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DISCRETE BESOV FRAMEWORK FOR FINITE VOLUME APPROXIMATION

OF THE p-LAPLACIAN ON NON-UNIFORM CARTESIAN GRIDS

Boris Andreianov1, Franck Boyer2 and Florence Hubert2

Abstract. This work addresses the problem of a priori error analysis for the finite volume approxi-
mation of solutions of the p-laplacian on cartesian grids. We first recall the way we constructed such
schemes and the different error bounds we proved in our previous works. Then we concentrate par-
ticularly on the case where the exact solution has only weak regularity properties (which are natural
for this problem) of Besov kind with derivation index in between 1 and 2. In this framework, the
usual techniques to obtain error estimates for finite volumes schemes are not straightfoward to apply.
Hence, we propose to take advantage of the variational structure of the equation and the schemes in
order to obtain the error bounds. In the case of uniform meshes, this strategy was succesfully applied
in [2] to obtain optimal estimates. We propose in this work to extend this approach to a more general
framework of non-uniform meshes called “smoothly refined” meshes.

Résumé. Ce travail concerne l’analyse d’erreur a priori pour l’approximation par une méthode de
volumes finis des solutions du p-laplacien sur un maillage cartésien. Nous commençons par rappeller
la construction de tels schémas et les différents résultats obtenus dans nos travaux antérieurs. On
s’intéresse ensuite à l’analyse d’erreur dans le cas où la solution exacte possède seulement des propriétés
de régularité assez faibles (naturelles pour le problème étudié) de type Besov d’indice de dérivation
strictement compris entre 1 et 2. Dans ce cadre, les méthodes usuelles d’estimation d’erreur sont
difficilement applicables. On propose donc de profiter de la structure variationnelle de l’équation et
des schémas pour obtenir les bornes souhaitées. Sous la restriction de l’uniformité des maillages, cette
approche a été utilisée avec succès dans [2] pour obtenir des estimations optimales. Nous présentons,
dans ce travail, l’extension de la méthode à un cadre plus général de maillages dits “régulièrement
raffinés”.

1. Introduction

In this article we are interested in the finite volume numerical approximation on rectangular meshes of
solutions to the p-laplacian with homogeneous Dirichlet boundary conditions (1 < p < +∞):

−div
(
|∇u|p−2∇u

)
= f, in Ω, u = 0, on ∂Ω, (1)

where the rectangular domain is Ω = [0, Lx] × [0, Ly]. Assume Lx = Ly = 1 for simplicity. Even though

the problem above is well-posed for any f ∈ W−1,p′

(Ω), p′ = p
p−1 , we are interested here in the case where

f ∈ Lp′

(Ω). In some previous works [1–3], we carried out the error analysis for a family of “variational” finite
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volume schemes on cartesian meshes for this problem. The cartesian geometry of the grids we consider is of
course restrictive but has the advantage to lead to relatively simple nine-points schemes, for which much deeper
analysis can be performed. Moreover, using a fictitious domain and penalization approach, it is possible to
reduce the resolution of (1) on any domain to cartesian geometries (see [1] for some details). Finally, we refer
to [4, 7] for the study of finite volume schemes for such nonlinear monotonic elliptic equations on much more
general grids than cartesian ones. The error analysis available for these schemes cover the case of W 2,p solutions
but, to our knowledge, the case of Besov solutions is far from being understood in this more general setting.

In [1], assuming the W 2,p regularity of the exact solution u of (1), we derive estimates of order p − 1 for
p ∈ (1, 2], and of order 1/(p− 1) for p ≥ 2 for the schemes under study in this paper; these estimates are in
discrete W 1,p norm. In [3], assuming the W 4,1 regularity of u and the uniformity of the meshes, we improve
these estimates (we get in particular the h2/(p−1) convergence rate for p ≥ 4) and also derive L∞ and W 1,1

superconvergence estimates that are sharp in some cases.
Note that in the case p ∈ (1, 2], the W 2,2 regularity holds true whenever f ∈ Lp′

(Ω). The situation for
p > 2 is quite different. The following Besov regularity result (the definition and description of Besov spaces
are recalled in the sequel) due to Simon [10] is essentially sharp:

Theorem 1.1. For any p > 2 and f ∈ Lp′

(Ω), the unique solution to (1) lies in the Besov space B
1+ 1

p−1 ,p
∞ (Ω).

Moreover, to our knowledge no regularity assumption on f is known to imply W 2,p regularity of the solution
u for p > 2 (except for the particular case of solutions without critical points; see the discussion in [3]).

