
OUTFLOW BOUNDARY CONDITIONS FOR THEINCOMPRESSIBLE NON-HOMOGENEOUS NAVIER-STOKESEQUATIONSFRANCK BOYER AND PIERRE FABRIEAbstrat. In this paper we propose the analysis of the inompressible non-homogeneous Navier-Stokes equations with nonlinear out�ow boundary on-dition. This kind of boundary ondition appears to be, in some situations, auseful way to perform numerial omputations of the solution to the unsteadyNavier-Stokes equations when the Dirihlet data are not given expliitly bythe physial ontext on a part of the boundary of the omputational domain.The boundary ondition we propose, following previous works in the ho-mogeneous ase, is a relationship between the normal omponent of the stressand the out�ow momentum �ux taking into aount inertial e�ets. We provethe global existene of a weak solution to this model both in 2D and 3D. Inpartiular, we show that the nonlinear boundary ondition under study holdsfor suh a solution in a weak sense, even though the normal omponent of thestress and the density may not have traes in the usual sense.1. Introdution1.1. Statement of the problem. We are given a smooth and bounded (say C2)domain Ω in R
d (d = 2 or d = 3) and we denote by ν the outward unit normal onthe boundary Γ = ∂Ω. For any real number x we de�ne its positive and negativepart respetively by x+ = max(x, 0) and x− = max(0,−x).This work is onerned with the study of the non-homogeneous Navier-Stokesequations : 




∂tρ+ div (ρv) = 0,div v = 0,

∂t(ρv) + div (ρv ⊗ v) − div (σ) = ρf,

ρ(0) = ρ0, v(0) = v0,

(1)where the stress tensor, with density-dependent visosity, is de�ned by
σ = 2µ(ρ)D(v) − p Id,

ρ and p being respetively the density and the pressure of the �uid and D(v) =
1
2 (∇v+ t∇v) the symmetri part of the gradient of the veloity �eld v. This systemmodels the �ow of an inompressible non-homogeneous visous �uid.It is neessary to presribe boundary onditions for problem (1) on ∂Ω. Onepart of the boundary of Ω (denoted by Γin in the sequel) is said to be the in�owboundary (see Figure 1). On this part the Dirihlet data ρin and vin are supposedto be given. Then, on the remaining part of boundary of Ω (denoted by Γout inthe sequel), we assume that no physial boundary data is available. This typiallyDate: September 12, 2006. 1
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Ω

Γin

Γoutv = vin

ρ = ρin Out�ow B.C.
Figure 1. In�ow and out�ow parts of the boundary of Ωhappens when, for omputational reasons, the domain Ω is stritly inluded in thephysial domain so that some part of the boundary is purely arti�ial. We areinterested here in the analysis of a nonlinear out�ow boundary ondition model on

Γout given by




ρ = ρin, on Γ where (v · ν) < 0,

v = vin, on Γin,

σ.ν = σref .ν − 1

2
ρin(v · ν)−(v − vref), on Γout.

(2)Here, vref and σref .ν are given referene boundary data for the veloity �eld and thenormal omponent of the stress tensor suh that ∫
Γout

vref ·νdω+

∫

Γin

vin ·νdω = 0 atany time t. This nonlinear term will let us obtain an energy inequality for system(1) preventing �nite time blow up of the solution. Notie that, even though Γinand Γout are respetively alled in�ow and out�ow part of the boundary, it is notassumed in the following analysis that vin · ν ≤ 0 on Γin and of ourse it an ourthan v · ν < 0 even on Γout (it is the situation where the nonlinear term has a roleto play). In partiular, the Dirihlet ondition on the density takes plae on thewhole part of the boundary Γ where v · ν < 0.The analysis of suh a model is motivated by previous studies of similar boundaryonditions for homogeneous �uids. Indeed, in that ase, it is shown in [7, 8℄ thatsuh a model is well-posed and an be suessfully used to ompute �ows in arti�ialdomains without too muh vortexes re�exions on Γout and good agreement withthe expeted solution.Of ourse, the numerial e�ieny of this approah highly depends on the hoieof the referene boundary data vref and σref .ν. To our knowledge there is no uni-versal strategy to make suh a hoie. Nevertheless in many ases the physialintuition of the behavior of the �ow may help us to do so. As an example, for thelassial omputation of a �ow past obstales in an open hannel, the Poiseuillereferene �ow is used in [6, 7, 8℄ and gives results that do not depend too muh onthe distane between the obstales and the arti�ial open boundary of the ompu-tational domain. Furthermore, in the same referenes, numerial omparisons with



OUTFLOW BCS FOR THE NON-HOMOGENEOUS NAVIER-STOKES EQUATIONS 3the usual imposed normal stress ondition are given showing that, for high Reynoldsnumbers, the nonlinear term in (2) is ruial to avoid non physial re�exions andblows up of the solution. Unfortunately, no rigorous results are available yet togive a preise justi�ation of the method and to understand the in�uene of thereferene �ow on the solution.Remark 1. Let us notie that the out�ow boundary ondition we propose is on-sistent with the Navier-Stokes equations in the physial domain in the followingsense.Indeed, onsider the 2D homogeneous ase (ρ = cst = 1), whih is the only onefor whih uniqueness of weak solutions is known and for whih the present remarkan be made rigorous. Suppose that the physial domain Ωphys ontains Ω and that
Γin = ∂Ω ∩ ∂Ωphys, so that Γout ⊂ Ωphys \ Ω. Let us onsider now an initial data
v0 for the NS equation on Ωphys and Dirihlet boundary data vbound on ∂Ωphys.Denote by (vphys, pphys) the unique solution to the inompressible homogeneous NSequations assoiated to those data and by σphys the orresponding stress tensor.Assume �nally that (vphys, pphys) is smooth enough, that is for instane a so-alledstrong solution (see [22℄).Let (vref , σref) given and onsider now (v, p) the unique solution to problem (1)-(2) with ρ = 1 (see [8℄), the initial data v0 restrited to Ω and the in�ow data
vin = vbound on Γin. Then, the following estimate an be shown
‖v − vphys‖L∞(]0,T [,L2(Ω)) + ‖v − vphys‖L2(]0,T [,H1(Ω))

≤ C

(
‖σref .ν − σphys.ν‖

L2(]0,T [,H−
1

2 (Γout))

+ ‖(v · ν)−‖L3(]0,T [×Γout)‖vref − vphys‖L3(]0,T [×Γout)

)
,the onstant C depending only on the data T, v0, and vbound. This result showsin partiular that, if we are able to hoose vref and σref lose enough to vphys and

σphys (whih of ourse we do not know exatly) then the solution v omputed in
Ω with our out�ow boundary ondition will be lose to the exat physial solution
vphys.Suh an estimate is not ahievable in the present non-homogeneous frameworkdue to the lak of regularity of the density ρ (that is the same di�ulty whihprevents us to prove uniqueness of weak solutions).In the last years, many authors have onsidered the problem of out�ow (orarti�ial) boundary onditions for various kinds of equations. In the partiularframework of �uid mehanis, the ase of Oseen equations were onsidered forinstane in [14℄ while the ase of stationnary homogeneous Navier-Stokes equationsis treated e.g. in [12, 17, 18℄ (see also the referenes therein). In eah of these worksthe original physial domain is supposed to have a partiular shape (typially anexterior domain or an half spae). This is used in a fundamental way by theauthors to derive their method and to prove onvergene results. On the ontrary,our boundary ondition (2) does not rely on partiular geometri assumptions onthe domain, provided that suitable referene �ow an be hosen.Boundary onditions only involving the pressure were onsidered for instanein [2, 9, 15℄ where well-posedness results are given but no onvergene results. In



4 FRANCK BOYER AND PIERRE FABRIEthese referenes, the validity of the hosen approah is disussed through numerialsimulations. Some other authors have proposed to build arti�ial boundary on-ditions in the veloity-vortiity formulation (see for instane [3℄). Unfortunately,this formulation is not available for non-homogeneous �ows and in that ase we areneeded to work with the primitive variables: density, veloity and pressure. To ourknowledge, arti�ial boundary onditions in this partiular framework were onlystudied for ompressible visous or invisid �ows (see [19, 23, 24℄).1.2. Outline. The present analysis is devoted to the proof of existene of weaksolutions for the above problem, that is the transient non-homogeneous inom-pressible Navier-Stokes equation (1) with boundary onditions (2). As usual in thetheory of weak solutions of the inompressible Navier-Stokes equations (see e.g.[22℄), uniqueness of suh solutions is only established for homogeneous �uids (thatis when the density ρ is a onstant) in the two dimension ase (see [8, 5℄). Inomparison with the homogeneous situation, many new di�ulties appear in thisanalysis.
• We need to give a preise sense to the Cauhy/Dirihlet problem for thetransport equation with non tangential and non smooth vetor �eld v. Mostof this material is already available from a previous work by the �rst author[4℄ and is realled in Setion 2. Nevertheless, we needed in the present paperto omplete this framework with a stability result of the solution ρ as afuntion of v (see Theorem 4), whih is an important result by itself. Thisresult will let us pass to the limit in an approximate problem, in partiularin boundary and visosity terms.
• Suitable weak formulations of the problem, with divergene free test fun-tions, formally obtained by integrating by parts the equation an using (2)are disussed in Setion 3. Our main results are then stated in Setion 4.
• In Setion 5, we introdue (in the same spirit than [16, 21℄) an approximateproblem for the weak formulation under study (equations (21) and (26)) andwe show that it admits a global solution, through a �xed point proedure.Then, in Setion 6, we provide estimates on the approximate solution andwe perform the limit in the approximate problem. This onludes the proofof Theorem 5.
• Setion 7 is devoted to the proof of Theorem 6 whih states that the non-linear boundary ondition under study is satis�ed, in a weak sense, by thesolution to the weak formulation of the problem. This is done using onemore the �ne properties of the traes of solutions to the transport equationobtained in [4℄. Finally, we onlude the paper by studying in Setion 8 aslight modi�ation of our out�ow boundary ondition whih let us provethe same results under weaker assumptions on the data.1.3. Notations and assumptions. We suppose that Γ = Γin ∪ Γout where Γinand Γout are disjoint open sets in Γ with positive measures. We introdue the spae

V =
{
v ∈ (C∞(Ω))d, s.t. div v = 0, and v = 0 on Γin

}
,and let H (resp. V ) be the losure of V in (L2(Ω))d (resp. (H1(Ω))d). We alsode�ne the spae H1

in(Ω) of funtions in H1(Ω) whose trae vanishes on Γin and
H

1

2

in(Γ) the spae of funtions in H 1

2 (Γ) whih vanishes on Γin.



OUTFLOW BCS FOR THE NON-HOMOGENEOUS NAVIER-STOKES EQUATIONS 5Let T > 0 be �xed. We assume that ρ0 ∈ L∞(Ω), ρ0 ≥ 0 and ρin ∈ L∞(]0, T [×Γ),
ρin ≥ 0. In this paper, exepted in Setion 8, we assume that there exists α > 0suh that

1

ρα
0

∈ L1(Ω), (3)
1

ρα
in

∈ L1(]0, T [, L1(Γ)). (4)These onditions allow the given initial and in�ow boundary densities to vanishon zero measure sets. They are obviously satis�ed if we assume that inf ρ0 > 0and inf ρin > 0. Notie that, ondition (3) was onsidered in [16, 21℄ in order toimprove some of the results onerning the problem (1) with homogeneous Dirihletof periodi boundary onditions. In Setion 8 we will study a slightly modi�edboundary ondition (see (56)) for whih we are able to perform the analysis underthe weaker assumptions that ρ0 and ρin are positive almost everywhere.Notie that the boundary ondition (2) only depends on the value of the referene�ow vref on the out�ow boundary Γout. Nevertheless, in order to perform theanalysis, we need to onsider a divergene free extension of this boundary data andof vin, still denoted by vref in the sequel and satisfying





vref ∈ L∞(]0, T [, (L2(Ω))d) ∩ Lr(]0, T [, (H1(Ω))d),with r = 2 if d = 2 and r = 4 if d = 3,div vref = 0,

∂tvref ∈ L2(]0, T [, (L2(Ω))d),

vref = vin, on Γin.

