NUMERICAL METHODS FOR THE SIMULATION OF A DIFFUSE INTERFACE MODEL FOR THREE-PHASE FLOWS

Franck Boyer¹

Joint work with Céline Lapuerta², Sebastian Minjeaud¹², Bruno Piar²

¹Laboratoire d'Analyse, Topologie et Probabilités Aix-Marseille Université

²Institut de Radioprotection et de Sûreté Nucléaire, DPAM / SEMIC / LIMSI.

Regensburg, February 14, 2011

IN THE CONTEXT OF NUCLEAR SAFETY

Air bubble crossing a water/silicon interface. Cranga, 02

- Three immiscible phases,
- No phase change,
- Compressibility of the phases can be neglected,
- Important densities ratio,
- Three different surface tensions,
- 3D flow without symmetry
- Topological changes of the interfaces.

1 A THREE-PHASE CAHN-HILLIARD/NAVIER-STOKES MODEL

- **2** Discretization of the Cahn-Hilliard system
- **3** Coupling with the Navier-Stokes system
- **4** Adaptive local refinement
- 6 PARAMETERS INFLUENCE BENCHMARK NUMERICAL ILLUSTRATIONS

● A THREE-PHASE CAHN-HILLIARD/NAVIER-STOKES MODEL

- DISCRETIZATION OF THE CAHN-HILLIARD SYSTEM
- **3** Coupling with the Navier-Stokes system
- ADAPTIVE LOCAL REFINEMENT
- 5 Parameters influence Benchmark Numerical illustrations

The ternary Cahn-Hilliard model

Principle

• Interfaces have small but positive thickness :

The interface thickness $\varepsilon > 0$ is a parameter of the model.

- Order parameters (phase fields) :
 - Three **smooth** functions c_i , (volume fractions)
 - There are related through the relationship $c_1 + c_2 + c_3 = 1, \forall t, \forall x$.

$$\begin{cases} c_i(x) = 1, & \text{for } x \in \text{phase } i, \\ 0 < c_i(x) < 1, & \text{for } x \in \text{interface } i/j, \\ c_i(x) = 0, & \text{for } x \notin \text{phase } i. \end{cases}$$

THE GIVEN PHYSICAL PARAMETERS

- The densities ρ_i and the viscosities η_i .
- The three surface tensions σ_{12} , σ_{13} and σ_{23} .

The two-phase case

$$\mathcal{F}_{\sigma,\varepsilon}^{\mathrm{diph}}(c) = \int_{\Omega} \left(12 \frac{\sigma}{\varepsilon} c^2 (1-c)^2 + \frac{3}{4} \sigma \varepsilon \left| \nabla c \right|^2 \right) dx$$

D EQUILIBRIUM : $c_{eq}(x) = \frac{1 + \tanh(2x/\varepsilon)}{2}$ and $\mathcal{F}_{\sigma,\varepsilon}^{\mathrm{diph}}(c_{eq}) = \sigma$.

Boyer-Lapuerta-Minjeaud-Piar

The ternary Cahn-Hilliard model

▶ Ansatz for the **free energy** functional :

$$\mathcal{F}_{\mathbf{\Sigma},\varepsilon}^{\mathrm{triph}}(\mathbf{c}) = \int_{\Omega} \frac{12}{\varepsilon} F(\mathbf{c}) + \frac{3}{8} \varepsilon \sum_{i=1}^{3} \Sigma_{i} |\nabla c_{i}|^{2} dx.$$

with $\mathbf{c} = (c_1, c_2, c_3).$

- Bulk contribution $F(\mathbf{c}) \sim \mathbf{triple}$ -well structure :
 - It accounts for the immiscibility of the phases,

• The minimal value of this term is achieved when the interface thickness is 0.

- Capillary terms $|\nabla c_i|^2$:
 - They penalize the thickness of the interface.
 - An interface of thickness $\varepsilon > 0$ "costs" $1/\varepsilon$.
- Competition between the two terms :
 - Critical points of the energy are constituted of diffuse interfaces with typical thickness $\sim \varepsilon$.
 - ► How to determine F and $\Sigma = (\Sigma_i)_i$?
 - ▶ What is the suitable gradient flow associated with $\mathcal{F}_{\Sigma,\varepsilon}^{\text{triph}}$?

ANSATZ FOR THE ENERGY :

$$\mathcal{F}_{\mathbf{\Sigma},\varepsilon}^{\mathrm{triph}}(\mathbf{c}) = \int_{\Omega} \frac{12}{\varepsilon} F(\mathbf{c}) + \frac{3}{8} \varepsilon \Sigma_1 |\nabla c_1|^2 + \frac{3}{8} \varepsilon \Sigma_2 |\nabla c_2|^2 + \frac{3}{8} \varepsilon \Sigma_3 |\nabla c_3|^2 \, dx.$$

The potential F and the coefficients $(\Sigma_1, \Sigma_2, \Sigma_3)$ are undetermined yet.

We do not impose a priori that $\Sigma_i > 0, \forall i$

ANSATZ FOR THE ENERGY :

$$\mathcal{F}_{\mathbf{\Sigma},\varepsilon}^{\mathrm{triph}}(\mathbf{c}) = \int_{\Omega} \frac{12}{\varepsilon} F(\mathbf{c}) + \frac{3}{8} \varepsilon \Sigma_1 |\nabla c_1|^2 + \frac{3}{8} \varepsilon \Sigma_2 |\nabla c_2|^2 + \frac{3}{8} \varepsilon \Sigma_3 |\nabla c_3|^2 \, dx.$$

EVOLUTION OF THE SYSTEM = GRADIENT FLOW IN $(H^1)'$ OF THE ENERGY Preserve the constraints : volume conservation and $c_1 + c_2 + c_3 \equiv 1$.

$$\begin{cases} \frac{\partial c_i}{\partial t} = \operatorname{div} \left(M_i \nabla \mu_i \right), \\ \mu_i = \frac{\delta \mathcal{F}_{\boldsymbol{\Sigma}, \varepsilon}^{\mathrm{triph}}}{\delta c_i} + \boldsymbol{\beta} = -\frac{3}{4} \varepsilon \Sigma_i \Delta c_i + \frac{12}{\varepsilon} \partial_i F(\mathbf{c}) + \boldsymbol{\beta}, \end{cases}$$

where β is a *Lagrange multiplier*, unknown for the moment.

ANSATZ FOR THE ENERGY :

$$\mathcal{F}_{\mathbf{\Sigma},\varepsilon}^{\mathrm{triph}}(\mathbf{c}) = \int_{\Omega} \frac{12}{\varepsilon} F(\mathbf{c}) + \frac{3}{8} \varepsilon \Sigma_1 |\nabla c_1|^2 + \frac{3}{8} \varepsilon \Sigma_2 |\nabla c_2|^2 + \frac{3}{8} \varepsilon \Sigma_3 |\nabla c_3|^2 \, dx.$$

EVOLUTION OF THE SYSTEM = GRADIENT FLOW IN $(H^1)'$ OF THE ENERGY Preserve the constraints : volume conservation and $c_1 + c_2 + c_3 \equiv 1$.

$$\begin{cases} \frac{\partial c_i}{\partial t} = \operatorname{div} \left(M_i \nabla \mu_i \right), \\ \mu_i = \frac{\delta \mathcal{F}_{\Sigma,\varepsilon}^{\mathrm{triph}}}{\delta c_i} + \beta = -\frac{3}{4} \varepsilon \Sigma_i \Delta c_i + \frac{12}{\varepsilon} \partial_i F(\mathbf{c}) + \beta, \end{cases}$$

where β is a *Lagrange multiplier*, unknown for the moment. For the constraint $c_1 + c_2 + c_3 \equiv 1$ to hold, we need that :

$$M_1 \Sigma_1 = M_2 \Sigma_2 = M_3 \Sigma_3 \equiv M_0 \implies \Sigma_i \neq 0, \forall i.$$

$$\boldsymbol{\beta} = -\sum_{i=1}^3 \frac{4\Sigma_T}{\varepsilon \Sigma_i} \partial_i F(\mathbf{c}), \text{ with } \frac{1}{\Sigma_T} = \frac{1}{3} \left(\frac{1}{\Sigma_1} + \frac{1}{\Sigma_2} + \frac{1}{\Sigma_3} \right).$$

ANSATZ FOR THE ENERGY :

$$\mathcal{F}_{\mathbf{\Sigma},\varepsilon}^{\mathrm{triph}}(\mathbf{c}) = \int_{\Omega} \frac{12}{\varepsilon} F(\mathbf{c}) + \frac{3}{8} \varepsilon \Sigma_1 |\nabla c_1|^2 + \frac{3}{8} \varepsilon \Sigma_2 |\nabla c_2|^2 + \frac{3}{8} \varepsilon \Sigma_3 |\nabla c_3|^2 \, dx.$$

Evolution of the system = gradient flow in $(H^1)'$ of the energy

(CH)
$$\begin{cases} \frac{\partial c_i}{\partial t} = \operatorname{div}\left(\frac{M_0}{\Sigma_i}\nabla\mu_i\right), \ \forall i \in \{1, 2, 3\}\\ \mu_i = \frac{4\Sigma_T}{\varepsilon}\sum_{j \neq i}\left(\frac{1}{\Sigma_j}\left(\partial_i F(\mathbf{c}) - \partial_j F(\mathbf{c})\right)\right) - \frac{3}{4}\varepsilon\Sigma_i\Delta c_i. \end{cases}$$

with

$$\frac{1}{\Sigma_T} = \frac{1}{3} \left(\frac{1}{\Sigma_1} + \frac{1}{\Sigma_2} + \frac{1}{\Sigma_3} \right),$$

and Neuman BC for \mathbf{c} and $\boldsymbol{\mu}$.