Inspired by the “natural” regularity result of Theorem 1.1, we introduced in [2] the “discrete Besov” frame-
work for uniform cartesian meshes and carried out the corresponding error analysis: the convergence rate of

h
2

p(p−1) was obtained. Note that the numerical resultats provided in [2] suggest that this rate is optimal for

solutions in B
1+ 1

p−1 ,p
∞ (Ω).

The sharp technique used for the error analysis in [2] is adapted from the work [6] (based on the original
idea in [12]), concerning the improvement of the error bound for P 1 finite element approximation of W 2,p

solutions. Note that the adaptation of the “finite element” technique of [6, 12] to the finite volume framework

is not straightforward, and makes it necessary to work in the natural regularity space B
1+ 1

p−1 ,p
∞ instead of W 2,p

(see [2, Remark 3.2]).
The goal of the present paper is to extend the discrete Besov error analysis to (a family of) non-uniform

cartesian meshes. The idea is to use the characterization of Besov spaces by non uniform “translation operators”,
that is flows along C2 vector fields. This induces a restriction on the geometry of the mesh (see (2),(3) below)
which means that the mesh parameters change in a smooth C2 way from one cell to any of its neighbors. In the
sequel, we refer to these meshes as “smoothly refined” ones.

Although the present ideas can be applicable for very particular non-smoothly refined cartesian meshes, the
problem of extending the discrete Besov analysis to unstructured (especially non cartesian) meshes seems to be
open and quite challenging.

Note that the results of this paper extend in a straightforward way to more general nonlinear elliptic equations
arising from the minimization of a functional defined on W 1,p

0 (Ω) of the form J : u 7→
∫
Ω

Φ(∇u) − fu, where Φ
should be assumed strictly convex, coercive and such that ∇Φ enjoying the same growth restrictions and (local)
Hölder continuity properties as z 7→ |z|p−2z.

The outline of this paper is the following. In section 2, we describe the meshes we are interested in, we also
introduce some notations and we finally recall the definition of the finite volume schemes under study. In section
3, we state the main result of this paper (Theorem 3.1) which provides an error bound for Besov solutions of
the p-laplacian then we recall the main steps of the proof (following [2]). Finally in section 4, we give the proofs
of Propositions 3.3 and 3.4 in the case of non-uniform smoothly refined meshes.
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2. The finite volume scheme

2.1. Smoothly refined cartesian meshes

We consider in this paper families of rectangular meshes defined on the domain Ω. They are assumed to
be smoothly refined in the following sense: we suppose given two increasing C2 diffeomorphisms from R onto
itself denoted gx, gy and such that gx(0) = gy(0) = 0, gx(1) = gy(1) = 1. We denote by g = gx ⊗ gy the map
defined by g(x, y) = (gx(x), gy(y)) and by θx, θy the two vector fields given by θx(x, y) = 1/2(g′x(g

−1
x (x)), 0) and

θy(x, y) = 1/2(0, g′y(g
−1
y (y))).

For any two integers Nx and Ny, we let h = 1
Nx−1 , k = 1

Ny−1 and we construct the mesh T on Ω as the image

of the uniform rectangular Nx × Ny grid on [0, 1]2 through the map g. In this setting, the control volumes Kij

and their centers xKij
(which are not the geometric centers of the control volumes) are defined by

Kij =
]
gx((i − 1)h), gx(ih)

[
×
]
gy((j − 1)k), gy(jk)

[
, and xKij

= (gx((i − 1/2)h), gy((j − 1/2)k)), (2)

for any 1 ≤ i ≤ Nx and 1 ≤ j ≤ Ny. In order to measure the regularity of this family of meshes, we introduce

reg(T ) = max

(
h

k
,
k

h
, ‖g′‖∞ + ‖g′′‖∞,

∥∥(g−1)′
∥∥
∞

)
. (3)

As in [1, 2], we introduce artificial control volumes outside the domain obtained by symmetry with respect
to the boundaries of Ω in order to treat the boundary conditions. Now we can define the dual control volumes
K
∗ as the rectangles whose vertices are the points xK of four adjacent control volumes (see Figure 1).

dual mesh T ∗

mesh T
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Figure 1. Non-uniform mesh (left) and notations in a dual control volume (right)