(5)We also suppose given σref suh that
σref .ν ∈ L2(]0, T [, (H−1

2 (Γ))d). (6)We take v0 ∈ H and f ∈ L2(]0, T [, (L2(Ω))d). Finally, the visosity µ is supposedto be a ontinuous funtion suh that there exists µmin, µmax ∈ R satisfying
0 < µmin ≤ µ(s) ≤ µmax, ∀s ∈ R. (7)2. The transport equation2.1. Notations. For any x ∈ Ω we denote by d(x,Γ) the distane between x andthe ompat set Γ. For any ξ ≥ 0, we de�ne the following two open sets

Oξ = {x ∈ Ω, d(x,Γ) < ξ}, and Ωξ = {x ∈ Ω, d(x,Γ) > ξ}.Sine Ω is bounded and regular, there exists ξΩ > 0 suh that the maps d(·,Γ)(distane to Γ) and PΓ (projetion on Γ) are well de�ned and smooth in OξΩ
.As a onsequene it is possible to use (d(x,Γ), PΓ(x)) ∈ [0, ξΩ]×Γ as a oordinatesystem in Oξ (see for instane [4, 5℄). For any funtion F :]0, T [×ΩξΩ

7→ R we willuse the notation:
F (t, ξ, ω) ≡ F (t, ω − ξν(ω)), ∀(t, ξ, ω) ∈]0, T [×[0, ξΩ] × Γ.Notie that for any ω ∈ Γ, we have F (t, 0, ω) = F (t, ω). The reverse formulaobviously reads

F (t, x) = F (t, d(x,Γ), PΓ(x)), for almost every (t, x) ∈]0, T [×OξΩ
.
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Ωξ

ξ

Γ = Γ0

Γξ

ν

OξFigure 2. Notations near the boundary of ΩWe an now introdue the spae C0([0, ξΩ], Lq(]0, T [×Γ)) of measurable funtions
F (t, x) suh that ξ 7→ F (·, ξ, ·) is ontinuous with respet to ξ with values in
Lq(]0, T [×Γ) in the variables (t, ω).For any ξ ∈ [0, ξΩ[, we note Γξ = {x ∈ Ω, d(x,Γ) = ξ}. Notie that for any
ξ ∈ [0, ξΩ] we have

∂Oξ = Γ ∪ Γξ, ∂Ωξ = Γξ.For any 0 ≤ ξ ≤ ξΩ, the manifolds Γ and Γξ are isomorphi through the paralleltransport with respet to the vetor �eld −ξν. Let Jξ(ω), ω ∈ Γ be the Jaobiandeterminant of the isomorphism between the manifolds Γ and Γξ. For any G ∈
L1(Γξ), we have∫

Γξ

G(ω′) dω′ =

∫

Γ

G(ω − ξν(ω))Jξ(ω) dω =

∫

Γ

G(ξ, ω)Jξ(ω) dω.Therefore, for any F ∈ L1(]0, T [×OξΩ
) the following hange of variables formulaholds:

∫ T

0

∫

Oη

F (t, x) dt dx =

∫ T

0

∫ η

0

∫

Γ

F (t, ξ, ω)Jξ(ω) dt dξ dω, ∀η ∈]0, ξΩ]. (8)Notie that J0(ω) = 1 for any ω ∈ Γ. Furthermore, we hoose ξΩ small enough sothat (ξ, ω) 7→ Jξ(ω) is smooth and satisfy 1
2 ≤ Jξ(ω) ≤ 3

2 for any (ξ, σ) ∈ [0, ξΩ]×Γ.Finally, notie that there exists a smooth funtion d̃ : Ω 7→ R suh that d̃ = d(·,Γ)into OξΩ
so that we an de�ne for any x ∈ Ω, the vetor �eld ν(x) = −∇d̃(x) whihis regular bounded and whih oinides with the outward normal vetor �eld nearthe boundary of the domain. More preisely, we have

ν(x) = ν(PΓ(x)), for any x ∈ OξΩ
.2.2. Trae theorem - Initial and boundary value problem. We reall heresome of the results proved by the �rst author in [4℄ onerning the transport equa-tion for non tangential vetor �eld with Sobolev regularity. These results are amongthe main tools in the study of our problem. The proofs of these results use, in par-tiular, the fundamental onept of renormalized solutions as introdued in [13℄for the study of the transport equation for veloity �elds tangent to the boundary



OUTFLOW BCS FOR THE NON-HOMOGENEOUS NAVIER-STOKES EQUATIONS 7of the domain. This onept was used to study problem (1) with usual boundaryonditions (periodi or homogeneous Dirihlet) in [10, 11, 16℄ for instane.Theorem 1 (Trae theorem). Let v ∈ L1(]0, T [, (W 1,1(Ω))d) suh that div v = 0and (v · ν) ∈ Lδ(]0, T [×Γ) for some δ > 1. Then, any weak solution (in thedistribution sense) ρ ∈ L∞(]0, T [×Ω) of the transport equation
∂tρ+ v · ∇ρ = 0, (9)lies in C0([0, T ], Lq(Ω)) for any q ∈ [1,+∞[. Furthermore, there exists a unique

γ(ρ) in L∞(]0, T [×Γ, |v · ν| dt dω) (alled the trae of ρ) suh that for any ϕ ∈
C1([0, T ] × Ω) and any [t1, t2] ⊂ [0, T ] we have
∫ t2

t1

∫

Ω

ρ(∂tϕ+ v · ∇ϕ) dt dx +

∫

Ω

ρ(t1)ϕ(t1) dx−
∫

Ω

ρ(t2)ϕ(t2) dx

−
∫ t2

t1

∫

Γ

γ(ρ)ϕ (v · ν) dt dω = 0.Theorem 2 (Initial and boundary value problem). Let v ∈ L1(]0, T [, (W 1,1(Ω))d)suh that div v = 0 and (v · ν) ∈ Lδ(]0, T [×Γ) for some δ > 1. For any initial data
ρ0 ∈ L∞(Ω) and any in�ow data ρin ∈ L∞(]0, T [×Γ, (v · ν)− dt dω) there exists aunique ouple (ρ, ρout) ∈ L∞(]0, T [×Ω)× L∞(]0, T [×Γ, (v · ν)+ dt dω) suh that:

• ρ is a weak solution to the transport equation (9) with ρ(0) = ρ0.
• The trae of ρ is haraterized by γ(ρ)(v · ν) = ρout(v · ν)+ − ρin(v · ν)−.Furthermore, we have the renormalization property:For any β ∈ C1(R), the ouple (β(ρ), β(ρout)) is the unique weak solutionto the transport equation with initial data β(ρ0) and in�ow boundary data
β(ρin).Notie that the initial ondition ρ(0) = ρ0 makes sense sine, by Theorem 1, weknow that any weak solution of the transport equation is ontinuous in time withvalues in any Lq(Ω), q ∈ [1,+∞[.Theorem 3 (L∞ estimate). Using the notations of Theorem 2, we introdue

ρmin = min

(
inf
Ω
ρ0, inf

]0,T [×Γ
ρin

)
, (10)

ρmax = max

(
sup
Ω
ρ0, sup

]0,T [×Γ

ρin

)
, (11)where the in�mum and supremum of ρin on ]0, T [×Γ are taken with respet to themeasure (v · ν)− dt dω. Then, we have

ρmin ≤ ρ(t, x) ≤ ρmax, ∀t ∈ [0, T ], for a.e. x ∈ Ω,and
ρmin ≤ ρout(t, ω) ≤ ρmax, for a.e. (t, ω) ∈]0, T [×Γ,with respet to the measure (v · ν)+ dt dω.



8 FRANCK BOYER AND PIERRE FABRIE2.3. Stability with respet to the veloity �eld. Using the results realledabove onerning the initial and boundary value problem for the transport equation,we an prove the stability of the solution with respet to the data v, ρ0 and ρin. Sinethis result is interesting for itself we give here a quite general statement applyingto more general situations than the partiular one addressed in this paper.Theorem 4 (Stability with respet to v). For any k ≥ 1, let vk ∈ L1(]0, T [, (W 1,1(Ω))d)suh that div vk = 0 and (vk · ν) ∈ Lδ(]0, T [×Γ) for some δ > 1. We supposegiven, for any k ≥ 1, an initial data ρ0,k ∈ L∞(Ω), and an in�ow boundary data
ρin,k ∈ L∞(]0, T [×Γ). We denote by

(ρk, ρout,k) ∈ L∞(]0, T [×Ω)× L∞(]0, T [×Γ, (vk · ν)+ dt dω),the unique solution to the problem




∂tρk + vk · ∇ρk = 0,

ρk(0) = ρ0,k,

γ(ρk) = ρin,k, where (vk · ν) < 0.

(12)We assume that
• (ρ0,k)k is bounded in L∞(Ω) and strongly onverges towards ρ0 ∈ L∞(Ω)for the L1(Ω) topology.
• (ρin,k)k is bounded in L∞(]0, T [×Γ) and strongly onverges towards ρin ∈
L∞(]0, T [×Γ) for the L1(]0, T [×Γ) topology.

• (vk)k onverges towards v in L1(]0, T [, (L1(Ω))d), where v is supposed tobelong to L1(]0, T [, (W 1,1(Ω))d).
• (vk · ν)k strongly onverges towards v · ν in Lδ(]0, T [×Γ).Then, if we denote by (ρ, ρout) the solution to the transport problem assoiated tothe vetor �eld v, the initial data ρ0 and the boundary data ρin, we have
• (ρk)k strongly onverges towards ρ in all the spaes Lq(]0, T [×Ω), q ∈

[1,+∞[. And more preisely we have
ρk(t) −−−−−→

k→+∞
ρ(t), in Lq(Ω), ∀t ∈ [0, T ], ∀q ∈ [1,+∞[. (13)

•
(
γ(ρk)(vk · ν)

)
k
strongly onverges towards γ(ρ)(v · ν) in Lδ(]0, T [×Γ).Remark 2. Notie that we do not need the strong onvergene of vk towards v inthe spae L1(]0, T [, (W 1,1(Ω))d) but only in L1(]0, T [, (L1(Ω))d) supplemented bythe strong onvergene of the normal traes (vk · ν).In setions 5 and 6 we will use this stability result in the ase where (vk)konverges towards v weakly in L2(]0, T [, (H1(Ω))d) and strongly in (Lγ(]0, T [×Ω))dfor some γ ∈]1, 2[. These onvergenes imply in partiular the strong onvergeneof the traes (vk ·ν)k in some spae Lδ(]0, T [×Γ) as required in the assumptions ofthe theorem.Proof. Let us assume that ρ0,k and ρin,k are non-negative for any k. This is notrestritive sine it is always possible to add a onstant to all the data withouthanging the onvergene properties in the statement of the Theorem.

• We �rst reall that ρout,k is uniquely determined only on the part of theboundary where vk · ν > 0. Hene, for simpliity, we impose in the sequel
ρout,k = 0 on the part of ]0, T [×Γ where vk · ν ≤ 0.