ANSATZ FOR THE ENERGY :

$$\mathcal{F}_{\mathbf{\Sigma},\varepsilon}^{\mathrm{triph}}(\mathbf{c}) = \int_{\Omega} \frac{12}{\varepsilon} F(\mathbf{c}) + \frac{3}{8} \varepsilon \Sigma_1 |\nabla c_1|^2 + \frac{3}{8} \varepsilon \Sigma_2 |\nabla c_2|^2 + \frac{3}{8} \varepsilon \Sigma_3 |\nabla c_3|^2 \, dx.$$

Evolution of the system = gradient flow in $(H^1)'$ of the energy

(CH)
$$\begin{cases} \frac{\partial c_i}{\partial t} = \operatorname{div}\left(\frac{M_0}{\Sigma_i}\nabla\mu_i\right), \ \forall i \in \{1, 2, 3\}\\ \mu_i = \frac{4\Sigma_T}{\varepsilon}\sum_{j \neq i}\left(\frac{1}{\Sigma_j}\left(\partial_i F(\mathbf{c}) - \partial_j F(\mathbf{c})\right)\right) - \frac{3}{4}\varepsilon\Sigma_i\Delta c_i. \end{cases}$$

FIRST PROPERTIES

► A posteriori : we can write a system for c₁ and c₂ only ► Formally, the energy satisfies the following equation

$$\frac{d}{dt}\mathcal{F}^{\mathrm{triph}}_{\mathbf{\Sigma},\varepsilon}(\mathbf{c}) + \int_{\Omega} \sum_{i=1}^{3} \frac{M_{0}}{\Sigma_{i}} |\nabla \mu_{i}|^{2} dx = 0.$$

Assumptions

$$\mathcal{F}_{\Sigma,\varepsilon}^{\text{triph}}(\mathbf{c}) = \int_{\Omega} \underbrace{\frac{12}{\varepsilon} F(\mathbf{c})}_{\geq 0 \quad \leftarrow} + \underbrace{\frac{3}{8} \varepsilon \Sigma_1 |\nabla c_1|^2 + \frac{3}{8} \varepsilon \Sigma_2 |\nabla c_2|^2 + \frac{3}{8} \varepsilon \Sigma_3 |\nabla c_3|^2}_{\geq 0 \quad \leftarrow} dx$$

$$\frac{d}{dt}\mathcal{F}_{\boldsymbol{\Sigma},\varepsilon}^{\mathrm{triph}}(\mathbf{c}) + \int_{\Omega} \underbrace{\sum_{i=1}^{3} \frac{M_{0}}{\Sigma_{i}} |\nabla \mu_{i}|^{2}}_{=\sum_{i=1}^{3} M_{0} \Sigma_{i} \left| \frac{\nabla \mu_{i}}{\Sigma_{i}} \right|^{2} \ge 0}_{\leq \varepsilon} \mathbf{0}$$

Assumptions

- **③** There exists B > 0 such that

$$|F''(\mathbf{c})| \leq B(1+|\mathbf{c}|^{p-2}), \quad \forall \mathbf{c} \in \mathcal{S},$$

with p = 6 in 3D, and $2 \le p < +\infty$ in 2D.

$$(F''(\mathbf{c})\xi,\xi) \ge -D(1+|\mathbf{c}|^q)|\xi|^2, \quad \forall \mathbf{c} \in \mathcal{S}, \forall \xi \in \mathbb{R}^3,$$

where $1 \le q < 4$ in 3D and $1 \le q < +\infty$ in 2D.

Theorem

Under assumptions **Q**-**Q**, for any $\mathbf{c}^0 \in (\mathrm{H}^1(\Omega))^3$ such that $\sum_{i=1}^3 c_i^0(x) = 1$ for a.e. $x \in \Omega$, there exists a unique global solution $(\mathbf{c}, \boldsymbol{\mu})$ of (CH) such that

$$\begin{split} \sum_{i=1}^{3} c_i(t,x) &= 1, \text{ for almost every } (t,x) \in [0,+\infty[\times\Omega]] \\ \mathbf{c} &\in \mathcal{C}_b^0([0,+\infty[;(\mathrm{H}^1(\Omega))^3) \cap \mathrm{L}^2_{loc}(0,+\infty;(\mathrm{H}^3(\Omega))^3), \\ \boldsymbol{\mu} &\in \mathrm{L}^2(0,+\infty;(\mathrm{H}^1(\Omega))^3). \end{split}$$

The three-phase model has to account suitably for two-phase situations.

The three-phase model has to account suitably for two-phase situations.

DEFINITION

The model is said to be consistent with the two-phase Cahn-Hilliard models if and only if

(P1) When there is no phase *i* in the system, the free energy should be the one of the two-phase model.

$$\begin{split} \mathcal{F}^{triph}_{\mathbf{\Sigma},\varepsilon}(c,1-c,0) &= \mathcal{F}^{diph}_{\sigma_{12},\varepsilon}(c), \quad \forall c \in \mathrm{H}^{1}(\Omega), \\ \mathcal{F}^{triph}_{\mathbf{\Sigma},\varepsilon}(c,0,1-c) &= \mathcal{F}^{diph}_{\sigma_{13},\varepsilon}(c), \quad \forall c \in \mathrm{H}^{1}(\Omega), \\ \mathcal{F}^{triph}_{\mathbf{\Sigma},\varepsilon}(0,c,1-c) &= \mathcal{F}^{diph}_{\sigma_{23},\varepsilon}(c), \quad \forall c \in \mathrm{H}^{1}(\Omega). \end{split}$$

The three-phase model has to account suitably for two-phase situations.

DEFINITION

The model is said to be consistent with the two-phase Cahn-Hilliard models if and only if

(P1) When there is no phase *i* in the system, the free energy should be the one of the two-phase model.

(P2) Any solution c of (CH) should satisfy

 $c_i(0) = 0 \Longrightarrow c_i(t) = 0, \ \forall t \ge 0.$

The three-phase model has to account suitably for two-phase situations.

DEFINITION

The model is said to be consistent with the two-phase Cahn-Hilliard models if and only if

(P1) When there is no phase *i* in the system, the free energy should be the one of the two-phase model.

(P2) Any solution c of (CH) should satisfy

$$c_i(0) = 0 \Longrightarrow c_i(t) = 0, \ \forall t \ge 0.$$

THEOREM

Let σ_{12} , σ_{13} , σ_{23} be given. The three-phase model defined before is algebraically consistent if and only if

$$\Sigma_i = \sigma_{ij} + \sigma_{ik} - \sigma_{jk}, \ \forall i \in \{1, 2, 3\},$$

There exists a function $\Lambda : \mathbb{R}^3 \mapsto \mathbb{R}$ such that

$$\begin{split} F(\mathbf{c}) &= \sigma_{12}c_1^2c_2^2 + \sigma_{13}c_1^2c_3^2 + \sigma_{23}c_2^2c_3^2 \\ &+ c_1c_2c_3(\Sigma_1c_1 + \Sigma_2c_2 + \Sigma_3c_3) + c_1^2c_2^2c_3^2\,\Lambda(\mathbf{c}), \; \forall \mathbf{c} \in \mathbb{R}^3. \end{split}$$

