

First obstacle : velocity field and pressure field

Identification results

First obstacle

Artificial data

Second obstacle : velocity field and pressure field

Identification results

Second obstacle

3D example with Laplace equation

Conclusions

Main advantages of the exterior approach :

- No optimization
- The number of obstacle is a priori unknown
- Few iterations
- A single mesh for "exterior" and "interior" problems
- Partial Cauchy data

Extensions :

- Other boundary conditions : $|\nabla u| = 1$ (detection of plastic zone)
- Other level set method : eikonal equation
- The unsteady case for the heat equation and the Stokes system