OUTFLOW BCS FOR THE NON-HOMOGENEOUS NAVIER-STOKES EQUATIONS 9The sequenes (ρ0,k)k and (ρin,k)k being bounded in L∞ we know byTheorem 3 that (ρk)k is bounded in L∞(]0, T [×Ω) and that (ρout,k)k isbounded in L∞(]0, T [×Γ). Therefore, we an extrat subsequenes, alwaysdenoted by (ρk)k and (ρout,k)k whih ⋆-weakly onverge respetively in
L∞(]0, T [×Ω) and L∞(]0, T [×Γ).Using these weak onvergenes and the assumptions onerning the on-vergene of the sequenes (ρ0,k)k, (ρin,k)k and (vk)k we see that for anytest funtion ϕ ∈ C1([0, T ] × Ω) we an perform the limit in the weak for-mulation of the problem (12). We �nd that the weak limits of (ρk)k and
(ρout,k)k satisfy the weak formulation for the transport problem assoiatedto the veloity �eld v, the initial data ρ0 and the in�ow boundary data ρin.By Theorem 2, (ρ, ρout) is the unique ouple satisfying this formulation.Hene, we proved that

ρk −−−−−⇀
k→+∞

ρ, in L∞(]0, T [×Ω) ⋆-weak,, (14)
ρout,k −−−−−⇀

k→+∞
ρout, in L∞(]0, T [×Γ, (v · ν)+dt dω) ⋆-weak. (15)Sine ρ is unique, the onvergene (14) holds in fat for the whole sequene

(ρk)k and not only for a subsequene. As far as the out�ow boundary termis onerned the situation is slightly di�erent sine ρout is only uniquelyde�ned on the set where v · ν > 0. Nevertheless, we obtain that the wholesequene of the traes (γ(ρk))k satis�es the weak onvergene
γ(ρk)(vk · ν) −−−−−⇀

k→+∞
γ(ρ)(v · ν), in Lδ(]0, T [×Γ) weak. (16)Finally, performing the limit in the weak formulation satis�ed by ρk, it iseasily seen that

ρk(t) −−−−−⇀
k→+∞

ρ(t), in Lδ(Ω) weak, for any t ∈ [0, T ]. (17)
• Our goal is now to prove that the above onvergenes hold in fat for thestrong topologies.We use here the renormalization property given by Theorem 2. It im-plies in partiular that, for any k, (ρδ

k, ρ
δ
out,k) is the unique solution to thetransport problem (12) with initial data ρδ

0,k and in�ow boundary data
ρδ
in,k. Using the onvergene assumptions on the data, we easily see thatthe sequenes (ρδ

0,k)k and (ρδ
in,k)k are bounded in L∞ and onverge stronglytowards ρδ

0 in L1(Ω) and towards ρδ
in in L1(]0, T [×Γ) respetively.Furthermore, using one more the renormalization property, we knowthat the solution to the transport problem assoiated to the limit vetor�eld v and to the data ρδ

0 and ρδ
in is unique and given by (ρδ, ρδ

out). Hene,we an apply the argument of the �rst point of the proof to obtain the weakonvergenes
ρδ

k −−−−−⇀
k→+∞

ρδ, in L∞(]0, T [×Ω) ⋆-weak,, (18)
γ(ρk)δ(vk · ν) −−−−−⇀

k→+∞
γ(ρ)δ(v · ν), in Lδ(]0, T [×Γ) weak. (19)



10 FRANCK BOYER AND PIERRE FABRIEThe onvergene (18) imply in partiular that
‖ρk‖δ

Lδ(]0,T [×Ω) =

∫ T

0

∫

Ω

ρδ
k dt dx

−−−−−→
k→+∞

∫ T

0

∫

Ω

ρδ dt dx = ‖ρ‖δ
Lδ(]0,T [×Ω),and we dedue that the onvergene of (ρk)k towards ρ is strong in the spae

Lδ(]0, T [×Ω). Using (14) it follows that this strong onvergene holds infat in any Lq(]0, T [×Ω), q ∈ [1,+∞[.By assumption, (vk ·ν)k strongly onverges towards v ·ν in Lδ(]0, T [×Γ).It follows that
|vk · ν|δ−2(vk · ν) −−−−−→

k→+∞
|v · ν|δ−2(v · ν), in L δ

δ−1 (]0, T [×Γ). (20)Hene, using (19) and (20), we have
‖γ(ρk)(vk · ν)‖δ

Lδ(]0,T [×Γ) =

∫ T

0

∫

Γ

γ(ρk)δ(vk · ν)

(
|vk · ν|δ−2(vk · ν)

)
dt dω

−−−−−→
k→+∞

∫ T

0

∫

Γ

γ(ρ)δ(v · ν)

(
|v · ν|δ−2(v · ν)

)
dt dω

= ‖γ(ρ)(v · ν)‖δ
Lδ(]0,T [×Γ).Therefore, we have shown the onvergene of the Lδ norm of (γ(ρk)(vk ·ν))ktowards the one of γ(ρ)(v · ν) whih, using the weak onvergene (16),implies the strong onvergene announed.

• It remains to prove (13). Let t ∈ [0, T ] be �xed. Using the renormalizationproperty with β(s) = sδ for any k and taking ϕ = 1 as a test funtion inthe weak formulation we get
∫

Ω

ρδ
k(t) dx =

∫

Ω

ρδ
0,k dx−

∫ t

0

∫

Γ

γ(ρk)δ(vk · ν) dt dω.By using the strong onvergenes proved above, we an perform the limitin the right-hand side and we get that
∫

Ω

ρδ
k(t) dx −−−−−→

k→+∞

∫

Ω

ρδ
0 dx−

∫ t

0

∫

Γ

γ(ρ)δ(v · ν) dt dω =

∫

Ω

ρδ(t) dx.Notie that the last equality omes from the renormalization property ap-plied to the limit transport problem satis�ed by ρ. Hene, this provesthat ‖ρk(t)‖Lδ(Ω) onverges towards ‖ρ(t)‖Lδ(Ω) and then, using the weakonvergene (17) the laim is proved.
�3. Weak formulations of the Navier-Stokes problemWe desribe here the weak formulations of the problem (1)-(2) we deal with inthis paper. In this setion we only give formal omputations that will be justi�edin Setion 5 on the approximate problem.



OUTFLOW BCS FOR THE NON-HOMOGENEOUS NAVIER-STOKES EQUATIONS 113.1. The ontinuity equation. Following Theorem 2 (see the details in [4℄), thenatural weak formulation of the transport equation is
∫ T

0

∫

Ω

ρ(∂tϕ+ v · ∇ϕ) dt dx+

∫

Ω

ρ0ϕ(0, .) dx

−
∫ T

0

∫

Γ

ρoutϕ(v · ν)+ dt dω +

∫ T

0

∫

Γ

ρinϕ(v · ν)− dt dω = 0, (21)for any ϕ ∈ C1
c ([0, T [, H1(Ω)).3.2. The momentum balane equation. As usual it is possible, at least at aformal level, to onsider the equivalent non-onservative or onservative weak for-mulation for the momentum balane equation. In this setion we present these twoformulations but also a third one, alled intermediate. As we will see later, thenon-onservative formulation is useful to express the problem (more preisely theapproximate problem that we will introdue) as a �nite dimensional ordinary dif-ferential equation. The intermediate one is used to obtain the energy estimate andthe onservative formulation is the one whih does not involve the time derivativeof the veloity, so that it will be easier to perform the limit in the approximateproblem.3.2.1. Non-onservative formulation. Let us introdue ṽ = v − vref . The non-onservative formulation reads

∫

Ω

ρ
(
∂tv + ((v · ∇)v)

)
· ψ dx+

∫

Ω

2µ(ρ)D(v) : D(ψ) dx − 〈σref .ν, ψ〉
H

−
1

2 ,H
1

2

+
1

2

∫

Γ

ρin(ṽ · ψ)(v · ν)− dω =

∫

Ω

ρf · ψ dx, ∀t ∈ [0, T ], (22)for any ψ ∈ V whih does not depend on t, with the initial data ṽ(0) = ṽ0 =
v0 − vref(0).3.2.2. Intermediate formulation. Consider ψ ∈ C1

c ([0, T [, V ) and let us take ϕ =
1
2 (ṽ · ψ) in (21). We get
∫ T

0

∫

Ω

ρ

(
1

2
∂tṽ · ψ +

1

2
ṽ · ∂tψ +

1

2
(v · ∇)(ṽ · ψ)

)
dt dx+

1

2

∫

Ω

ρ0ṽ0 · ψ(0) dx

− 1

2

∫ T

0

∫

Γ

ρout(ṽ · ψ)(v · ν)+ dt dω +
1

2

∫ T

0

∫

Γ

ρin(ṽ · ψ)(v · ν)− dt dω = 0. (23)We now take ψ depending on t in (22) and we integrate with respet to t, then wesubtrat (23) and we get:
∫ T

0

∫

Ω

ρ

(
1

2
∂tṽ · ψ − 1

2
∂tψ · ṽ +

1

2
((v · ∇)ṽ) · ψ − 1

2
((v · ∇)ψ) · ṽ

)
dt dx

− 1

2

∫

Ω

ρ0ṽ0 · ψ(0) dx +

∫ T

0

∫

Ω

2µ(ρ)D(v) : D(ψ) dt dx −
∫ T

0

〈σref .ν, ψ〉
H

−
1

2 ,H
1

2
dt

+
1

2

∫ T

0

∫

Γ

ρout(ṽ · ψ)(v · ν)+ dt dω =

∫ T

0

∫

Ω

ρ

(
f − ∂tvref − ((v · ∇)vref)

)
· ψ dt dx.(24)



12 FRANCK BOYER AND PIERRE FABRIEThis formulation will be useful to obtain the energy estimate (formally by taking
ψ = ṽ) sine the �rst term is antisymmetri and vanishes when ψ = ṽ.3.2.3. Conservative formulation. We an now obtain a third weak formulation ofthe momentum balane equation whih is the �onservative� form of the problem,and whih is in fat the one that will be solved. For any ψ ∈ C1

c ([0, T [, V ) we take
ϕ = (v · ψ) in (21) to obtain
∫ T

0

∫

Ω

ρ (∂tv · ψ + v · ∂tψ + (v · ∇)(v · ψ)) dt dx+

∫

Ω

ρ0v0 · ψ(0) dx

−
∫ T

0

∫

Γ

ρout(v · ψ)(v · ν)+ dt dω +

∫ T

0

∫

Γ

ρin(v · ψ)(v · ν)− dt dω = 0. (25)We integrate (22) on the time interval [0, T ] and we subtrat (25). It follows
−
∫ T

0

∫

Ω

ρv ·
(
∂tψ + ((v · ∇)ψ)

)
dt dx−

∫

Ω

ρ0v0 · ψ(0) dx

+

∫ T

0

∫

Ω

2µ(ρ)D(v) : D(ψ) dt dx −
∫ T

0

〈σref .ν, ψ〉
H

−
1

2 ,H
1

2
dt

+
1

2

∫ T

0

∫

Γ

ρin(ṽ · ψ)(v · ν)− dt dω +

∫ T

0

∫

Γ

γ(ρ)(v · ψ)(v · ν) dt dω

=

∫ T

0

∫

Ω

ρf · ψ dt dx. (26)4. Main resultsThe main results of this paper are desribed in this setion. First of all, we showthe existene of the density ρ and veloity v satisfying the onservative formulationof the problem introdued above.Theorem 5. Under the assumptions stated in Setion 1.3, there exists a density ρin L∞(]0, T [×Ω), and a veloity �eld v in L2(]0, T [, (H1(Ω))d) suh that div v = 0and v = vref on Γin and satisfying (21) and (26).Then, we dedue the existene of the pressure term via the de Rham theorem.We obtain a triple (ρ, v, p) satisfying the Navier-Stokes equation in the distributionsense.Then, we are able to prove that the out�ow boundary ondition on Γout in (2)is satis�ed. This is not obvious sine ρ is not smooth and does not have traes inthe usual Sobolev sense. The preise result is given by Theorem 7 in Setion 7 butat this point we only state the following formal result. We use here the notationsof Setion 2.1.Theorem 6. Let ρ and v given by Theorem 5. There exists a unique pressure �eld
p ∈ W−1,∞(]0, T [, L2(Ω)) suh that the total stress tensor σ = 2µ(ρ)D(v) − p Idsatis�es

∂t(ρv) + div (ρv ⊗ v) − div (σ) = ρf,in the distribution sense, and suh that furthermore the out�ow boundary onditionin (2) is satis�ed in the sense
1

η

∫ η

0

σ(·, ξ, ·).ν dξ −−−⇀
η→0

σref .ν − 1

2
ρin(v · ν)−(v − vref), on Γout.