ILLUSTRATIONS

Contour lines of F on the Gibbs triangle

$$\begin{split} \Sigma_1 &= \Sigma_2 = \Sigma_3 = 4, \\ F &= \tilde{F}_0 \end{split} \qquad \begin{array}{ll} \Sigma_1 &= \Sigma_2 = \Sigma_3 = 4, \\ F &= F_0 \end{array} \qquad \begin{array}{ll} \Sigma_1 &= 6, \Sigma_2 = 8, \Sigma_3 = 4, \\ F &= F_0 \end{array} \end{aligned}$$

$$\begin{split} & \blacktriangleright \tilde{F}_0(\mathbf{c}) \stackrel{\text{def}}{=} \sigma_{12} c_1^2 c_2^2 + \sigma_{13} c_1^2 c_3^2 + \sigma_{23} c_2^2 c_3^2 & \Leftarrow \text{Non-consistent} \\ & \blacktriangleright F_0(\mathbf{c}) \stackrel{\text{def}}{=} \tilde{F}_0(\mathbf{c}) + c_1 c_2 c_3 (\Sigma_1 c_1 + \Sigma_2 c_2 + \Sigma_3 c_3) & \Leftarrow \text{Consistent} \end{aligned}$$

Illustrations

Partial spreading 2/2

$$\Sigma_1 = \Sigma_2 = \Sigma_3 = 4,$$

In (Kim-Lowengrub '05, Kim-Kang '09), we can find the following model

$$\begin{cases} \frac{\partial c_1}{\partial t} = \operatorname{div} \left(M_0 \nabla \mu_1 \right), \\ \frac{\partial c_2}{\partial t} = \operatorname{div} \left(M_0 \nabla \mu_2 \right), \\ \mu_1 = \frac{1}{\varepsilon} \left(\partial_1 \tilde{F}_0(\mathbf{c}) - \partial_3 \tilde{F}_0(\mathbf{c}) \right) - \varepsilon \Delta c_1 - \frac{\varepsilon}{2} \Delta c_2, \\ \mu_2 = \frac{1}{\varepsilon} \left(\partial_2 \tilde{F}_0(\mathbf{c}) - \partial_3 \tilde{F}_0(\mathbf{c}) \right) - \frac{\varepsilon}{2} \Delta c_1 - \varepsilon \Delta c_2, \end{cases}$$

Two drawbacks of this model for our purposes :

• Lack of symmetry

The equation satisfied by the third component $c_3 = 1 - c_1 - c_2$ is not formally the same as the one for c_1 , and c_2 .

The solution depends on the numbering of the phases.

• Does not respect two-phase situations

If $c_i \equiv 0$ at t = 0, then we may have $c_i(t) \neq 0$, for t > 0.

PARTIAL SPREADING COMPUTATIONS

CONSISTENT MODELS VS NON-CONSISTENT MODELS

Boyer-Lapuerta-Minjeaud-Piar

CAHN-HILLIARD SYSTEM

$$\begin{cases} \frac{\partial c_i}{\partial t} = \operatorname{div}\left(\frac{M_0}{\Sigma_i}\nabla\mu_i\right), \quad \forall i = 1, 2, 3, \\ \mu_i = \frac{4\Sigma_T}{\varepsilon} \sum_{j \neq i} \left(\frac{1}{\Sigma_j}\left(\partial_i F(\mathbf{c}) - \partial_j F(\mathbf{c})\right)\right) - \frac{3}{4}\varepsilon\Sigma_i\Delta c_i, \quad \forall i = 1, 2, 3, \end{cases}$$

INCOMPRESSIBLE NAVIER-STOKES SYSTEM

$$\begin{cases} \frac{\partial}{\partial t} (\rho \mathbf{u}) + \operatorname{div} (\rho \mathbf{u} \otimes \mathbf{u}) \\ & -\operatorname{div} (2\eta D(\mathbf{u})) + \nabla p = \rho \mathbf{g}, \\ & \operatorname{div} \mathbf{u} = 0. \end{cases}$$

CAHN-HILLIARD SYSTEM

$$\begin{cases} \frac{\partial c_i}{\partial t} + \mathbf{u} \cdot \nabla c_i = \operatorname{div} \left(\frac{M_0}{\Sigma_i} \nabla \mu_i \right), & \forall i = 1, 2, 3, \\ \mu_i = \frac{4\Sigma_T}{\varepsilon} \sum_{j \neq i} \left(\frac{1}{\Sigma_j} \left(\partial_i F(\mathbf{c}) - \partial_j F(\mathbf{c}) \right) \right) - \frac{3}{4} \varepsilon \Sigma_i \Delta c_i, & \forall i = 1, 2, 3, \end{cases}$$

Incompressible Navier-Stokes system

$$\begin{cases} \left(\varrho \frac{\partial \mathbf{u}}{\partial t} + \frac{1}{2} \mathbf{u} \frac{\partial \varrho}{\partial t}\right) + \left((\varrho \mathbf{u} \cdot \nabla) \mathbf{u} + \frac{\mathbf{u}}{2} \operatorname{div}(\varrho \mathbf{u})\right) \\ - \operatorname{div}(2\eta D(\mathbf{u})) + \nabla p = \varrho \mathbf{g} + \sum_{i=1}^{3} \mu_i \nabla c_i, \\ \operatorname{div} \mathbf{u} = 0. \end{cases}$$

ALTERNATIVE STRATEGIES

C

(Lowengrub-Truskinovsky '98) (B. '02) (Ding-Spelt-Shu '07) (Abels-Garcke-Grün '10)

PARTICULAR FORM OF INERTIA TERMS

▶ Kinetic energy evolution

$$\begin{split} \frac{d}{dt} \int_{\mathcal{B}_t} \frac{1}{2} \varrho |\mathbf{u}|^2 \, dx &= \int_{\mathcal{B}_t} \frac{\partial}{\partial t} \left(\frac{1}{2} \varrho |\mathbf{u}|^2 \right) + \operatorname{div} \left(\frac{1}{2} \varrho |\mathbf{u}|^2 \mathbf{u} \right) \, dx \\ &= \int_{\mathcal{B}_t} \left[\left(\varrho \frac{\partial \mathbf{u}}{\partial t} + \frac{1}{2} \mathbf{u} \frac{\partial \varrho}{\partial t} \right) + \left((\varrho \mathbf{u} \cdot \nabla) \mathbf{u} + \frac{\mathbf{u}}{2} \operatorname{div} \left(\varrho \mathbf{u} \right) \right) \right] \cdot \mathbf{u} \, dx, \end{split}$$

where \mathcal{B}_t is a material volume evolving with the flow **u**.

 \blacktriangleright Inertia terms

$$\begin{pmatrix} \varrho \frac{\partial \mathbf{u}}{\partial t} + \frac{1}{2} \mathbf{u} \frac{\partial \varrho}{\partial t} \end{pmatrix} + \left((\varrho \mathbf{u} \cdot \nabla) \mathbf{u} + \frac{\mathbf{u}}{2} \operatorname{div} (\varrho \mathbf{u}) \right)$$

$$= \frac{\partial}{\partial t} (\varrho \mathbf{u}) + \operatorname{div} (\varrho \mathbf{u} \otimes \mathbf{u}) \qquad -\frac{1}{2} \underbrace{ \begin{bmatrix} \frac{\partial \varrho}{\partial t} + \operatorname{div} (\varrho \mathbf{u}) \end{bmatrix}}_{\sim C(\sum_{i} \Delta \mu_{i})} \mathbf{u}$$

 \rightsquigarrow The momentum equation is thus modified inside interfaces.

(Guermond-Quartapelle, '00) (Shen et al., '10)

BOUNDARY CONDITIONS

- $\nabla c_i \cdot n = 0$ on $\partial \Omega$
- $\nabla \mu_i \cdot n = 0$ on $\partial \Omega$ (no diffusion across the boundary of the domain)
- no-slip conditions $\mathbf{u} = 0$ on $\partial \Omega$

PROPERTIES

• Capillary forces are naturally given by a volumic approximation

$$\sum_{i=1}^{3} \mu_i \nabla c_i \underset{\varepsilon \to 0}{\sim} \sum_{ij} \sigma_{ij} \kappa_{ij} \mathbf{n}_{ij} \delta_{ij}$$

 ${\ensuremath{\bullet}}$ Formal evolution of the total energy :

$$\frac{d}{dt} \left[\int_{\Omega} \frac{1}{2} \varrho |\mathbf{u}|^2 \, dx + \mathcal{F}_{\mathbf{\Sigma},\varepsilon}^{\text{triph}}(\mathbf{c}) \right] + \int_{\Omega} 2\eta |D\mathbf{u}|^2 \, dx + \int_{\Omega} M_0 |\nabla \mu|^2 \, dx = \int_{\Omega} \varrho \mathbf{g} \cdot \mathbf{u} \, dx.$$

• Volume conservation of each phase :

$$\int_{\Omega} c_i(t,\cdot) \, dx = \int_{\Omega} c_i(0,\cdot) \, dx, \quad \forall t, \ \forall i \in \{1,2,3\}.$$

