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We consider finite volume schemes on rectangular meshes for the p-Laplacian with Dirichlet boundary
conditions. In Andreianov et al. (2004a), we constructed a family of schemes and proved discrete W 1,p

error estimates in the case of W 2,p solutions of the homogeneous problem. Here we improve these
estimates in the case of W 4,1 solutions on uniform meshes for p > 3, using symmetry properties of the
schemes. The proof also works for the Laplace equation, giving an h2 convergence rate for a family of
nine point finite volume schemes.

With the same ideas, using the improved coercivity inequalities of Barrett and Liu, we obtain even better
W 1,p, W 1,1 and L∞ convergence rates for special classes of regular solutions to the inhomogeneous
problem - in particular, for solutions without critical points in Ω, for all p ∈ (1,∞).

Numerical examples are given. In particular, they suggest the optimality of the L∞ estimates of order
h2, obtained for solutions without critical points.
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1. Introduction

In this paper, we continue the study of finite volume numerical approximation of solutions to the p-
Laplacian, 1 < p < +∞, with homogeneous Dirichlet boundary conditions on a rectangular domain Ω
in R

2: {
−div

(
|∇u|p−2∇u

)
= f, on Ω,

u = 0, on ∂Ω.
(1.1)

The schemes we consider derive from minimization of a discrete functional approaching the energy
functional

J : u ∈ W 1,p
0 (Ω) 7→

1

p

∫

Ω

|∇u|p dz −

∫

Ω

fudz,

see section 2.4 and Andreianov et al. (2004a) for details. Therefore, these non-linear schemes are easy to
implement thanks to conjugate gradient kind methods. For these schemes on rectangular non-uniform,
but somewhat regular meshes, a discrete W 1,p error estimate of order h

1
p−1 , as p > 2, was obtained

assuming that the exact solution u belongs to W 2,p(Ω). Note that as f ∈ Lp′

(Ω), u actually belongs

to W 1,p(Ω) and even to the Besov space B
1+ 1

p−1 ,p
∞ (Ω) (see Simon (1978)); but as p > 2, no condition

on the right-hand side f is known to ensure that u ∈ W 2,p(Ω) (see for instance Ebmeyer et al. (2005)
where the W 1+s,p(Ω) regularity of u is proved for any s < 2

p and smooth enough data).



Then in Andreianov et al. (2005), error estimates were derived for all f ∈ Lp′

(Ω) (without any
additional restriction on the exact solution u), using the aforementioned Besov regularity and its finite
volume counterpart.

In this paper, we go in the opposite direction, looking for a proof of higher order convergence, al-
ready observed for finite element approximations of the p-Laplacian (see, e.g., Barrett & Liu (1993)).
We study solutions as regular as needed in order to obtain such a better convergence rate. The appro-
priate regularity assumptions are that u ∈ W 4,1(Ω) and that p > 3 (or p = 2). Moreover, the mesh
is required to be uniform: in this case the schemes possess symmetries that lead to cancellations in the
error terms.

We obtain in Theorem 3.1 a discrete W 1,p error estimate of order h
m

p−1 with m = 2 if p > 4 and
m = p− 2 if 3 < p 6 4, provided that f vanishes on the boundary. For general f , an additional error
term of order h

1
p + 1

p−1 arises from the boundary. In section 3.4 we propose a slightly modified finite
volume scheme which enjoys an error estimate of order h

m
p−1 even if f does not vanish on ∂Ω. Thanks

to the Poincaré inequality (Lemma 2.1) and the discrete embedding in L∞ (Lemma 2.2), Lp and L∞

error estimates of the same order follow.

In section 3.5, we study finite volume approximations of regular solutions of the inhomogeneous
Dirichlet problem for the p-Laplacian (3.29), focusing our attention on solutions without critical points
(called “nondegenerate”) and solutions u such that |∇u|−ν ∈ L1(Ω) (called “ν-weakly degenerate”).
This study is inspired by the quasi-norm approach developed in Barrett & Liu (1993) and adapted here
to the finite volume framework. The results are collected in Theorem 3.3 (see also Remarks 3.2, 3.5,
3.6, 3.7 and Corollary 3.1, where regularity and degeneracy assumptions are discussed). For p > 3, the
convergence order in the discrete W 1,p norm varies, according to the values of ν, from h

m
p−1 for ν = 0

(i.e., when no integrability of |∇u|−1 is assumed), to h
4
p for ν = +∞ (i.e., in the case of nondegenerate

solutions). Better estimates can be obtained in discrete W 1,q norms for 1 < q 6 2; in particular, for
nondegenerate solutions we get the optimal order h2 for all q 6 2. The L∞ convergence order varies
from h

m
p−1 for ν = 0 to h2 for ν = ∞. For 1 < p < 2 we obtain, in the case of sufficiently regular

nondegenerate solutions, the orders h2 in the discrete W 1,p norm and h
3p−2

p in the L∞ norm. We want
to stress on the fact that our results, in contrast with others in the literature, may provide convergence
rates higher than 1 (up to second order) for the very simple nine-point finite volume scheme under study.

Note that the error analysis for finite element schemes for the p-Laplacian has been previously car-
ried out e.g. in Glowinski & Marrocco (1975); Chow (1989); Barrett & Liu (1993). To our knowledge,
for p > 2 the best error estimate in the W 1,p norm for P 1 elements, is the Chow’s h

2
p rate as soon as

u ∈W 2,p(Ω) and without any other assumption on the data f . First-order estimates in quasi-norms and
classical W 1,q norms with q < p have been derived, under suitable assumptions on the source term f ,
in Barrett & Liu (1993) and in Ebmeyer & Liu (2005). Higher degree finite elements were for instance
considered in Ainsworth & Kay (2000).

In section 4, we compare the theoretical convergence orders proved in this paper to numerical ex-
periments but also to some of the results obtained in the finite element framework in Barrett & Liu
(1993).

Let us discuss the very particular case of the Laplace equation (p = 2). Our results concern a one
parameter family of nine point finite volume schemes, which includes the classical five point finite dif-
ference scheme (see Eymard et al. (2000) for the finite volume point of view) for an appropriate choice
of the parameter. For this classical scheme, the h2 convergence rate is well known - see e.g. Samarskii



& Andréev (1978) and (Eymard et al., 2000, Remark 3.1). In Theorem 3.1(ii) and Theorem 3.3(ii)
(see also Remarks 3.2, 3.6), we generalize this h2 convergence rate to our nine point schemes on the
rectangular domain Ω, for solutions u ∈

⋃
s>1 W

4,s(Ω). This regularity is achieved, for instance, for
classical solutions u ∈ C2(Ω) with source terms lying in

⋃
s>1 W

2,s(Ω) (see Remark 3.2).

Finally, we point out the fact that most of our analysis is valid for more general non-linear elliptic
problems like

−div(k(|∇u|)∇u) = f,

as long as the map s 7→ sk(s) has suitable monotonicity properties (see Chow (1989) for instance), and
is smooth enough.

2. The finite volume schemes

2.1 Notations

LetΩ be a rectangular bounded domain of R
2; without loss of generality we assume thatΩ =]0, Lx[×]0, Ly[.

We consider a uniform mesh T , i.e. a set of disjoint control volumes K ∈ T isometric to a given refer-
ence rectangular volume ] − h

2 ,
h
2 [×] − k

2 ,
k
2 [, such that Ω = ∪K∈T K̄. We consider a family of meshes

with h tending to zero which satisfy the following assumption:

∃c1 > 0, such that c1 6
k

h
6

1

c1
. (2.1)

Let us recall some notations introduced in Andreianov et al. (2004a). We denote by xK the centre
of the control volume K. In order to take into account the boundary conditions, we introduce artificial
points constructed by symmetry with respect to the boundaries of Ω (see Figure 2.1).
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FIG. 2.1. Notations

The dual mesh T ∗ of T is defined to be the set of dual rectangular control volumes whose vertices
are the points xK and the artificial points.

Given a dual control volume K
∗, we define (see Figure 2.1):

• (xK
∗

i )i=1,2,3,4 the vertices of the dual control volume K
∗ numbered counterclockwise starting

from the lower-left-hand corner.



• (KK
∗

i )i=1,2,3,4 the corresponding control volumes with centres (xK
∗

i )i=1,2,3,4.

• lK
∗

i the distance between xK
∗

i and xK
∗

i+1; in this paper, since the meshes are assumed to be uniform,
we have lK

∗

1 = lK
∗

3 = h and lK
∗

2 = lK
∗

4 = k.

• σK
∗

i the half-edge between K
K

∗

i and K
K

∗

i+1 located in K
∗.

In the sequel, we drop the subscripts K
∗ when the notation is not confusing. Conventionally, in a given

dual control volume, the indices i ∈ Z are understood modulo 4.

The finite volume method associates to each control volume K an unknown value uK. We denote
the set (uK)

K∈T ∈ R
T by uT . The discrete function uT is called the approximate solution on the mesh

T . For any continuous function v on Ω, the discrete function vT = (vK)
K∈T , with vK = v(xK), will be

called the projection of v on the space R
T of discrete functions. For a given discrete function uT ∈ R

T ,
the boundary conditions are taken into account by using the ghost-cell method (see Figure 2.1),which
means that we extend the values of uT to artificial points outside of Ω by odd symmetry with respect to
the corresponding boundaries.

Given a dual control volume K
∗, we define the projection operator TK

∗ which associates to each
uT ∈ R

T its values TK
∗(uT ) = (uT1,K∗ , uT2,K∗ , uT3,K∗ , uT4,K∗) in the four control volumes (KK

∗

i )i that
intersect K

∗. Note that for boundary dual control volumes, ghost cells are used in order to give sense
to the definition of TK

∗ . For instance, if K
∗ is located at the right-hand boundary of Ω, we have by

definition

uT2,K∗ = −uT1,K∗ and uT3,K∗ = −uT4,K∗ , where uT1,K∗ = uK1,K∗ , u
T
4,K∗ = uK4,K∗ .

2.2 Discrete semi-norms and Sobolev embeddings

Denote by 1K the characteristic function of the control volume K. Each discrete function uT ∈ R
T is

identified with the bounded function uT =
∑

K∈T uK1K, so that for r ∈ [1,+∞] the norms ‖uT ‖Lr

are naturally defined. Let us define a discrete Sobolev semi-norm for the elements of R
T . For any

uT ∈ R
T , and any K

∗ ∈ T ∗, we define the difference quotients

δK
∗

i (uT ) =
uTi+1,K∗ − uTi,K∗

lK
∗

i

, i ∈ {1, . . . , 4}. (2.2)

DEFINITION 2.1 Consider uT ∈ R
T . For any K

∗, we define

|uT |1,K∗ =

(
1

2

4∑

i=1

∣∣δK
∗

i (uT )
∣∣2

) 1
2

,

to be an approximation of |∇u|, so that the discrete W 1,q
0 semi-norm of uT is defined by

‖uT ‖1,q,T =

( ∑

K
∗∈T ∗

m(K∗ ∩Ω)|uT |q1,K∗

) 1
q

,

for 1 6 q < +∞. We denote by W 1,q,T the space R
T equiped with then norm ‖ · ‖1,q,T .



Below, discrete versions of standard embedding and interpolation inequalities for Sobolev spaces
are presented. Note that in Lemmas 2.1, 2.2 and 2.3, the zero boundary condition is taken into account
by using the ghost-cell method. These results remain true for the “all-uniform” schemes considered in
sections 3.4 and 3.5.