OUTFLOW BCS FOR THE NON-HOMOGENEOUS NAVIER-STOKES EQUATIONS 13That is to say that the mean values along the normal oordinate of the normalomponent of the stress σ.ν near the boundary onverges towards the imposed stress
σref .ν − 1

2ρin(v · ν)−(v − vref) on Γout in a suitable weak topology.5. Approximate problem5.1. De�nition. For any integer k ≥ 1, let Vk be a k-dimensional Galerkin ap-proximation spae in V and (ηk)k a smooth approximation of the identity in thetime variable. We introdue approximations of the data de�ned by:
ρin,k = ρin ⋆ ηk +

1

k
, ρ0,k = ρ0 +

1

k
,

vref,k = vref ⋆ ηk, σref,k = σref ⋆ ηk, fk = f ⋆ ηk.
(27)Hene, ρin,k, vref,k, σref,k and fk are ontinuous in time and furthermore ρ0,k and

ρin,k are bounded from below by 1
k
, sine ρ0 and ρin are non-negative.Let us onsider the following approximate problem :Find ṽk ∈ C1([0, T ], Vk), ρk ∈ C0([0, T ], L1(Ω)) ∩ L∞(]0, T [×Ω) and ρout,k ∈

L∞(]0, T [×Γ) suh that if we introdue vk = vref,k + ṽk:(1) The ouple (ρk, vk) is solution to (21) for any ϕ ∈ C1
c ([0, T [, H1(Ω)) withinitial data ρ0,k and in�ow boundary ondition ρin,k.(2) The ouple (ρk, vk) is solution to (22) with regularized data for any ψ ∈ Vk.If (ρk, vk) is suh an approximate solution then, it also satis�es the equivalent for-mulations (24) and (26) for any ψ ∈ C1([0, T ], Vk), with regularized data. Indeed,the formal omputations of Setion 3 are now justi�ed sine the approximate solu-tions are smooth enough.Notie that the approximate density ρk does not lie in a �nite dimension spaeand then the resolution of the approximate problem is not a straightforward on-sequene of the ordinary di�erential equations theory.5.2. Resolution of the approximate problem. The resolution of the approxi-mate problem is performed using a �xed point method (see for instane [5, 16℄).Let wk ∈ vref,k +C0([0, T ], Vk) be given and onsider the equations (21)-(22) withregularized data and where the advetion �eld is taken to be wk instead of v, thatis

∫ T

0

∫

Ω

ρk(∂tϕ+ wk · ∇ϕ) dt dx+

∫

Ω

ρ0,kϕ(0, ·) dx −
∫

Ω

ρk(T )ϕ(T ) dx

−
∫ T

0

∫

Γ

ρout,kϕ(wk · ν)+ dt dω +

∫ T

0

∫

Γ

ρin,kϕ(wk · ν)− dt dω = 0, (28)for any ϕ ∈ C1([0, T ], H1(Ω)) and
∫

Ω

ρk(∂tvk + (wk · ∇)vk) · ψ dx+

∫

Ω

2µ(ρk)D(vk) : D(ψ) dx

−〈σref,k.ν, ψ〉
H

−
1

2 ,H
1

2
+

1

2

∫

Γ

ρin,k(ṽk ·ψ)(wk ·ν)− dω =

∫

Ω

ρkfk ·ψ dx, ∀0 ≤ t ≤ T,(29)for any ψ ∈ Vk and with the initial data ṽk(0) = PVk
ṽ0 = PVk

(v0 − vref), PVk
beingthe orthogonal projetor in H onto Vk.



14 FRANCK BOYER AND PIERRE FABRIEThe vetor �eld wk being �xed in vref,k + C0([0, T ], Vk) ⊂ L2(]0, T [, (H1(Ω))d),we know by Theorem 2 that (28) has a unique weak solution
(ρk, ρout,k) ∈ L∞(]0, T [×Ω) × L∞(]0, T [×Γ, (wk · ν)+ dt dω).Furthermore, this solution enjoys the renormalization property and, in partiular,

ρk is ontinuous with respet to t and with values in Lq(Ω) for any q ∈ [1,+∞[.Even though ρout,k is only uniquely de�ned on the part of boundary where (wk ·ν) >
0, it is onvenient for the analysis to extend it to the whole boundary by letting
ρout,k = 0 where (wk · ν) ≤ 0.By using Theorem 3 we dedue the �rst useful estimate on (ρk, ρout,k).Lemma 1. We de�ne ρmin and ρmax by (10)-(11). For any k we have

ρmin +
1

k
≤ ρk(t, x) ≤ ρmax +

1

k
, for a.e. (t, x) ∈]0, T [×Ω,and

ρmin +
1

k
≤ ρout,k(t, ω) ≤ ρmax +

1

k
, for a.e. (t, ω) ∈]0, T [×Γ,with respet to the measure (wk · ν)+ dt dω.In partiular, for any k, ρk ≥ 1

k
> 0 and then, (ρk, ρout,k) being �xed, the equa-tion (29) for vk is now a lassial �nite dimensional ordinary di�erential equationsine the regularized data are ontinuous with respet to the time variable. Further-more, the advetion veloity �eld wk being �xed, the system is linear. Using theCauhy theorem, there exists a unique (global) solution vk ∈ vref,k + C1([0, T ], Vk)to this problem for the given approximate initial data. We denote this solution by

vk = Θk(wk). We are now going to show that the map Θk has a �xed point in asuitable spae.Before this, let us observe that, the solutions ρk, vk of (28) and (29) being smoothenough, we an justify the algebrai manipulations of setion 3 so that we have forany ψ ∈ C1([0, T ], Vk)

∫ T

0

∫

Ω

ρk

(
1

2
∂tṽk · ψ − 1

2
∂tψ · ṽk +

1

2
((wk · ∇)ṽk) · ψ − 1

2
((wk · ∇)ψ) · ṽk

)
dt dx

+
1

2

∫

Ω

ρk(T )ṽk(T ) · ψ(T ) dx− 1

2

∫

Ω

ρ0,kṽ0,k · ψ(0) dx−
∫ T

0

〈σref,k.ν, ψ〉
H

−
1

2 ,H
1

2
dt

+

∫ T

0

∫

Ω

2µ(ρk)D(vk) : D(ψ) dt dx+
1

2

∫ T

0

∫

Γ

ρout,k(ψ · ṽk)(wk · ν)+ dt dω

=

∫ T

0

∫

Ω

ρk

(
fk − ∂tvref,k − ((wk · ∇)vref,k)

)
· ψ dt dx. (30)
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−
∫ T

0

∫

Ω

ρkvk ·
(
∂tψ + ((wk · ∇)ψ)

)
dt dx−

∫

Ω

ρ0,kv0,k · ψ(0) dx+

∫

Ω

ρk(T )vk(T ) · ψ(T ) dx

+

∫ T

0

∫

Ω

2µ(ρk)D(vk) : D(ψ) dt dx−
∫ T

0

〈σref,k.ν, ψ〉
H

−
1

2 ,H
1

2
dt

+
1

2

∫ T

0

∫

Γ

ρin,k(ṽk · ψ)(wk · ν)− dt dω +

∫ T

0

∫

Γ

γ(ρk)(vk · ψ)(wk · ν) dt dω

=

∫ T

0

∫

Ω

ρkfk · ψ dt dx. (31)By taking ϕ = (ψ ·vref,k) as a test funtion in (28) we also get the following equationsatis�ed by ṽk

−
∫ T

0

∫

Ω

ρk

(
ṽk · ∂tψ + ((wk · ∇)ψ) · ṽk

)
dt dx

+

∫

Ω

ρk(T )(ṽk(T ) · ψ(T )) dx−
∫

Ω

ρ(0)(ṽ0,k · ψ(0)) dx

+

∫ T

0

∫

Ω

2µ(ρk)D(vk) : D(ψ) dt dx −
∫ T

0

〈σref,k.ν, ψ〉
H

−
1

2 ,H
1

2
dt

− 1

2

∫ T

0

∫

Γ

ρin,k(ṽk · ψ)(wk · ν)− dt dω +

∫ T

0

∫

Γ

ρout,k(ṽk · ψ)(wk · ν)+ dt dω

=

∫ T

0

∫

Ω

ρk

(
fk − ∂tvref,k − ((wk · ∇)vref,k)

)
· ψ dt dx.

(32)
This equation will be useful to obtain time translation estimates in the sequel.5.2.1. Energy estimate. Consider wk ∈ vref,k + C0([0, T ], Vk) and vk = Θk(wk) asde�ned previously. Let us hoose ψ = ṽk = vk − vref,k as a test funtion in (30), itfollows
1

2

∫

Ω

ρk(T )|ṽk(T )|2 dx+

∫ T

0

∫

Ω

2µ(ρk)|D(ṽk)|2 dt dx+
1

2

∫ T

0

∫

Γ

ρout,k|ṽk|2(wk · ν)+ dt dω

=
1

2

∫

Ω

ρ0,k|ṽ0,k|2 dx−
∫ T

0

∫

Ω

2µ(ρk)D(ṽk) : D(vref,k) dt dx

+

∫ T

0

〈σref,k.ν, ṽk〉
H

−
1

2 ,H
1

2
dt−

∫ T

0

∫

Ω

ρk((wk · ∇)vref,k) · ṽk dt dx

−
∫ T

0

∫

Ω

ρk∂tvref,k · ṽk dt dx+

∫ T

0

∫

Ω

ρkfk · ṽk dt dx.



16 FRANCK BOYER AND PIERRE FABRIEUsing the L∞ bound on ρk given by Lemma 1, assumption (7) and Hölder andYoung's inequalities, we lassially dedue the estimate
∫

Ω

ρk(T )|ṽk(T )|2 dx+
∫ T

0

∫

Ω

2µ(ρk)|D(ṽk)|2 dt dx+
∫ T

0

∫

Γ

ρout,k|ṽk|2(wk·ν)+ dt dω

≤ C(ρ0, v0, µ, ‖vref‖L2(H1), ‖f‖L2(L2), ‖σref‖
L2(H−

1

2 )
, ‖∂tvref‖L2(L2))

+ C(ρmax, µ)

(∫ T

0

‖vref,k‖4
H1(Ω)‖

√
ρkwk‖2

L2 dt

) 1

2
(∫ T

0

∫

Ω

|∇wk|2 dt dx
) 1

2

,where we emphasize that the onstants C above do not depend on k. Hene, sine
vk = vref,k + ṽk and using (5) we dedue
∫

Ω

ρk(T )|vk(T )|2 dx+
∫ T

0

∫

Ω

µ(ρk)|D(vk)|2 dt dx+
∫ T

0

∫

Γ

ρout,k|ṽk|2(wk·ν)+ dt dω

≤ C(ρ0, v0, µ, ‖vref‖L2(H1), ‖f‖L2(L2), ‖σref‖
L2(H−

1

2 )
, ‖∂tvref‖L2(L2))

+ C(ρmax, µ)

(∫ T

0

‖vref,k‖4
H1(Ω)‖

√
ρk wk‖2

L2 dt

) 1

2
(∫ T

0

∫

Ω

|∇wk|2 dt dx
) 1

2

,(33)We now use the fat that, k being �xed, vref,k belongs to L∞(]0, T [, (H1(Ω))d).Furthermore on the �nite dimensional spae Vk, the H1(Ω) norm is equivalent tothe L2(Ω) norm so that it follows from (33)
‖vk(T )‖2

L2 ≤ Ck +Dk

∫ T

0

‖wk(t)‖2
L2 dt,where the onstants Ck and Dk depend on k.The above estimate applies for any �nal time T > 0 so that we have in fat

‖vk(t)‖2
L2 ≤ Ck +Dk

∫ t

0

‖wk(s)‖2
L2 ds, ∀t ∈ [0, T ]. (34)Let us introdue

Mk(t) = Cke
Dkt, ∀t ≥ 0.Suppose that we have

‖wk(t)‖2
L2 ≤Mk(t), ∀t ∈ [0, T ],then, using (34) we dedue

‖vk(t)‖2
L2 ≤Mk(t), ∀t ∈ [0, T ].Hene, we proved that Θk maps the onvex set

K0 =

{
v ∈ vref,k + C1([0, T ], Vk), suh that ‖v(t)‖2

L2 ≤Mk(t), ∀t ∈ [0, T ]

}
,into itself. Notie in partiular that the elements of K0 are uniformly bounded in

L∞(]0, T [, (L2(Ω))d) by a onstant depending only on k, on the data and on the�nal time T . Moreover, sine Vk is a �nite dimensional subspae of (H1(Ω))d, the
L2-norm and the H1-norm are equivalent on Vk and then the set K0 is also boundedin L∞(]0, T [, (H1(Ω))d) sine vref,k ∈ L∞(]0, T [, (H1(Ω))d).



