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DISCRETE BESOV FRAMEWORK FOR FINITE VOLUME APPROXIMATION
OF THE p-LAPLACIAN ON NON-UNIFORM CARTESIAN GRIDS

BoORIS ANDREIANOV'!, FRANCK BOYER? AND FLORENCE HUBERT?

Abstract. This work addresses the problem of a priori error analysis for the finite volume approxi-
mation of solutions of the p-laplacian on cartesian grids. We first recall the way we constructed such
schemes and the different error bounds we proved in our previous works. Then we concentrate par-
ticularly on the case where the exact solution has only weak regularity properties (which are natural
for this problem) of Besov kind with derivation index in between 1 and 2. In this framework, the
usual techniques to obtain error estimates for finite volumes schemes are not straightfoward to apply.
Hence, we propose to take advantage of the variational structure of the equation and the schemes in
order to obtain the error bounds. In the case of uniform meshes, this strategy was succesfully applied
in [2] to obtain optimal estimates. We propose in this work to extend this approach to a more general
framework of non-uniform meshes called “smoothly refined” meshes.

Résumé. Ce travail concerne I'analyse d’erreur a priori pour I'approximation par une méthode de
volumes finis des solutions du p-laplacien sur un maillage cartésien. Nous commencgons par rappeller
la construction de tels schémas et les différents résultats obtenus dans nos travaux antérieurs. On
s’intéresse ensuite a I’analyse d’erreur dans le cas ou la solution exacte possede seulement des propriétés
de régularité assez faibles (naturelles pour le probleme étudié) de type Besov d’indice de dérivation
strictement compris entre 1 et 2. Dans ce cadre, les méthodes usuelles d’estimation d’erreur sont
difficilement applicables. On propose donc de profiter de la structure variationnelle de ’équation et
des schémas pour obtenir les bornes souhaitées. Sous la restriction de I'uniformité des maillages, cette
approche a été utilisée avec succés dans [2] pour obtenir des estimations optimales. Nous présentons,
dans ce travail, I'extension de la méthode a un cadre plus général de maillages dits “régulierement
raffinés”.

1. INTRODUCTION

In this article we are interested in the finite volume numerical approximation on rectangular meshes of
solutions to the p-laplacian with homogeneous Dirichlet boundary conditions (1 < p < +00):

—div (|VaP?va) = f, inQ, w=0, on 9, (1)
where the rectangular domain is Q = [0,L,] x [0,L,]. Assume L, = L, = 1 for simplicity. Even though
the problem above is well-posed for any f € W‘l’p,(Q), P = %, we are interested here in the case where

f € L (Q). In some previous works [1-3], we carried out the error analysis for a family of “variational” finite
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volume schemes on cartesian meshes for this problem. The cartesian geometry of the grids we consider is of
course restrictive but has the advantage to lead to relatively simple nine-points schemes, for which much deeper
analysis can be performed. Moreover, using a fictitious domain and penalization approach, it is possible to
reduce the resolution of (1) on any domain to cartesian geometries (see [1] for some details). Finally, we refer
to [4,7] for the study of finite volume schemes for such nonlinear monotonic elliptic equations on much more
general grids than cartesian ones. The error analysis available for these schemes cover the case of W2 solutions
but, to our knowledge, the case of Besov solutions is far from being understood in this more general setting.

In [1], assuming the WP regularity of the exact solution u of (1), we derive estimates of order p — 1 for

€ (1,2], and of order 1/(p — 1) for p > 2 for the schemes under study in this paper; these estimates are in
discrete WP norm. In [3], assuming the W*! regularity of @ and the uniformity of the meshes, we improve
these estimates (we get in particular the h?/(P~1) convergence rate for p > 4) and also derive L> and W1
superconvergence estimates that are sharp in some cases.

Note that in the case p € (1,2], the W22 regularity holds true whenever f € L (Q). The situation for
p > 2 is quite different. The following Besov regularity result (the definition and description of Besov spaces
are recalled in the sequel) due to Simon [10] is essentially sharp:

’ 1 L’
Theorem 1.1. For any p > 2 and f € LP (), the unique solution to (1) lies in the Besov space Bod 7 "(Q).