NUMERICAL METHODS

- ▶ Conforming finite element \mathbb{P}_1 or \mathbb{Q}_1 for **c** and μ ,
- ▶ LBB stable finite elements $\mathbb{P}_2/\mathbb{P}_1$ or $\mathbb{Q}_2/\mathbb{Q}_1$ for (\mathbf{u}, p) ,
- ► Semi-implicit time discretization for (CH), (Part 2)
- ► Unconditionally stable uncoupled resolution of (CH/NS),

(P

(Part 3)

- ▶ Incremental projection method for (NS),
- ► Adaptive local refinement conforming method (Part 4)
- ► Benchmarking Parameters influence ... (Part 5)

The numerical platform **PELICANS**

Plate-forme Evolutive de LIbrairies de Composants pour l'Analyse Numérique et la Simulation

- Numerical kernel for industrial codes at IRSN,
- C++ Library for developing scientific computation softwares.
- Free OpenSource project

licence	CeCILL-C, French version of LGPL (http://www.cecill.info)
	https://gforge.irsn.fr/gf/project/pelicans

1 A THREE-PHASE CAHN-HILLIARD/NAVIER-STOKES MODEL

2 Discretization of the Cahn-Hilliard system

3 Coupling with the Navier-Stokes system

4 Adaptive local refinement

5 Parameters influence - Benchmark - Numerical illustrations

(B.-Minjeaud, '11)

TIME DISCRETIZATION

$$\begin{cases} \frac{c_i^{n+1} - c_i^n}{\Delta t} = \operatorname{div}\left(\frac{M_0(c_i^n)}{\Sigma_i} \nabla \mu_i^{n+1}\right),\\ \mu_i^{n+1} = \frac{4\Sigma_T}{\varepsilon} \sum_{j \neq i} \left(\frac{1}{\Sigma_j} \left(d_i^F(\mathbf{c}^{n+1}, \mathbf{c}^n) - d_j^F(\mathbf{c}^{n+1}, \mathbf{c}^n)\right)\right) - \frac{3}{4} \varepsilon \Sigma_i \Delta c_i^{n+\beta}, \end{cases}$$

with $d_i^F \sim \partial_i F$, $c_i^{n+\beta} = (1-\beta)c_i^n + \beta c_i^{n+1}$ and $\frac{1}{2} \leqslant \beta \leqslant 1$.

CONFORMING LAGRANGE FINITE ELEMENTS IN SPACE

Find $(\mathbf{c}_h^{n+1}, \boldsymbol{\mu}_h^{n+1}) \in (\mathcal{V}_h^c)^3 \times (\mathcal{V}_h^{\mu})^3$ such that $\forall \nu_h^{\mu} \in \mathcal{V}_h^{\mu}, \forall \nu_h^c \in \mathcal{V}_h^c$,

$$\begin{cases} \int_{\Omega} \frac{c_{ih}^{n+1} - c_{ih}^{n}}{\Delta t} \nu_{h}^{\mu} dx = -\int_{\Omega} \frac{M_{0}(c_{ih}^{n})}{\Sigma_{i}} \nabla \mu_{ih}^{n+1} \cdot \nabla \nu_{h}^{\mu} dx, \\ \int_{\Omega} \mu_{ih}^{n+1} \nu_{h}^{c} dx = \int_{\Omega} \frac{4\Sigma_{T}}{\varepsilon} \sum_{j \neq i} \left(\frac{1}{\Sigma_{j}} \left(d_{i}^{F}(\mathbf{c}_{h}^{n+1}, \mathbf{c}_{h}^{n}) - d_{j}^{F}(\mathbf{c}_{h}^{n+1}, \mathbf{c}_{h}^{n}) \right) \right) \nu_{h}^{c} dx \\ + \int_{\Omega} \frac{3}{4} \Sigma_{i} \varepsilon \nabla c_{ih}^{n+\beta} \cdot \nabla \nu_{h}^{c} dx. \end{cases}$$

▶ For any $(\mathbf{c}_h^{n+1}, \mu_h^{n+1})$ solution of the discrete problem, we have :

$$\begin{split} \mathcal{F}_{\mathbf{\Sigma},\varepsilon}^{\mathrm{triph}}(\mathbf{c}_{h}^{n+1}) &- \mathcal{F}_{\mathbf{\Sigma},\varepsilon}^{\mathrm{triph}}(\mathbf{c}_{h}^{n}) + \Delta t \int_{\Omega} \sum_{i=1}^{3} \frac{M_{0}(c_{ih}^{n})}{\Sigma_{i}} \big| \nabla \mu_{ih}^{n+1} \big|^{2} \, dx \\ &+ (2\beta - 1) \int_{\Omega} \frac{3}{8} \varepsilon \sum_{i=1}^{3} \Sigma_{i} \big| \nabla (c_{ih}^{n+1} - c_{ih}^{n}) \big|^{2} \, dx \\ &= \frac{12}{\varepsilon} \int_{\Omega} \Big[F(\mathbf{c}_{h}^{n+1}) - F(\mathbf{c}_{h}^{n}) - \mathbf{d}^{F}(\mathbf{c}_{h}^{n+1}, \mathbf{c}_{h}^{n}) \cdot \left(\mathbf{c}_{h}^{n+1} - \mathbf{c}_{h}^{n}\right) \Big] \, dx, \end{split}$$

where $\mathbf{d}^{F}(x, y)$ stands for $(d_{i}^{F}(x, y))_{i=1,2,3}$.

▶ The last two terms of the left-hand side are non-negative, provided that

 $\beta \geq 1/2,$

$$\begin{split} \Sigma_1 + \Sigma_2 &> 0, \ \Sigma_1 + \Sigma_3 > 0, \ \Sigma_2 + \Sigma_3 > 0, \\ \Sigma_1 \Sigma_2 + \Sigma_1 \Sigma_3 + \Sigma_2 \Sigma_3 > 0. \end{split}$$

THEOREM (EXISTENCE AND CONVERGENCE)

We assume that the following inequality holds

$$F(\mathbf{c}_h^{n+1}) - F(\mathbf{c}_h^n) - \mathbf{d}^F(\mathbf{c}_h^{n+1}, \mathbf{c}_h^n) \cdot \left(\mathbf{c}_h^{n+1} - \mathbf{c}_h^n\right) \leqslant 0.$$

Then,

- There exists at least one solution to the discrete problem.
- The sequence of approximate solutions converge towards a weak solution of the problem.
- **Existence** : Brouwer degree theory.
- **Convergence** : Compactness results.

QUESTION : Are there discretizations satisfying $F(\mathbf{c}_{h}^{n+1}) - F(\mathbf{c}_{h}^{n}) - \mathbf{d}^{F}(\mathbf{c}_{h}^{n+1}, \mathbf{c}_{h}^{n}) \cdot (\mathbf{c}_{h}^{n+1} - \mathbf{c}_{h}^{n}) \leq 0$?

 \blacktriangleright Let us concentrate on

 $F(\mathbf{c}) = F_0(\mathbf{c}) = \sigma_{12}c_1^2c_2^2 + \sigma_{13}c_1^2c_3^2 + \sigma_{23}c_2^2c_3^2 + c_1c_2c_3(\Sigma_1c_1 + \Sigma_2c_2 + \Sigma_3c_3)$

▶ Three possible methods

- Implicit discretization
- Convex-concave discretization
- Semi-implicit discretization

$$d_i^{F_0}(\mathbf{c}^{n+1},\mathbf{c}^n) = \partial_i F_0(\mathbf{c}^{n+1})$$

Since F_0 is not convex, we **do not have** the property

$$F_0(\mathbf{c}_h^{n+1}) - F_0(\mathbf{c}_h^n) - \mathbf{d}^{F_0}(\mathbf{c}_h^{n+1}, \mathbf{c}_h^n) \cdot \left(\mathbf{c}_h^{n+1} - \mathbf{c}_h^n\right) \leqslant 0.$$

▶ Nevertheless, it can be shown that

- In the case when $\forall i, \Sigma_i > 0$:
 - \rightsquigarrow We have existence for any Δt , since the concave part of F_0 is low degree,
 - \rightsquigarrow We have convergence, thanks to numerical diffusion

$$F_0(\mathbf{c}_h^{n+1}) - F_0(\mathbf{c}_h^n) - \mathbf{d}^{F_0}(\mathbf{c}_h^{n+1}, \mathbf{c}_h^n) \cdot \left(\mathbf{c}_h^{n+1} - \mathbf{c}_h^n\right) \leqslant \sum_{i=1}^3 \frac{\Sigma_i}{4} \left| c_{hi}^{n+1} - c_{hi}^n \right|^2.$$

- In the case when $\exists i, \Sigma_i < 0$:
 - $\rightsquigarrow\,$ We do not know if the approximate solution exists.
 - → Serious convergence problems of the Newton algorithm.