OUTFLOW BCS FOR THE NON-HOMOGENEOUS NAVIER-STOKES EQUATIONS 175.2.2. Compatness. Let wk ∈ K0 and vk = Θk(wk). We take ψ = ∂tṽk in (29).Sine all the norms in Vk are equivalent and using the fat that ∂tvref,k lies in
L2(]0, T [×Ω), we easily get a bound

sup
0≤t≤T

‖∂tṽk‖Vk
≤ C′

k,where C′
k depends only on T, k and on the data. Of ourse, we used here that theapproximate density ρk is bounded from below by 1

k
.As a onsequene, the onvex set

K1 =

{
v ∈ K0, sup

0≤t≤T

‖∂tṽ‖Vk
≤ C′

k

}
,is invariant through the map Θk. Using the Asoli theorem, we know that the set

K1 is relatively ompat in vref,k + C0([0, T ], Vk). In order to apply the Shauder�xed point theorem to the map Θk on the ompat onvex set K1, it remains toshow that Θk is ontinuous for the topology of vref,k + C0([0, T ], Vk). In fat it isenough to show that Θk is sequentially ontinuous.5.2.3. Continuity of Θk. Reall that k is a �xed integer. Let (wn
k )n we a sequenein vref,k + C0([0, T ], Vk) whih onverges towards wk in this spae. For any n let

(ρk,n, ρout,k,n) be the solution to the transport problem (28) with wk = wn
k and let

(ρk, ρout,k) the solution to (28) for the limit veloity �eld wk.Sine Vk is embedded in (H1(Ω))d, the sequene (wn
k )n strongly onverges in

C0([0, T ], (H1(Ω))d). In partiular, the traes (wn
k ·ν)n onverge towards (wk ·ν) in

L2(]0, T [×Γ). Hene, by the stability Theorem 4 we dedue that (ρk,n)n stronglyonverges towards ρk in all the spaes Lq(]0, T [×Ω) and that (ρout,k,n(wn
k · ν)+)nstrongly onverges towards ρout,k(wk · ν)+ in L2(]0, T [×Γ).Finally, sine µ is a bounded ontinuous funtion, we dedue that (µ(ρk,n))nonverges towards µ(ρk) in all the spaes Lq(]0, T [×Ω), q < +∞.Let us now onsider the solution vn

k to (29) for the advetion vetor �eld wn
k andthe density ρk,n onstruted above. Sine (wn

k )n is bounded in C0([0, T ], (H1(Ω))d),the energy estimate (33) leads to
‖vn

k ‖C0([0,T ],(L2(Ω))d) ≤ Ck, ∀n ≥ 0,and we also easily get that
‖∂tv

n
k ‖C0([0,T ],(L2(Ω))d) ≤ C′

k, ∀n ≥ 0.Using the Asoli theorem, there exists a subsequene always denoted by (vn
k )nwhih strongly onverges towards a limit vk in the spae vref,k+C0([0, T ], Vk), and inpartiular strongly in C0([0, T ], (H1(Ω))d). Furthermore, up to another extrationof a subsequene, (∂tv

n
k )n ⋆-weakly onverges towards ∂tvk in L∞(]0, T [, Vk).Thanks to the onvergenes obtained above, we an perform the limit in theequation satis�ed by vn
k . We obtain that ρk, vk, wk and ρout,k satisfy (29) and also(31). Sine the solution to (31) is unique as soon as ρk, ρout,k and wk are �xedwe dedue that the whole sequene (vn

k )n onverges in C0([0, T ], (H1(Ω))d) towards
vk = Θk(wk).This onludes the proof of the ontinuity of the map Θk.



18 FRANCK BOYER AND PIERRE FABRIE5.2.4. Conlusion. We just proved that Θk is a ontinuous map from vref,k +

C0([0, T ], Vk) into itself and that the onvex ompat set K1 is invariant by Θk.Thanks to the Shauder �xed point theorem, we �nd that there exists at least one�xed point vk of Θk into K1.Hene, there exists at least one solution to the approximate problem under study.Furthermore, this solution (ρk, vk) being ontinuous in time, it also satis�es all theequivalent weak formulations of the momentum balane equation.In the following setion, we are going to provide uniform estimates with respetto k for this approximate solution whih let us perform the limit when k goes toin�nity.6. Estimates for the approximate solution and proof of Theorem 56.1. Energy estimate. Sine we have vk = Θk(vk), the inequality (33) providesa �rst useful inequality whih implies, using the Gronwall lemma and assumption(5), the estimate
‖√ρkvk‖2

L∞(]0,T [,L2)+‖vk‖2
L2(]0,T [,H1)+

∫ T

0

∫

Γ

ρout,k|vk|2(vk ·ν)+ dt dω ≤ C0, (35)where C0 depends only on the data and the �nal time T , and in partiular is uniformwith respet to k. Notie that we used here the Korn inequality whih says thatthere exists C > 0 suh that
‖∇u‖L2(Ω) ≤ C‖D(u)‖L2(Ω), ∀u ∈ (H1

in(Ω))d, divu = 0.6.2. Additional estimates on ρk and vk. Sine ρk may vanish we do not havea lassial L∞(]0, T [, (L2(Ω))d) estimate on the veloity �eld vk from the energyestimate (35). Nevertheless, using (3) and (4), we an obtain estimates on vk andon its trae in spaes with time integrability index greater than 2 whih will bevery useful in the sequel.Lemma 2. Under the assumptions (3)-(4), there exist C1 > 0, β1, β2 ∈]2,+∞],suh that for any k
sup

t∈[0,T ]

∫

Ω

1

ρk

α
2 (t)

dx ≤ C1. (36)
‖vk‖Lβ1(]0,T [,L1(Ω)) ≤ C1, (37)
‖vk‖Lβ2(]0,T [,L2(Γ)) ≤ C1. (38)Proof. Let k being �xed.

• Using Lemma 1 we know that ρk is bounded from below by 1
k
. Let βk ∈

C1(R) suh that βk(s) = s−
α
2 for any s ≥ 1

k
. Using the renormalizationproperty given in Lemma 2 we know that (βk(ρk), βk(ρout,k)) is solution tothe transport equation with initial data βk(ρ0,k) and in�ow data βk(ρin,k).It follows that for any t ∈ [0, T ]

∫

Ω

βk(ρk(t)) dx+

∫ t

0

∫

Γ

βk(ρout,k)(vk · ν)+ dt dω

=

∫

Ω

βk(ρ0,k) dx+

∫ t

0

∫

Γ

βk(ρin,k)(vk · ν)− dt dω,



OUTFLOW BCS FOR THE NON-HOMOGENEOUS NAVIER-STOKES EQUATIONS 19and then we have
∫

Ω

1

ρk(t)
α
2

dx ≤
∫

Ω

1

ρ0,k

α
2

dx+

∫ t

0

∫

Γ

(ρin ⋆ ηk)−
α
2 (vk · ν)− dt dω

≤ ‖ρ0‖
α
2

L∞

∫

Ω

1

ρ0
α
dx

+ ‖(ρin ⋆ ηk)−
α
2 ‖L2(]0,T [,L2(Γ))‖(vk · ν)−‖L2(]0,T [,L2(Γ)).

(39)Sine (vk)k is bounded in L2(]0, T [, (H1(Ω))d), we know that (vk · ν)− isbounded in L2(]0, T [, L2(Γ)). Furthermore, sine s 7→ s−
α
2 is onvex on

R
+, Jensen's inequality gives

(ρin ⋆ ηk)−
α
2 ≤ (ρin

−α
2 ) ⋆ ηk.Then, by assumptions (3) and (4) and using Young's inequality, we see thatthe right-hand side of (39) is bounded. This proves the �rst point of thelemma.

• We �rst assume that α ≥ 2, then we write |vk| = (
√
ρk|vk|) 1√

ρ
k

. Using (35),the �rst fator is bounded in L∞(]0, T [, L2(Ω)) and using (36) the seondfator is bounded in L∞(]0, T [, Lα(Ω)). By using Hölder's inequality, we�nd that (37) holds with β1 = +∞ in that ase.
• We assume now that α < 2 and let β = 5α

2α+6 ∈]0, 1[. We write
|vk| =

(
ρk

β
2 |vk|β

)
|vk|1−βρk

− β
2 . (40)Using (35), one an see that the �rst fator is bounded in L∞(]0, T [, L

2

β (Ω))and that (vk)k is bounded in L2(]0, T [, (H1(Ω))d)) ⊂ L2(]0, T [, (L6(Ω))d).Hene, the fator |vk|1−β in (40) is bounded in L 2

1−β (]0, T [, L
6

1−β (Ω)). Fi-nally, using (36), we see that the third fator in (40) is bounded in thespae L∞(]0, T [, L
α
β (Ω)). Hene, we �nd that (37) holds with β1 = 4(α+3)

3(2−α)in that ase.
• We reall that there exists C > 0 suh that

‖u‖L2(Γ) ≤ C‖u‖
1

2

L2(Ω)‖u‖
1

2

H1(Ω), ∀u ∈ H1(Ω).Using interpolation properties between Lebesgue spaes on bounded do-mains and the embedding of H1(Ω) into L6(Ω) as soon as d ≤ 3, we have
‖u‖L2(Γ) ≤ C‖u‖

1

5

L1(Ω)‖u‖
4

5

H1(Ω), ∀u ∈ H1(Ω). (41)From (35) and (37) we know that (vk)k is bounded in L2(]0, T [, (H1(Ω))d)and in Lβ1(]0, T [, (L1(Ω))d). Hene, applying (41) with u = vk, we obtainthe bound (38) with β2 = 5β1

2β1+1 > 2.
�6.3. Time translations estimates. In order to perform the limit in the approxi-mate problem, it is neessary to prove some ompatness property for the sequene

(vk)k. As in [21℄ for instane, this ompatness property will follow from frationaltime derivatives and more preisely from time translations estimates.



20 FRANCK BOYER AND PIERRE FABRIELet us denote by τh, h > 0, the time translation operator de�ned for any Banahspae X and any u ∈ L1
loc(]0, T [, X) by
τhu(t) = u(t+ h), ∀t ∈]0, T − h[.Lemma 3. There exist δ > 0 and C2 > 0 depending only on the data and the �naltime T , suh that for any k ≥ 0 and any h > 0, we have

‖√τhρk(τhṽk − ṽk)‖L2(]0,T−h[,(L2(Ω))d) ≤ C2h
δ. (42)Proof. Let us �rst write the following identity

τhρk(τhṽk − ṽk) · (τhṽk − ṽk) =(τh(ρkṽk) − ρkṽk) · (τhṽk − ṽk)

−
(

(τhρk − ρk)ṽk

)
· (τhṽk − ṽk) = A+B.