Moreover, to our knowledge no regularity assumption on f is known to imply W2P regularity of the solution
u for p > 2 (except for the particular case of solutions without critical points; see the discussion in [3]).

Inspired by the “natural” regularity result of Theorem 1.1, we introduced in [2] the “discrete Besov” frame-
work for uniform cartesian meshes and carried out the corresponding error analysis: the convergence rate of

h7°D was obtained. Note that the numerical resultats provided in [2] suggest that this rate is optimal for

solutions in B;rﬁ’p(ﬁ).

The sharp technique used for the error analysis in [2] is adapted from the work [6] (based on the original
idea in [12]), concerning the improvement of the error bound for P! finite element approximation of W?2?
solutions. Note that the adaptation of the “finite element” technique of [6,12] to the finite volume framework

is not straightforward, and makes it necessary to work in the natural regularity space Bi: 7T instead of W2P
(see [2, Remark 3.2]).

The goal of the present paper is to extend the discrete Besov error analysis to (a family of) non-uniform
cartesian meshes. The idea is to use the characterization of Besov spaces by non uniform “translation operators”,
that is flows along C? vector fields. This induces a restriction on the geometry of the mesh (see (2),(3) below)
which means that the mesh parameters change in a smooth C? way from one cell to any of its neighbors. In the
sequel, we refer to these meshes as “smoothly refined” ones.

Although the present ideas can be applicable for very particular non-smoothly refined cartesian meshes, the
problem of extending the discrete Besov analysis to unstructured (especially non cartesian) meshes seems to be
open and quite challenging.

Note that the results of this paper extend in a straightforward way to more general nonlinear elliptic equations
arising from the minimization of a functional defined on W, () of the form J : u Jo ®(Vu) — fu, where ®
should be assumed strictly convex, coercive and such that V® enjoying the same growth restrictions and (local)
Hélder continuity properties as z +— |z|P~2z.

The outline of this paper is the following. In section 2, we describe the meshes we are interested in, we also
introduce some notations and we finally recall the definition of the finite volume schemes under study. In section
3, we state the main result of this paper (Theorem 3.1) which provides an error bound for Besov solutions of
the p-laplacian then we recall the main steps of the proof (following [2]). Finally in section 4, we give the proofs
of Propositions 3.3 and 3.4 in the case of non-uniform smoothly refined meshes.
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2. THE FINITE VOLUME SCHEME

2.1. Smoothly refined cartesian meshes

We consider in this paper families of rectangular meshes defined on the domain . They are assumed to
be smoothly refined in the following sense: we suppose given two increasing C? diffeomorphisms from R onto
itself denoted g, gy and such that g«(0) = gy(0) = 0, g«(1) = gy(1) = 1. We denote by g = gx ® gy the map
defined by g(x,y) = (gx(x), gy(y)) and by 6, 6y the two vector fields given by 0y (z,y) = 1/2(g%(g9< *(z)),0) and
Oy (z,y) = 1/2(0, gy (g5 * (1)))-

For any two integers N, and IV, we let h = ﬁ, k= ﬁ and we construct the mesh 7 on €2 as the image
of the uniform rectangular N, x N, grid on [0, 1]? through the map g. In this setting, the control volumes Kij
and their centers x,,; (which are not the geometric centers of the control volumes) are defined by

Kis = |9l = D), gx(ih)| % | 9y((G = D), gy ()|, and @, = (9x(( = 1/2)h), 95 ((G = 1/2)R)),  (2)
forany 1 <7 < N, and 1 < j < N,. In order to measure the regularity of this family of meshes, we introduce
7- _ ﬁ E / " —1y\/ 3

reg(7T) =max { +, 7, [l¢'lloc +llg lloos 167 ]| ) - (3)

As in [1,2], we introduce artificial control volumes outside the domain obtained by symmetry with respect
to the boundaries of 2 in order to treat the boundary conditions. Now we can define the dual control volumes
K* as the rectangles whose vertices are the points z of four adjacent control volumes (see Figure 1).
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FIGURE 1. Non-uniform mesh (left) and notations in a dual control volume (right)