LEMMA 2.1 (DISCRETE POINCARÉ INEQUALITY) Let T be a mesh of the rectangle Ω. There exists a
constant C which only depends on p such that for any uT ∈ R

T , we have

‖uT ‖Lp 6 C diam(Ω)‖uT ‖1,p,T .

The proof is an adaptation of the one given in Andreianov et al. (2004b).

LEMMA 2.2 (DISCRETE (QUASI-)EMBEDDINGS OF W 1,p INTO L∞) Let T be a uniform mesh of the
rectangle Ω satisfying (2.1). There exists a constant C, depending only on Ω,p and c1 (except for the
case (i)(b) below) such that for any uT ∈ R

T ,

(i) (a) as p > 2, ‖uT ‖L∞ 6 C‖uT ‖1,p,T ;

(b) as p = 2, ‖uT ‖Lr 6 Cr ‖uT ‖1,2,T for all r <∞;
(c) as 1 < p < 2, ‖uT ‖Lr 6 C‖uT ‖1,p,T for all r 6

2p
2−p ;

(ii) (a) as p = 2, ‖uT ‖L∞ 6 C| lnh| ‖uT ‖1,2,T ;

(b) as 1 < p < 2, ‖uT ‖L∞ 6 Ch−
(2−p)

p ‖uT ‖1,p,T .

The proof for general admissible finite volume meshes is given, for instance, in Coudière et al.
(2001). We only give below a sketch of the proof in the simplest case of cartesian meshes.
Proof. (i) For a given cartesian mesh T ofΩ, consider the set of rectangles K

∗∩Ω, with K
∗ ∈ T ∗. Split

each rectangle into two triangles; we denote by T̂ the resulting triangular mesh of Ω. For uT ∈ R
T ,

denote by û the piecewise affine interpolant over the triangles of T̂ of the values uK at the vertices xK

and of zero values at the vertices located on ∂Ω. Note that û ∈ W 1,p
0 (Ω). By the Sobolev embedding

theorem, as p > 2, there exists a constant C such that ‖uT ‖L∞ = ‖û‖L∞ 6 C‖û‖W 1,p
0

. It is easily

seen that ‖û‖W 1,p
0

6 C‖uT ‖1,p,T , which proves (a). In the same way, (b) and (c) follow.

(ii)(a) Using (i)(b) for all r < +∞, we find

‖uT ‖L∞ = max
K∈T

|uK| =
1

h2/r
(h2|uK|

r)1/r 6
1

h2/r
‖uT ‖Lr 6

r

h2/r
‖uT ‖1,2,T . (2.3)

Searching for the optimal value of r, we find r = 2| lnh| and deduce the result.
(b) As in (2.3), we find ‖uT ‖L∞ 6 1

h2/r ‖u
T ‖Lr ; it suffices to take r = 2p

2−p in (i)(c). �

REMARK 2.1 In case (ii)(a), reproducing the proof of the embedding theorem in the discrete framework,
one finds a bit sharper estimate ‖uT ‖L∞ 6 C| lnh|1/2‖uT ‖1,2,T .

LEMMA 2.3 (DISCRETE INTERPOLATION INEQUALITIES)
Let T be a uniform mesh of the rectangle Ω satisfying (2.1). Let 16 q6 t<p, and θ = q(p−t)

t(p−q) . There

exists a constant C, depending only on Ω,p,c1, q, and t such that ‖uT ‖1,t,T 6 C‖uT ‖θ
1,q,T ‖u

T ‖1−θ
1,p,T .

As t = 2, ‖uT ‖L∞ 6 C‖uT ‖θ
1,q,T ‖u

T ‖1−θ
1,p,T also holds.

Proof. The results follow by the corresponding inequalities for Sobolev spaces, upon replacing uT by
its piecewise affine interpolant, as in the proof of Lemma 2.2(i). �



2.3 Construction of the schemes

In Andreianov et al. (2004a), we derived the general form of symmetric finite volume schemes on
cartesian meshes that are consistent with piecewise affine functions and that satisfy a W 1,p discrete
estimate.

In the particular case of uniform meshes, the schemes can be written as a system of the following
equations:

a(uT )
def
=

(
aK(uT )

)
K∈T

def
=

∑

K
∗∈T ∗

m(K∗ ∩Ω)T t
K

∗ ◦ a0 ◦ TK
∗(uT ) = (m(K)fK)

K∈T (2.4)

where (uK)K∈T are the unknowns and fK denotes the mean value of the function f on the control
volume K. Here,

a0(v)
def
= (Bv, v)

p−2
2 Bv ∀v ∈ R

4, (2.5)

where B is a 4 × 4 matrix defined by the choice of a parameter ξ as follows:

B =
1

2hk




4ξ + k
h + h

k −4ξ − k
h 4ξ −4ξ − h

k

−4ξ − k
h 4ξ + k

h + h
k −4ξ − h

k 4ξ
4ξ −4ξ − h

k 4ξ + k
h + h

k −4ξ − k
h

−4ξ − h
k 4ξ −4ξ − k

h 4ξ + k
h + h

k


 . (2.6)

This choice ensures the consistency, and the symmetry of the scheme.
In Andreianov et al. (2004a), more general schemes were studied, where the parameter ξ and con-

sequently the matrix B and the map a0 may depend on K
∗. The fact that ξ does not depend on K

∗ is
fundamental in the present paper, since we need the symmetry properties of the scheme on each control
volume.

DEFINITION 2.2 We say that a scheme defined by (2.4), (2.5), (2.6) is admissible, if

8ξ +
k

h
+
h

k
> 0.

For any control volume K, the numerical flux aK is naturally decomposed into the contributions of
the half-edges σ ⊂ ∂K ∩ ∂K∗ :

aK(uT ) =
∑

σ⊂∂K∩∂K
∗

aK,σ(uT )

where for K = K
K

∗

j and σ = σK
∗

j , aK,σ is defined by

aK,σ(uT ) = mσgσ(δK
∗

1 (uT ), δK
∗

2 (uT ), δK
∗

3 (uT ), δK
∗

4 (uT ))

with

gσ(δ1, δ2, δ3, δ4) = [q(δ1, δ2, δ3, δ4)]
p−2
2





−δj − 2ξ h
k (δ1 + δ3), if j = 1, 3,

−δj − 2ξ k
h(δ2 + δ4), if j = 2, 4,

(2.7)

and

q(δ1, δ2, δ3, δ4) =
1

2

4∑

i=1

δ2i + ξ

(
h

k
(δ1 + δ3)

2 +
k

h
(δ2 + δ4)

2

)
.

Note that q(δK
∗

1 (uT ), δK
∗

2 (uT ), δK
∗

3 (uT ), δK
∗

4 (uT )) = |B
1
2 TK

∗(uT )|2.

Let us recall the following property (see Andreianov et al. (2004a)):



LEMMA 2.4 Let γ > 0 be such that

ξ 6
1

γ
and 8ξ +

k

h
+
h

k
> γ. (2.8)

Then there exist β1, β2 > 0, depending only on γ and on c1 in (2.1) such that

β1|u
T |1,K∗ 6 |B

1
2 TK

∗(uT )| 6 β2|u
T |1,K∗ ∀K∗ ∈ T ∗, ∀uT ∈ R

T . (2.9)

2.4 Discrete energy

We call discrete energy of the scheme the following functional JT acting on discrete functionsuT ∈ R
T :

JT (uT ) =
1

p

(
a(uT ), uT

)
−

∑

K∈T

m(K)fKuK =
1

p

∑

K
∗∈T ∗

m(K∗ ∩Ω)|B
1
2TK

∗(uT )|p −
∑

K∈T

m(K)fKuK.

This functional is strictly convex and coercive, and its unique minimizing point is the unique solution
of the set of discrete equations (2.4). In practice, we compute the approximate solution by minimizing
JT through standard iterative algorithms. The functional JT inherits the well-known properties of
the functional J : u ∈ W 1,p

0 (Ω) 7→
∫

Ω
1
p |∇u|

p −fu associated with the continuous problem (see
Andreianov et al. (2004a)):

LEMMA 2.5 If p > 2, there exists a constant C > 0 such that for any uT , vT ∈ R
T ,

(∇JT (vT ) −∇JT (uT ), vT − uT ) > C‖uT − vT ‖p
1,p,T . (2.10)

2.5 Previously obtained error estimates

We recall the error estimates obtained in our previous works.

• For W 2,p(Ω) solutions

For p > 2 and non-uniform rectangular meshes, the following estimate is obtained in Andreianov
et al. (2004a):

‖uT − uT ‖1,p,T 6 Ch‖u‖W 2,p + Ch
1

p−1 ‖u‖
3p−4

p(p−1)

W 2,p ‖f‖
(p−2)2

p(p−1)2

Lp′ , (2.11)

provided that the solution u of the p-Laplacian (1.1) belongs to W 2,p(Ω).

• For general solutions

For uniform meshes and all f ∈ Lp′

(Ω), it is proved in Andreianov et al. (2005) that

‖uT − uT ‖1,p,T 6 Ch
2

p(p−1) ‖f‖
2

p(p−1)

Lp′ ‖u‖
1− 2

p

W 1,p , if p > 3,

‖uT − uT ‖1,p,T 6 Ch
1
p ‖f‖

1
p

Lp′‖u‖
1
p

W 1,p , if 2 < p < 3.

In these estimates, the constant C > 0 depends only on c1 in (2.1) and γ in (2.8).



3. Higher-order error estimates

3.1 Principle of the proof

In order to prove the error estimates (2.11), we used the fact that

(
∇JT (uT ) −∇JT (uT ), uT − uT

)
=

∑

K∈T

∑

σ∈EK

Rσ,K(uK − uK)

=
∑

σ=K|L

Rσ

(
(uK − uK) − (uL − ūL)

)
.

(3.1)

Here Rσ,K is the so-called local consistency error defined by

Rσ,K = aK,σ(uT ) −

(
−

∫

σ

|∇u|p−2∇u · νσ ds

)
, (3.2)

and Rσ = Rσ,K = −Rσ,L. Now for any σ and K, the local consistency error Rσ,K is, in general, of
order h2 if u is smooth enough (say in C2(Ω)). This yields the estimate (2.11). We will show that
cancellations due to symmetries of the scheme imply that the term

∑
σ∈EK

Rσ,K is of order h4 (at least
if K is an interior control volume; see also section 3.4) provided that u is regular enough (roughly
speaking, if it is in C4(Ω)) and gσ is of class C3. According to (2.7), we thus need to control q

p−4
2 .

Therefore our result is restricted to the cases p > 4 and p = 2. For the case 3 < p < 4, in the same way
we exhibit an intermediate consistency order h2(p−2). Another possibility is to assume that |∇u| does
not vanish, which yields the consistency order h4 for all p > 1.

The key-point is to treat the right-hand side of (3.1) in a different manner, bringing together the terms
which originate from all the eight half-edges which delimit a control volume K ∈ T . Let us rewrite (3.1)
in the form

(
∇JT (uT ) −∇JT (uT ), uT − uT

)
=

∑

K∈T

( ∑

σ∈EK

Rσ,K

)
(uK − uK). (3.3)

DEFINITION 3.1 For a given volume K ∈ T , we call mean consistency error RK the sum of the local
consistency errors associated with all the half-edges surrounding the control volume K:

RK =
∑

σ∈EK

Rσ,K.