For any dual control volume K
∗ (see Figure 1), (xK

∗

i )i=1,2,3,4 are the vertices of the dual control volume

K
∗ numbered counter clockwise starting from the lower left hand corner; (KK

∗

i )i=1,2,3,4 are the corresponding

control volumes with centers (xK
∗

i )i=1,2,3,4; σK
∗

i is the half-edge between K
K

∗

i and K
K

∗

i+1 located in K
∗ and mK

∗

i

denotes its measure; lK
∗

i is the distance between xK
∗

i and xK
∗

i+1; finally, τK
∗

i =
mK

∗

i

lK
∗

i

is the so-called transmissivity

coefficient. Conventionally, in a given dual control volume, the indexes i ∈ Z are understood modulo 4.
The finite volume method associates to each control volume K an unknown value uK. We denote the set

(uK)
K∈T ∈ R

T by uT . For any continuous function v on Ω, the discrete function vT = (vK)
K∈T with vK = v(xK),

is called the projection of v on the space R
T of discrete functions. For a given discrete function uT ∈ R

T , the
homogeneous Dirichlet boundary conditions are taken into account by using the ghost cells method. That is,
we extend the values of uT on artificial points outside of Ω by odd symmetry with respect to the corresponding
boundaries (see the details in [1, 2]).
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Given a dual control volume K
∗, we define the projection operator TK

∗ which associates to each uT ∈ R
T its

values TK
∗(uT ) = (uT

1,K∗ , uT
2,K∗ , uT

3,K∗ , uT
4,K∗) in the four control volumes (KK

∗

i )i that intersect K
∗. Note that for

boundary dual control volumes, ghost cells are used in order to give sense to the definition of TK
∗ . For instance,

if K
∗ is located at the right boundary of Ω, we have by definition uT

2,K∗ = −uT
1,K∗ and uT

3,K∗ = −uT
4,K∗ .

2.2. Discrete Lebesgue, Sobolev and Besov norms

Denote by 1K the characteristic function of the control volume K. Each discrete function uT ∈ R
T is identified

with the bounded function uT =
∑

K∈T uK1K, so that for r ∈ [1, +∞] the norms ‖uT ‖Lr are naturally defined.

For any uT ∈ R
T , and any K

∗ ∈ T ∗, set

δK
∗

i (uT ) =
uT

i+1,K∗ − uT
i,K∗

lK
∗

i

, i ∈ {1, . . . , 4}, and |uT |1,K∗ =

(
1

2

4∑

i=1

∣∣∣δK
∗

i (uT )
∣∣∣
2
) 1

2

. (4)

Then, we define the discrete W 1,p
0 norm of any uT ∈ R

T by

‖uT ‖1,p,T =

(
∑

K
∗∈T ∗

m(K∗ ∩ Ω)|uT |p1,K∗

) 1
p

.

The following Poincaré inequality holds in this discrete setting (see [1, Lemma 2.4] and [5]):

‖uT ‖Lp ≤ C(p) diam(Ω)‖uT ‖1,p,T , ∀uT ∈ R
T .

For any 0 < α < 1, we define the discrete B1+α,p
∞ norm of uT ∈ R

T by

‖uT ‖1+α,p,T = ‖uT ‖1,p,T +

(
∑

K
∗∈T ∗

m(K∗ ∩ Ω)

∣∣∣∣
δK

∗

1 (uT ) + δK
∗

3 (uT )

(l2,K∗)α

∣∣∣∣
p
) 1

p

. (5)

Let us comment on the definition (5). The Besov space B1+α,p
∞ (Ω) can be defined, for instance, as the real

interpolation space (W 1,p(Ω), W 2,p(Ω))α,∞ by the K-method of Peetre (see [8,11]). It can also be characterized
by means of translation-like operators as follows. For any vector field θ ∈ C2(R2, R2) we denote by esθ its
corresponding flow defined by

e0θ = Id,
d

ds
esθ(z) = θ

(
esθ(z)

)
, ∀z ∈ R

2.

We also introduce, for any s > 0, the set Ωs
θ = {z ∈ Ω, (erθ(z))r∈[0,s] ⊂ Ω}. Finally, for any v ∈ W 1,p(Ω)

and α ∈]0, 1[, we set ‖v‖θ,B1+α,p
∞

= sup
s>0

(∫

Ωs
θ

∣∣∣∣
∇v ◦ esθ(z) −∇v(z)

sα

∣∣∣∣
p

dz

) 1
p

. Then, v ∈ W 1,p(Ω) belongs to

B1+α,p
∞ (Ω) iff ‖v‖θ,B1+α,p

∞
< +∞ for all θ ∈ C2(R2, R2).

In the same spirit, the quantity ‖uT ‖1+α,p,T contains translation information on uT that encodes its discrete
Besov regularity. Proposition 3.3 below links the discrete and continuous Besov semi-norms.