► Idea : (Eyre, '98)

- We write F_0 as a sum of a convex part and a concave part,
- Implicit discretization for the convex part of F_0 ,
- Explicit discretization of the concave part of F_0 .
- ▶ If we have $F_0 = F_0^+ + F_0^-$ we take

$$\mathbf{d}^{F_0}(\mathbf{c}_h^{n+1}, \mathbf{c}_h^n) = \nabla F_0^+(\mathbf{c}_h^{n+1}) + \nabla F_0^-(\mathbf{c}_h^n)$$

► For any $(\Sigma_i)_i$ such that $\Sigma_1\Sigma_2 + \Sigma_1\Sigma_3 + \Sigma_2\Sigma_3 > 0$, we have $\forall \Delta t > 0$,

$$F_0(\mathbf{c}_h^{n+1}) - F_0(\mathbf{c}_h^n) - \mathbf{d}^{F_0}(\mathbf{c}_h^{n+1}, \mathbf{c}_h^n) \cdot \left(\mathbf{c}_h^{n+1} - \mathbf{c}_h^n\right) \leqslant 0.$$

 \implies Existence and convergence of approximate solutions.

(Kim-Kang-Lowengrub, '04)

▶ Idea : Build an approximation satisfying

$$F_0(\mathbf{c}^{n+1}) - F_0(\mathbf{c}^n) - \mathbf{d}^{F_0}(\mathbf{c}^{n+1}, \mathbf{c}^n) \cdot (\mathbf{c}^{n+1} - \mathbf{c}^n) = 0$$

$$\begin{aligned} d_i^{F_0}(\mathbf{c}^{n+1}, \mathbf{c}^n) &= \quad \frac{\sum_i}{4} \left[c_i^{n+1} + c_i^n \right] \left[(c_j^{n+1} + c_k^{n+1})^2 + (c_j^n + c_k^n)^2 \right] \\ &+ \frac{\sum_j}{4} \left((c_j^{n+1})^2 + (c_j^n)^2 \right) \left(c_i^{n+1} + c_k^{n+1} + c_i^n + c_k^n \right) \\ &+ \frac{\sum_k}{4} \left((c_k^{n+1})^2 + (c_k^n)^2 \right) \left(c_i^{n+1} + c_j^{n+1} + c_i^n + c_j^n \right) \end{aligned}$$

Existence ($\forall \Delta t$) and convergence for any $(\Sigma_i)_i$ such that $\Sigma_1 \Sigma_2 + \Sigma_1 \Sigma_3 + \Sigma_2 \Sigma_3 > 0$.

▶ The scheme is symmetric in \mathbf{c}^n and \mathbf{c}^{n+1} and thus is formally second order.

1D INTERFACE DYNAMICS

NOTATION : SImpl.(β) and SImpl.=SImpl.(1)

Convergence rate

Norm of the error as a function of Δt .

Schemes CC, Impl. et SImpl. : first order
 Scheme SImpl.(0.5) : second order

 $\Sigma_1 = 0.2, \ \Sigma_2 = \Sigma_3 = 1, \ \Lambda = 0.$

Evolution of the interface position

Reference solution $\overline{\mathbf{c}_h}$ computed with the Impl. scheme and $\Delta t = 5.10^{-4}$.

Boyer-Lapuerta-Minjeaud-Piar

1/4

Norm of the error $|\mathbf{c}_h(t,\cdot) - \overline{\mathbf{c}_h}(t,\cdot)|_{\mathrm{L}^2(\Omega)}$ at t=3.8 as a function of Δt .

► All the schemes are asymptotically first order but with different accuracies at a given time step.

Boyer-Lapuerta-Minjeaud-Piar

Influence of the scheme on the interface position

 $\Sigma_1 = \Sigma_2 = 3, \ \Sigma_3 = -1, \ \Lambda = 7/3.$

Evolution of the interface positions

Reference solution $\overline{\mathbf{c}_h}$ computed with SImpl. and $\Delta t = 10^{-3}$.

Boyer-Lapuerta-Minjeaud-Piar

1/3

Iteration count for the Newton solver

$\begin{tabular}{ c c } & \Delta t \\ \hline & Scheme \end{tabular} \end{tabular}$	10^{-1}	5.10^{-2}	10^{-2}	5.10^{-3}	10^{-3}	5.10^{-4}	10^{-4}
CC.	5	5	5	5	5	5	4
SImpl.	-	-	9	9	6	6	5
SImpl.(0.6)	-	-	29	-	7	6	5
Impl.	-	-	-	-	-	-	7

Convergence rate

Norm of the error $|\mathbf{c}_h(t,\cdot) - \overline{\mathbf{c}_h}(t,\cdot)|_{\mathrm{L}^2(\Omega)}$ at t=3.8 as a function of Δt .

▶ First order for all the schemes but here also we observe very poor performance of the CC scheme.

Boyer-Lapuerta-Minjeaud-Piar

3/3

1 A three-phase Cahn-Hilliard/Navier-Stokes model

2 Discretization of the Cahn-Hilliard system

3 Coupling with the Navier-Stokes system

ADAPTIVE LOCAL REFINEMENT

5 Parameters influence - Benchmark - Numerical illustrations

(Minjeaud, '11)

CAHN-HILLIARD SYSTEM

$$\begin{cases} \frac{c_i^{n+1} - c_i^n}{\Delta t} + \frac{Transport}{term} = \operatorname{div}\left(\frac{M_0^n}{\Sigma_i} \nabla \mu_i^{n+1}\right),\\ \mu_i^{n+1} = D_i^F(\mathbf{c}^n, \mathbf{c}^{n+1}) - \frac{3}{4} \varepsilon \Sigma_i \Delta c_i^{n+\beta}. \end{cases}$$

NAVIER-STOKES SYSTEM

$$\begin{cases} \varrho^{n} \frac{\mathbf{u}^{n+1} - \mathbf{u}^{n}}{\Delta t} + \frac{1}{2} \frac{\varrho^{n+1} - \varrho^{n}}{\Delta t} \mathbf{u}^{n+1} + (\varrho^{n+1} \mathbf{u}^{n} \cdot \nabla) \mathbf{u}^{n+1} + \frac{\mathbf{u}^{n+1}}{2} \operatorname{div} (\varrho^{n+1} \mathbf{u}^{n}) \\ - \operatorname{div} (\eta^{n+1} D \mathbf{u}^{n+1}) + \nabla p^{n+1} = \frac{Capillary}{forces} + \varrho^{n+1} \mathbf{g}, \\ \operatorname{div} (\mathbf{u}^{n+1}) = 0. \end{cases}$$

TOTAL ENERGY EVOLUTION

At the continuous level :
$$\sum_{i=1}^{3} \left(\mathbf{u} \cdot \nabla c_i \right) \mu_i = \left(\sum_{i=1}^{3} \mu_i \nabla c_i \right) \cdot \mathbf{u}$$

Discrete case :
$$\sum_{i=1}^{3} \left(\begin{array}{c} Transport \\ term \\ CH \end{array} \right) \mu_i^{n+1} = \left(\begin{array}{c} Capillary \\ forces \\ NS \end{array} \right) \cdot \mathbf{u}^{n+1}$$

IMPLICIT DISCRETIZATION :

$$\begin{array}{ll} Transport \\ terms \\ CH \end{array} = \mathbf{u}^{n+1} \cdot \nabla c_i^{n+1}, \qquad \begin{array}{l} Capillary \\ forces \\ NS \end{array} = \sum_{i=1}^{3} \mu_i^{n+1} \nabla c_i^{n+1} \end{array}$$

► Advantage : No contribution to the energy evolution :

$$\sum_{i=1}^{3} \left(\mathbf{u}^{n+1} \cdot \nabla c_{i}^{n+1} \right) \mu_{i}^{n+1} = \left(\sum_{i=1}^{3} \mu_{i}^{n+1} \nabla c_{i}^{n+1} \right) \cdot \mathbf{u}^{n+1}$$

Drawbacks : Strong coupling between the two systems (CH) and (NS)

TOTAL ENERGY EVOLUTION

At the continuous level :
$$\sum_{i=1}^{3} \left(\mathbf{u} \cdot \nabla c_i \right) \mu_i = \left(\sum_{i=1}^{3} \mu_i \nabla c_i \right) \cdot \mathbf{u}$$

Discrete case :
$$\sum_{i=1}^{3} \left(\begin{array}{c} Transport \\ term \\ CH \end{array} \right) \mu_i^{n+1} = \left(\begin{array}{c} Capillary \\ forces \\ NS \end{array} \right) \cdot \mathbf{u}^{n+1}$$

FIRST TRY TO OBTAIN AN UNCOUPLED SYSTEM :

$$\begin{array}{ll} Transport & Capillary \\ terms & = \mathbf{u}^{n} \cdot \nabla c_{i}^{n+1}, \\ CH & NS & = \sum_{i=1}^{3} \mu_{i}^{n+1} \nabla c_{i}^{n+1} \end{array}$$

▶ Contribution to the total energy evolution :

$$\Delta t \sum_{i=1}^{3} \left((\mathbf{u}^{n+1} - \mathbf{u}^{n}) \cdot \nabla c_{i}^{n+1} \right) \mu_{i}^{n+1}$$

► Conditional stability : $\Delta t \leq Ch$.

