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Coupled systems appear naturally in models for:

building insensitizing controls for scalar equations
reaction-diffusion systems with applications in medecine,
biology, population dynamics . . .
mechanics: Timoshenko beams, acoustic models
fluid-structure systems . . .

...
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For applications, it is important to

control, observe or stabilize these systems
identify sources or coefficients of these systems

Further, it is also important either for cost reasons or for
practical realization to have a reduced number of controls
acting on the system,

that is when the number of equations (or components of the
state-vector) > number of controls, this is also called indirect
control.

We shall consider this case.
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The control/observability/stabilization of scalar wave type
equations, either by a locally distributed control or a boundary
control is by now quite well-understood.

What happens for non scalar equations, that is in case of
coupled systems?

Indeed further properties have to be understood since the
coupling, the nature of the equations, the geometry, the type of
control . . . influence the answer.
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An example: insensitizing control for the wave
equation

We consider either the scalar wave equation with a locally
distributed control v :

ytt −∆y = ξ + bv in (0,T )× Ω ,

y = 0 in (0,T )× Γ ,

y(0, .) = y0 + τ0z0 in Ω , yt (0, .) = y1 + τ1z1 in Ω ,

(1)

the location of the control depending on the the support of the
coefficient function b
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or the scalar wave equation with a boundary control v :
ytt −∆y = ξ in (0,T )× Ω ,

y = bv in (0,T )× Γ ,

y(0, .) = y0 + τ0z0 in Ω , yt (0, .) = y1 + τ1z1 in Ω ,

(2)

the location of the control depending on the the support of the
coefficient function b in Γ

Fatiha Alabau-Boussouira



beamer-tu-logo

beamer-ur-logo

Motivations for control of coupled systems
Setting and goals

Control of 2-symmetric coupled systems: coercive couplings
Extensions to partially coercive couplings

Applications to parabolic systems
Cascade systems

Applications to insensitizing control for the wave equation

where

ξ ∈ L2((0,T )× Ω),
the initial data y0, y1 are given known functions in
H1

0 (Ω)× L2(Ω) or in L2(Ω)× H−1(Ω),
the perturbations z0, z1 are supposed to be unknown of
norm 1 in the appropriate spaces
the real numbers τ0, τ1 are assumed to be small and to
measure the amplitudes of the unknown perturbations of
the initial data.
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The goal of insensitizing controls is to build controls that are
such that a given measure of the unknown is "robust" to small
perturbations on the initial data.

This notion has been introduced by J.-L. Lions (1989)

Let us consider the following functional associated to the
solutions y defined by

Φ(y , τ0, τ1) =
1
2

∫ T

0

∫
Ω

cy2 dxdt ,
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c has a support localized in the neighbourhood of a subset O
which is a given subset of Ω.
The functional Φ consists in an observation of the solution on
the set O during a length of time T .
The control bv is said to insensitize the observation Φ if for all
(z0, z1) the corresponding solution y satisfies

∂Φ

∂τ0
(y ,0,0) =

∂Φ

∂τ1
(y ,0,0) = 0 .
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One can show that this problem is equivalent to an exact
controllability result for an associated system of two wave
equations coupled in cascade, namely

Localized control
y1,tt −∆y1 + c(x)y2 = 0 in (0,T )× Ω ,

y2,tt −∆y2 = ξ + bv in (0,T )× Ω ,

y1 = y2 = 0 in (0,T )× Γ ,

Initial dataY 0 given .
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Boundary control
y1,tt −∆y1 + c(x)y2 = 0 in (0,T )× Ω ,

y2,tt −∆y2 = ξ in (0,T )× Ω ,

y1 = 0 , y2 = bv in (0,T )× Γ ,

Initial dataY 0 given .
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Däger 2006 proved in one-dimension with Ω = (0,1), the
following results

Locally distributed control:

b = 1ω, c = 1O:

Let ω and O be any open nonempty subsets of Ω and T ≥ 4.
Let ε > 0 be given. Then for any ξ ∈ L2((0,T ); L2(Ω)), any
(y0, y1) ∈ H1

0 (Ω)× L2(Ω), there exists a control vε in L2 that
ε−insensitizes Φ along the solutions, i.e. for any
(z0, z1) ∈ H1

0 (Ω)× L2(Ω) of norm 1 one has:

| ∂Φ

∂τ0
(y ,0,0)| ≤ ε , | ∂Φ

∂τ1
(y ,0,0)| ≤ ε .
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Boundary control:

b = 1 and the control is at the boundary x = 1, c = 1O, O 6= ∅
arbitrary :

Let T ≥ 4. Then for any ξ ∈ L2((0,T ); L2(Ω)), any
(y0, y1) ∈ H1

0 (Ω)× L2(Ω), there exists a control v in L2 that
insensitizes Φ along the solutions, i.e. for any
(z0, z1) ∈ H1

0 (Ω)× L2(Ω) of norm 1 one has:

∂Φ

∂τ0
(y ,0,0) =

∂Φ

∂τ1
(y ,0,0) = 0 .

The proof relies on the property that the semigroup generated
by the free wave equation is periodic ; valid only in 1-D
domains.
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Tebou 2011 multi-D, boundary observation (does not work for
localized observation), localized control, the control region ⊃
observation region.

The general problem is open:

multi-D, localized or boundary control, localized observation,
optimal conditions on the supports of b and c.

More precisely, in both problems for the wave equation, the
challenging question is to have results for which

supp{b} ∩ supp{c} = ∅ .
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Indeed one can solve this problem (A.-B. 2012):

with exact insensitivity,

in multi-D,

for both locally distributed and boundary controls,

with control region ∩ coupling region = ∅, that is when

supp{b} ∩ supp{c} = ∅.

Fatiha Alabau-Boussouira



beamer-tu-logo

beamer-ur-logo

Motivations for control of coupled systems
Setting and goals

Control of 2-symmetric coupled systems: coercive couplings
Extensions to partially coercive couplings

Applications to parabolic systems
Cascade systems

Applications to insensitizing control for the wave equation

In the same way, building insensitizing controls for a scalar heat
equation is equivalent to a null controllability result for a system
of two heat equations –one forward in time, the other backward
in time– coupled in cascade.

Results for the heat equation:

Bodart and Fabre 1995, de Teresa 2000 . . . , Bodart and
Gonzalez-Burgos and Perez-Garcia 2004 for heat. A restrictive
result by de Teresa and Zuazua 2009 . . .
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Other models arise for

combined mechanical and temperature effects as for
thermoplates or thermoelasticity. In this case one wants to
determine if the dissipation effect of the heat equation is
sufficient to stabilize the thermo-mechanical system
Lebeau Zuazua 1999, Burq Lebeau 2001, Zhang Zuazua
2003, . . .

Coupling effects arise also in fluid-structure interactions, in
electro-magnetism...
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Here, we are interested in a general setting, that is identifying
large classes of systems for which it is possible to

build a general,

robust and,

flexible methodology

to answer the above observation/control questions at least for
these classes.

We shall deal with two classes:
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1. symmetric 2-coupled systems←→ y ′′ +Ay + Cy = Bv , with

y = (y1, y2)t ,A =

(
A 0
0 A

)
, C =

(
0 C

C? 0

)
,Bv = (Bv ,0)t

where A is an unbounded self-adjoint coercive operator on an
Hilbert space H (pivot space) and C is a bounded operator in
H, B is the control operator bounded or unbounded.
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2. cascade N-coupled systems←→ y ′′ +Ay + Cy = Bv , with
y = (y1, . . . , yN)t and

A =


A 0 . . . 0
0 A . . . 0
...
0 0 . . . A

 , C =


0 C?

21 C?
31 . . . C?

N1
0 0 C?