2.3. Description of the finite volume approximation

The general form of symmetric, locally conservative finite volume schemes (with reasonable stencil) on carte-
sian meshes that are consistent with piecewise affine functions was described in [1]. It was assumed that xK

is the geometrical center of the control volume xK but this is in fact unnecessary (as soon as the dual control
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volumes are still rectangular) and the properties of the schemes still hold. These schemes can be written as the
following system of nonlinear equations:

a(uT )
def
=

∑

K
∗∈T ∗

m(K∗ ∩ Ω)T t
K

∗ ◦ aK
∗ ◦ TK

∗(uT ) = (m(K)fK)
K∈T (6)

where uT ∈ R
T is the discrete function called approximate solution and fK the mean value of the function f on

each control volume K. Furthermore, for each dual control volume K
∗, the maps aK

∗ : R
4 → R

4 acting on the
four values (uT

i,K∗){i=1,2,3,4} are defined by:

aK
∗(v)

def
= (BK

∗v, v)
p−2
2 BK

∗v, ∀v ∈ R
4, (7)

where BK
∗ is a 4 × 4 symmetric matrix defined by the choice of one parameter ξK

∗

as follows:

BK∗ =
1

m(K∗)

0

B

B

@

2ξK
∗

+ τK
∗

1 + τK
∗

4 −2ξK
∗

− τK
∗

1 2ξK
∗

−2ξK
∗

− τK
∗

4

−2ξK
∗

− τK
∗

1 2ξK
∗

+ τK
∗

1 + τK
∗

2 −2ξK
∗

− τK
∗

2 2ξK
∗

2ξK
∗

−2ξK
∗

− τK
∗

2 2ξK
∗

+ τK
∗

2 + τK
∗

3 −2ξK
∗

− τK
∗

3

−2ξK
∗

− τK
∗

4 2ξK
∗

−2ξK
∗

− τK
∗

3 2ξK
∗

+ τK
∗

3 + τK
∗

4

1

C

C

A

, (8)

so that (BK
∗v, v)1/2 is an approximation of the norm of the gradient of the solution in the dual control volume

K
∗. Such a finite volume scheme on the mesh T is then completely characterized by the family of parameters

Ξ = (ξK
∗

)K∗∈T ∗ . In order for the scheme to be well-defined we need that 2ξK
∗

+
mK

∗

1 mK
∗

3 +mK
∗

2 mK
∗

4

lK
∗

1 lK
∗

2

> 0, in which

case BK
∗ is positive with rank 3.

As shown in [1], (7)-(8) ensure the consistency and the symmetry of the scheme. In addition to reg(T ) in
(3), we define two quantities measuring regularity of the meshes and the schemes.

Definition 2.1. For a given mesh T and a set of parameters Ξ = (ξK
∗

)K∗∈T ∗ , set

adm(T , Ξ) = max

(
max

K
∗∈T ∗

ξK
∗

,

(
min

K
∗∈T ∗

(
2ξK

∗

+
mK

∗

1 mK
∗

3 + mK
∗

2 mK
∗

4

lK
∗

1 lK
∗

2

))−1
)

, and reg(Ξ) =

max
K

∗∩L
∗ 6=∅

∣∣∣ξK
∗

− ξL
∗
∣∣∣

h
.

Here and in the sequel C denotes a generic constant depending only on p, Ω, reg(T ), adm(T , Ξ) and reg(Ξ).
We refer to [1, 2] for precise dependencies in each case. Using this convention we have (see [1, Lemma 2.8])

1

C
|uT |1,K∗ ≤ |B

1
2
K

∗TK
∗(uT )| ≤ C|uT |1,K∗ , ∀K∗ ∈ T ∗, ∀uT ∈ R

T . (9)

2.4. Discrete energy

We call discrete energy of the scheme the following functional JT , depending on Ξ, acting on discrete functions

JT (vT )
def
=

1

p

(
a(vT ), vT

)
−
∑

K∈T

m(K)fKvK =
1

p

∑

K
∗∈T ∗

m(K∗ ∩ Ω)|B
1
2
K

∗TK
∗(vT )|p −

∑

K∈T

m(K)fKvK, ∀vT ∈ R
T .

For any p > 2, we have (see [1, Corollary 2.11])

JT (vT ) − JT (uT ) − (∇JT (uT ), vT − uT ) ≥ C‖uT − vT ‖p
1,p,T , ∀uT , vT ∈ R

T . (10)

This implies that JT is strictly convex and coercive. It is then easy to see that its unique minimizing point uT

is the unique solution of the discrete equations (6) and satisfies in addition the estimate

‖uT ‖1,p,T ≤ C‖f‖
1

p−1

Lp′ . (11)
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3. Error analysis for solutions with Besov regularity

We can now prove the following error estimate for the solutions to (1) for any source term f ∈ Lp′

(Ω), that

is to say for any solution lying in B
1+ 1

p−1 ,p
∞ (Ω) (thanks to Theorem 1.1).