(Kay-Styles-Welford, '08)

(Minjeaud, '11)

First idea : separation of the capillary forces term from the (NS) system

LET US FIRST TAKE INTO ACCOUNT THE CAPILLARY FORCES

$$\varrho^n \frac{\mathbf{u}^* - \mathbf{u}^n}{\Delta t} + \nabla p^* = \sum_{i=1}^3 \mu_i^{n+1} \nabla c_i^{n+1}, \qquad \operatorname{div}\left(\mathbf{u}^*\right) = 0.$$

CAHN-HILLIARD SYSTEM

$$\begin{cases} \frac{c_i^{n+1} - c_i^n}{\Delta t} + \mathbf{u}^* \cdot \nabla c_i^{n+1} = \operatorname{div}\left(\frac{M_0^n}{\Sigma_i} \nabla \mu_i^{n+1}\right),\\ \mu_i^{n+1} = D_i^F(\mathbf{c}^n, \mathbf{c}^{n+1}) - \frac{3}{4} \varepsilon \Sigma_i \Delta c_i^{n+\beta}. \end{cases}$$

NAVIER-STOKES EQUATIONS

$$\begin{cases} \varrho^n \frac{\mathbf{u}^{n+1} - \mathbf{u}^*}{\Delta t} + \frac{1}{2} \frac{\varrho^{n+1} - \varrho^n}{\Delta t} \mathbf{u}^{n+1} + (\varrho^{n+1} \mathbf{u}^n \cdot \nabla) \mathbf{u}^{n+1} + \frac{\mathbf{u}^{n+1}}{2} \operatorname{div} (\varrho^{n+1} \mathbf{u}^n) \\ - \operatorname{div} \left(\eta^{n+1} D \mathbf{u}^{n+1} \right) + \nabla (p^{n+1} - p^*) = \varrho^{n+1} \mathbf{g}, \\ \operatorname{div} (\mathbf{u}^{n+1}) = 0. \end{cases}$$

Unfortunately, the first two steps are still strongly coupled.

Boyer-Lapuerta-Minjeaud-Piar

UNCOUPLED UNCONDITIONALLY STABLE DISCRETIZATION

(Minjeaud, '11)

Second idea : Forget about the divergence-free condition in the first step.

$$\mathbf{u}^* = \mathbf{u}^n - \frac{\Delta t}{\varrho^n} \sum_{i=1}^3 (c_i^n - \alpha_i) \nabla \mu_i^{n+1}, \qquad \alpha_i = \frac{1}{|\Omega|} \int_{\Omega} c_i^0 \, dx$$

 \blacktriangleright Advection velocity \mathbf{u}^* in (CH) is no more divergence-free but we still have

$$\mathbf{u}^* \cdot \mathbf{n} = 0$$
, on $\partial \Omega$.

CAHN-HILLIARD SYSTEM

$$\begin{cases} \frac{c_i^{n+1} - c_i^n}{\Delta t} + \operatorname{div}\left((c_i^n - \alpha_i)\mathbf{u}^*\right) = \operatorname{div}\left(\frac{M_0^n}{\Sigma_i}\nabla\mu_i^{n+1}\right),\\ \mu_i^{n+1} = D_i^F(\mathbf{c}^n, \mathbf{c}^{n+1}) - \frac{3}{4}\varepsilon\Sigma_i\Delta c_i^{n+\beta}.\end{cases}$$

▶ We use the conservative form of the transport term \Rightarrow volume conservation is ensured.

Since
$$\sum_{i=1}^{3} \alpha_i = 1 \Rightarrow$$

The sum of the three order parameters remains equal to 1.

NAVIER-STOKES SYSTEM

$$\begin{cases} \varrho^{n} \frac{\mathbf{u}^{n+1} - \mathbf{u}^{*}}{\Delta t} + \frac{1}{2} \frac{\varrho^{n+1} - \varrho^{n}}{\Delta t} \mathbf{u}^{n+1} + (\varrho^{n+1} \mathbf{u}^{n} \cdot \nabla) \mathbf{u}^{n+1} + \frac{\mathbf{u}^{n+1}}{2} \operatorname{div} (\varrho^{n+1} \mathbf{u}^{n}) \\ - \operatorname{div} (\eta^{n+1} D \mathbf{u}^{n+1}) + \nabla p^{n+1} = \varrho^{n+1} \mathbf{g}, \\ \operatorname{div} (\mathbf{u}^{n+1}) = 0, \end{cases}$$

PROPERTIES OF THE SCHEME

- ▶ Systems (CH) and (NS) are fully uncoupled
- ▶ Volume conservation still holds

• The property
$$\sum_{i=1}^{3} c_i = 1$$
 still holds

► Unconditional stability

(Minjeaud, '11)

THEOREM (EXISTENCE AND CONVERGENCE)

The fully discrete scheme has a solution.
Stability :

 $\forall \Delta t > 0, the sequence \ \mathcal{F}_{\mathbf{\Sigma},\varepsilon}^{triph}(\mathbf{c}_h^n) + \int_{\Omega} \frac{1}{2} \varrho_h^n |\mathbf{u}_h^n|^2 \ dx \ is \ decreasing \ (for \ \mathbf{g} = 0).$

▶ In the homogeneous case ($\rho_1 = \rho_2 = \rho_3$), we can prove convergence of the approximate solution.

(Chorin, '68); (Temam, '68); (Guermond-Minev-Shen, '06)

Suppose we are given $(\mathbf{u}^n, p^n) \in \mathcal{V}_0^{\mathbf{u}} \times \mathcal{V}^p$.

First step : Velocity prediction $\mathbf{\tilde{u}}^{n+1} \in \mathcal{V}_0^{\mathbf{u}}$

► Principle :

- Forget about the constraint $\operatorname{div}(\mathbf{u}) = 0$,
- Explicit approximation of the pressure.

▶ Find $\tilde{\mathbf{u}}^{n+1} \in \mathcal{V}_0^{\mathbf{u}}$ such that

$$\int_{\Omega} \varrho^{n} \frac{\tilde{\mathbf{u}}^{n+1} - \mathbf{u}^{n}}{\Delta t} \cdot \mathbf{v} \, dx + \int_{\Omega} \frac{1}{2} \frac{\varrho^{n+1} - \varrho^{n}}{\Delta t} \tilde{\mathbf{u}}^{n+1} \cdot \mathbf{v} \, dx + \frac{1}{2} \int_{\Omega} \varrho^{n+1} [(\mathbf{u}^{n} \cdot \nabla) \tilde{\mathbf{u}}^{n+1} \cdot \mathbf{v} - (\mathbf{u}^{n} \cdot \nabla) \mathbf{v} \cdot \tilde{\mathbf{u}}^{n+1}] \, dx + \int_{\Omega} 2\eta^{n+1} \mathrm{D} \tilde{\mathbf{u}}^{n+1} : \mathrm{D} \mathbf{v} \, dx - \int_{\Omega} \rho^{n} \mathrm{div} \, \mathbf{v} \, dx = \int_{\Omega} \varrho^{n+1} \mathbf{g} \cdot \mathbf{v} \, dx, \quad \forall \mathbf{v} \in \mathcal{V}_{0}^{\mathbf{u}}$$

 \blacktriangleright Skew-symmetric form of the advection term

$$\int_{\Omega} (\rho \mathbf{u} \cdot \nabla) \mathbf{u} \cdot \mathbf{v} + \frac{\mathbf{u}}{2} \operatorname{div} (\rho \mathbf{u}) \cdot \mathbf{v} \, dx$$

Boyer-Lapuerta-Minjeaud-Piar

Second step : velocity projection

$$\mathbf{u}^{n+1} \in \mathcal{V}^{\mathbf{u}}_0, p^{n+1} \in \mathcal{V}^p$$

 \blacktriangleright **Principle :** projection on the space of divergence free vector fields :

$$\begin{cases} \varrho^{n+1} \frac{\mathbf{u}^{n+1} - \tilde{\mathbf{u}}^{n+1}}{\Delta t} + \nabla \Phi^{n+1} = 0, \\ \operatorname{div} \mathbf{u}^{n+1} = 0. \end{cases}$$

► Substeps :