32 . . . C?
N2

...
0 0 . . . . . . C?

NN−1
0 0 . . . 0 0



Bv = (0,0, . . . ,Bp+1vp+1, . . . ,BNvN)t , with v = (vp+1, . . . , vN)
are the N − p controls, N ≥ 2, p ∈ {1, . . . ,N − 1}.
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For the first class of systems, the coupling matrix operator is
symmetric for the control problem.

For the second class (cascade systems), the coupling matrix
operator is an upper triangular matrix for the control problem.

The dual homogeneous observability problems will involve
respectively symmetric and lower triangular matrix operators.
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Furthermore:

The coupling operators C or Cij may be either coercive in the
underlying pivot space H, that is there exists η > 0 such that

〈Cu,u〉H ≥ η|u|2H ∀ u ∈ H .

or only partially coercive in H, that is there exists η > 0 such
that

〈Cu,u〉H ≥ η|Πu|2H ∀ u ∈ H ,

where Π ∈ L(H) is a nonnegative projection operator.
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Model dual observability examples of 2-symmetric coupled
systems 

u1 ,tt −∆u1 + cu2 = 0 in Ω× (0,T ) ,

u2 ,tt −∆u2 + cu1 = 0 in Ω× (0,T ) ,

u1 = 0 on Σ = Γ× (0,T ) ,u2 = 0 on Σ ,

ui(0) = u0
i ,ui,t (0) = u1

i .

where c ≥ 0 in Ω is a coupling function (it may also be
nonpositive).
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Model dual observability examples of 2-cascade coupled
systems 

u1 ,tt −∆u1 = 0 in Ω× (0,T ) ,

u2 ,tt −∆u2 + cu1 = 0 in Ω× (0,T ) ,

u1 = 0 on Σ = Γ× (0,T ) ,u2 = 0 on Σ ,

ui(0) = u0
i ,ui,t (0) = u1

i .

where c ≥ 0 in Ω is a coupling function (it may also be
nonpositive).

Fatiha Alabau-Boussouira



beamer-tu-logo

beamer-ur-logo

Motivations for control of coupled systems
Setting and goals

Control of 2-symmetric coupled systems: coercive couplings
Extensions to partially coercive couplings

Applications to parabolic systems
Cascade systems

Applications to insensitizing control for the wave equation

The coercive case corresponds to

c ≥ c− > 0 in Ω .

The partially coercive case corresponds to

c ≥ c− > 0 in O ⊂ Ω ,

with |Ω\O| > 0.
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Let us associate an observation B?(u,u′) to these dual
homogeneous problems

either locally distributed with

B?(u,u′) = bu′ ,

with {b > 0} ⊃ ω , ω ⊂ Ω

or localized on a part of the boundary

B?(u,u′) = b
∂u
∂ν

,

with {b > 0} ⊃ Γ1 , Γ1 ⊂ Γ
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We look for the following type of observability inequality (for
sufficiently large time T )

• Locally distributed observation:∫ T

0

∫
Ω
|bu′1|2 dγ dt ≥ c

(
e1(u1(0)) + e2(u2(0))

)
,

• Boundary observation:∫ T

0

∫
Γ
|b∂u1

∂ν
|2 dγ dt ≥ c

(
e1(u1(0)) + e2(u2(0))

)
,

where ei(ui(t)) stands for some energy of the corresponding
component of the unknown.
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If c ≡ 0, the two waves are uncoupled – in the symmetric as
well as in the cascade case – so that we cannot hope to get
such a result by a perturbation argument for α small.

What can be said for c 6= 0?

We are also interested in similar questions for coupled
parabolic, diffusive or Schrödinger systems.
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The coercive coupling case:

We assume the following multiplier geometric conditions

Ω is a non-empty bounded open set in RN having a boundary Γ
of class C2.