For any dual control volume x* (see Figure 1), (xf*)i:1727374 are the vertices of the dual control volume
K* numbered counter clockwise starting from the lower left hand corner; (Kf*)i:1’2’3’4 are the corresponding
control volumes with centers (zf );—1,2,3.4; 0f is the half-edge between k¥ and xf,; located in £* and mf

denotes its measure; [ is the distance between ¥ and z,; finally, 7 = %—i is the so-called transmissivity
coefficient. Conventionally, in a given dual control volume, the indexes i € Z are understood modulo 4.

The finite volume method associates to each control volume x an unknown value u,. We denote the set
(ux)er € R by u”. For any continuous function v on 2, the discrete function v7 = (ve) .oy With ve = v(zy),
is called the projection of v on the space R” of discrete functions. For a given discrete function u” € R7, the
homogeneous Dirichlet boundary conditions are taken into account by using the ghost cells method. That is,
we extend the values of ©7 on artificial points outside of Q by odd symmetry with respect to the corresponding
boundaries (see the details in [1,2]).
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Given a dual control volume k*, we define the projection operator Ty~ which associates to each u? € R7 its
values Ty« (u?) = (U{K*,UZK*,ugK*,UZK*) in the four control volumes (k¥ ); that intersect k*. Note that for
boundary dual control volumes, ghost cells are used in order to give sense to the definition of Tic. For instance,

if k* is located at the right boundary of €2, we have by definition UQT,C = —u{,c* and ugj,c* = —UZK*.

2.2. Discrete Lebesgue, Sobolev and Besov norms

Denote by 1, the characteristic function of the control volume k. Each discrete function u7 € R7 is identified
with the bounded function u? = 3" uclx, so that for r € [1,+00] the norms [|[u”||.- are naturally defined.
For any u” € R”, and any k* € T*, set

1
2

5&* Ty u;iz:i-l,)c* - U';T;c* . 1 4 d T B 1 4 5&* T 2 A
i ('LL )_l’c—*7 ZE{ geeay }, an |U |1,)C* = 52 i ('LL ) . ( )
¢ i=1

Then, we define the discrete VVO1 P norm of any u? € R7 by

1
P
a1 7 = < > m( ﬂQ)lUﬂ?;«) :

K*eT*
The following Poincaré inequality holds in this discrete setting (see [1, Lemma 2.4] and [5]):

lu? ||» < C(p) diam(Q)||u” ||1p7, Yu? € R7.

For any 0 < o < 1, we define the discrete B1F*? norm of u?7 € R? by

I (uT) + 85 (u”)
(12,K*)a

)V : (5)

Let us comment on the definition (5). The Besov space BLI*?(Q) can be defined, for instance, as the real
interpolation space (W1?(2), W2?(2))4,0 by the K-method of Peetre (see [8,11]). It can also be characterized
by means of translation-like operators as follows. For any vector field € C?(R?,R?) we denote by e’ its
corresponding flow defined by

HuTH1+oz,p,T = ||U'TH1,p,T + < Z m(’C* n Q)
K*eT*

d

ds

We also introduce, for any s > 0, the set Q) = {z € Q, (e”’(z))re[ms] C Q}. Finally, for any v € WP(Q)
1

e% =1d, ef(2) =6 (659(2)) ,Vz € R2.

Vvoe*(z) — Vou(z)

sa

s>0 5
Blrer(Q) iff |v], pitar < Fo00 for all 6 € C%(R?,R?).
In the same spirit, the quantity [Ju? ||, +a.p7 contains translation information on u” that encodes its discrete
Besov regularity. Proposition 3.3 below links the discrete and continuous Besov semi-norms.

p P
and a €]0,1[, we set [|[v||, gi+ar = sup (/ dz) . Then, v € WHP(Q) belongs to
e Q