(43)
• Estimate of the term A :Consider Ψ(t, x) ∈ C1([0, T ], Vk) and let us introdue ψ(t, x) = 1[s,s+h](t)Ψ(s, x).We use ψ(t, x) as a test funtion in the onservative formulation (32) where wereall that wk = vk. This omputation is allowed sine ρk and ṽk are ontinuouswith respet to the time variable. We get
∫

Ω

(τh(ρkṽk)(s) − ρkṽk(s)) · Ψ(s) dx

=

∫ s+h

s

∫

Ω

ρk((vk · ∇)Ψ(s)) · ṽk dt dx−
∫ s+h

s

∫

Ω

2µ(ρk)D(vk) : D(Ψ(s)) dt dx

+

∫ s+h

s

〈σref,k.ν,Ψ(s)〉
H

−
1

2 ,H
1

2
dt+

1

2

∫ s+h

s

∫

Γ

ρin,k(ṽk · Ψ(s))(vk · ν)− dt dω

−
∫ s+h

s

∫

Γ

ρout,k(ṽk · Ψ(s))(vk · ν)+ dt dω

+

∫ s+h

s

∫

Ω

ρk

(
fk − ∂tvref,k − ((vk · ∇)vref,k)

)
· Ψ(s) dt dx.Using the bounds on ρk given by Lemma 1, we get

∣∣∣∣
∫

Ω

(τh(ρkṽk)(s) − ρkṽk(s)) · Ψ(s) dx

∣∣∣∣

≤ C

(∫ s+h

s

‖√ρkvk‖L4(‖√ρk‖ṽk‖L4 + ‖∇vref,k‖L2) dt

)
‖∇Ψ(s)‖L2

+ C

(∫ s+h

s

‖∇vk‖L2 dt

)
‖∇Ψ(s)‖L2 + C

(∫ s+h

s

‖σref,k.ν‖
H

−
1

2
dt

)
‖Ψ(s)‖

H
1

2 (Γ)

+
1

2

∣∣∣∣∣

∫ s+h

s

∫

Γ

ρin,k(ṽk · Ψ(s))(vk · ν)− dt dω

∣∣∣∣∣+
∣∣∣∣∣

∫ s+h

s

∫

Γ

ρout,k(ṽk · Ψ(s))(vk · ν)+ dt dω

∣∣∣∣∣

+ C

(∫ s+h

s

‖fk‖L2 + ‖∂tvref,k‖L2 dt

)
‖∇Ψ(s)‖L2.Using the energy estimate (35) and assumptions (5)-(6) we an easily bound all theinterior terms by Chδ‖∇Ψ(s)‖L2 (see [5, 21℄). It remains to bound the boundaryterms.



OUTFLOW BCS FOR THE NON-HOMOGENEOUS NAVIER-STOKES EQUATIONS 21To this end we use the trae estimate (38), where we reall that β2 > 2. Hene,using the Hölder inequality, the two boundary terms above an be bounded by
Ch

β2−2

2β2 ‖∇Ψ(s)‖L2 . Hene, for δ > 0 small enough, we �nally proved the followingestimate ∣∣∣∣
∫

Ω

(τh(ρkṽk)(s) − ρkṽk(s)) · Ψ(s) dx

∣∣∣∣ ≤ Chδ‖∇Ψ(s)‖L2 .Now let us take Ψ(s) = τh(ṽk)(s) − ṽk(s). It follows
∣∣∣∣
∫

Ω

(τh(ρkṽk)(s) − ρkṽk(s)) · (τh(ṽk)(s) − ṽk(s)) dx

∣∣∣∣ ≤ Chδ‖τhṽk(s)−ṽk(s)‖H1 .By integrating this inequality with respet to s and using (35), we get
∣∣∣∣∣

∫ T−h

0

∫

Ω

(τh(ρkṽk)(s) − ρkṽk(s)) · (τh(ṽk)(s) − ṽk(s)) ds dx

∣∣∣∣∣

≤ Chδ‖ṽk‖L2(0,T−h,H1) ≤ K1h
δ. (44)This is the estimate of the term A in (43).

• Estimate for the term B :Consider a given time s ∈]0, T − h[, and hoose a time-independent funtion
ϕ ∈ H1(Ω). We take (t, x) 7→ 1[s,s+h](t)ϕ(x) as a test funtion in (28) (this ispossible sine ρk is ontinuous in time), it follows
∫

Ω

(τhρk(s, x) − ρk(s, x))ϕ(x) dx =

∫

Ω

(∫ s+h

s

ρkvk dt

)
· ∇ϕ(x) dx +

∫ s+h

s

∫

Γ

γ(ρk)ϕ(vk · ν) dt dω.Let ψ ∈ C0([0, T ], (H1(Ω))d). We hoose ϕ(x) = ṽk(s, x) · ψ(s, x) in the aboveidentity. It follows, using Sobolev embeddings, trae theorems and Lemma 1 that :
∣∣∣∣
∫

Ω

(τhρk(s) − ρk(s))ṽk(s) · ψ(s) dx

∣∣∣∣

≤ C

(∫ s+h

s

‖vk(t)‖H1 dt

)
‖ṽk(s)‖H1‖ψ(s)‖H1

0

≤ Ch
1

2 ‖vk‖L2(]0,T [,H1)‖ṽk(s)‖H1‖ψ(s)‖H1 .

(45)We now take ψ(s) = τhṽk(s) − ṽk(s) in (45), so that integrating with respet to swe get
∣∣∣∣∣

∫ T−h

0

∫

Ω

(τhρk − ρk)ṽk · (τhṽk − ṽk) ds dx

∣∣∣∣∣

≤ Ch
1

2 ‖vk‖L2(]0,T [,(H1(Ω))d)‖ṽk‖2
L2(]0,T [,(H1(Ω))d) ≤ K ′

1h
1

2 . (46)Combining estimates (44) and (46) gives the laim thanks to (43). �Sine ρk is not neessarily bounded from below away from 0 uniformly withrespet to k, it is needed to use the estimates of Lemma 2 in order to deduetranslation estimates on ṽk from the previous Lemma.



22 FRANCK BOYER AND PIERRE FABRIELemma 4. For any γ < 2, there exists δ > 0 suh that for any ε > 0 there exists
Cε > 0 satisfying

‖τhṽk − ṽk‖Lγ(]0,T−h[×Ω) ≤ ε+ Cεh
δ, ∀k ≥ 0, ∀h > 0.Proof. For any η > 0 we have

η
γ
2

∫ T−h

0

∫

Ω

|τhṽk − ṽk|γ dt dx ≤η γ
2

∫∫

{τhρ
k
<η}

|τhṽk − ṽk|γ dt dx

+

∫∫

{τhρ
k
≥η}

|τhρk|
γ
2 |τhṽk − ṽk|γ dt dx.It follows by using the Hölder inequality that

∫ T−h

0

∫

Ω

|τhṽk − ṽk|γ dt dx ≤
∣∣∣∣{τhρk < η}

∣∣∣∣

2−γ
2

‖τhṽk − ṽk‖γ

L2(]0,T−h[×Ω)

+
|Ω| 2−γ

2

η
γ
2

‖√τhρk(τhṽk − ṽk)‖γ

L2(]0,T−h[×Ω),where |A| denotes the Lebesgue measure of any measurable set A ⊂]0, T [×Ω. UsingPoinaré's inequality we dedue from (35) a bound in L2(]0, T [, (L2(Ω))d) for ṽkwhih let us bound the �rst term above. We use (42) to treat the seond term. Itfollows
∫ T−h

0

∫

Ω

|τhṽk − ṽk|γ dt dx ≤ C

∣∣∣∣{τhρk < η}
∣∣∣∣

2−γ
2

+ C
1

η
γ
2

hδγ .The laim will be proved if we show that for any ε > 0 there exists η > 0 suh that∣∣∣∣{τhρk < η}
∣∣∣∣ ≤ ε for any k and any h. To this end, we use (36) whih gives

∣∣∣∣{τhρk < η}
∣∣∣∣ ≤ η

α
2

∫ T

0

∫

Ω

1

ρk

α
2

dt dx ≤ η
α
2 TC0,and the laim is proved. �6.4. Performing the limit in the equations. From Lemma 3 and the om-patness results by J. Simon (see [20℄) we dedue that the sequenes (ṽk)k and

(vk = ṽk + vref,k)k are relatively ompat in (Lγ(]0, T [×Ω))d for any γ < 2. Sine
(vk)k is bounded in L2(]0, T [, (H1(Ω))d) thanks to (35), we an extrat a subse-quene always denoted by (vk)k whih onverges weakly in L2(]0, T [, (H1(Ω))d)and strongly in all the intermediate spaes Lγ(]0, T [, (H1−ε(Ω))d) for any γ < 2and any ε > 0. In partiular, the normal traes (vk · ν)k onverge towards (v · ν)in Lγ(]0, T [×Γ) for any γ < 2.Hene, we an apply the stability Theorem 4 whih gives us the strong onver-gene of (ρk)k towards ρ in all the spaes Lq(]0, T [×Ω), q < +∞. Sine µ is abounded ontinuous funtion we get the onvergene of (µ(ρk))k towards µ(ρ) isthe same spaes. Furthermore, the stability theorem also gives the onvergene ofthe traes, that is

γ(ρk)(vk · ν) −−−−−→
k→+∞

γ(ρ)(v · ν), in Lγ(]0, T [×Γ), for any γ < 2. (47)



OUTFLOW BCS FOR THE NON-HOMOGENEOUS NAVIER-STOKES EQUATIONS 23All the onvergenes above (and the onvergene properties of the regularizeddata de�ned in (27)) let us perform the limit in all the interior terms in (31) (with
wk replaed by vk) without any di�ulties.Let us now treat the boundary terms. We proved that (vk)k strongly on-verges towards v in Lγ(]0, T [, (H1−ε(Ω))d), for any γ < 2 and ε > 0. We dedue,in partiular, that the trae of vk strongly onverges towards the trae of v in
Lγ(]0, T [, (L3(Γ))d) for instane. Thanks to the estimate (38) (reall that β2 > 2)and to a lassial interpolation argument, we dedue that there exists β > 2 suhthat the trae of vk strongly onverges in Lβ(]0, T [, (Lβ(Γ))d). Sine we also have(47), it is now straightforward to perform the limit in all the boundary terms in(31).This onludes the proof of Theorem 5 sine the limits ρ and v obtained abovehave been proved to satisfy the weak formulations (21) and (26).7. Interpretation of the outflow boundary onditionLet us now prove that the arti�ial nonlinear out�ow boundary ondition thatwe proposed in (2) is satis�ed in a suitable weak sense by the solution (ρ, v) of (21)and (26) that we obtained in the previous setion.First of all, if we restrit (26) to test funtions ψ ∈ W

1,1
0 (]0, T [, (H1

0 (Ω))d)suh that divψ = 0 then we an use the lassial de Rham argument (see forinstane [21℄) to get the existene of the pressure. More preisely, there exists p ∈
W−1,∞(]0, T [, L2

0(Ω)) suh that, introduing the stress tensor σ = 2µ(ρ)D(v)−p Id,we have
∂t(ρv) + div (ρv ⊗ v) − div (σ) = ρf, (48)in the distribution sense on ]0, T [×Ω. Notie that all the terms in this equationbelong to W−1,∞(]0, T [, (H−1(Ω))d) so that any element of W 1,1

0 (]0, T [, (H1
0 (Ω))d)an be hosen as a test funtion in (48).From now on, we denote by 〈·, ·〉W−1,∞,W

1,1
0

the duality braket between thespaes W−1,∞(]0, T [) and W 1,1
0 (]0, T [).Let us �rst prove that, even though the term ρv ⊗ v is not smooth enough, wean give a weak sense to its normal trae on the boundary of the domain by usingthe fat that ρ is the solution of the transport equation assoiated to the veloity�eld v. The preise result is the following.Lemma 5. For any ψ ∈ C0([0, T ], (H1(Ω))d) and any α ∈ L∞(]0, T [), we have

1

ξ

∫ T

0

α(t)

∫

Oξ

ρ(v · ψ)(v · ν) dt dx −−−→
ξ→0

∫ T

0

α(t)

∫

Γ

γ(ρ)(v · ψ)(v · ν) dt dω.Proof. We refer to Setion 2.1 for the de�nition of Ωξ.First of all, sine v ∈ L2(]0, T [, (H1(Ω))d), the laim follows from the results inSetion 7 of [4℄ in the ase where ψ is assumed to be smooth enough.Then, sine v ∈ L2(]0, T [, (H1(Ω))d), ψ ∈ C0([0, T ], (H1(Ω))d) and d ≤ 3, weeasily see that (v · ψ)(v · ν) ∈ L1(]0, T [,W 1,1(Ω)) and that
‖(v · ψ)(v · ν)‖L1(W 1,1) ≤ C‖v‖2

L2(H1)‖ψ‖C0(H1).