Theorem 3.1 relies upon the estimate of this mean consistency error, which is quite technical. But
the principle of its proof already transpires in the case of interior volumes, and if the reader assumes that
u belongs to C4.

3.2 Estimate of the mean consistency error

Denote by β the multi-index (βx, βy) ∈ (Z+)2 of order |β| = βx + βy, and by Dβ the correspond-

ing derivative
∂|β|

∂βxx∂βyy
. Whenever it simplifies the notation, we may also write wx,wxy, . . . for the

derivatives of the function w on Ω.
In the sequel, we denote by C any constant that depends on ‖u‖W 4,1 , Ω, p, c1 (appearing in (2.1))

and γ (appearing in (2.8)). Finally, we use the Landau symbol O(1) to denote any bounded function
with respect to the mesh size h, the norm of u in W 4,1(Ω) and, perhaps, other variables.



The goal of this section is to state and prove Proposition 3.1 which provides an estimate of the mean
consistency error RK for any control volume K ∈ T . To this end, let us introduce some notations and
give some preliminary results.

Without loss of generality, assume that K =] − h
2 ,

h
2 [×] − k

2 ,
k
2 [ and let σ0 = {h

2 } × [0, k
2 ] be one

of its four vertical half-edges. Denote by Tx, Ty the reflexions of R
2 in the coordinate axes, namely

Tx(x, y) = (−x, y) and Ty(x, y) = (x,−y) for all (x, y) ∈ R
2. For any smooth function w on K, we

define

δ0w = (δK
∗

1 (wT ), δK
∗

2 (wT ), δK
∗

3 (wT ), δK
∗

4 (wT )),

δw(s) = (wx(h
2 , s), wy(h

2 , s),−wx(h
2 , s),−wy(h

2 , s)) ∀s ∈ [0, k
2 ],

the (δK
∗

i )i being defined in (2.2) and K
∗ being the unique dual control volume containingσ0. Let us state

some properties of the function gσ0 defined in (2.7) (for j = 1 in this particular case). For convenience,
we now drop the subscript σ0.

Notations : For any multi-index α = (α1, α2, α3, α4) ∈ (Z+)4 of order |α| = α1 + α2 + α3 + α4,
we denote by Dαg the corresponding derivative of the function g(·, ·, ·, ·). We will also write D1 for
D(1,0,0,0), D2 for D(0,1,0,0), D11 for D(2,0,0,0), D12 for D(1,1,0,0), and so on.

LEMMA 3.1 Let w be a regular enough function on K.

(i) For any β = (βx, βy) ∈ (Z+)2, we have

Dβ(w ◦ Tx) = (−1)βx
[
Dβw

]
◦ Tx, Dβ(w ◦ Ty) = (−1)βy

[
Dβw

]
◦ Ty.

(ii) For any α ∈ (Z+)4, we have, for all s ∈ [0, k
2 ],

Dαg(δw◦Tx(s)) = (−1)α1+α3+1 [Dαg(δw(s))] ◦ Tx,

Dαg(δw◦Ty (s)) = (−1)α2+α4 [Dαg(δw(s))] ◦ Ty.

(iii) We have, for all s ∈ [0, k
2 ],

D4g(δw(s)) = −D2g(δw(s)), D21g(δw(s)) = −D41g(δw(s)),

D23g(δw(s)) = −D43g(δw(s)), and also D22g(δw(s)) = D44g(δw(s)).

Proof. The first point is a direct consequence of the chain rule. In order to prove the second point for
w ◦ Tx, we just have to see that for any δ ∈ R

4, by (2.7), we have

g(−δ1, δ2,−δ3, δ4) = −g(δ1, δ2, δ3, δ4),

so that for any α ∈ (Z+)4,

Dαg(−δ1, δ2,−δ3, δ4) = (−1)α1+α3+1Dαg(δ1, δ2, δ3, δ4).

The result follows if we apply this identity to δw = (wx, wy,−wx,−wy) and use the first point. The
result concerningw ◦ Ty is shown in the same manner.



As to the third point, using (2.7) we easily compute

D2g(δ1, δ2, δ3, δ4) = −
p− 2

2
q(δ)

p−4
2

(
δ1 + 2

h

k
ξ(δ1 + δ3)

) (
δ2 + 2

k

h
ξ(δ2 + δ4)

)
,

D4g(δ1, δ2, δ3, δ4) = −
p− 2

2
q(δ)

p−4
2

(
δ1 + 2

h

k
ξ(δ1 + δ3)

) (
δ4 + 2

k

h
ξ(δ2 + δ4)

)
.

Hence, as δ = δw(s), we obtain

D2g(δw(s)) = D2g(wx, wy,−wx,−wy) = −
p− 2

2
(w2

x + w2
y)

p−4
2 wxwy ,

D4g(δw(s)) = D4g(wx, wy,−wx,−wy) = −
p− 2

2
(w2

x + w2
y)

p−4
2 wx(−wy) = −D2g(δw(s)),

which is the first claim of (i). The other claims are shown by similar computations.
�

Let us note that, calculating δi on K
∗ by the Taylor expansion of u at a point x ∈ K

∗ ∈ T ∗, we
readily obtain the following result.

LEMMA 3.2 Let u ∈ W 2,∞(Ω). Assume that the mesh T satisfies (2.1) and (2.8). Then there exists a
constant C, depending only on c1, γ and ‖u‖W 2,∞ such that for all K

∗ ∈ T ∗, for all x ∈ K
∗ one has∣∣ |uT |1,K∗ − |∇u(x)|

∣∣ 6 Ch.

The main result of this section is the following.

PROPOSITION 3.1 Assume that u ∈ W 4,1(Ω) ∩W 1,p
0 (Ω). Then for any K ∈ T , we can write RK =

Ri
K

+Rb
K

, so that Rb
K

= 0 whenever ∂K ∩ ∂Ω = ∅, and the following estimates hold.

•
∣∣Rb

K

∣∣ 6 Ch2

∫

∂K∩∂Ω

∑

|β|=3

|Dβu| ds+ Ch

∫

K

∑

|β|=2,3

|Dβu| dz + Ch

∫

∂K∩∂Ω

|f | ds,
for p > 3
or p = 2

;

•
∣∣Ri

K

∣∣ 6 Ch2
∑

K
∗∈VK

∫

K
∗∩Ω

[ ∑

|β|=4

|Dβu|+
∑

|β|=3

|Dβu|2+
∑

|β|=2

|Dβu|3+1

]
dz,

for p > 4
or p = 2

; (3.4)

furthermore this estimate also holds for all p > 1 in case |∇u| > µ > 0 on K and h is small enough;

•
∣∣Ri

K

∣∣ 6 Chp−2

{ ∑

K
∗∈VK

∫

K
∗∩Ω

[ ∑

|β|=4

|Dβu|+
∑

|β|=3

|Dβu|2+
∑

|β|=2

|Dβu|3+1

]
dz

+ h

∫

∂K

∑

|β|=2

|Dβu|
2

4−p ds

}
, for 3 < p < 4.

(3.5)

REMARK 3.1 Note that for 3 < p < 4, a similar estimate can be obtained if we require that u ∈
C3,p−3(Ω).

Proof. We only consider the contributions of the set Ev
K

of vertical half-edges of K, as the proof for
the set Eh

K
of horizontal half-edges of K can be obtained in the same way. Like in the beginning of

this section we can assume without loss of generality that K =] − h
2 ,

h
2 [×] − k

2 ,
k
2 [ and we denote by

σ0 = {h
2 } × [0, k

2 ] one of its vertical half-edges.



Let us rewrite (3.2) for each of the four vertical half-edges of K. We use Tx, Ty and Tx ◦Ty as changes
of variables to express each term as an integral upon the half-edge σ0. We obtain

∑

σ∈Ev
K

Rσ,K =

∫ k
2

0

[
ru(s) + ru◦Tx(s) + ru◦Ty (s) + ru◦Ty◦Tx(s)

]
ds, (3.6)

where, for s ∈ [0, k
2 ] and for a given function w on K, we define

rw(s) = gσ0

(
δ0w

)
− gσ0 (δw(s)) . (3.7)

We shall write a Taylor expansion of each of the terms in (3.6) using (3.7). For this reason, let us
denote by εw(s) the vector (εw

1 (s), εw
2 (s), εw

3 (s), εw
4 (s)) = δ0w − δw(s). Furthermore, let us define

χ ∈]0, 1] to be the order of Hölder continuity of the second derivatives of g. We easily find χ = 1 for
p > 4, and χ = p− 3 for 3 < p < 4. In fact, when p > 4, the function g is at least in C3(R4).

We can now use the Taylor expansion of g around δw(s) in order to write rw(s) as follows:

rw(s) =

4∑

i=1

Dig(δw(s))εw
i (s) +

1

2

4∑

i,j=1

Dijg(δw(s))εw
i (s)εw

j (s) + |εw(s)|2+χO(1).

We remark now that, thanks to Lemma 3.1, one can rewrite this expansion as:

rw(s) =
∑

i∈{1,3}

Dig(δw(s))εw
i (s) +D2g(δw(s))(εw

2 (s)−εw
4 (s))

+
1

2

∑

i,j∈{1,3}

Dijg(δw(s))εw
i (s)εw

j (s) +
∑

i∈{1,3}

D2ig(δw(s))(εw
2 (s)−εw

4 (s))εw
i (s)

+
1

2
D22g(δw(s))(εw

2 (s)−εw
4 (s))2 +

[
D22g(δw(s)) +D24g(δw(s))

]
εw
2 (s)εw

4 (s)

+ |εw(s)|2+χO(1).

(3.8)

Let us compute precisely each of the terms in (3.8).
I If K is an interior control volume: By interior control volume, we mean a volume K ∈ T such that
∂K ∩ ∂Ω = ∅. Denote by x0(s) the point (h

2 , s) ∈ σ0. The points x1 = (0, 0), x2 = (h, 0), x3 =
(h, k), x4 = (0, k) are the vertices of the dual control volume K

∗ containing σ0. Note that, as K is an
interior control volume, the points (xi)i=1,··· ,4 are located in Ω.

Using the Taylor formula for w to estimate εw(s), we have, for any s ∈ [0, k
2 ]:

εw
1 (s) = − swxy +

h2

24
wxxx +

s2

2
wxyy

+ O(1)h3
∑

j=1,2

∫ 1

0

(1−t)3
∑

|β|=4

|Dβw(txj +(1−t)x0(s))|dt,

εw
3 (s) = − (k − s)wxy −

h2

24
wxxx −

(k − s)2

2
wxyy

+ O(1)h3
∑

j=3,4

∫ 1

0

(1−t)3
∑

|β|=4

|Dβw(txj +(1−t)x0(s))|dt,

(3.9)



εw
2 (s) =

h

2
wxy +

1

2
(k − 2s)wyy +

h2

8
wxxy +

h(k − 2s)

4
wxyy +

k2 − 3ks+ 3s2

6
wyyy

+ O(1)h3
∑

j=2,3

∫ 1

0

(1−t)3
∑

|β|=4

|Dβw(txj +(1−t)x0(s))|dt,

εw
4 (s) =

h

2
wxy −

1

2
(k − 2s)wyy −

h2

8
wxxy +

h(k − 2s)

4
wxyy −

k2 − 3ks+ 3s2

6
wyyy

+ O(1)h3
∑

j=1,4

∫ 1

0

(1−t)3
∑

|β|=4

|Dβw(txj +(1−t)x0(s))|dt,

(3.10)

where all the derivatives of w in the main terms of the expansion are taken at the point x0(s). In
particular, we have

εw
2 (s) − εw

4 (s) =(k − 2s)wyy +
h2

4
wxxy +

k2 − 3ks+ 3s2

3
wyyy

+ O(1)h3
∑

j=1,2,3,4

∫ 1

0

(1−t)3
∑

|β|=4

|Dβw(txj +(1−t)x0(s))| dt.