2.3. Description of the finite volume approximation

The general form of symmetric, locally conservative finite volume schemes (with reasonable stencil) on carte-
sian meshes that are consistent with piecewise affine functions was described in [1]. It was assumed that z
is the geometrical center of the control volume xx but this is in fact unnecessary (as soon as the dual control
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volumes are still rectangular) and the properties of the schemes still hold. These schemes can be written as the
following system of nonlinear equations:

a(u”) = > m(c* VT 0 a- o Tie- (u”) = (m(K) fr) cer (6)
K*eT*

where uZ € R7 is the discrete function called approzimate solution and f, the mean value of the function f on
each control volume «. Furthermore, for each dual control volume *, the maps a,+ : R* — R* acting on the
four values (UZK*){i:LZ,:SA} are defined by:

e p—2
Qcx (U) d:f (B)C*Uv v)pZ BIC*va Vo € R47 (7)
where By- is a 4 x 4 symmetric matrix defined by the choice of one parameter £ as follows:
26 4 T 2 26" —26% — 7
g1 —2t°" 2FT 4 4 —2t%" —fT 26%" ®)
T m(e) 2% -6 —rfT 2 e 2 |
—26%" — 7 2" =26 -l 2 4

so that (Bye-v,v)'/? is an approximation of the norm of the gradient of the solution in the dual control volume
K*. Such a finite volume scheme on the mesh 7 is then completely characterized by the family of parameters

K* K K K*
—_ my mg +my my

2 = (6% )rer-. In order for the scheme to be well-defined we need that 265 + Ty > 0, in which
157
1 2

case B« is positive with rank 3.
As shown in [1], (7)-(8) ensure the consistency and the symmetry of the scheme. In addition to reg(7) in
(3), we define two quantities measuring regularity of the meshes and the schemes.

Definition 2.1. For a given mesh 7 and a set of parameters Z = (€ )+ cr+, set

. b e 1 max |£F — &5 ’

. « - my m§ +m§ mj ey ‘

adm(7, E) = max < max £, < min (25’C 4+ L3 + = )) ) , and reg(Z) = = ner70 .
K*eT K*eT h

Here and in the sequel C' denotes a generic constant depending only on p, 2, reg(7), adm(7, E) and reg(Z).
We refer to [1,2] for precise dependencies in each case. Using this convention we have (see [1, Lemma 2.8])

1 1
6|u’f|1,,<* < |BZLTe-(u?)] < CluT |y v, ¥&* € T*,Yu” e R7. (9)

2.4. Discrete energy

We call discrete energy of the scheme the following functional J7, depending on =, acting on discrete functions

Jrwh) = = (a(vT),vT) - Zm(lc)f,cv,c 1 Z m(K* N Q)|BE*T,C*(UT)|p - Z m(K) feve, Yol e R7.
KeT p K*eT* KeT

For any p > 2, we have (see [1, Corollary 2.11])
Jr(T) = Jr@®) — (VIr(u”),vT —u”) > C|u? - ’UTHiPJ—, vuT, 0T e RY. (10)

This implies that J is strictly convex and coercive. It is then easy to see that its unique minimizing point u7
is the unique solution of the discrete equations (6) and satisfies in addition the estimate

1
[u?lly 7 < CUFIT (11)
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3. ERROR ANALYSIS FOR SOLUTIONS WITH BESOV REGULARITY

We can now prove the following error estimate for the solutions to (1) for any source term f € L (), that
1
is to say for any solution lying in Bi:‘“‘l () (thanks to Theorem 1.1).
Theorem 3.1. Let p > 2 and T be a smoothly-refined mesh on Q. For any f € LPI(Q), we have

e (12)

7=
Lv'

T _ T
[u® =@ |y, 7 < Ch|[f]

with o) = ifp>3and ap = % if 2 < p < 3. In this estimate u” is the unique solution to the scheme

2
p(p—1)
(6) and u” the projection of the exact solution @ of (1) defined by Tx = U(xx), for any k € T.

Just like in [2], in the case 2 < p < 3, if f lies in the Holder space CO’%(Q) then we can recover an error

estimate in h?®-D | which approaches the first order convergence when p tends to 2.