Theorem 3.1. Let p > 2 and T be a smoothly-refined mesh on Ω. For any f ∈ Lp′

(Ω), we have

‖uT − uT ‖1,p,T ≤ Chαp‖f‖
1

p−1

Lp′ , (12)

with αp = 2
p(p−1) if p ≥ 3 and αp = 1

p if 2 < p < 3. In this estimate uT is the unique solution to the scheme

(6) and uT the projection of the exact solution u of (1) defined by uK = u(xK), for any K ∈ T .

Just like in [2], in the case 2 < p < 3, if f lies in the Hölder space C0, 3−p
p−2 (Ω) then we can recover an error

estimate in h
2

p(p−1) , which approaches the first order convergence when p tends to 2.
This result is formally the same than in [2] except the fact that we allow more general non-uniform meshes

in the present work. The overall principle of the proof is the same than in this reference. We only recall here
the main steps, the details being available in [2]. We finally give in section 4 the detailed proofs of the new
elements necessary to take into account non uniform smoothly refined meshes.

Sketch of proof. For vT ∈ R
T , define by ΠT vT the piecewise affine interpolation of vT on triangles obtained by

bissection of dual control volumes (see [2] for details). Since the approximate solution uT is the minimizer of
JT over R

T , we have ∇JT (uT ) = 0, so that (10) yields C‖uT − uT ‖p
1,p,T ≤ JT (uT ) − JT (uT ). It follows

C‖uT − uT ‖p
1,p,T ≤

[
JT (uT ) − J(ΠT uT )

]
+
[
J(ΠT uT ) − J(u)

]
+
[
J(u) − J(v)

]
+
[
J(v) − JT (uT )

]
,

for any v ∈ W 1,p
0 (Ω). Since u minimize J over W 1,p

0 (Ω), the third term is non-positive. We choose now
v = ΠT uT and we get

C‖uT − uT ‖p
1,p,T ≤

[
JT (uT ) − J(ΠT uT )

]
+
[
J(ΠT uT ) − J(u)

]
+
[
J(ΠT uT ) − JT (uT )

]
. (13)

The middle term is classically estimated, using P 1-finite element interpolation results, by

|J(ΠT u) − J(u)| ≤ C‖ΠT uT − u‖2
W 1,p(‖ΠT uT ‖W 1,p + ‖u‖W 1,p)p−2 ≤ Ch

2
p−1 ‖u‖2

B
1+ 1

p−1
,p

∞

‖u‖p−2
W 1,p . (14)

The other two terms in the right hand side in (13) are similar. One needs to control difference between J(ΠT ·)
and JT (·) for both uT and uT . This can be done in terms of the discrete Besov norms as follows.

Proposition 3.2 (see [2, Lemma 3.3]). For any α ∈]0, 1[, we have

|J(ΠT vT ) − JT (vT )| ≤ Ch2α9vT 92
1+α,p,T ‖v

T ‖p−2
1,p,T + Ch‖f‖Lp′‖vT ‖1,p,T , ∀vT ∈ R

T .

Finally, Theorem 3.1 will be proved if we manage to prove a uniform bound of the discrete Besov semi-norm
of the approximate solution uT and of the projection of the exact solution uT , using the fact that we know that

u ∈ B
1+ 1

p−1 ,p
∞ (Ω) by Theorem 1.1.

These two uniform bounds were obtained in [2] in the case of uniform cartesian meshes and uniform scheme
(that is when ξK

∗

= const). The proof given in this reference really relies on the uniformity of the mesh. At
the present time we are not able to prove these estimates in the case of general cartesian mesh.

Nevertheless, in the framework of non-uniform “smoothly refined” cartesian meshes as defined in the intro-
duction, we prove in Section 4 the two following results which permit us to conclude the proof of the error
estimate using (13), (14) and Proposition 3.2. �
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Proposition 3.3. Let α ∈]0, 1[. For any v ∈ W 1,p
0 (Ω)∩B1+α,p

∞ (Ω), let vT = (v(xK))K∈T be the projection of v
on R

T . We have

9vT 91+α,p,T ≤ Cα

(
‖v‖W 1,p + ‖v‖θx,B1+α,p

∞
+ ‖v‖θy,B1+α,p

∞

)
.