Note that the same expansions can be truncated at orders one or two; in this case the remainder terms take

the form O(1)
4∑

j=1

∫ 1

0

(1−t)n−1
∑

|β|=n

|Dβw(txj +(1−t)x0(s))| dt with n = 2 or n = 3, respectively.

Moreover, the second derivatives ofw ∈ W 4,1(Ω)∩W 1,p
0 (Ω) are uniformly bounded due to the Sobolev

embeddings. Hence we also have

εw
2 (s)εw

4 (s) =
h2

4
(wxy)2 −

1

4
(k − 2s)2(wyy)2

+ O(1)h3

( 4∑

j=1

∫ 1

0

∑

|β|=2,3

(1−t)2(|β|−1)|Dβw(txj +(1−t)x0(s))|
2 dt

)
.

Substituting the expressions for εw(s) into formula (3.8), we can see that each of the terms of order
one with respect to h in rw(s) can be expressed as

a(s)Dαg(δw(s))Dβw(h
2 , s), with |a(s)| 6 Ch, |α| = 1, |β| = 2,

where α1 + α3 + βx is even and α2 + α4 + βy is odd.
(3.11)

Similarly, each of the terms of order two in rw(s) can be written either as

b(s)Dαg(δw(s))Dβw(h
2 , s) with |b(s)| 6 Ch2, |α| = 1, |β| = 3,

where α1 + α3 + βx is even,
(3.12)

or as

b(s)Dαg(δw(s))Dβw(h
2 , s)D

γw(h
2 , s), with |b(s)| 6 Ch2, |α| = 2,

|β| = |γ| = 2, where α1 + α3 + βx + γx is even.
(3.13)

• Assume first that p > 4. Due to the properties stated in Lemma 3.1, we see that each of the terms
of order two is of the following general form:

b(s)ψw(h
2 , s), with |b(s)| 6 Ch2 and ψw : K̄ 7→ R such that ψw◦Tx = −ψw ◦ Tx.



From (3.12) and (3.13), ψw has an explicit form so that we can easily compute ∂
∂xψ

u for each term.
Using that g ∈ C3(R) (since p > 4) and that u is supposed to be in W 4,1(Ω) and hence is also in
W 3,2(Ω),W 2,3(Ω) and W 1,∞(Ω), by the Young inequality we get

ψu ∈W 1,1(K) and∫

K

∣∣∣∣
∂

∂x
ψu

∣∣∣∣ dz 6 C

∫

K

[ ∑

|β|=4

|Dβu|+
∑

|β|=3

|Dβu|2+
∑

|β|=2

|Dβu|3+1

]
dz. (3.14)

Therefore, the total contribution to (3.6) from ψw and ψw◦Tx is estimated by:

∣∣∣∣
∫ k

2

0

b(s)
(
ψu(h

2 , s) + ψu◦Tx(h
2 , s)

)
ds

∣∣∣∣ =

∣∣∣∣
∫ k

2

0

b(s)
(
ψu(h

2 , s) − ψu(−h
2 , s)

)
ds

∣∣∣∣

6 Ch2

∫ k
2

0

∫ h
2

−h
2

∣∣∣∣
∂

∂x
ψu(x, s)

∣∣∣∣ dxds

6 Ch2

∫

K

[ ∑

|β|=4

|Dβu|+
∑

|β|=3

|Dβu|2+
∑

|β|=2

|Dβu|3+1

]
dz,

(3.15)

and the same estimate holds if we replace u on the left-hand side by u ◦ Ty.
The contribution to (3.6) from any first order term in (3.8) can be written in the following form:

a(s)φw(h
2 , s), with |a(s)| 6 Ch, and φw : K 7→ R

such that φw◦Tx = −φw ◦ Tx, and φw◦Ty = −φw ◦ Ty.

Using (3.11), the Young inequality and Sobolev embeddings for u, we can estimate the derivatives of
φu as follows:

φu ∈ W 2,1(K), and
∫

K

∣∣∣∣
∂2

∂x∂y
φu

∣∣∣∣ dz 6 C

∫

K


 ∑

|β|=4

|Dβu|+
∑

|β|=3

|Dβu|2+
∑

|β|=2

|Dβu|3+1


dz. (3.16)

Collecting the contributions to (3.6) from φu, φu◦Tx , φu◦Ty , φu◦Ty◦Tx we get

∣∣∣∣
∫ k

2

0

a(s)
(
φu(h

2 , s) + φu◦Tx(h
2 , s) + φu◦Ty (h

2 , s) + φu◦Ty◦Tx(h
2 , s)

)
ds

∣∣∣∣

=

∣∣∣∣
∫ k

2

0

a(s)
(
φu(h

2 , s) − φu(−h
2 , s) − φu(h

2 ,−s) + φu(−h
2 ,−s)

)
ds

∣∣∣∣

6 Ch

∫ k
2

0

∫ h
2

−h
2

∫ s

−s

∣∣ ∂2

∂x∂y
φu(x, y)

∣∣ dydxds

6 Ch2

∫

K

[ ∑

|β|=4

|Dβu|+
∑

|β|=3

|Dβu|2+
∑

|β|=2

|Dβu|3+1

]
dz.

(3.17)

By (3.6), the contributions to the first and second order terms in
∑

σ∈Ev
K

Rσ,K is estimated by the right-
hand side of (3.4).



• If 3 < p < 4, we cannot obtain (3.14) and (3.16) since ∂
∂xD

αg(∇u) can be unbounded for
|α| = 2. In this case, Dαg is only Hölder continuous of order χ = p− 3. Therefore we have to estimate
in a different manner the terms of the form

I =

∫ k
2

− k
2

c(s)

[
Dαg(∇u(ξ))Dβu(ξ)Dγu(ξ)

∣∣∣
ξ=( h

2 ,s)
−Dαg(∇u(ξ))Dβu(ξ)Dγu(ξ)

∣∣∣
ξ=(−h

2 ,s)

]
ds

with |α| = 2, |β| = |γ| = 2 and |c(s)| 6 Ch2. Let us denote by πu, the product DβuDγu. We remark
that |πu| 6 C

∑
|β|=2|D

βu|2 ∈ Lq(∂K) for all q < +∞, and
∣∣ ∂
∂xπ

u
∣∣ 6 C

∑
|β|=2,3 |D

βu|2. Let us
estimate I by

|I | 6Ch2

∫ k
2

− k
2

|Dαg(∇u(− h
2 , s))| |π

u(h
2 , s) − πu(−h

2 , s)| ds

+ Ch2

∫ k
2

− k
2

|Dαg(∇u(h
2 , s)) −Dαg(∇u(− h

2 , s))| |π
u(h

2 , s)| ds.

(3.18)

The first part in the right-hand side of (3.18) is estimated by Ch2

∫

K

∑
|β|=2,3 |D

βu|2dz. Using the

Young inequality ab 6 hχ−1a1/χ + hχb1/(1−χ), ∀a, b ∈ R
+, we can bound the second one by

Ch2

∫ k
2

− k
2

∣∣∣∣
∑

|β|=2

∫ h
2

−h
2

|Dβu(x, s)| dx

∣∣∣∣
χ

|πu(h
2 , s)| ds

6 Ch2

[
hχ−1

∫

K

∑

|β|=2

|Dβu|dz + hχ

∫

∂K

∑

|β|=2

|Dβu|
2

1−χ ds

]
.

As we have χ = p− 3, we see that I is estimated by the right-hand side of (3.5).

• Now consider the terms in
∫ k

2

0

rw(s) ds corresponding to the contribution of the remainders in

the Taylor expansions of εw
i (s). Suppose that w = u (estimates with w = u ◦ Tx, u ◦ Ty, u ◦ Ty ◦ Tx are

similar). Using the Young inequality and the bounds on the second derivatives of u, we can estimate all
of them by

C(h2+χ+h3)

∫ k
2

0

4∑

j=1

∫ 1

0

(1−t)

[∑

|β|=4

|Dβu(ξ)| +
∑

|β|=3

|Dβu(ξ)|2 +
∑

|β|=2

|Dβu(ξ)|3 +1

]
dtds, (3.19)

where the integrand is evaluated at ξ = txj +(1−t)x0(s). Changing variables (t, s) to the cartesian
variables on K, we see that the remainder terms in

∑
σ∈Ev

K

Rσ,K are also controlled by the right-hand
side of (3.4) and of (3.5).

• The case p = 2 can be treated in the same way as the case p > 4, with the understanding that the
linearity of the Laplace equation considerably simplifies the calculations.

• The case p > 1, |∇u| > µ > 0, can be treated as that of p > 4 if we show that (3.8) remains
valid with χ = 1. Since W 4,1(Ω) ⊂W 2,∞(Ω), it follows by Lemma 3.2 that |uT |1,K∗ = 1

2 (δ21 + δ22 +
δ23 + δ24) > µ/2 for all h small enough. Since the function gσ in (2.7) is of class C3 when restricted to
the set {(δ1, δ2, δ3, δ4) ∈ R

4 | δ21 + δ22 + δ23 + δ24 > µ}, the expansion (3.8) holds true, with χ = 1 and
O(1) that depends on µ.



I If K is a boundary control volume: The previous computations are only valid for interior control
volumes. Now, we have to deal with boundary control volumes. Again, it is sufficient to estimate∑

σ∈Ev
K

RK,σ. As we are concerned with the half-edge σ0 = {h
2 } × [0, k

2 ], there are in fact only two

new situations to study: if K is located on the upper boundary of Ω or if K is located on the right-hand
boundary of Ω. The other configurations can easily be treated in a similar way.

• If K is located on the upper boundary of Ω, the computation of εw
1 (s) is the same as that in the

interior case. Thanks to the conventional treatment of the boundary (see Figure 2.1), we easily see that
εw
3 (s) = εw

1 (s) + 2wx(h
2 , s). We will use the following expressions only for w = u or w = u ◦ Ty

which both satisfy the Dirichlet boundary condition w = 0 on ∂Ω. As we are concerned here with the
top boundary of Ω, we also have wx = 0 on ∂Ω ∩ ∂K. Let us introduce the points y1 = x1, y2 = x2,
and y3 = (h, k

2 ), y4 = (0, k
2 ).

The Taylor expansions of wx between x0(s) and y3 and between x0(s) and y4 give

2wx(h
2 , s) = −(k − 2s)wxy +

h2

4
wxxx + (

k

2
− s)2wxyy

+ O(1)h3
∑

j=3,4

∫ 1

0

(1−t)3
∑

|β|=4

|Dβw(tyj + (1 − t)x0(s))|dt.

Finally, we obtain

εw
3 (s) = −(k − s)wxy +

7h2

24
wxxx +

(
(
k

2
− s)2 +

s2

2

)
wxyy

+ O(1)h3
∑

j=1,2

∫ 1

0

(1−t)3
∑

|β|=4

|Dβw(tyj + (1 − t)x0(s))|dt.