This result is formally the same than in [2] except the fact that we allow more general non-uniform meshes
in the present work. The overall principle of the proof is the same than in this reference. We only recall here
the main steps, the details being available in [2]. We finally give in section 4 the detailed proofs of the new
elements necessary to take into account non uniform smoothly refined meshes.

Sketch of proof. For v7 € R7, define by II7v7 the piecewise affine interpolation of v7 on triangles obtained by
bissection of dual control volumes (see [2] for details). Since the approximate solution 7 is the minimizer of
Jr over R7 | we have V.J7(u?) = 0, so that (10) yields C|ju? — ETHIf_p_T < Jr@?) — Jr(u?). Tt follows

Cllu” =TI}, < [ @) = I + [J0r7T) = J(@)] + [1@) = Tw)] + [I) = JrT)],

for any v € Wy*(€). Since @ minimize J over W, *(2), the third term is non-positive. We choose now
v =I7u? and we get

Clu” ~a |}, 7 < [J@") = I + [J07a") = J@)] + [JOru”) = Iz (13)
The middle term is classically estimated, using P'-finite element interpolation results, by

_ — _ _ _ _ _ 2 —lp—
|[J(T7w) — J(@)| < CIUra” —allf, (07T’ fwis + [Tllwrn)?~? < Ch7= ||“”231+ﬁ.p|\UIl’5v1%p~ (14)

The other two terms in the right hand side in (13) are similar. One needs to control difference between J(Il7-)
and J7(-) for both u7 and @7 . This can be done in terms of the discrete Besov norms as follows.

Proposition 3.2 (see [2, Lemma 3.3]). For any « €]0, 1], we have

T T T T\ |p—2 T T T
[J(MroT) = Jr(w?)] < CR* ([0 [} 1ap,r 107 I8 oo + CBI Sl po 107 1 p7s V0T € RT.
Finally, Theorem 3.1 will be proved if we manage to prove a uniform bound of the discrete Besov semi-norm

of the applroximate solution u” and of the projection of the exact solution @’ , using the fact that we know that
e Bi:ﬁ’p(ﬁ) by Theorem 1.1.

These two uniform bounds were obtained in [2] in the case of uniform cartesian meshes and uniform scheme
(that is when €% = const). The proof given in this reference really relies on the uniformity of the mesh. At
the present time we are not able to prove these estimates in the case of general cartesian mesh.

Nevertheless, in the framework of non-uniform “smoothly refined” cartesian meshes as defined in the intro-
duction, we prove in Section 4 the two following results which permit us to conclude the proof of the error
estimate using (13), (14) and Proposition 3.2. O
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Proposition 3.3. Let o €]0,1[. For any v € WyP(Q) N BLE*?(Q), let v7 = (v(xx))xeT be the projection of v
on R”. We have
T
107 7 < Ca (I0llwrs + ol prses + I0llg, pres) -

Proposition 3.4 (Discrete analogue of Theorem 1.1).
For any f € L¥ (), the solution uT of (6) satisfies |||u7|||1+7 o7 S C||f|

4. DISCRETE BESOV ESTIMATES

4.1. Discrete estimate for the projection of a function. Proof of Proposition 3.3

The proof in the case of uniform meshes relies on sharp estimates of the (14 «)-th order differential quotients
appearing in the discrete Besov norm (5) by means of translation integral terms on the gradient of the function.
More precisely, we shown the following estimate for any v € BLF*P(Q)

v(@y) —v(@s)  v@t) —v(as’) Dp

Ko - K"
& 5

cof
.

where 7,4 is the translation operator 7, ,v(+,-) = v(- +a/2,-+b/2). Unfortunately, this estimate is not directly
usable in the present form for non uniform meshes since all the translation operators in the right-hand side may
be different from one dual control volume to another and thus we do not find a bound of the discrete Besov
semi-norm of v7 as a function of a quantity ||v]| pi+ar for a unique given translation operator 7.