• Compute the pressure increment Find $\Phi^{n+1} \in \mathcal{V}^p$ such that

$$\int_{\Omega} \frac{1}{\varrho^{n+1}} \nabla \Phi^{n+1} \cdot \nabla \pi \, dx = -\int_{\Omega} \frac{1}{\Delta t} \pi \operatorname{div} \tilde{\mathbf{u}}^{n+1} \, dx, \quad \forall \pi \in \mathcal{V}^p$$

• Velocity correction Find $\mathbf{u}^{n+1} \in \mathcal{V}_0^{\mathbf{u}}$ such that

$$\int_{\Omega} \frac{\varrho^{n+1}}{\Delta t} \mathbf{u}^{n+1} \cdot \mathbf{v} \, dx = \int_{\Omega} \frac{\varrho^{n+1}}{\Delta t} \tilde{\mathbf{u}}^{n+1} \cdot \mathbf{v} \, dx + \int_{\Omega} \Phi^{n+1} \mathrm{div} \, \mathbf{v} \, dx, \quad \forall \mathbf{v} \in \mathcal{V}_0^{\mathbf{u}}$$

Pressure correction

$$p^{n+1} = p^n + \Phi^{n+1}, \quad p^{n+1} \in \mathcal{V}^p$$

$\textcircled{0} Compute the velocity prediction u^* taking into account capillary forces.$

Solve the Cahn-Hilliard system :

- **()** using \mathbf{u}^* as a transport field in conservative form
- **2** using a suitable semi-implicit time discretization of the potential term.
- **③** Solve the Navier-Stokes system starting from \mathbf{u}^* without capillary forces by the projection method
 - Compute the velocity prediction.
 - **2** Compute the pressure increment.
 - **③** Correction of the velocity.
 - Orrection of the pressure.

1 A THREE-PHASE CAHN-HILLIARD/NAVIER-STOKES MODEL

Discretization of the Cahn-Hilliard system

3 Coupling with the Navier-Stokes system

4 Adaptive local refinement

5 Parameters influence - Benchmark - Numerical illustrations To refine basis functions instead of elements/cells

(Bank-Dupont-Yserentant, '88) (Yserentant, '92) (Krysl-Grinspun-Schröder, '03) (B.-Lapuerta-Minjeaud-Piar, '09)

- The cells are divided by applying a given refinement pattern
- **Conforming approximation :** No need to modify the numerical scheme because of the adaptation
- Non conforming cells are implicitly taken into account without any treatment of hanging nodes
- The overall approach is independent of the Lagrange element we consider ($\mathbb{P}_1, \mathbb{P}_2, \mathbb{Q}_1, \mathbb{Q}_2, \ldots$)
- Same strategy in 2D and 3D.

RECURSIVE CONSTRUCTION

▶ Initial mesh : \mathcal{T}_0 geometrically conforming generated using \widehat{K} .

- \blacktriangleright Necessary compatibility conditions on the refinement pattern :
 - Compatibility between the faces of \widehat{K} .
 - The nodes of level [0] are also nodes of level [1].

RECURSIVE CONSTRUCTION

▶ Initial mesh : \mathcal{T}_0 geometrically conforming generated using \widehat{K} .

 \mathcal{T}_1 is a conforming mesh generated using \widehat{K} .

 \blacktriangleright Necessary compatibility conditions on the refinement pattern :

- Compatibility between the faces of \hat{K} .
- The nodes of level [0] are also nodes of level [1].

RECURSIVE CONSTRUCTION

▶ Initial mesh : \mathcal{T}_0 geometrically conforming generated using \widehat{K} .

 \mathcal{T}_2 is a conforming mesh generated using \widehat{K} .

 \blacktriangleright Necessary compatibility conditions on the refinement pattern :

- Compatibility between the faces of \widehat{K} .
- The nodes of level [0] are also nodes of level [1].

REFINEMENT EQUATIONS

$$X_j \subset X_{j+1} \quad \Rightarrow \quad \varphi_k^{[j]}(\boldsymbol{x}) = \sum_{\ell} \beta_{k\ell}^{[j+1]} \varphi_{\ell}^{[j+1]}(\boldsymbol{x}), \qquad \forall \boldsymbol{x} \in \Omega$$

This formula can be obtained on the **reference element** \implies pre-computed coefficients, no need for storage.

PARENT/CHILD RELATIONSHIP

$$\begin{array}{ll} \text{When} \ \ \beta_{k\ell}^{[j+1]} \neq 0 \ : & \varphi_k^{[j]} \ \ \text{is a parent of} \ \varphi_\ell^{[j+1]}, \\ & \varphi_\ell^{[j+1]} \ \text{is a child of} \ \ \varphi_k^{[j]}. \end{array} \end{array}$$

MULTILEVEL FE APPROXIMATION SPACES

- Multilevel FE basis : a linearly independent subset \mathcal{B} of $\bigcup_{j=0}^{J} B_j$
- Multilevel FE space :

$$\mathcal{V}_h = \operatorname{span} \ \mathcal{B} \ \subset \operatorname{H}^1(\Omega)$$

A NATURAL WAY TO ENSURE LINEAR INDEPENDENCE

The geometric nodes associated to two different basis functions in ${\mathcal B}$ are different.

REFINEMENT/UNREFINEMENT (QUASI-HIERARCHICAL)

Let \mathcal{B}^{\star} a multilevel basis.

(Un)refinement \iff to build a new multilevel basis \mathcal{B} .

- Refinement of $\varphi \in \mathcal{B}^{\star}$
 - \blacklozenge Remove φ
 - Add all its children which are not refined in \mathcal{B}^{\star} .
- Unrefinement of φ which is refined in B^{*} without any child refined in B^{*}
 - \blacklozenge Add φ
 - Remove all the children of φ with no other parent refined in \mathcal{B}^{\star} .

Refinement criterion for the CH/NS system :

Refine basis functions until the diameter of the cells in the interfaces are at most equal to a given $h_i > 0$.

1 Linear independence :

The refinement procedure preserves linear independence of multilevel basis.

2 Conservation of information :

Let ${\mathcal B}$ which is obtained from ${\mathcal B}^\star$ through the refinement of a basis function then

span $\mathcal{B}^* \subset \text{span } \mathcal{B}$.

3 Refinement order :

The approximation spaces obtained by refinement (resp. unrefinement) do not depend on the order we perform successive refinements (resp. unrefinements).

THE CAHN-HILLIARD EQUATION

No need to modify the discretization scheme for the CH system (the integrals in the Galerkin formulation are computed exactly). THE PROJECTION METHOD

▶ The pressure correction step is not variational but purely algebraic.

$$p^{n+1} = p^n + \Phi^{n+1}$$

 \blacktriangleright After adaptation of the approximation space :

$$p^{n} \in \mathcal{V}^{p,n}, \Phi^{n+1} \in \mathcal{V}^{p,n+1} \not\Rightarrow p^{n} + \Phi^{n+1} \in \mathcal{V}^{p,n+1}$$

THE CAHN-HILLIARD EQUATION

No need to modify the discretization scheme for the CH system (the integrals in the Galerkin formulation are computed exactly). THE PROJECTION METHOD

▶ The pressure correction step is not variational but purely algebraic.

$$p^{n+1} = p^n + \Phi^{n+1}$$

 \blacktriangleright After adaptation of the approximation space :

$$p^n \in \mathcal{V}^{p,n}, \Phi^{n+1} \in \mathcal{V}^{p,n+1} \not\Rightarrow p^n + \Phi^{n+1} \in \mathcal{V}^{p,n+1}$$

▶ We need a new **pressure prediction step** : Find $\tilde{p}^{n+1} \in \mathcal{V}^{p,n+1}$

$$\int_{\Omega} \frac{\nabla \hat{p}^{n+1}}{\sqrt{\varrho^{n+1}}} \cdot \frac{\nabla \pi}{\sqrt{\varrho^{n+1}}} \, dx = \int_{\Omega} \frac{\nabla p^n}{\sqrt{\varrho^n}} \cdot \frac{\nabla \pi}{\sqrt{\varrho^{n+1}}} \, dx, \quad \forall \pi \in \mathcal{V}^{p,n+1}$$

▶ Then we use \tilde{p}^{n+1} in the velocity prediction, and in the pressure correction

Similar ideas as in (Guermond-Quartapelle, '00) lead to stability.