Proposition 3.4 (Discrete analogue of Theorem 1.1).

For any f ∈ Lp′

(Ω), the solution uT of (6) satisfies 9uT 9
1+ 1

p−1 ,p,T
≤ C‖f‖

1
p−1

Lp′ .

4. Discrete Besov estimates

4.1. Discrete estimate for the projection of a function. Proof of Proposition 3.3

The proof in the case of uniform meshes relies on sharp estimates of the (1+α)-th order differential quotients
appearing in the discrete Besov norm (5) by means of translation integral terms on the gradient of the function.
More precisely, we shown the following estimate for any v ∈ B1+α,p

∞ (Ω)

m(K∗)

(
1

(lK
∗

2 )α

∣∣∣∣
v(xK

∗

4 ) − v(xK
∗

3 )

lK
∗

1

−
v(xK

∗

1 ) − v(xK
∗

2 )

lK
∗

1

∣∣∣∣
)p

≤ C

∫

K
∗

∣∣∣∣∣
∇v(z) −∇(τlK

∗

1 ,lK
∗

2
v)(z)

diam(K∗)α

∣∣∣∣∣

p

dz + C

∫

K
∗

∣∣∣∣∣
∇v(z) −∇(τ−lK

∗

1 ,lK
∗

2
v)(z)

diam(K∗)α

∣∣∣∣∣

p

dz, (15)

where τa,b is the translation operator τa,bv(·, ·) = v(·+ a/2, ·+ b/2). Unfortunately, this estimate is not directly
usable in the present form for non uniform meshes since all the translation operators in the right-hand side may
be different from one dual control volume to another and thus we do not find a bound of the discrete Besov
semi-norm of vT as a function of a quantity ‖v‖τ,B1+α,p

∞
for a unique given translation operator τ .

Nevertheless, in the framework of smooth cartesian meshes as defined in the introduction, we can recover

a usable estimate by performing a change of variables. More precisely, we define on Ω̃ = [0, 1]2 the function
ṽ = v ◦ g, where g is defined in section 2. We can now apply (15) to ṽ on the dual control volume g−1(K∗) of

the uniform mesh on Ω̃ (whose vertices are denoted by x1, . . . , x4):

m(K∗)

(
1

(lK
∗

2 )α

∣∣∣∣
v(xK

∗

4 ) − v(xK
∗

3 )

lK
∗

1

−
v(xK

∗

1 ) − v(xK
∗

2 )

lK
∗

1

∣∣∣∣
)p

≤ Chk

(
1

kα

∣∣∣∣
ṽ(x4) − ṽ(x3)

h
−

ṽ(x1) − ṽ(x2)

h

∣∣∣∣
)p

≤ C

∫

g−1(K∗)

∣∣∣∣
∇ṽ(z) −∇(τh,kṽ)(z)

diam(K∗)α

∣∣∣∣
p

dz + C

∫

g−1(K∗)

∣∣∣∣
∇ṽ(z) −∇(τ−h,kṽ)(z)

diam(K∗)α

∣∣∣∣
p

dz.

Summing all these estimates over the set of dual control volumes we find

9vT 9p
1+α,p,T ≤ C

∫

eΩ

∣∣∣∣
∇ṽ(z) −∇(τh,kṽ)(z)

(h + k)α

∣∣∣∣
p

dz + C

∫

eΩ

∣∣∣∣
∇ṽ(z) −∇(τ−h,kṽ)(z)

(h + k)α

∣∣∣∣
p

dz.

We just have now to bound the right-hand side above in terms of the norms of v on the original domain Ω. To
this end, we compute

τh,k∂x̃ṽ(x̃, ỹ) = g′x

(
x̃ +

h

2

)
∂xv (g ◦ τh,k(x̃, ỹ)) ,

so that

|τh,k∂x̃ṽ(z̃) − ∂x̃ṽ(z̃)| ≤ Ch‖g′′x‖∞|∂xv ◦ g(z̃)| + C‖g′x‖∞ |∂xv ◦ τh,kg(z̃) − ∂xv ◦ g(z̃)| .
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Using the change of variables g (whose Jacobian is bounded by reg(T )), we obtain

9vT 9p
1+α,p,T ≤ Ch(1−α)p

∫

Ω

|∇v(z)|p dz + C

∫

Ω

∣∣∣∣
∇v(z) −∇v(g ◦ τh,k ◦ g−1(z))

(h + k)α

∣∣∣∣
p

dz

+ C

∫

Ω

∣∣∣∣
∇v(z) −∇v(g ◦ τ−h,k ◦ g−1(z))

(h + k)α

∣∣∣∣
p

dz.