Moreover, {Γ0, Γ1} is a partition of Γ such that Γ0 ∩ Γ1 = ∅ and
x0 is a point in RN such that m · ν ≤ 0 on Γ0 and m · ν > 0 on
Γ1, where m(x) = x − x0.

We denote by | | the L2-norm on Ω. Then, we prove
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Theorem (A.-B. 2001, 2003, coercive case)

There exists c? > 0 such that for all 0 < ||c||L∞(Ω) < c?, there
exists T0 = T0(c?) > 0 such that for all T > T0 and all
U0 = (u0

1 ,u
1
1 ,u

0
2 ,u

1
2) ∈ H = (H1

0 (Ω)× L2(Ω))2 the solution
(u1,u2) satisfies∫ T

0

∫
Γ1

|∂u1

∂ν
|2 ≥ c1

(
|u1

1 |2 + |∇u0
1 |

2
)

+ c2

(
|u1

2 |2H−1(Ω) + |u0
2 |

2
)

,

where the constants c1, c2 depend on an explicit way on c? and
T0 behaves as 1/c? as c? goes to zero.

By duality, using the HUM method we deduce an exact indirect
controllability result for the following control problem:
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For given initial data, determine a L2 control v such that the
solution of



y1 ,tt −∆y1 + cy2 = 0 in Ω× (0,T ) ,

y2 ,tt −∆y2 + cy1 = 0 in Ω× (0,T ) ,

y1 = v on Σ1 = Γ1 × (0,T ) , y1 = 0 on Σ0 = Γ0 × (0,T ) ,

y2 = 0 on Σ = Γ× (0,T ) ,

(y1, y1 ,t )(0) = (y0
1 , y

1
1 ), (y2, y2 ,t )(0) = (y0

2 , y
1
2 ) on Ω .

satisfies
(y1, y2, y1,t , y2,t )(T ) = 0 on Ω .
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Theorem (A.-B. SICON 2003)

Under the multiplier geometric condition: there exists c? > 0
such that for all 0 < ||c||L∞(Ω) < c?, such that for all T > T0 (the
observability time) and all
Y 0 = (y0

1 , y
1
1 , y

0
2 , y

1
2 ) ∈ L2(Ω)× H−1(Ω)× H1

0 (Ω)× L2(Ω) there
exists a control v ∈ L2([0,T ]; L2(Γ1)) such that the solution
Y (t) = (y1, y ′1, y2, y ′2) satisfies

yi(.,T ) = ∂tyi(.,T ) = 0 in Ω , for i = 1 ,2 .

Note that the initial data for the uncontrolled component have to
be taken in a smaller space than the space of the controlled
one.
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Based on the two-level energy method (A.-B. 2001, 2003):
compensate the lack of observation of the second component
by a balance effect between the natural energy of the observed
component and the weakened energy of the unobserved one.
Ingredients for the proof:

a key estimate due to the coercivity properties of the
coupling.
observability assumption for a single wave equation with a
forcing source term uniform with respect to sufficiently
large times T .
energy type estimates (several ones are required).
conservation of the total natural and weakened energies
and suitable balance of energies.

Fatiha Alabau-Boussouira



beamer-tu-logo

beamer-ur-logo

Motivations for control of coupled systems
Setting and goals

Control of 2-symmetric coupled systems: coercive couplings
Extensions to partially coercive couplings

Applications to parabolic systems
Cascade systems

Applications to insensitizing control for the wave equation

These results extend to indirect observability (resp.
controllability) for adjoint (resp. direct) abstract coupled
systems, with applications to coupled waves, plates, that is for
instance for observability for

u′′1 + A1u1 + Cu2 = 0 in V ′1 ,

u′′2 + A2u2 + C?u1 = 0 in V ′2 ,

(u1,u′1)(0) = (u0
1 ,u

1
1) = U0

1 ∈ V1 × H ,

(u2,u′2)(0) = (u0
2 ,u

1
2) = U0

2 ∈ V2 × H ,

Can be extended to the case of bounded (i.e. localized from
PDE’s point of view) observation (easier case).
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The above results are valid only for bounded coercive coupling
operators C.

