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In this talk we will present some very recent advances in the field of shape optimization for
operators with drift. We consider the model problem

min{)\l(Q,V) L QCD, VDR V]~ <1, |9 gm},

where m,7 > 0 and the bounded open domain D are given and A;(€2, V') denotes the first
eigenvalue of the operator —A + V -V with Dirichlet Boundary conditions in 2. We show that
an optimal domain €2 and optimal drift V' do exist in the class of quasi-open sets. Moreover, if
we restrict our attention to the class of vector fields V' such that V = V®, for some 7-Lipschitz
continuous function ® : D — R, we also prove that the optimal sets have C® smooth free
boundary.

We notice that in the case D = R, it was proved by Hamel, Nadirashvili and Russ [3] that the
optimal domain is a ball and the optimal vector field is V(z) = 7z/|x|.

The operator —A+4V-V is not a self-adjoint operator, so the definition itself of the first eigenvalue
requires special attention. For an open set €2, it was proved by Beresticky, Nirenberg and
Varadhan [1] that there exists a real eigenvalue A1 (2, V') of —A+V -V such that A\ (©2,V) < Re A
for every other eigenvalue )\ of the same operator. In order to prove our existence result, we
extend this theorem to the case of quasi-open sets and, we use the theory of Buttazzo and Dal
Maso to prove an existence of an optimal quasi-open set.
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