By definition of the vector fields θx and θy (given in Section 2), we clearly have

ehθx ◦ ekθy = g ◦ τh,k ◦ g−1,

so that we finally get that 9vT 91+α,p,T ≤ Ch(1−α)‖v‖W 1,p + C‖v‖θx,B1+α,p
∞

+ C‖v‖θy,B1+α,p
∞

.

4.2. Discrete a priori estimate for the approximate solution. Proof of Proposition 3.4

We reproduce, at the discrete level, the arguments of the proof of Theorem 1.1 given in [10]. First of all, just
like in [2], it is possible to suppose that the boundary conditions are periodic (by extending the domain and
the data by symmetry to a larger domain). Let us introduce the translation operators, for instance in the x
direction. We denote by τK (resp. τK

∗) the right neighbor of K (resp. K
∗) - taking into account the periodicity

condition if necessary. In the same way we introduce τ−1
K and τ−1

K
∗ the left neighbors of K and K

∗. For any
vT ∈ R

T we introduce τvT ∈ R
T and τ−1vT , defined by (τvT )K = vτK and (τ−1vT )K = vτ−1

K
.

If we use vT ∈ R
T as a discrete test function in (6), we get

∑

K
∗

m(K∗)(aK
∗ ◦ TK

∗(uT ), TK
∗(vT )) =

∑

K

m(K)fKvK. (16)

Replacing vT by τ−1vT in (16) we get

∑

K
∗

m(K∗)(aK
∗ ◦ TK

∗(uT ), TK
∗(τ−1vT )) =

∑

K

m(K)fKvτ−1
K
.

Remarking that TτK
∗(vT ) = TK

∗(τvT ) for any K
∗, we can change K

∗ into τK
∗ in the left-hand side and K into

τK in the right-hand side. We obtain

∑

K
∗

m(τK
∗)(aτK

∗ ◦ TK
∗(τuT ), TK

∗(vT )) =
∑

K

m(τK)fτKvK. (17)

Subtracting (16) from (17) we get

∑

K
∗

(
m(τK

∗)aτK
∗ ◦ TK

∗(τuT ) − m(K∗)aK
∗ ◦ TK

∗(uT ), TK
∗(vT )

)
=
∑

K

(m(τK)fτK − m(K)fK)vK.

Introducing the operator

DK
∗ : w ∈ R

4 7→ DK
∗(w)

def
= m(τK

∗)aτK
∗(w) − m(K∗)aK∗(w) ∈ R

4, (18)

we deduce

∑

K
∗

m(K∗)
(
aK

∗ ◦ TK
∗(τuT ) − aK

∗ ◦ TK
∗(uT ), TK

∗(vT )
)

=
∑

K

(m(τK)fτK − m(K)fK)vK −
∑

K
∗

(DK
∗(TK

∗(τuT )), TK
∗(vT )). (19)
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We now choose vT = τuT −uT . It is shown in [2] that, for p > 2, the left-hand side of (19) controls the discrete
W 1,p norm of the difference τuT − uT . Therefore (19) yields

1

C
‖τuT − uT ‖p

1,p,T ≤

∣∣∣∣∣
∑

K

(m(τK)fτK − m(K)fK)(uτK − uK)

∣∣∣∣∣+
∑

K
∗

∣∣(DK
∗(TK

∗(τuT )), TK
∗(τuT − uT ))

∣∣ . (20)

The first term in the right-hand side of (20) is estimated, as in [2], as follows:

∣∣∣∣∣
∑

K

(m(τK)fτK − m(K)fK)(uτK − uK)

∣∣∣∣∣ =

∣∣∣∣∣
∑

K

m(K)fK

[
(uτK − uK) − (uK − uτ−1

K
)
]∣∣∣∣∣ ≤ Ch‖f‖Lp′‖τuT − uT ‖1,p,T .

In order to evaluate the second term in (20), which is new since it comes from the non-uniformity of the meshes,
we need to estimate DK

∗(w) defined in (18).