24 FRANCK BOYER AND PIERRE FABRIEWe dedue that (v · ψ)(v · ν) lies in C0([0, ξΩ], L1(]0, T [×Γ)) and its norm in thisspae is ontrolled by ‖v‖2
L2(H1)‖ψ‖C0(H1). Hene, using (8), for any ξ ∈ [0, ξΩ] wehave∣∣∣∣∣1ξ ∫ T

0

α(t)

∫

Oξ

ρ(v · ψ)(v · ν) dt dx

∣∣∣∣∣ ≤ C‖α‖L∞‖ρ‖L∞‖v‖2
L2(H1)‖ψ‖C0(H1).The laim follows by density of smooth funtions in C0([0, T ], (H1(Ω))d). �We now prove that, against a test funtion vanishing on Γ, the mean-value alongthe normal diretion of the normal omponent of the stress tensor tends to zerowhen approahing the boundary. This result is very natural but important sineit implies that, for any ψ ∈ W

1,1
0 (]0, T [, (H1(Ω))d) the limit (if it exists !) when

ξ → 0 of the quantity
1

ξ

∫

Oξ

〈σ.ν, ψ〉W−1,∞,W
1,1
0

dx,only depends on the trae of ψ on the boundary Γ.Lemma 6. For any ψ ∈W
1,1
0 (]0, T [, (H1

0 (Ω))d) we have
1

ξ

∫

Oξ

〈σ.ν, ψ〉W−1,∞,W
1,1
0

dx −−−→
ξ→0

0.Proof. Notie �rst that the laim makes sense sine σ = 2µ(ρ)D(v) + p Id belongsto W−1,∞(]0, T [, (L2(Ω))d).For any ξ ∈ [0, ξΩ], we introdue the funtion θξ de�ned by θξ = 1 on Ωξ and
θξ = d(x,Γ)

ξ
on Oξ. Hene, θξ ∈ W 1,∞(Ω) and ∇θξ = 0 in Ωξ, ∇θξ = − 1

ξ
ν in Oξ.Consider now ψ ∈ W

1,1
0 (]0, T [, (H1

0 (Ω))d) and, for ξ small enough, let us take
θξψ as a test funtion in (48). We get

−
∫ T

0

∫

Ω

θξρv · (∂tψ + (v · ∇)ψ) dt dx+

∫ T

0

1

ξ

∫

Oξ

ρ(v · ψ)(v · ν) dt dx

+

∫

Ω

θξ 〈σ,D(ψ)〉W−1,∞,W
1,1
0

dx−
∫ T

0

∫

Ω

θξρf · ψ dt dx

=
1

ξ

∫

Oξ

〈σ.ν , ψ〉
W−1,∞,W

1,1
0

dx. (49)By Lemma 5, the seond term tends to zero as ξ → 0 beause ψ vanishes on theboundary. Sine θξ → 1 when ξ → 0 we an perform the limit in the other termsof the left-hand side. It follows
1

ξ

∫

Oξ

〈σ.ν, ψ〉W−1,∞,W
1,1
0

dx −−−→
ξ→0

−
∫ T

0

∫

Ω

ρv · (∂tψ + (v · ∇)ψ) dt dx

+

∫

Ω

〈σ,D(ψ)〉W−1,∞,W
1,1
0

dx −
∫ T

0

∫

Ω

ρf · ψ dt dx.One an �nally see that this limit is zero by taking ψ as a test funtion in (48). �We are now able to express the limit of the mean-value along the normal diretionof the normal omponent of the stress tested against any smooth divergene freetest funtion vanishing on Γin.
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1,1
0 (]0, T [, V ) we have

1

ξ

∫

Oξ

〈σ.ν, ψ〉
W−1,∞,W

1,1
0

dx

−−−→
ξ→0

∫ T

0

〈σref .ν, ψ〉
H

−
1

2 ,H
1

2
dt− 1

2

∫ T

0

∫

Γ

ρin(ṽ · ψ)(v · ν)− dt dω.Proof. Notie �rst that for any ξ > 0 small enough, the equality (49) also holds forany ψ ∈ W
1,1
0 (]0, T [, V ) sine θξψ is a suitable test funtion for (48). Furthermore,for this partiular hoie of ψ, we have

∫

Ω

θξ 〈σ,D(ψ)〉W−1,∞,W
1,1
0

dx =

∫ T

0

∫

Ω

2µ(ρ)θξD(v) : D(ψ) dt dx,sine divψ = 0 and then the pressure term (whih is the only one whih is notintegrable in time) is anelled. Using Lemma 5 we an perform the limit in theseond term in (49). It follows that
1

ξ

∫

Oξ

〈σ.ν, ψ〉W−1,∞,W
1,1
0

dx −−−→
ξ→0

−
∫ T

0

∫

Ω

ρv · (∂tψ + (v · ∇)ψ) dt dx

+

∫ T

0

∫

Γ

γ(ρ)(v ·ν)(v ·ψ) dt dω+

∫ T

0

∫

Ω

2µ(ρ)D(v) : D(ψ) dt dx−
∫ T

0

∫

Ω

ρf dt dx.Using now the weak formulation (26) satis�ed by ρ and v, the laim follows. �The nonlinear boundary ondition under onsideration in this paper is a ondi-tion on the normal omponent of the stress tensor at the boundary. In this kindof situations, the pressure is uniquely determined (see [5℄), ontrarily to the ase ofDirihlet boundary onditions where the pressure is only de�ned modulo a spae in-dependent term (this degree of freedom is often �xed by imposing a zero mean-valueondition on p).Sine the trae of the test funtions ψ allowed in Lemma 7 are onstraint tosatisfy ∫
Γ
(ψ · ν)dω = 0, we will determine uniquely the pressure by removing thisonstraint. To this end we will need the following result.Lemma 8. For any Φ ∈ (H1(Ω))d there exists gΦ ∈ W−1,∞(]0, T [) suh that, forany α ∈ W

1,1
0 (]0, T [) we have

1

ξ

∫

Oξ

〈σ.ν, αΦ〉
W−1,∞,W

1,1

0

dx −−−→
ξ→0

〈gΦ, α〉W−1,∞,W
1,1

0

.Proof. We take ψ = θξα(t)Φ as a test funtion in (48). It follows
−
∫ T

0

(∂tα)

(∫

Ω

θξρv · Φ dx
)
dt−

∫ T

0

α(t)

(∫

Ω

θξρv · ((v · ∇)Φ) dx

)
dt

+

∫ T

0

α(t)

(
1

ξ

∫

Oξ

ρ(v · Φ)(v · ν) dx

)
dt+

∫

Ω

θξ 〈σ, αD(Φ)〉W−1,∞,W
1,1
0

dx

−
∫ T

0

α(t)

(∫

Ω

θξρf · Φ dx
)
dt =

1

ξ

∫

Oξ

〈σ.ν, αΦ〉W−1,∞,W
1,1
0

dx.



26 FRANCK BOYER AND PIERRE FABRIEBy Lemma 5 we an perform the limit in the third term. The other terms in theleft-hand side are treated by using the Lebesgue theorem. It follows
1

ξ

∫

Oξ

〈σ.ν, αΦ〉
W−1,∞,W

1,1

0

dx −−−→
ξ→0

−
∫ T

0

(∂tα)

(∫

Ω

ρv · Φ dx
)
dt

−
∫ T

0

α(t)

(∫

Ω

ρv · ((v · ∇)Φ) dx

)
dt+

∫ T

0

α(t)

(∫

Γ

γ(ρ)(v · Φ)(v · ν) dω

)
dt

+

〈∫

Ω

σ : D(Φ) dx, α

〉

W−1,∞,W
1,1

0

−
∫ T

0

α(t)

(∫

Ω

ρf · Φ dx
)
dt.Sine L1(]0, T [) ⊂W−1,∞(]0, T [), the limit obtained above an learly be expressedas a duality braket 〈gΦ, α〉W−1,∞,W

1,1
0

, with gΦ ∈ W−1,∞(]0, T [). �We an now prove Theorem 6 whih gives existene and uniqueness of the pres-sure and the interpretation of the out�ow boundary ondition. More preisely, weprove the following result.Theorem 7. Let ρ and v given by Theorem 5. There exists a unique pressure �eld
p ∈ W−1,∞(]0, T [, L2(Ω)) suh that the total stress tensor σ = 2µ(ρ)D(v) − p Idsatis�es

∂t(ρv) + div (ρv ⊗ v) − div (σ) = ρf,in the distribution sense, and suh that furthermore the out�ow boundary onditionis satis�ed on Γout in the following sense:For any ϕ ∈W
1,1
0 (]0, T [, (H

1

2

in(Γ))d), we have
〈

1

η

∫ η

0

σ(ξ, ·).ν dξ, ϕ
〉

W−1,∞(H−
1

2 ),W 1,1
0

(H
1

2 )

−−−→
η→0

∫ T

0

〈σref .ν, ϕ〉
H

−
1

2 ,H
1

2
dt− 1

2

∫ T

0

∫

Γ

ρin(v · ν)−(ṽ · ϕ) dt dω. (50)Notie that, sine ϕ vanishes on Γin, formula (50) gives a sense to the out�owboundary ondition only on Γout as expeted.Proof. We know that the trae operator from H1(Ω) onto H 1

2 (Γ) admits a on-tinuous right inverse denoted by R. Furthermore, the divergene operator ad-mits a ontinuous right inverse from L2
0(Ω) into (H1

0 (Ω))d denoted by Π. For any
ϕ ∈W

1,1
0 (]0, T [, (H

1

2

in(Γ))d) we de�ne its spatial mean-valuem(ϕ·ν)(t) =
∫
Γ ϕ·ν dω,for any t ∈ [0, T ].For any ϕ suh that m(ϕ · ν)(t) = 0 for any t, the funtion G(ϕ) de�ned by

G(ϕ) = R(ϕ) − Π(div (R(ϕ))),lies in W 1,1
0 (]0, T [, V ) and its trae on Γ is ϕ. Consider now the map F (ϕ) de�nedby

F (ϕ)(t, ξ, ω) =
ϕ(t, ω)

Jξ(ω)
, ∀t ∈]0, T [, ∀ξ ∈ [0, ξΩ], ∀ω ∈ Γ,and extended in a regular way to the whole domain Ω. In this formula, we reallthat Jξ(ω) is the smooth Jaobian determinant appearing in (8). By de�nition, we
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〈

1

η

∫ η

0

σ.ν dξ, ϕ

〉

W−1,∞(H−
1

2 ),W 1,1

0
(H

1

2 )

=
1

η

∫

Oη

〈σ.ν, F (ϕ)〉W−1,∞,W
1,1
0

dx. (51)Furthermore, by onstrution the trae of F (ϕ) on Γ is ψ. Hene, the di�erene
F (ϕ) −G(ϕ) lies in W 1,1

0 (]0, T [, (H1
0 (Ω))d) and then, by Lemma 6 we get

lim
η→0

1

η

∫

Oη

〈σ.ν, F (ϕ) −G(ϕ)〉W−1,∞,W
1,1
0

dx. (52)Hene, applying Lemma 7 to ψ = G(ϕ), and using (51)-(52) we �nd
lim
η→0

〈
1

η

∫ η

0

σ.ν dξ, ϕ

〉

W−1,∞(H−
1

2 ),W 1,1
0

(H
1

2 )