1 A THREE-PHASE CAHN-HILLIARD/NAVIER-STOKES MODEL

- Discretization of the Cahn-Hilliard system
- **3** Coupling with the Navier-Stokes system
- **4** Adaptive local refinement
- PARAMETERS INFLUENCE BENCHMARK NUMERICAL ILLUSTRATIONS

The "Bubble" benchmark by Hysing et al '09

- One single 2D gas bubble rising inside a liquid under the effect of gravity.
- GOALS : compare different models and numerical methods

The "Bubble" benchmark by Hising et al '09

THE MACROSCOPIC QUANTITIES OF INTEREST

• The bubble mass center position

$$x_{\mathcal{B}}^{n} = \frac{\sum_{K \in \mathcal{B}^{n}} |K| x_{K}}{\sum_{K \in \mathcal{B}^{n}} |K|},$$

where the "bubble" at time t^n is defined by

$$\mathcal{B}^n = \left\{ K, \quad \frac{1}{|K|} \int_K c^n \, dx \ge 1/2 \right\}.$$

• Mean velocity of the bubble at time t^n

$$\mathbf{u}_{\mathcal{B}}^{n} = \frac{\sum_{K \in \mathcal{B}^{n}} \int_{K} u^{n}}{\sum_{K \in \mathcal{B}^{n}} |K|},$$

• Circularity at time t^n

$$\phi_{\mathcal{B}}^n = \frac{\sqrt{V/\pi}}{\text{perimeter of the bubble}},$$

where

perimeter of the bubble
$$\sim \int_{\Omega} |\nabla c| dx.$$

Boyer-Lapuerta-Minjeaud-Piar

INFLUENCE OF THE MOBILITY AND THE INTERFACE THICKNESS

▶ We choose a degenerate mobility $M_0(\mathbf{c}) = M_{\text{deg}}(1-c_1)^2(1-c_2)^2(1-c_3)^2$. ▶ *R* is the initial radius of the bubble

MAXIMUM MEAN-VALUE VELOCITY

ε $M_{\rm deg}$	$\frac{R}{20}$	$\frac{R}{16}$	$\frac{R}{12}$	
10	0.2973	0.3020	0.3082	
1	0.2481	0.2490	0.2514	
10^{-1}	0.2419	0.2413	0.2412	
10^{-2}	0.2417	0.2403	0.2404	
10^{-3}	0.2414	0.2400	0.2390	
10^{-4}	0.2389	0.2361	0.2326	
10^{-5}	0.2289	0.2215	0.2135	
10^{-6}	0.2127	0.2050	0.1982	
reference value : 0.2419 ± 0.0002				

INFLUENCE OF THE MOBILITY AND THE INTERFACE THICKNESS

▶ We choose a degenerate mobility $M_0(\mathbf{c}) = M_{\text{deg}}(1-c_1)^2(1-c_2)^2(1-c_3)^2$. ▶ *R* is the initial radius of the bubble

MASS CENTER POSITION AT TIME T = 3

ε $M_{\rm deg}$	$\frac{R}{20}$	$\frac{R}{16}$	$\frac{R}{12}$	
10	1.201	1.210	1.225	
1	1.129	1.139	1.152	
10^{-1}	1.089	1.088	1.090	
10^{-2}	1.084	1.082	1.082	
10^{-3}	1.084	1.081	1.080	
10^{-4}	1.081	1.076	1.069	
10^{-5}	1.059	1.043	1.022	
10^{-6}	1.010	1.000	0.9806	
reference value : 1.081 ± 0.001				

INFLUENCE OF THE MOBILITY AND THE INTERFACE THICKNESS

- We choose a degenerate mobility $M_0(\mathbf{c}) = M_{\text{deg}}(1-c_1)^2(1-c_2)^2(1-c_3)^2$.
- $\triangleright R$ is the initial radius of the bubble

MINIMAL CIRCULARITY

ε $M_{\rm deg}$	$\frac{R}{20}$	$\frac{R}{16}$	$\frac{R}{12}$	
10	0.9927	0.9915	0.9900	
1	0.9491	0.9527	0.9578	
10^{-1}	0.9197	0.9183	0.9165	
10^{-2}	0.9097	0.9056	0.8991	
10^{-3}	0.8989	0.8911	0.8786	
10^{-4}	0.8815	0.8716	0.8626	
10^{-5}	0.8882	0.8855	0.8928	
10^{-6}	0.9094	0.9180	0.9358	
reference value : 0.9012 ± 0.0001				

INFLUENCE OF THE MOBILITY AND THE INTERFACE THICKNESS

▶ We choose a degenerate mobility M₀(c) = M_{deg}(1 - c₁)²(1 - c₂)²(1 - c₃)².
▶ R is the initial radius of the bubble

Shape of the bubble for difference values of $M_{\rm deg}$

TIME EVOLUTION OF THE SYSTEM

RESULTS

TIME EVOLUTION OF THE SYSTEM

Circularity

Boyer-Lapuerta-Minjeaud-Piar

RESULTS

TIME EVOLUTION OF THE SYSTEM

Circularity

Boyer-Lapuerta-Minjeaud-Piar

				3
			1	
R				
0.006	0.8]	
σ_{12}	σ_{13}	σ_{23}]	
0.07	0.07	0.05]	
ϱ_1	ϱ_2	ϱ_3		
1	1200	1000]	2
η_1	η_2	η_3		
10^{-4}	0.15	0.1	8R	

INFLUENCE OF THE TIME DISCRETIZATION METHOD FOR THE CH SYSTEM

INFLUENCE OF THE INTERFACE THICKNESS

INFLUENCE OF THE ADAPTIVE REFINEMENT

OUTFLOW BOUNDARY CONDITIONS

OUTFLOW BC FOR THE NAVIER-STOKES EQUATIONS

(Bruneau-Fabrie '94, '96) (B.-Fabrie '07) Given a reference flow $(\mathbf{u}_{ref}, p_{ref})$ we consider the following outflow BC

(*)
$$(2\eta D\mathbf{u} - p\mathrm{Id}) \cdot \mathbf{n} = (2\eta D\mathbf{u}_{\mathrm{ref}} - p_{\mathrm{ref}}\mathrm{Id}) \cdot \mathbf{n} - \frac{1}{2}\rho(\mathbf{u}\cdot\mathbf{n})^{-}(\mathbf{u} - \mathbf{u}_{\mathrm{ref}}).$$

OUTFLOW BC FOR THE CAHN-HILLIARD EQUATION

(B.-Duval-Introïni-Latché-Piar, '09)

For a **fixed** advection field **u** we propose to use

$$(\star\star) \qquad \nabla c \cdot \mathbf{n} = -\frac{1}{(\mathbf{u} \cdot \mathbf{n})^+} \frac{\partial c}{\partial t},$$

the BC condition on μ being unchanged. OUTFLOW BC FOR THE CH / NS SYSTEM We combine (*)-(**) but with a precomputation of a capillary pressure

$$\sqrt{\rho^{n+1}\rho^n}\frac{\tilde{\mathbf{u}}-\mathbf{u}^n}{\Delta t}+\nabla p_{\rm cap}^{n+1}=\mathcal{F}_{\rm cap}^{n+1},$$

 $\operatorname{div} \tilde{\mathbf{u}} = \operatorname{div} \mathbf{u}^n,$

Thus, the open BC (\star) is applied only on the dynamic part of the pressure.

EXAMPLES

- ► Left plot : Improved outflow BC (\star) - $(\star\star)$
- ▶ **Right plot** : Standard outflow BC

CONVECTED CH EQUATION

EXAMPLES

Left plot : Improved outflow BC (*)-(**)
Right plot : Standard outflow BC

Full NS/CH system

EXAMPLES

Left plot : Improved outflow BC (*)-(**)
Right plot : Standard outflow BC

Full NS/CH system

$$\sigma_{12} = \sigma_{13} = 0.07$$

$$\sigma_{23} = 0.05$$

$$\varrho_1 = 1$$

$$\eta_1 = 10^{-4}$$

$$\varrho_2 = 1200$$

$$\eta_2 = 0.15$$

$$\varrho_3 = 1000$$

$$\eta_3 = 0.1$$

$$R = 8 \times 10^{-3}$$

$$\varepsilon = 1.6 \times 10^{-3} = \frac{R}{5}$$

Number of DOFs associated with one \mathbb{Q}_1 scalar unknown :

- Local refinement ~ 120 000.
- Global refinement $\sim 550\ 000.$

CONCLUSIONS - PERSPECTIVES

SUMMARY

- Consistent three phase Cahn-Hilliard systems.
- Study of the time discretization schemes.
- Coupling schemes with the Navier-Stokes system.
- Incremental projection method.
- Conforming local adaptive refinement method.
- Multigrid preconditioning.
- Benchmarking and study of the influence of numerical/modeling parameters.
- Outflow boundary conditions
- Parallel implementation.
- Parasitic currents elimination (Minjeaud-Piar, '11)

PERSPECTIVES

- Using a \mathbb{Q}_2 discretization for **c** and μ (leads to volume conservation problems).
- Using a lower order discretization for (\mathbf{u}, p) .
- Convergence proofs in the non-matched densities case.