Furthermore, using one more time that w = 0 on ∂Ω, we find that

εw
2 (s) =

h

2
wxy +

1

4
(k − 4s)wyy +

h2

8
wxxy +

h

8
(k − 4s)wxyy +

k2 − 6ks+ 12s2

24
wyyy

+ O(1)h3
∑

j=2,3

∫ 1

0

(1−t)3
∑

|β|=4

|Dβw(tyj + (1 − t)x0(s))|dt,

εw
4 (s) =

h

2
wxy −

1

4
(k − 4s)wyy −

h2

8
wxxy +

h

8
(k − 4s)wxyy −

k2 − 6ks+ 12s2

24
wyyy

+ O(1)h3
∑

j=1,4

∫ 1

0

(1−t)3
∑

|β|=4

|Dβw(tyj + (1 − t)x0(s))|dt.

As in the case of interior volumes, we will also use the lower order Taylor expansions of εi. Bringing
together the four first order terms in (3.6), arising from φu, φu◦Tx , φu◦Ty and φu◦Tx◦Ty , we have to
estimate

I =

∣∣∣∣
∫ k

2

0

[
a1(s)φ

u(h
2 , s) + a1(s)φ

u◦Tx(h
2 , s) + a2(s)φ

u◦Ty (h
2 , s) + a2(s)φ

u◦Tx◦Ty (h
2 , s)

]
ds

∣∣∣∣,



where a1 and a2 are two distinct functions such that

|a1(s)| 6 Ch, |a2(s)| 6 Ch,

and φw is such that φw◦Tx = −φw ◦ Tx and φw◦Ty = −φw ◦ Ty.
Hence (3.17) becomes, in this case,

I =

∣∣∣∣
∫ k

2

0

a1(s)
[
φu(h

2 , s) − φu(−h
2 , s)

]
+ a2(s)

[
φu(−h

2 ,−s) − φu(h
2 ,−s)

]
ds

∣∣∣∣

6

∣∣∣∣
∫ k

2

0

a1(s)
[
φu(h

2 , s) − φu(−h
2 , s) + φu(−h

2 ,−s) − φu(h
2 ,−s)

]
ds

∣∣∣∣

+

∣∣∣∣
∫ k

2

0

(a2(s) − a1(s))
[
φu(−h

2 ,−s) − φu(h
2 ,−s)

]
ds

∣∣∣∣ = I1 + I2.

The first term I1 can be treated in the same way as (3.17). Using the expression of φu , we can estimate
the second term by

I2 6 Ch

∫ k
2

0

∫ h
2

−h
2

∣∣∣∣
∂φu

∂x
(x, s)

∣∣∣∣ dx ds 6 Ch

∫

K

( ∑

|β|=2

|Dβu|2 +
∑

|β|=3

|Dβu|

)
dz. (3.20)

Thus we obtain the estimate for the first-order terms. Furthermore, the second-order terms in (3.8) are
estimated as in the case of interior control volumes, since in (3.15) we only bring together the terms
associated to u and u ◦ Tx.

• If K is located near the right-hand boundary of Ω, notice that the half-edge σ0 is a part of the
boundary of Ω. Consequently, the computation of εw

4 (s) is again given by (3.9)-(3.10). Furthermore,
we have εw

2 (s) = εw
4 (s) + 2wy(h

2 , s) = εw
4 (s) since w = wy = 0 on σ0, which is a part of the vertical

boundary of Ω.
Using that w = wy = wyy = wyyy = 0 on σ0, we deduce that

εw
1 (s) = −

h

4
wxx − swxy +

h2

24
wxxx +

hs

4
wxxy +

s2

2
wxyy

+ O(1)h3

∫ 1

0

(1−t)3
∑

|β|=4

|Dβw(tx1 + (1 − t)x0(s))|dt,

and

εw
3 (s) =

h

4
wxx − (k − s)wxy −

h2

24
wxxx +

h(k − s)

4
wxxy −

(k − s)2

2
wxyy

+ O(1)h3

∫ 1

0

(1−t)3
∑

|β|=4

|Dβw(tx4 + (1 − t)x0(s))|dt.

Hence εw
1 and εw

3 have the same form as the corresponding ones in (3.9)-(3.10), except for the terms
±h

4wxx and ±h2

24wxxx which do not possess the good symmetry properties of the other terms. We
remark that the estimates of the terms that have the same form as in (3.9)-(3.10) remains true. Let us
now concentrate on the two new terms.



The contribution in (3.6) to the second order term ± h2

24wxxx can be easily controlled without sym-
metry considerations by

Ch2

∫ k
2

0

(|D1g| + |D3g|)(|uxxx| + |(u ◦ Ty)xxx|)ds 6 Ch2

∫

∂K∩∂Ω

|D3u| ds.

Unfortunately, the contribution to the first order term ± h
4wxx is not so well controlled. This contribu-

tion, denoted by I3, can be written as

I3 =
h

4

∫ k
2

0

(D1g(δw(s)) −D3g(δw(s)))wxx(h
2 , s) ds,

and since on σ0 we have wy = 0, this yields

I3 =
h

4

∫ k
2

0

(D1g(wx, 0,−wx, 0) −D3g(wx, 0,−wx, 0))wxx(h
2 , s) ds

=
h

4

∫ k
2

0

∂

∂x

(
g(wx, 0,−wx, 0)

)
ds.

Using (2.7), we find that g(wx, 0,−wx, 0) = −|wx|p−2wx, so that

∂

∂x

(
g(wx, 0,−wx, 0)

)
= −(p− 1)|wx|

p−2wxx.

As wy = 0 on σ0, we deduce that

∂

∂x

(
|w2

x + w2
y|

p−2
2 wx

)
= |w2

x + w2
y|

p−2
2 wxx + (p− 2)|w2

x + w2
y |

p−4
2 (wxwxx + wywxy)wx

= (p− 1)|wx|
p−2wxx = −

∂

∂x

(
g(wx, 0,−wx, 0)

)

on σ0; using the fact that |w2
x + w2

y|
p−2
2 wy = 0 identically on σ0, we finally get

I3 = −
h

4

∫ k
2

0

∂

∂x

(
|w2

x + w2
y|

p−2
2 wx

)
+

∂

∂y

(
|w2

x + w2
y |

p−2
2 wy

)
ds.

Hence as w = u or w = u ◦ Ty, using equation (1.1), we find in each case

|I3| 6 Ch

∫

∂K∩∂Ω

|f | ds. (3.21)

Let us note that the trace of f on ∂Ω is well defined because f is continuous overΩ. Indeed, the second
derivatives of u are in W 2,1(Ω) which is embedded in C0(Ω). This ends the proof of the estimate for
the case of volumes adjacent to the right-hand boundary of Ω.

• The estimate of the mean consistency error for the volumes adjacent to the lower and the left-hand
boundaries of Ω follows by a symmetry argument. Note that the terms corresponding to the four corner
control volumes can be easily treated using only the estimates of the local consistency error given in
Andreianov et al. (2004a).

Collecting estimates (3.15), (3.17), (3.20), (3.21) and (3.19) we obtain the claim of the proposition.
�



3.3 W 1,p error estimates for the homogeneous problem

Set m = 2 in case p > 4 or p = 2, and m = p− 2 in case 3 < p < 4. From Proposition 3.1 we deduce
the following error estimate:

‖uT − uT ‖1,p,T 6 C ‖u‖E h
m/(p−1) + c

(
sup
∂Ω

|f |
) 1

p−1

h
1
p + 1

p−1 . (3.22)

Here the a priori regularity u ∈ E is assumed (we require in most cases, E = W 4,1(Ω); see also
Remark 3.1). More precisely, we have the following result.

THEOREM 3.1 Let u ∈W 1,p
0 (Ω) be a solution of (1.1), and let uT be the solution of the corresponding

admissible finite volume scheme, in the sense of Definition 2.2, on a uniform mesh T which satisfies
(2.1) and (2.8).

There exist constants C, c that only depend on Ω, p, c1 and γ such that:

(i) for u ∈ E = W 4,1(Ω) and p > 3, (3.22) holds;

(ii) for p = 2, and u ∈ E = W 4,q(Ω) with some q > 1, (3.22) holds with m = 2.
When u ∈ E = W 4,1(Ω), (3.22) holds with h2 replaced by h2| lnh|.

Note that m > 1 in each case, so that the convergence order obtained here is improved compared to
the order h

1
p−1 obtained in (Andreianov et al., 2004a, Theorem 3.1), for the finite volume approximation

of less regular solutions. Under specific assumptions on the integrability of |∇u|−γ , for some γ > 0 the
results above will be further improved in section 3.5.

REMARK 3.2 Let p = 2, f ∈ ∪s>1W
2,s(Ω), and let u be a classical solution of (1.1) on the rectan-

gle Ω. Then, the regularity assumption u ∈ ∪s>1W
4,s(Ω) is automatically fulfilled, so the result of

Theorem 3.1(ii) applies.

For the sake of completeness, let us give a proof relying on (Grisvard, 1985, Theorem 4.4.4.13).

Proof. Denote the corners of the rectangle Ω by S0 = S4 = (0, 0), S1 = (Lx, 0), S2 = (Lx, Ly),
S3 = (0, Ly), and the edges ofΩ by Γj = [Sj−1, Sj ], j = 1, . . . , 4. Let f ∈ W 2,s0(Ω) with 1 < s0 < 2.
We start with u ∈ C2(Ω), the solution of the Poisson problem (1.1), p = 2; note that f(Sj) = 0,
j = 1, . . . , 4. The function ux ∈ H1(Ω) solves the problem





−∆(ux) = fx in Ω
ux = 0 on Γ1 ∪ Γ3,
∂

∂n (ux) = −f − uyy = −f on Γ2,
∂

∂n (ux) = f + uyy = f on Γ4.

Note that the right-hand side of the equation is in Ls1(Ω), s1 = 2s0

2−s0
; furthermore, the boundary

conditions on Γj , j = 1, . . . , 4 are regular, and the compatibility conditions at the corners Sj are
fulfilled, since f(Sj) = 0. By Th.4.4.4.13 cited above, we deduce that ux ∈W 2,s1 . The same argument
applies for uy. Now, the function uxx ∈ H1(Ω) solves





−∆(uxx) = fxx in Ω
uxx = 0 on Γ1 ∪ Γ3,
uxx = −f − uyy = −f on Γ2 ∪ Γ4.

(3.23)



The compatibility conditions are fulfilled at the corners, and we still have a regular enough source term
and boundary data to conclude that uxx ∈ W 2,s0(Ω), by Th.4.4.4.13 cited above. The same reasoning
holds for uyy. This is sufficient to conclude that all third and fourth derivatives of u are integrable at
least to the power s0.

�

Proof of Theorem 3.1. Using Lemma 2.5 and (3.3), we have

C‖uT − uT ‖p
1,p,T 6

(
∇JT (uT ) −∇JT (uT ), uT − uT

)
=

∑

K∈T

( ∑

σ∈EK

Rσ,K

)
(uK − uK)

=
∑

K∈T

Ri
K
(uK − uK) +

∑

K∈T

Rb
K
(uK − uK) ≡ E1 +E2.