=

∫ T

0

〈σref .ν, ϕ〉
H

−
1

2 ,H
1

2
dt− 1

2

∫ T

0

∫

Γ

ρin(v · ν)−(ṽ · ϕ) dt dω. (53)Hene, we proved (53) for any ϕ suh that m(ϕ · ν) = 0 for any t ∈ [0, T ]. Letus now hoose Φ0 ∈ (H1
in(Ω))d, independent of t, suh that m(Φ0 · ν) = 1. Thisis possible sine we assume that Γout has a positive measure. For any ϕ like inthe statement of the theorem we introdue ϕ̃ = ϕ −m(ϕ · ν)Φ0. By onstrution,

m(ϕ̃ · ν) = 0 and then (53) holds with ϕ replaed by ϕ̃. Let us now write by usingformula (51)
〈

1

η

∫ η

0

σ.ν dξ, ϕ

〉

W−1,∞(H−
1

2 ),W 1,1
0

(H
1

2 )

=

〈
1

η

∫ η

0

σ.ν dξ, ϕ̃

〉

W−1,∞(H−
1

2 ),W 1,1
0

(H
1

2 )

+

〈
1

η

∫ η

0

σ.ν dξ,m(ϕ · ν)Φ0

〉

W−1,∞(H−
1

2 ),W 1,1
0

(H
1

2 )

=

〈
1

η

∫ η

0

σ.ν dξ, ϕ̃

〉

W−1,∞(H−
1

2 ),W 1,1

0
(H

1

2 )

+
1

η

∫

Oη

〈σ.ν ,m(ϕ · ν)F (Φ0)〉W−1,∞,W
1,1
0

dx. (54)The �rst term in the right-hand side onverges when η → 0 as we have seen in(53). By Lemma 8, the seond one onverges towards 〈gF (Φ0),m(ϕ · ν)
〉

W−1,∞,W
1,1
0sine m(ϕ · ν) ∈ W

1,1
0 (]0, T [). We remark that gF (Φ0) depends only on the timevariable so that we an also write this term as follows

〈
gF (Φ0),m(ϕ · ν)

〉
W−1,∞,W

1,1
0

=

〈
1

η

∫ η

0

gF (Φ0) Id.ν dξ, ϕ

〉

W−1,∞(H−
1

2 ),W 1,1
0

(H
1

2 )

.(55)It is then natural to introdue the new stress tensor σ̃ = σ − gF (Φ0) Id, whihamounts to add a term depending only on the time variable to the pressure. Ofourse, (48) is also satis�ed when we replae σ by σ̃. Furthermore, from (53), (54)
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〈

1

η

∫ η

0

σ̃.ν dξ, ϕ

〉

W−1,∞(H−
1

2 ),W 1,1
0

(H
1

2 )

−−−→
ξ→0

∫ T

0

〈σref .ν, ϕ̃〉
H

−
1

2 ,H
1

2
dt− 1

2

∫ T

0

∫

Γ

ρin(v · ν)−(ṽ · ϕ̃) dt dω.By de�nition, we have ϕ̃ = ϕ−m(ϕ · ν)Φ0 so that we get
〈

1

η

∫ η

0

σ̃.ν dξ, ϕ

〉

W−1,∞(H−
1

2 ),W 1,1

0
(H

1

2 )

−−−→
η→0

∫ T

0

〈σref .ν, ϕ〉
H

−
1

2 ,H
1

2
dt− 1

2

∫ T

0

∫

Γ

ρin(v · ν)−(ṽ · ϕ) dt dω

−
∫ T

0

m(ϕ · ν) 〈σref .ν,Φ0〉
H

−
1

2 ,H
1

2
dt

+
1

2

∫ T

0

m(ϕ · ν)

∫

Γ

ρin(v · ν)−(ṽ · Φ0) dt dω.If we add to the pressure the quantity
π(t) = −〈σref .ν,Φ0〉

H
−

1

2 ,H
1

2
+

1

2

∫

Γ

ρin(v · ν)−(ṽ · Φ0) dω ∈ W−1,∞(]0, T [),that is letting
˜̃σ = σ̃ − π(t) Id = σ − (gF (Φ0)(t) + π(t)) Id = 2µ(ρ)D(v)− (p+ π(t) + gF (Φ0)(t)) Id,and replaing the pressure p by p+ π(t) + gF (Φ0)(t), the laim is proved. �8. A possible variant for the outflow boundary onditionIn this setion we propose to prove that similar results than the one of Theorems5 and 7 still hold in the ase where the initial density ρ0 and the in�ow data ρinare only supposed to be non-negative almost everywhere provided that we onsidera slightly modi�ed out�ow boundary ondition. Hene, in this setion we do notassume that (3) and (4) hold.We propose to onsider here the following out�ow boundary ondition

σ.ν = σref .ν − θρin(v · ν)−(v − vref), (56)instead of the one in (2), where θ is any real number suh that θ > 1
2 . This hoieorresponds, roughly speaking, to add a small dissipation at the out�ow boundaryfor our problem.Theorem 8. We only assume that ρ0 > 0 and ρin > 0 almost everywhere insteadof (3) and (4).Then, the results of Theorems 5 and 7 hold if we replae the last boundary on-dition in (2) by (56) with θ > 1

2 (and replaing the oe�ient 1
2 by θ in (50)).Proof. The main lines of the proof of Theorem 5 are the same, we only give thedetails of the points that need a partiular attention.



OUTFLOW BCS FOR THE NON-HOMOGENEOUS NAVIER-STOKES EQUATIONS 29We introdue in the same way an approximate problem for whih existene of asolution is proved with the same �xed point tehnique. It is now easy to see thatthe energy estimate (35) now beomes
‖√ρkvk‖2

L∞(]0,T [,L2) + ‖vk‖2
L2(]0,T [,H1)

+

∫ T

0

∫

Γ

ρout,k|vk|2(vk ·ν)+ dt dω+

(
θ − 1

2

)∫ T

0

∫

Γ

ρin,k|vk|2(vk ·ν)− dt dω ≤ C0,whih imply a bound, uniform with respet to k
∫ T

0

∫

Γ

γ(ρk)|vk|2|vk · ν| dt dω ≤ C1,from whih we dedue an L3(]0, T [×Γ) estimate whih reads
∫ T

0

∫

Γ

(γ(ρk)|vk · ν|)3 dt dω ≤ C1. (57)Sine we do not assume that (3) and (4) hold, we learly see that estimates(36)-(38) are not valid anymore. Nevertheless we are going to show that Lemmas 3and 4 are still valid. Indeed, in the proof of Lemma 3 the only thing whih hangeis the estimate of the boundary term sine we do not have (38). Let us now boundthese boundary terms by using (57):
∣∣∣∣
∫ s+h

s

∫

Γ

γ(ρk)(vk · ν)(ṽk · Ψ(s)) dt dω

∣∣∣∣

≤
∣∣∣∣∣

∫ s+h

s

∫

Γ

γ(ρk)(vk · ν)(ṽk · Ψ(s)) dt dω

∣∣∣∣∣

≤ Ch
1

6 ‖γ(ρk)(vk · ν)‖L3(]0,T [×Γ)‖ṽk‖L2(]0,T [,H1)‖Ψ(s)‖H1

≤ C′h
1

6 ‖Ψ‖H1 .This estimate let us onlude the proof of Lemma 3 as before.Let us now turn to Lemma 4. Here again most of the proof still holds. We justhave to provide an alternative argument for the last point. More preisely we aregoing to show, without using (36), that for any ε > 0, there exists η > 0 and k0 ≥ 0,suh that
|{τhρk < η}| ≤ ε, ∀k ≥ k0, ∀h > 0. (58)To this end, let us show

|{x ∈ Ω, ρk(t, x) < η}| ≤ ε, ∀k ≥ k0, ∀t ∈ [0, T ], (59)whih imply (58) by integration with respet to the time variable.Let β ∈ C1(R) be a non-negative non-inreasing funtion suh that β(s) = 1 forany s ≤ 1 and β(s) = 0 for any s ≥ 2. For any η > 0, we let βη(s) = β
(

s
η

).We now use the renormalization property for (28) (with wk = vk) applied to thefuntion βη and we �nally take ϕ = 1 as a test funtion in the equation satis�ed by
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βη(ρk). It follows that for any t ∈ [0, T ] we have

∫

Ω

βη(ρk(t)) dx ≤
∫

Ω

βη(ρ0,k) dx +

∫ T

0

∫

Γ

βη(ρin,k)(vk · ν)− dt dω

≤
∫

Ω

βη(ρ0) dx+ ‖vk‖L2(]0,T [×Γ)

(∫ T

0

∫

Γ

β2
η(ρin,k) dt dω

) 1

2

≤
∫

Ω

βη(ρ0) dx+ C

(∫ T

0

∫

Γ

β2
η(ρin) dt dω

) 1

2

+ C

(∫ T

0

∫

Γ

|β2
η(ρin) − β2

η(ρin,k)| dt dω
) 1

2Sine βη(s) = 0 as soon as s ≥ 2η the �rst two terms above are bounded respetivelyby |{ρ0 < 2η}| and by C|{ρin < 2η}| 12 . The last term, alled S, an be ontrolledas follows
S ≤ C‖βη(ρin) − βη(ρin,k)‖

1

2

L1(]0,T [×Γ)

≤ C
1

η
1

2

‖ρin − ρin,k‖
1

2

L1(]0,T [×Γ).Sine, by onstrution, βη(s) = 1 any for s < η, we �nally proved for any t ∈ [0, T ],and any k ≥ 0

∣∣{ρk(t) < η}
∣∣ ≤

∣∣{ρ0 < 2η}
∣∣+ C

∣∣{ρin < 2η}
∣∣ 12 + C

1

η
1

2

‖ρin − ρin,k‖
1

2

L1(]0,T [×Γ).Sine ρ0 and ρin are positive almost everywhere, there exists η > 0 small enoughsuh that eah of the �rst two terms are smaller than ε. This η being �xed, we annow �nd k0 suh that the last term is smaller than ε as soon as k ≥ k0. This proves(59) and then (58).Finally, following the proof of Lemma 4, we proved that, for any γ < 2, thereexists δ > 0 suh that for any ε > 0, there exists Cε > 0 and kε suh that
‖τhṽk − ṽk‖Lγ(]0,T−h[×Ω) ≤ ε+ Cεh

δ, ∀k ≥ kε, ∀h > 0.This translation estimate is su�ient to apply the ompatness results in [20℄ andwe dedue in that ase the same ompatness properties than in Setion 6.4.Finally, it remains to perform the limit in the approximate problem. As far asthe transport equation is onerned the proof is the same than in Setion 6.4 byusing the weak-⋆ onvergene of ρk and ρout,k in L∞ and the strong onvergeneof vk obtained above. In the same way we an prove the strong onvergene of ρktowards ρ in all the spaes Lq(]0, T [×Ω) with q < +∞.Remark now that (γ(ρk)(vk · ν))k weakly onverges towards γ(ρ)(v · ν) in thespae Lγ(]0, T [, L2(Γ)) for any γ < 2. But, from (57) we know that (γ(ρk)(vk ·
ν))k is bounded in L3(]0, T [×Γ). Hene, up to a subsequene, we dedue that
(γ(ρk)(vk · ν))k weakly onverges in L3(]0, T [×Γ) towards γ(ρ)(v · ν). Sine thetrae of vk strongly onverges in Lγ(]0, T [, (L3(Γ))d) we an now perform the limitin the boundary terms in (31) (with wk = vk, ψ(T ) = 0 and θ instead of 1

2 ).



OUTFLOW BCS FOR THE NON-HOMOGENEOUS NAVIER-STOKES EQUATIONS 31Finally, existene and uniqueness of the pressure satisfying (48) and the weakonvergene (50) with θ instead of 1
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