That is under the assumption

∃η > 0 such that 〈Cu,u〉 ≥ η|u|2H , ∀ u ∈ H .

where H is the natural pivot space.
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What can be said in the situation of noncoercive coupling
operators.

or equivalently

for systems of coupled PDE’s when the coupling coefficient is
localized on some part of the domain and vanishes outside a a
subset of Ω?

Positive results: this is a joint work with Matthieu Léautaud on
abstract coupled wave systems.
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The partially coercive coupling case:

Model example of 2 symmetric coupled systems with partial
coercive couplings


y1 ,tt −∆y1 + c(.)y2 = b v in Ω× (0,T ) ,

y2 ,tt −∆y2 + c(.) y1 = 0 in Ω× (0,T ) ,

y1 = y2 = 0 on Σ = Γ× (0,T ) ,

(y1, y1 ,t )(0) = (y0
1 , y

1
1 ), (y2, y2 ,t )(0) = (y0

2 , y
1
2 ) on Ω .

where v is the control, and b and c are respectively the control
and coupling coefficients with:
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b ≥ 0 on Ω (resp. on Γ) , c ≥ 0 on Ω , both smooth ,
b > 0 on ω ( resp. on Γ1) , ω ⊂ Ω (resp. Γ1 ⊂ Γ)

c > 0 on O , O ⊂ Ω .

We say that ω ⊂ Ω satisfies GCC if every ray of geometric
optics (or generalized geodesics) traveling at speed one in Ω
meets ω (resp. meets Γ on a non-diffractive point) in finite time

due to Bardos Lebeau Rauch 1992.
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We follow the methodology of the two-level energy method
A.-B. 2003, but this requires non trivial extensions to handle
noncoercive coupling operators.

We are especially interested in situations for which ω ∩O = ∅.
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a key estimate due to the coercivity properties of the
coupling : here localized coupling⇒ weaker coercivity
property. Extension of the two-level energy method.
observability assumption for a forcing source term, uniform
with respect to sufficiently large times: still works however
if we prove it by a multiplier method as in A.-B. 2003, we
have observation and coupling regions which necessarily
meet in dimensions ≥ 2. We modify this assumption to
handle this situation.
energy type estimates←→ same methodology
conservation of the total natural and weakened energies
and balance of energies←→ same methodology.
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Theorem (A.-B.-Léautaud CRAS 2011, JMPA 2012)

Assume that ω ⊂ Ω (resp. Γ1 ⊂ Γ) satisfies GCC and O
satisfies GCC. Then there exists a constant c∗ > 0 such that for
all ||c||∞ < c∗, there exists a time T∗ > 0 such that for all
T > T∗, and all initial data
(y0

1 , y
0
2 , y

1
1 , y

1
2 ) ∈ H1

0 (Ω)× H2 ∩ H1
0 (Ω)× L2(Ω)× H1

0 (Ω) (resp.
(y0

1 , y
0
2 , y

1
1 , y

1
2 ) ∈ L2(Ω)×H1

0 (Ω)×H−1(Ω)× L2(Ω)), there exists
a control v ∈ L2((0,T )×Ω) (resp. v ∈ L2((0,T )× Γ)), such that
the solution satisfies (y1, y2, y ′1, y

′
2)|t=T = 0.
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Very localized coupling effects: no conditions in 1-D except
that O and ω are non-empty open sets.

Hence if we consider Ω a bounded open set of R and the
uncoupled control problem

y1 ,tt − y1 ,xx = b v in Ω× (0,T ) ,

y2 ,tt − y2 ,xx = 0 in Ω× (0,T ) ,

y1 = y2 = 0 on Σ = Γ× (0,T ) ,

(y1, y1 ,t )(0) = (y0
1 , y

1
1 ), (y2, y2 ,t )(0) = (y0

2 , y
1
2 ) on Ω .