Lemma 4.1. The following properties hold:

|(BτK
∗v, w) − (BK

∗v, w)| ≤ Ch |B
1
2
K

∗v||B
1
2
K

∗w|, ∀v, w ∈ R
4, (21)

‖BτK
∗ − BK

∗‖ ≤ Ch‖BK
∗‖, (22)

|B
1
2
τK

∗v − B
1
2
K

∗v| ≤ Ch|B
1
2
K

∗v|, ∀v ∈ R
4. (23)

Proof. The first estimate follows immediately from (3), the explicit formula (8), Definition 2.1 and (9). Notice
that we use here the fact that BK

∗ and BτK
∗ have the same kernel Span{(1, 1, 1, 1)t}, which is denoted by E0

in the sequel. The second estimate is a straightforward consequence of the first one.
In order to prove (23), we use the following Lipschitz property of the square root operator over the set of

symmetric definite positive (s.d.p.) matrices:

For any λ1, λ2 > 0, there exists Mλ1,λ2 > 0 such that

‖A
1
2 − B

1
2 ‖ ≤ Mλ1,λ2‖A − B‖, ∀A, B s.d.p. such that Sp(A) ∪ Sp(B) ⊂ [λ1, λ2]. (24)

This property is a consequence of the Cauchy integral formula. We established during the proof of (9) (see [1,

Lemma 2.8]) that the restriction of BK
∗ to E⊥

0 is definite positive and its spectrum lies in
[

1
Cm(K∗) ,

C
m(K∗)

]

where C depends on reg(T ) and adm(T , Ξ). Hence, there exists λ1, λ2 > 0 depending on reg(T ) and adm(T , Ξ)
such that the spectrums of the restrictions to E⊥

0 of the matrices (m(K∗)BK
∗)K∗ are all included in [λ1, λ2].

Hence, (23) follows from (24). �

Using the estimates given in Lemma 4.1 we can now bound DK
∗ as follows:

Lemma 4.2. There exists C > 0 such that

|(DK
∗(v), w)| ≤ C h m(K∗)(|B

1
2
K

∗v| + |B
1
2
τK

∗v|)p−1(|B
1
2
K

∗w| + |B
1
2
τK

∗w|), ∀K∗ ∈ T ∗, ∀v, w ∈ R
4.

Proof. We have

|(DK
∗(v), w)| ≤ |m(τK

∗) − m(K∗)||(aτK
∗(v), w)| + m(K∗)|(aτK

∗(v) − aK
∗(v), w)|. (25)

Note that |m(τK
∗) − m(K∗)| ≤ Ch, with C controlled by reg(T ). Hence, by definition of aK

∗ , the first term in

the right hand side of (25) is bounded by Ch m(τK
∗)|B

1
2
τK

∗v|p−1|B
1
2
τK

∗w|.
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It is well known that there exists M > 0 depending only on p ≥ 2, such that for any n ≥ 1

∣∣∣|ξ|p−2ξ − |η|p−2η
∣∣∣ ≤ M |ξ − η|(|ξ|p−2 + |η|p−2), ∀ξ, η ∈ R

n.

Hence, using (23), we can control the second term in the right hand side of (25) (denoted by T ) by

T ≤ m(K∗)
∣∣∣(|B

1
2
τK

∗v|p−2B
1
2
τK

∗v − |B
1
2
K

∗v|p−2B
1
2
K

∗v, B
1
2
K

∗w)
∣∣∣+ m(K∗)|B

1
2
τK

∗v|p−2
∣∣∣(B

1
2
τK

∗v, B
1
2
τK

∗w − B
1
2
K

∗w)
∣∣∣

≤ Cm(K∗)|B
1
2
K

∗v − B
1
2
τK

∗v|(|B
1
2
K

∗v| + |B
1
2
τK

∗v|)p−2|B
1
2
K

∗w| + Cm(K∗)|B
1
2
τK

∗v|p−1|B
1
2
K

∗w − B
1
2
τK

∗w|

≤ Cm(K∗)h |B
1
2
K

∗v|(|B
1
2
K

∗v| + |B
1
2
τK

∗v|)p−2(|B
1
2
K

∗w| + |B
1
2
τK

∗w|),

and the claim is proved. �

Finally, collecting all these estimates in (20) and using (9) and the Poincaré inequality, we find

‖τuT − uT ‖p
1,p,T ≤ Ch‖f‖Lp′‖τuT − uT ‖1,p,T + Ch‖uT ‖p−1

1,p,T ‖τuT − uT ‖1,p,T .

Using (11), we finally deduce 1
hα ‖τuT − uT ‖1,p,T ≤ C‖f‖

1
p−1

Lp′ and we recover the discrete Besov estimate by

noting that, τ being the translation in the x direction,
δK

∗

2 (τuT −uT )
hα exactly equals the differential quotient in

the definition (5) of the discrete Besov norm.

The second author wishes to thank S. Labbé for giving him the opportunity to give a talk in the Groupe de Travail

Numérique of the university Paris XI.
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[9] J. Simon, Caractérisation d’espaces fonctionnels, Bollettino U. M.I. 15-B , pp. 687-714, 1978.
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