Nevertheless, in the framework of smooth cartesian meshes as defined in the introduction, we can recover
a usable estimate by performing a change of variables. More precisely, we define on Q = [0,1]? the function
¥ = v o g, where g is defined in section 2. We can now apply (15) to © on the dual control volume g~1(k*) of
the uniform mesh on (whose vertices are denoted by 1, ..., z4):

P 1
< R
) czm(ka

Vo (z) = V(mee e 0)(2) [7
diam(c*)e

V() = V(r_pes e 0)(2) |
diam(xc*)e

dz, (15)

v(ef") —v(@f)  v(ef) —v(ad")
= =

Vi(z) — V(mhx0)(2)|"

0(xq) —0(x3) _ 0(1) — 0(x2)

h h

<c / : dz+C / d.
g=1(k*) dlam(’C*)a g1 (k%) dlam(K )
Summing all these estimates over the set of dual control volumes we find
V’U Th kv)( ) P V@(Z) - V(T,h kf))(z) P
T .
dz.
|||’U |||1+o/,p,T —= C/ ‘ h + k (h"‘ k)o/ -

We just have now to bound the right-hand side above in terms of the norms of v on the original domain €. To
this end, we compute

e . h -
Thk070(Z,9) = gl (x + 5) v (gomhi(Z,9)),

so that
|7h,k020(Z2) — 9:0(2)| < Chl|g{lloo|0zv 0 g(2)| + Cllgilloo [02v © Th kg (2) — Ozv 0 g(2)] .
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Using the change of variables g (whose Jacobian is bounded by reg(7)), we obtain

Vo(z) = Vo(gothrog 1(2))
T « 5
17 W spr < CHO [ Watapas v [ [T =To0em

p
dz

Vu(z) = Vo(goT_p ko g t(z)) P

(h + k)° dz.

By definition of the vector fields 6« and 6, (given in Section 2), we clearly have

ho

e XOeke

—1
Y=goThkog ,

so that we finally get that [|[v7 |||, ., 7 < ChO= |||y + Cllolly, prrer + C||v||0y7B;+a,p.

P
4.2. Discrete a priori estimate for the approximate solution. Proof of Proposition 3.4

We reproduce, at the discrete level, the arguments of the proof of Theorem 1.1 given in [10]. First of all, just
like in [2], it is possible to suppose that the boundary conditions are periodic (by extending the domain and
the data by symmetry to a larger domain). Let us introduce the translation operators, for instance in the x
direction. We denote by 7 (resp. 7k*) the right neighbor of k (resp. £*) - taking into account the periodicity
condition if necessary. In the same way we introduce 7'k and 7~ 'x* the left neighbors of x and x*. For any
v? € R” we introduce 707 € R7 and 77107, defined by (707 ) = v, and (77107 ) = v, 1.

If we use v7 € R7 as a discrete test function in (6), we get

Zm (= OTK*( ), Tiex (v Zm ) ficUk. (16)

Replacing v7 by 77107 in (16) we get

Zm Y(axs 0 Tee (uT), Tiee (1~ 107T)) Zm ) ficUr—1x-

Remarking that T}« (v7) = T (7v7) for any £*, we can change £* into 7* in the left-hand side and « into
7K in the right-hand side. We obtain

Z m(TK")(aricx © Ties (TU'T)a T~ (UT)) = Z m(7K) frxvc- (17)

o*

Subtracting (16) from (17) we get

> (m(rxtarce o Te- (ruT) = m(k*yag o T (u7), Tee (07)) = D7) fre = ) fic o

K* K

Introducing the operator
Dy :w € R = Di- (w) = m(76" ) arie- (w) — m(K)ax (w) € RY, (18)
we deduce
Z m(k*) (a,c* 0 Tyer (TuT) — e 0 Tier (uT), Tiew (’UT))
=) (m(7K) frc — m(K) fc)ve — Z(D;c*(T;c* (ru”)), T (7). (19)

K K*
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We now choose v7 = ru? — 7. It is shown in [2] that, for p > 2, the left-hand side of (19) controls the discrete

WP norm of the difference 7u? — u”?. Therefore (19) yields

1 T T
SlraT =T <

Z(m(T)C)f.,.,c —m(K) fic)(Urx — ux)

K

+ Z |(D,C* (T~ (TUT)), Ticx (TU,T — uT))| . (20)
o
The first term in the right-hand side of (20) is estimated, as in [2], as follows:

Z(m(T)C)f.,.,c —m(K) fic)(Urx — ux)

K

< 0 fll o Imu” = a7

Zm(’c)fic |:(U'TIC —ux) = (ux — urflic)}

In order to evaluate the second term in (20), which is new since it comes from the non-uniformity of the meshes,
we need to estimate Dy« (w) defined in (18).