(3.24)

• Case p > 4: Thanks to Proposition 3.1, the first term E1 in the right-hand side of (3.24) can be
estimated by

|E1| 6 Ch2‖uT − uT ‖L∞

∫

Ω

[ ∑

|β|=4

|Dβu|+
∑

|β|=3

|Dβu|2+
∑

|β|=2

|Dβu|3+1

]
dz.

The term E2 is in fact a sum over the boundary control volumes only, so that

|E2| 6 Ch2‖uT − uT ‖L∞

(∫

∂Ω

∑

|β|=3

|Dβu| ds

)

+ Ch2
∑

K,∂K∩∂Ω 6=∅

(∫

K

∑

|β|=2,3

|Dβu|2 dz

) 1
2

|uK − uK|

+ Ch2( sup
∂Ω

|f |)
∑

K,∂K∩∂Ω 6=∅

|uK − uK| ≡ T1 + T2 + T3.

(3.25)

The term T1 is estimated by |E1|, using the Sobolev embedding theorem. By the Hölder inequality, the
term T2 is estimated by

T2 6 Ch2

(∫

Ω

∑

|β|=2,3

|Dβu|2 dz

) 1
2
( ∑

K,∂K∩∂Ω 6=∅

m(K)

∣∣∣∣
uK − uK

h

∣∣∣∣
2) 1

2

6 Ch2

(∫

Ω

∑

|β|=2,3

|Dβu|2 dz

) 1
2
( ∑

K,∂K∩∂Ω 6=∅

m(K)

∣∣∣∣
uK − uK

h

∣∣∣∣
p) 1

p
( ∑

K,∂K∩∂Ω 6=∅

m(K)

) p−2
2p

.

However, thanks to the boundary conditions (see Figure 2.1), we know that
∣∣∣∣
2(uK − uK)

h

∣∣∣∣ =

∣∣∣∣
(uK − uK) − [ − (uK − uK)]

h

∣∣∣∣ 6 C|uT − uT |1,K∗ ,

where K
∗ ∈ VK is such that K

∗ ∩ ∂Ω 6= ∅. Hence

T2 6 Ch2h
p−2
2p ‖uT − uT ‖1,p,T .



In the same way, the term T3 in (3.25) can be estimated by

T3 6 C( sup∂Ω |f |)h
∑

K,∂K∩∂Ω 6=∅m(K)
∣∣uK−uK

h

∣∣

6 C( sup∂Ω |f |)h

(∑
K,∂K∩∂Ω 6=∅m(K)

∣∣uK−uK

h

∣∣p
) 1

p
(∑

K,∂K∩∂Ω 6=∅m(K)

) 1
p′

6 C( sup∂Ω |f |)h1+ 1
p′ ‖uT − uT ‖1,p,T .

Finally, collecting the previous results, we get

‖uT − uT ‖p
1,p,T 6 C( sup

∂Ω
|f |)h1+ 1

p′ ‖uT − uT ‖1,p,T + Ch2(‖uT − uT ‖L∞ + ‖uT − uT ‖1,p,T ),

so that using Lemma 2.2(i)(a) we deduce that

‖uT − uT ‖1,p,T 6 C1

(
sup
∂Ω

|f |
) 1

p−1

h
1
p + 1

p−1 + C2h
2

p−1 ,

with the constant C1 depending only on p, Ω, γ, and c1, and C2 depending also on ‖u‖W 4,1 .

• Case 3 < p < 4: In this case, the new term

C

(
h2+χ

∑

K

∫

∂K

∑

|β|=2

|Dβu|
2

4−p ds

)
‖uT − uT ‖L∞ ,

appears in (3.24) with χ = p− 3. This term can be rewritten as

Ch2+χ

(∑

Γ

∫

Γ

∑

|β|=2

|Dβu|
2

4−p ds

)
‖uT − uT ‖L∞ ,

where the sum on Γ is taken over all the horizontal and vertical lines in Ω composed of the boundaries
of the control volumes. We have at most C

h such Γ ’s, and for a given Γ , the integral is estimated using

the Sobolev embedding W 4,1(Ω) ⊂ W 2, 2
4−p (Γ ). Note that the constant in the embedding is the same

for all Γ ’s. Hence, the new term is finally estimated by

C2h
1+χ‖uT − uT ‖L∞ .

Other terms are estimated as in the case p > 4, with h2 replaced by h1+χ.

• At this point, we have obtained, for p > 4 and 3 < p < 4, an estimate of the form

‖uT − uT ‖1,p,T 6 C1

(
sup
∂Ω

|f |
) 1

p−1

h
1
p + 1

p−1 + C2h
m

p−1 ,

where C2 depends on ‖u‖W 4,1(Ω). Since both the equation (1.1) and the discrete schemes are homoge-
neous in u, it follows by a scaling argument that in fact the constant C2 depends linearly on ‖u‖W 1,4 ,
as claimed in the theorem.

• Case p = 2: The claim for u ∈ W 4,1(Ω) follows in exactly the same way as in the case p > 4,
using Lemma 2.2(ii)(a) in order to estimate ‖uT − uT ‖L∞.



When u ∈ W 4,q(Ω), q > 1, note that u is estimated by ‖u‖W 4,q in W 3,2q(Ω) and in W 2,3q(Ω).
Thus we can apply the Hölder inequality in order to estimate the terms E1 and T1 (the estimates of T2

and T3 remain unchanged). We find |T1| 6 C|E1| and

|E1| 6 Ch2‖uT − uT ‖
L

q
q−1

(∫

Ω

[ ∑

|β|=4

|Dβu|+
∑

|β|=3

|Dβu|2+
∑

|β|=2

|Dβu|3+1

]q

dz

) 1
q

.

The claim follows by using Lemma 2.2(i)(b) and the scaling argument above.
�

REMARK 3.3 Using the W 1,p,T estimate of Theorem 3.1, one deduces, among others, error estimates
in Lp,L∞ and W 1,q,T , q < p; also, an estimate of

∣∣J(u) − JT (uT )
∣∣ can be obtained.

In the two following sections, we improve the above error estimates in two ways.

3.4 Error estimate for “all-uniform” schemes

First, let us slightly change the definition of the mesh. Let us define the volumes of the mesh to be of
the form K =](i− 1

2 )h, (i+ 1
2 )h[×](j − 1

2 )k, (j + 1
2 )k[ with i = 1, . . . , Lx

h − 1, j = 1, . . . ,
Ly

k − 1. In
this case Ω is not covered by

⋃
K∈T K, but we have Ω =

⋃
K

∗∈T ∗ K∗. In other words, we now consider
a vertex-centered method and not a cell-centered method. The boundary condition is taken into account
by assigning the value zero to all vertices of dual control volumes located on the boundary ∂Ω. Discrete
gradients are reconstructed in each dual volume K

∗ in the same way as for the previously considered
schemes. With the zero boundary condition imposed this way, Lemmas 2.1, 2.2 still hold. Then, the
scheme

aK(uT ) = m(K)fK ∀K ∈ T , (3.26)

is equivalent to the problem of minimizing the functional

JT : uT 7→
1

p

∑

K
∗∈T ∗

m(K∗)|B
1
2

(
TK

∗(uT )
)
|p −

∑

K∈T

m(K)fKuK. (3.27)

This functional is strictly convex and coercive on R
T , so there exists a unique solution to the modified

scheme. In the sequel, this scheme will be called “all-uniform”. Indeed, even if uniform meshes are
chosen in the previously considered schemes, some symmetries are broken for the boundary control
volumes; thus the lower-order term depending on sup∂Ω |f | appears in the error estimate. For the all-
uniform scheme, all volumes are covered by four isometric dual control volumes lying in Ω, so the
symmetry is never broken. We have the following result.

THEOREM 3.2 Let u satisfy the assumptions of Theorem 3.1, and let uT be the solution of an all-uniform
scheme satisfying (2.1) and (2.8). Then the estimate (3.22) holds with c = 0, in each of the cases (i),
(ii).

The proof is the same as for the “interior volume” case of Theorem 3.1.

3.5 Error estimates for weakly degenerate solutions of the inhomogeneous problem

Improved W 1,q,T error estimates for 1 6 q < p can be derived if we assume that either |f | is positive,
or |f |−γ with some γ > 0 is integrable onΩ. In turn, interpolating ‖uT −uT ‖L∞ betweenW 1,p,T and
W 1,q,T norms with q < 2, we improve the W 1,p,T estimate of Theorem 3.1.



The key argument is the inequality of (Barrett & Liu, 1993, Lemma 2.1) for ξ, η ∈ R
2,

(
|ξ|p−2ξ − |η|p−2η, ξ − η

)
> C(p, t)|ξ − η|t

(
|ξ| + |η|

)p−t
as p > 1, t > 2.

Proceeding as in the proof of Lemma 2.5 (cf. Andreianov et al. (2004a)) and using (2.9), we can
therefore replace the inequality (2.10) by an error estimate in a quasi-norm:

∑

K∗

m(K∗ ∩Ω)|uT − uT |t1,K∗

(
|uT |1,K∗ + |uT |1,K∗

)p−t

6 C(∇JT (uT ) −∇JT (uT ), uT − uT ) =
∑

K∈T

( ∑

σ∈EK

Rσ,K

)
(uK − uK).

(3.28)

If for some ν ∈ (0,∞], one has
∑

K∗ m(K∗∩Ω)|uT |−ν
1,K∗ 6 C uniformly in h, using the inverse Hölder

inequality and Proposition 3.1, one gets W 1,q,T estimates for sufficiently small q. This motivates the
following definition.

DEFINITION 3.2 For ν > 0, we say that u is ν-weakly degenerate, if |∇u|−ν ∈ L1(Ω). We say that u
is nondegenerate, if |∇u| > µ > 0 on Ω.

REMARK 3.4 Since we are interested in ν-weakly degenerate solutions u which belong, in particular,
to W 2,∞(Ω), either we have ν < 2, or u is nondegenerate.

Indeed, if ∇u(x0) = 0, then |∇u(x)| 6 C|x − x0|. Thus the integrability of |∇u|−ν implies that
|x− x0|−ν in integrable in a neighborhood of x0 ∈ R

2, which implies that ν < 2.

A sufficient condition of weak degeneracy and nondegeneracy of solutions of the p-laplacian was
given in (Barrett & Liu, 1993, Lemma 4.2), which in our case reads as follows.

LEMMA 3.3 Let p > 2, u ∈ W 2,∞(Ω), and −div
(
|∇u|p−2∇u

)
= f on Ω. Then |∇u| > µ > 0 if

|f |−1 ∈ L∞(Ω), and |∇u|−γ(p−2) ∈ L1(Ω) if |f |−γ ∈ L1(Ω), γ > 0.

Note that the case of nondegenerate solutions, which can be natural in a wide range of physical
situations, is interesting since it yields the consistency estimate (3.4) valid not only for 3 < p < 4
(where it improves (3.5)), but for all p > 2 and even for 1 < p < 2.

A positive bound from below for |∇u| being incompatible with homogeneous Dirichlet boundary
conditions, let us apply (3.28), Proposition 3.1 and interpolation techniques to study finite volume ap-
proximations of weakly degenerate solutions of the problem

{
−div

(
|∇u|p−2∇u

)
= f, on Ω,

u = g, on ∂Ω
(3.29)

with (at least) f ∈ Lp′

(Ω) and g ∈ W 1− 1
p ,p(∂Ω). Actually, we consider solutions u that are at least

W 4,1; in particular, it follows that g can be defined pointwise on ∂Ω.