It is not possible, controlling only the first equation to
control the second component y2.
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Now, if c is any nonnegative function on Ω, bounded away from
0 on any open nonempty subset of Ω, then considering the
localized control problem

y1 ,tt − y1 ,xx + c(.)y2 = b v in Ω× (0,T ) ,

y2 ,tt − y2 ,xx + c(.) y1 = 0 in Ω× (0,T ) ,

y1 = y2 = 0 on Σ = Γ× (0,T ) ,

(y1, y1 ,t )(0) = (y0
1 , y

1
1 ), (y2, y2 ,t )(0) = (y0

2 , y
1
2 ) on Ω ,

it becomes possible by controlling only the first equation,
to control the second component y2. Hence a very
localized interaction between the two components y1 and
y2 is sufficient to get a positive answer to a controllability result
by a single control.
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Applications to parabolic systems

For each initial data in a suitable space, determine a L2 control
v such the solution of

eiθy ′1 −∆y1 + c(.)y2 = bv in (0,T )× Ω,
eiθy ′2 −∆y2 + c(.)y1 = 0 in (0,T )× Ω,
y1 = y2 = 0 on (0,T )× Ω,
(y1, y2)|t=0 = (y0

1 , y
0
2 ) in Ω,

satisfies (y1, y2)(T ) = 0 on Ω.

Here θ = 0 (heat case), θ ∈ (0, π/2) (diffusive case) or θ = π/2
(Schrödinger case).
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Combining the above controllability result for the coupled wave
system, we can deduce, using the transmutation method Phung
2001, Miller 2005, Ervedoza and Zuazua 2010 (also Russell in
1973), as a byproduct, a controllability result for heat/diffusive
coupled systems
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Corollary (Heat-type systems, A.-B. Léautaud 2011)
Suppose that O satisfies GCC and that ω (resp Γ1) satisfies
GCC. Then, there exists a constant c∗ > 0 such that for all
||c||∞ < c∗, for all T > 0, θ ∈ (−π/2, π/2), for all initial data
(y0

1 , y
0
2 ) ∈

(
L2(Ω)

)2 (resp (y0
1 , y

0
2 ) ∈

(
H−1(Ω)

)2), there exists a
control v ∈ L2((0,T )×Ω) (resp v ∈ L2((0,T )×Γ)) such that the
solution of heat coupled type systems satisfies (y1, y2)|t=T = 0.

Corollary (Schrödinger-type systems, A.-B. Léautaud 2011)

Assume θ = ±π/2. Under the above conditions, the same
null-controllability result holds for any T > 0, taking initial data
(y0

1 , y
0
2 ) ∈ L2(Ω)× H1

0 (Ω) (resp. (y0
1 , y

0
2 ) ∈ H−1(Ω)× L2(Ω)) for

a suitable L2 control v.
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Applications to parabolic systems

About direct methods for parabolic coupled systems:
Main tool for parabolic coupled systems: Carleman estimates
several positive results based on Kalman type condition have
been obtained by Ammar Khodja, Benabdallah, Dupaix,
Gonzalez-Burgos, de Teresa in a series of paper ( survey paper
MCRF 2011).

Main assumption: either constant couplings, or the
coupling region meets the control region
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2 coupled cascade systems

Rosier and De Teresa 2011 proved a null controllability result
for heat coupled cascade systems, that is


eiθy ′1 −∆y1 + 1Oy2 = 0 in (0,T )× Ω,
eiθy ′2 −∆y2 = bv in (0,T )× Ω,
y1 = y2 = 0 on (0,T )× Ω,
(y1, y2)|t=0 = (y0

1 , y
0
2 ) in Ω,
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Their method is based on Däger’s approach and a controllability
result for the corresponding cascade wave system.

It requires that the semigroup generated by the free wave
equation is periodic, so that it is valid only in 1-D domains.