Lemma 4.1. The following properties hold:
|(Br-v,w) — (Beev,w)| < Ch |BL.v||BLw|, Yv,w e R, (21)

|| Brx — By

< Chl| By

; (22)

1 1 1
|BZ..v — B2.v| < Ch|B2.v|, YveR™. (23)

Proof. The first estimate follows immediately from (3), the explicit formula (8), Definition 2.1 and (9). Notice
that we use here the fact that By« and B+ have the same kernel Span{(1,1,1,1)*}, which is denoted by Ey
in the sequel. The second estimate is a straightforward consequence of the first one.

In order to prove (23), we use the following Lipschitz property of the square root operator over the set of
symmetric definite positive (s.d.p.) matrices:

For any A1, A2 > 0, there exists My, », > 0 such that
|A% — B3| < My, z,|A— B, VA, B s.d.p. such that Sp(A) USp(B) C [A1,Aa]. (24)

This property is a consequence of the Cauchy integral formula. We established during the proof of (9) (see [1,

Lemma 2.8]) that the restriction of B« to Eg is definite positive and its spectrum lies in W, %

where C' depends on reg(7) and adm(7, Z). Hence, there exists A1, A2 > 0 depending on reg(7") and adm(7, =)
such that the spectrums of the restrictions to Ey of the matrices (m(k*)By- )+ are all included in [\, Ag].
Hence, (23) follows from (24). O

Using the estimates given in Lemma 4.1 we can now bound Dy« as follows:

Lemma 4.2. There exists C > 0 such that

1 1 1 1
|(Dy+ (v),w)] < Chm(x*)(|B2.v| + |B2ev|)PH(|B2.w| + |B2o.wl|), Vk* € T*, Yo,w € R*.

Proof. We have
[(Dex (0), w)| < [m(7x7) = m(7)[[(ar - (v), w)| + m(K")|(@r e (v) = @ (v), w)]. (25)

Note that |m(rk*) — m(x*)| < Ch, with C controlled by reg(7). Hence, by definition of ax~, the first term in
1 1
the right hand side of (25) is bounded by Chm(rx*)|B2..v|P~1| B2 . w|.
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It is well known that there exists M > 0 depending only on p > 2, such that for any n > 1
[16/7=2€ = IniP=2n| < Mg = nl(IEl*=2 + nl=2),  ve,n € R™.
Hence, using (23), we can control the second term in the right hand side of (25) (denoted by T') by

L L L L L L L L L
T <m(c")|(|B2e.v[P2B2.v — |BZLv|P 2 B2.v, BZ.w)| + m(c*)|B2..v[P~2|(B2.v, BZ..w — BZ.w)

1 1 1 1 1 1 1 1
< Om(k*)|Bev — B.v|(|BEv| + | B2 )P 72| BRow| + Cm(k™)| B2 v~ BEow — B2 .wl
1 1 1 1 1
< Cm(k*) h|BR.o|(|B.v| + B2 v|)P 72 (| B w| + | B2 wl),
and the claim is proved. O

Finally, collecting all these estimates in (20) and using (9) and the Poincaré inequality, we find

T _ 7T T _,7T T p—1 T _ 7T
lru® —w |} 7 < OBl fll o lme” — w1 1 + Chllu” 1T, llru” = |l 7

s
1
Using (11), we finally deduce = |7u”? — uT||1,p’T < C|Ifl}," and we recover the discrete Besov estimate by
K* T T
noting that, 7 being the translation in the x direction, %a_") exactly equals the differential quotient in

the definition (5) of the discrete Besov norm.

The second author wishes to thank S. Labbé for giving him the opportunity to give a talk in the Groupe de Travail
Numérique of the university Paris XI.
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