For the sake of simplicity, let us consider only all-uniform schemes for (3.29) (see section 3.4). The
inhomogeneous Dirichlet boundary condition is taken into account by assigning the values taken by
the function g at the vertices of dual control volumes located on the boundary ∂Ω. Discrete gradients
are reconstructed in each dual volume K

∗ in the same way as for the previously considered schemes.



Note that Lemmas 2.1, 2.2, 2.3 hold for all uT ∈ R
T supplemented with the zero boundary condition

in the above sense. Then the scheme, still written in the form (3.26), is equivalent to the problem of
minimizing the functional (3.27) on R

T , so that it possesses a unique solution. Also the consistency
estimates (3.4), (3.5) of Proposition 3.1 remain valid (recall that the error Rb

K
is zero in the case of

all-uniform schemes).

The error estimates for p < 2 use the W 1,p,T estimates on uT and uT stated below.

LEMMA 3.4 Let u ∈ W 2,∞ be a solution of (3.29) and uT the solution of the scheme (3.26) on a
uniform mesh T satisfying (2.1) and (2.8). There exists a constantC that only depends on Ω,p,c1,γ and
‖u‖W 2,∞ such that ‖uT ‖1,p,T 6 C and ‖uT ‖1,p,T 6 C.

Proof. The first estimate follows directly from Lemma 3.2. The second estimate follows from the first
one, if one multiplies (3.26) by

(
uK−uK

)
K∈T

and uses (2.4), (2.5), (2.9), as in the proof of (Andreianov
et al., 2004a, Lemma 3.3).

�

In the following theorem, W 1,p,T and L∞ error estimates are collected for the all-uniform scheme
for the inhomogeneous problem.

THEOREM 3.3 Let u ∈ W 1,p(Ω) be a solution of (3.29), and uT the solution of the corresponding
admissible all-uniform finite volume scheme, in the sense of Definition 2.2, on a mesh T which satisfies
(2.1) and (2.8). We denote eT = uT − uT . Under the a priori regularity assumptions u ∈ E, in the
cases (i)-(iv) below we have the following error estimates.

(i) For p > 2, assume that u is nondegenerate. Assume also that u ∈ E = W 4,1(Ω). Then,

‖eT ‖1,2,T 6 C h2| lnh|, ‖eT ‖1,p,T 6 C h
4
p | lnh|

2
p , ‖eT ‖L∞ 6 C h2| lnh|2. (3.30)

(ii) For p = 2, assume that u ∈ E = W 4,1(Ω). Then,

‖eT ‖1,2,T 6 C h2| lnh|, ‖eT ‖L∞ 6 C h2| lnh|2. (3.31)

In each of the cases (i), (ii), if u ∈ E = W 4,s(Ω) for some s > 1, then the factors with | lnh| in the
estimates (3.30), (3.31), respectively, can be omitted.

(iii) For 1 < p < 2, assume that u is nondegenerate and u ∈ E = W 4,1(Ω). Then,

‖eT ‖1,p,T 6 C h
3p−2

p , ‖eT ‖L∞ 6 C h
4(p−1)

p . (3.32)

If u is nondegenerate and u ∈ E = W 4, 2p
3p−2 (Ω), then

‖eT ‖1,p,T 6 C h2, ‖eT ‖L∞ 6 C h
3p−2

p . (3.33)

(iv) For p > 3, assume that u is ν-weakly degenerate, 0 < ν < 2, and u ∈ E = W 4,1(Ω).

a) For 3 < p < 4 and ν > p− 2, set q0 = 2ν
p−2+ν . Set m = p− 2. One has

‖eT ‖1,q0,T 6 C h
m(p+ν)
2p−2+ν , ‖eT ‖1,p,T 6 C h

2m(p+ν)
p(2p−2+ν) , ‖eT ‖L∞ 6 C h

m(2+ν)
2p−2+ν . (3.34)



b) For ν 6 p− 2, set m = 2 with p > 4, and m = p− 2 for 3 < p < 4. One has

‖eT ‖1,1,T 6 C h
2m(1+ν)
2p−2+ν , ‖eT ‖1,p,T 6 C h

2m(p+ν)
p(2p−2+ν) , ‖eT ‖L∞ 6 C h

m(2+ν)
2p−2+ν . (3.35)

In each of the cases (i)-(iv), the constantC depends on ‖u‖E , p,Ω, c1, γ, and on µ (resp., on
∫

Ω
|∇u|−ν )

for the cases of nondegenerate (resp., ν-weakly degenerate) solutions.

Applying Lemma 3.3, one can ensure the nondegeneracy or the ν-weak degeneracy.

COROLLARY 3.1 If p > 2, u ∈ E = W 4,1(Ω) (or u ∈ W 4,s(Ω) for some s > 1) and |f |−1 ∈ L∞(Ω),
then the corresponding conclusions of Theorem 3.3(i) hold.

If p > 3, u ∈ E = W 4,1(Ω) and |f |−γ ∈ L1(Ω), γ > 0, then the conclusions of Theorem 3.3(iv)
hold with ν = γ(p− 2).

Further, proceeding as in the proof of Remark 3.2, in the case p = 2 one can weaken the a priori
regularity assumptions on u in Theorem 3.3.

REMARK 3.5 Let p = 2, and assume that u is a classical solution of (1.1) on the rectangle Ω. Let
(Γj)j=1,...,4 be the partition of ∂Ω, as introduced in the proof of Remark 3.2. If u corresponds to data
(f, g) such that g is continuous on ∂Ω, and for some s > 1, f ∈ W 2,s(Ω) and g ∈ W 2− 1

s ,s(Γj), j =
1, . . . , 4. Then u ∈W 4,s(Ω), and the conclusion of Theorem 3.3(ii) holds.

REMARK 3.6 We suspect that for nondegenerate solutions of the p-Laplacian, regularity results similar
to Remark 3.5 hold, at least for smooth domains Ω. Indeed, u solves in this case a nondegenerate
elliptic equation −div (a(x)∇u) = f with a = |∇u|p−2, and one can bootstrap the corresponding
regularity results. For instance, if ∇u is assumed to be periodic and nondegenerate (this assumption
can be relevant in the case when u is the pressure field in a nonlinear porous medium), then the above
argument applies.

Finally, note that if no integrability of |∇u|−ν is assumed, we formally set ν = 0 in (3.35) and the
proof of Theorem 3.3(i) still applies, providing the generalization of Theorem 3.2 to the nonhomoge-
neous case.

3.6 Proof of Theorem 3.3

In each of the cases (i)-(iv), we apply (3.28) and then various Hölder, embedding or interpolation in-
equalities in order to estimate ‖eT ‖1,q0,T with suitable chosen values of t and q0. The estimates of
‖eT ‖1,p,T and ‖eT ‖L∞ are recovered by interpolation.

Note that within our method of proof, one could perform the same calculations with all admissible
choices of t and q0 (that is, 1 < q0 6 2 6 t). Let us point out that the convergence orders we obtain
with the special choices of t, q0 below are the best ones.

Let us denote by C a generic constant with dependencies allowed in Theorem 3.3.

First, note that by Lemma 3.2, one has

|∇u(x)| 6 |uT |1,K∗ + Ch (3.36)

for all x ∈ K
∗ ∈ T ∗ and all h small enough. Take t ∈ [2, p] in (3.28); with (3.36), we get

∫

Ω

|∇u|p−t|eT |t1,K∗ dx 6 C
∑

K∈T

( ∑

σ∈EK

Rσ,K

)
(uK − uK) + Chp−t

∫

Ω

|eT |t1,K∗ dx.



Here and in the sequel, we write |∇u|p−t|eT |t1,K∗ for the function given a.e. on Ω by

x 7→ |∇u(x)|p−t|eT |t1,K∗ , where K
∗ ∈ T ∗ is the dual control volume that contains x.

As u ∈ W 4,1(Ω), by Proposition 3.1 adapted to all-uniform schemes (in which case the term Rb
K

disappears), proceeding as in the proof of Theorem 3.1 we deduce that
∫

Ω

|∇u|p−t|eT |t1,K∗ dx 6 Chm‖eT ‖L∞ + Chp−t‖eT ‖t
1,t,T . (3.37)

Here m = 2, except for the case 3 < p < 4 in (iv) where m = p− 2. When u ∈ W 4,s(Ω) with s > 1,
proceeding as in the proof of Theorem 3.1 (case p = 2) we can replace (3.37) by

∫

Ω

|∇u|p−t|eT |t1,K∗ dx 6 Chm‖eT ‖
L

s
s−1

+ Chp−t‖eT ‖t
1,t,T . (3.38)

Finally, we saw in the proof of Theorem 3.1 that, in the limiting case where t = p, the two inequalities
(3.37) and (3.38) reduce respectively to

∫

Ω

|eT |p1,K∗ dx 6 Chm‖eT ‖L∞, (3.39)

∫

Ω

|eT |p1,K∗ dx 6 Chm‖eT ‖
L

s
s−1

, (3.40)

since the extra term due to (3.36) is no longer needed.

I case (i): nondegenerate solutions, p > 2

In the case where u ∈ W 4,1(Ω), we start with (3.37) with t = 2. The nondegeneracy of u and
Lemma 2.2(ii)(a) yield

‖eT ‖2
1,2,T 6 Ch2| lnh|,

as stated in (3.30). The L∞ estimate follows by another application of Lemma 2.2(ii)(a). Further, the
W 1,p,T estimate follows from (3.39). Finally, the Lp estimate follows by Lemma 2.2(i)(b).

In the case where u ∈ W 4,s(Ω) for some s > 1, we start with (3.38) with t = 2. Using the
nondegeneracy of u and applying Lemma 2.2(i)(b) with r = s

s−1 , we get the W 1,2,T estimate without
the | lnh| factor. The W 1,p,T and L∞ estimates follow from (3.40) and Lemma 2.2.

I case (ii): p = 2

The proof is a simplification of the previous one, with t = p = 2.

I case (iii): nondegenerate solutions, 1 < p < 2

Here we use (3.28) with t = 2 > p, and apply the Hölder inequality to obtain

‖eT ‖p
1,p,T 6 C

(∑

K∈T

( ∑

σ∈EK

Rσ,K

)
(uK − uK)

) p
2

(∑

K∗

m(K∗)
(
|uT |1,K∗ + |uT |1,K∗

)p
) 2−p

2

.

We deduce, using Lemma 3.4, Proposition 3.1 and Lemma 2.2(ii)(b),

‖eT ‖p
1,p,T 6 C

(
h2‖eT ‖L∞

) p
2 6 C

(
h2h−

2−p
p ‖eT ‖1,p,T

) p
2 ,



which yields the W 1,p,T estimate in (3.32). The L∞ estimate follows by Lemma 2.2(ii)(b). The Lp

estimate is obtained by Lemma 2.1.

If u ∈ W 4, 2p
3p−2 (Ω), by the Hölder inequality, we estimate

∑
K∈T

(∑
σ∈EK

Rσ,K

)
(uK − uK) with

Ch2‖u‖
W

4,
2p

3p−2
‖eT ‖

L
2p

2−p
, as in the proof of Theorem 3.1 (case p = 2). Using Lemma 2.2(i)(c), we

deduce the W 1,p,T estimate in (3.33). By Lemma 2.2(ii)(b), the L∞ estimate follows.