They also have a positive null controllability result for
Schrödinger cascade coupled systems in the torus (multi-D)
and for sufficiently large time T . They also have a sharper
geometric condition for Schrödinger case.

Their result does not require smoothness of the coupling
coefficient.
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There is a recent result for 2 coupled cascade systems with
localized control by Dehman Léautaud Le Rousseau 2011 in a
C∞ compact connected Riemannian manifold without boundary
with characterization of the minimal control time using
micro-local analysis.

Uses the idea of the two-level energy method of working with a
weakened energy space.

Gives the minimal control time, but it is not constructive.
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In general situations:

multi-D cases, boundary control , N-coupled cascade systems,
empty intersection between control and coupling regions, . . .

the problem is open.

We deal with 2-coupled cascade systems in multi-D, with locally
distributed or boundary control/observation.
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In general situations:

multi-D cases, boundary control , N-coupled cascade systems,
empty intersection between control and coupling regions, . . .

the problem is open.

We deal with 2-coupled cascade systems in multi-D, with locally
distributed or boundary control/observation.
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Consider the following either locally/boundary cascade
hyperbolic control systems

y1 ,tt −∆y1 + cy2 = 0 , in QT = Ω× (0,T ) ,

y2 ,tt −∆y2 = bv , in QT = Ω× (0,T ) ,

y1 = y2 = 0 ,on ΣT = ∂Ω× (0,T ) ,

(yi , yi ,t )(0, .) = (y0
i , y

1
i )(.) , in Ω , i = 1,2 ,

y1 ,tt −∆y1 + cy2 = 0 , in QT = Ω× (0,T ) ,

y2 ,tt −∆y2 = 0 , in QT = Ω× (0,T ) ,

y1 = 0 , y2 = bv ,on ΣT = ∂Ω× (0,T ) ,

(yi , yi ,t )(0, .) = (y0
i , y

1
i )(.) , in Ω , i = 1,2 ,
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Let O stands for the localization region of the coupling function
c and ω (resp. Γ1) be the region on which the control is active.

Then we prove

Theorem (A.-B. 2011, CRAS 2012)
Assume that the subsets O and ω (resp. O and Γ1) satisfy
(GCC). Then, there exists T ? > 0 such that for all T > T ?, for
all initial data
Y 0 = (y0

1 , y
0
2 , y

1
1 , y

1
2 ) ∈ H2(Ω) ∩ H1

0 (Ω)× H1
0 (Ω)2 × L2(Ω) (resp.

Y 0 ∈ H1
0 (Ω)× L2(Ω)2 × H−1(Ω)), there exists a control

v ∈ L2((0,T )× Ω) (resp. v ∈ L2((0,T )× Γ1)) such that the
solution of the above internal (resp. control) system satisfies
(y1, y2, y1 ,t , y1 ,tt )(T , .) = 0 in Ω.
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Indeed we give for all the above cases a necessary and
sufficient condition for controllability by a single control to hold.
Based on suitable observability estimates for the adjoint
homogeneous problem.

We also solve the insensitizing control problem for the scalar
wave equation, giving a sharp condition on the control
coefficient b and the coupling coefficient c, which lead to
optimal condition on the supports of b and c.
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The proof is based on the two-level energy method (A.-B. 2001,
2003), its recent extension (A.-B. Léautaud 2011) and some
new ideas for the corresponding cascade hyperbolic systems.

The result holds for systems in abstract form as well for
bounded as well as unbounded control operators.

As for the results with Matthieu Léautaud for 2-symmetric
systems, we can handle various situations for which the control
and coupling regions do not intersect.

The results for 2-cascade systems do not allow to recover
results for 2-symmetric cases and vice-versa.
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Insensitizing controls

We go back to the insensitizing control problem.
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An example: insensitizing control for the wave
equation

We consider the scalar wave equation with a locally distributed
control v :

ytt −∆y = ξ + bv in (0,T )× Ω ,

y = 0 in (0,T )× Γ ,

y(0, .) = y0 + τ0z0 in Ω , yt (0, .) = y1 + τ1z1 in Ω ,

the location of the control depending on the the support of the
coefficient function b
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or the scalar wave equation with a boundary control v :
ytt −∆y = ξ in (0,T )× Ω ,

y = bv in (0,T )× Γ ,

y(0, .) = y0 + τ0z0 in Ω , yt (0, .) = y1 + τ1z1 in Ω ,

the location of the control depending on the the support of the
coefficient function b in Γ
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We want controls bv that insensitize the observation Φ, that is
such that for all (z0, z1) the corresponding solution y satisfies

∂Φ

∂τ0
(y ,0,0) =

∂Φ

∂τ1
(y ,0,0) = 0 .

where

Φ(y , τ0, τ1) =
1
2

∫ T

0

∫
Ω

cy2 dxdt ,

and c has a support localized in the neighborhood of a subset
O which is a given subset of Ω.
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Theorem (A.-B. 2012)

Assume that c satisfies{
c ∈W 1,∞(Ω) , c ≥ 0 on Ω ,

{c > 0} ⊃ O for some open subset O ⊂ Ω .

We have the following properties
Locally distributed control. Let b ∈ L∞(Ω) in Ω be given
such that{

b ∈ L∞(Ω) ,b ≥ 0 on Ω ,

{b > 0} ⊃ ω for some open subset ω ⊂ Ω .
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Theorem ( continued)

Assume that O and ω satisfy (GCC). Then for any given
ξ ∈ L2((0,T ); L2(Ω)) and (y0, y1) ∈ H1

0 (Ω)× L2(Ω), there exists
a control v ∈ L2((0,T ); L2(Ω)) that insensitizes Φ along the
solutions.

Boundary control. Let b ∈ L∞(Γ) in Γ be given such that{
b ∈ L∞(Γ) ,b ≥ 0 on Γ ,

{b > 0} ⊃ Γ1 for some subset Γ1 ⊂ Γ .

Assume that O and Γ1 satisfy (GCC).
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Theorem (continued)

Then for any given ξ ∈ L2((0,T ); L2(Ω)) and
(y0, y1) ∈ L2(Ω)× H−1(Ω), there exists a control
v ∈ L2((0,T ); L2(Γ)) that insensitizes Φ along the solutions.

Moreover the above condition on O and ω (resp. on O and
Γ1) for the case of locally (resp. boundary) distributed
control is sharp.
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We generalize these results and the two-level energy method in
an involved way in A.-B. 2012 to the case of:

N-coupled cascade hyperbolic, diffusive or Schrödinger
systems
controlled by N − p controls with p ranging from 1 to N − 1
localized or boundary dampings
with the control/observation region which do not intersect
any of the localized coupling regions.

That is for systems of the form
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y ′′1 + Ay1 + C?
21y2 + . . .C?

N1yN = 0 ,
y ′′2 + Ay2 + C?

32y3 + . . .C?
N2yN = 0 ,

...
y ′′p + Ayp + C?

p+1pyp + . . .C?
NpyN = 0 ,

y ′′p+1 + Ayp+1C?
p+2p+1yp+1 + . . .C?

Np+1yN = Bp+1vp+1 ,
...
y ′′N−1 + AyN−1 + C?

NN−1yN = BN−1vN−1 ,

y ′′N + AyN = BNvN ,

(yi , y ′i )(0) = (y0
i , y

1
i ) for i = 1, . . .N ,
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Further properties have to be understood: the coupling, the
nature of the equations, the geometry, the type of control . . .

; influence the answer to controllability by a reduced number
of controls.

Goal ; get an insight and further on ; a classification of
systems at least with certain properties.

Works in progress in several directions:

to understand the "limits" of what make things work,
having in mind several applications to control of
mechanical structures, . . .
inverse problems,

...
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Thanks for your attention
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