I case (iv): ν-weakly degenerate solutions, p > 3

We start with (3.39). For all q0 ∈ [1, 2[, by Lemma 2.3 we have

‖eT ‖p
1,p,T 6 Chm‖eT ‖L∞ 6 Chm‖eT ‖θ

1,q0,T ‖e
T ‖1−θ

1,p,T ,

where θ = q0(p−2)
2(p−q0) . Using once more the interpolation inequalities for ‖eT ‖L∞, we get the estimates

‖eT ‖1,p,T 6 Ch
m

p−1+θ ‖eT ‖
θ

p−1+θ

1,q0,T , ‖eT ‖L∞ 6 Ch
m(1−θ)
p−1+θ ‖eT ‖

pθ
p−1+θ

1,q0,T . (3.41)

• case (iv)(a): ν > p − 2

In this case, we necessarily have 3 < p < 4 by Remark 3.4, hence m = p − 2. Now let us take
t = 2 in (3.37), and choose q0 = 2ν

p−2+ν . By the Hölder inequality, since u is ν-weakly degenerate and

−q0
p−2
2−q0

= −ν, we deduce

‖eT ‖q0

1,q0,T =

∫

Ω

|eT |q0

1,K∗ dx 6

(∫

Ω

|∇u|(p−2)|eT |21,K∗ dx

) q0
2

(∫

Ω

|∇u|−q0
p−2
2−q0 dx

) 2
2−q0

6 Ch
mq0

2 ‖eT ‖
q0
2

L∞ + Ch
q0(p−2)

2 ‖eT ‖q0

1,2,T .

(3.42)

Interpolating ‖eT ‖1,2,T by Lemma 2.3 and using (3.41), we get

‖eT ‖1,2,T 6 ‖eT ‖α
1,q0,T ‖e

T ‖1−α
1,p,T 6 Ch

(1−α)m
p−1+θ ‖eT ‖

α(p−1)+θ
p−1+θ

1,q0,T (3.43)

with α = θ = q0(p−2)
2(p−q0) . Substituting (3.41), (3.43) into (3.42), we obtain

‖eT ‖1,q0,T 6 Ch
mp

2(p−1+θ) ‖eT ‖
pθ

2(p−1+θ)

1,q0,T + Ch
p−2
2 +

m(1−θ)
p−1+θ ‖eT ‖

θ(p−1)+θ
p−1+θ

1,q0,T .

By the Young inequality, we deduce

‖eT ‖1,q0,T 6 Ch
mp

2(p−1+θ)−pθ + Ch
(p−2)(p−1+θ)
2(p−1)(1−θ) + m

p−1 . (3.44)

Note that for h small enough, the second term in (3.44) is controlled by the first one. Indeed, since
m = p− 2, it is sufficient to set z = 1 − θ ∈ (0, 1) and show the inequality

p
2(p−z)−p(1−z) 6

p+z
2z(p−1) , (3.45)

which amounts to p2(1 − z) + z(1 + z)(p− 2z
1+z ) > 0. Since 2z

1+z 6 1 < p, (3.45) holds true.

From (3.44), using the values of m = p− 2, q0 = 2ν
p−2+ν and θ = q0(p−2)

2(p−q0) = ν
p+ν , we get

‖eT ‖1,q0,T 6 Ch
mp

2(p−1+θ)−pθ = Ch
(p−2)(p+ν)

2p−2+ν ,



as stated in (3.34). The W 1,p,T and L∞ estimates in (3.34) follow by (3.41).

• case (iv)(b): ν 6 p − 2

Now we take t = t0 = p+ν
1+ν in (3.37), and choose q0 = 1. As in (3.42), we deduce

‖eT ‖1,1,T 6 Ch
m
t0 ‖eT ‖

1
t0

L∞ + Ch
(p−t0)

t0 ‖eT ‖1,t0,T .

Interpolating ‖eT ‖1,t0,T between ‖eT ‖1,1,T and ‖eT ‖1,p,T and using (3.41), we get in the same way as
in the case (iv)(a),

‖eT ‖1,1,T 6 Ch
mp

t0(p−1+θ)−pθ + Ch
(p−t0)(p−1+θ)

t0(p−1)(1−α)
+ m

p−1 .

with θ = p−2
2(p−1) , α = p−t0

t0(p−1) = ν
p+ν . Substituting θ and α, after cancellations we find

‖eT ‖1,1,T 6 Ch
2m(1+ν)
2p−2+ν + Ch

ν(2p−3)
2(p−1)

+ m
p−1 6 Ch

m(1+ν)

p−1+ ν
2 + Ch

νm(p−1− 1
2
)

2(p−1)
+ m

p−1 , (3.46)

since m 6 2. Setting z = p− 1, we have

1+ν
z+ ν

2
−

ν(z− 1
2 )

2z − 1
z =

ν(z− 1
2 )

z(z+ ν
2 ) −

ν(z− 1
2 )

2z =
ν(z− 1

2 )(2−z− ν
2 )

2z(z+ ν
2 ) < 0,

since z = p − 1 > 2 and ν > 0. Thus the second term on the right-hand side of (3.46) is controlled
by the first one, for h small enough. This proves the W 1,1,T estimate in (3.35); the W 1,p,T and L∞

estimates follow by (3.41). �

REMARK 3.7 In the statement of Theorem 3.3, we assume that we control a priori the degeneracy of the
exact solution u. We saw in Lemma 3.3, due to Barrett & Liu (1993), that for p > 2 it is possible to
provide a priori a control on the degeneracy of u if the source term f does not vanish too quickly.

We note that, in fact, we can also replace the degeneracy restrictions on u by degeneracy restrictions
on the approximate solution uT which can be easily computed for any 1 < p < +∞. Indeed, one can
replace the nondegeneracy assumption on u by the condition

∃C > 0, |uT |1,K∗ > C ∀K∗, (3.47)

the constant C being independent of the mesh size. In the same way, one can replace the ν-weak
degeneracy assumption by the condition

∃C > 0,
∑

K
∗

m(K∗)|uT |−γ
1,K∗ 6 C. (3.48)

The principle of the proof is exactly the same: we start with (3.28) and use Proposition 3.1, replacing
the inequality (3.37) by the inequality

∫

Ω

|uT |p−t
1,K∗ |eT |t1,K∗ dx 6 Chm‖eT ‖L∞.

Using now either assumption (3.47) or assumption (3.48), we can conclude the proof in the same way
using Hölder and interpolation inequalities.



4. Numerical results

In this final section, we present some numerical results obtained using the finite volume scheme de-
scribed above. The aim of this section is to investigate the sharpness of our theoretical results.

We begin with an example of a nondegenerate solution whose analytical expression is given by
u(x, y) = exp(x + πy). For p = 4, the results are collected in Table 1. In that case, estimates (3.30) of
Theorem 3.3 hold without the logarithmic factor since u is smooth enough. It appears that second-order
convergence is achieved in all norms considered. Hence, the second-order error estimates in the W 1,2

and L∞ norms stated in Theorem 3.3 are sharp whereas the W 1,p estimate does not seem to be sharp.

TABLE 1 Nondegenerate case, p = 4

W 1,2 err. W 1,p err. L∞ err

Theoretical order 2 1 2
Numerical order 2.0 2.0 2.0

In the case p = 1.5, estimates (3.33) in Theorem 3.3 hold. In that case, numerical results reported in
Table 2 show that the second order W 1,p estimate is sharp whereas the 5

3 convergence order in the L∞

norm is not sharp.

TABLE 2 Nondegenerate case, p = 1.5

W 1,p err. Lp err. L∞ err

Theoretical order 2 2 5
3 ≈ 1.66

Numerical order 2.0 2.0 2.0

Our next example is a degenerate solution defined by u(x, y) = sin(3πx) sin(3πy). This solution
is ν-degenerate with ν = 2 − ε for any ε > 0. We present in Table 3 the results obtained for p = 4
so that estimate (3.35) in Theorem 3.3 applies. We see that the numerical convergence rates are better
than the theoretical predictions in any norm. Nevertheless, the error estimate in the W 1,1 norm is not
too far from being optimal. Furthermore, to our knowledge, no other result in the literature is able to
predict convergence orders greater than one in any Sobolev norm for finite volume or P 1 finite element
schemes for the p-Laplacian.

TABLE 3 Sinusoidal case, p = 4, ν = 2 − ε

W 1,p err. W 1,1 err. Lp err. L∞ err

Theoretical order 3
4 − ε ≈ 0.75 3

2 − ε ≈ 1.5 5
4 − ε ≈ 1.25 1

Numerical order 1.15 1.8 1.8 1.5

Our last example is one of the test cases studied in Barrett & Liu (1993). The analytical radial

solution we consider is u(x, y) = r
σ+p
p−1 , where r is the distance to the center of the domain. This

solution has exactly one critical point and is ν-degenerate with ν = 2(p−1)
σ+1 . We present in Table 4 the

results obtained with p = 4 and σ = 7. We can see that, as in Barrett & Liu (1993), the theoretical
error estimates given by Theorem 3.3 are pessimistic. Nevertheless, our result ensures a theoretical
convergence rate greater than 1 in the W 1,1 norm whereas the results in Barrett & Liu (1993) only give



a theoretical 11−ε
16 rate. Our resuts in the W 1,p and L∞ norms are also sharper than the one in Barrett &

Liu (1993) since they obtain, in this reference, the convergence rates of 1
2 − ε and 9

16 − ε respectively.

TABLE 4 Radial case, σ = 7, p = 4, ν = 3
4

W 1,p err. W 1,1 err. Lp err. L∞ err

Theoretical order 19
27 ≈ 0.70 28

27 ≈ 1.04 25
27 ≈ 0.93 22

27 ≈ 0.81
Numerical order 2.0 2.0 2.0 2.0

Notice finally that the comparison between our results with the all-uniform finite volume method
and the finite element schemes used in Barrett & Liu (1993) is relevant. Indeed, up to the choice of
discretisation of the source term, the finite element scheme studied in the reference above coincides
with a slight modification of our all-uniform finite volume scheme, where the discrete gradients are
reconstructed by affine interpolation in triangles obtained by bisection of our dual control volumes K

∗.
Moreover, if all the bisections are performed in the same direction, as it is the case for the numerical
results presented in Barrett & Liu (1993), it can be shown that these schemes also possess the higher-
order consistency properties of Proposition 3.1. Hence, the proof of Theorem 3.3 can be easily adapted
to the finite element method and we expect the two schemes to have the same behavior on uniform grids.

5. Conclusions

We presented in this paper the convergence analysis of a family of nine-point finite volume schemes for
sufficiently smooth solutions to the p-Laplace equation on uniform cartesian meshes. By taking advan-
tage of the symmetries of the scheme we are able to improve the error estimates in the energy space
W 1,p obtained previously for the same schemes. Moreover, adapting to the finite volume scheme the
quasi-norm estimate method introduced in Barrett & Liu (1993), we give further improved convergence
rates under the assumption that the exact solution is either nondegenerate or weakly degenerate. In par-
ticular, for nondegenerate smooth solutions we obtain, in the case p > 2, a sharp second order estimate
in the L∞ norm. Finally, numerical examples are presented which show that our results are sharp in
some but not all situations. We also provide comparisons with previously published convergence results
for P 1 finite element schemes closely related to our finite volume schemes.

Acknowledgements: The authors would like to thank the referees for their valuable comments and
suggestions.
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