Sur l'approximation numérique d'un contrôle à zéro de l'équation de la chaleur

Franck BOYER*

avec Florence HUBERT* et Jérôme LE ROUSSEAU †

* LATP, Université Paul Cézanne, Université de Provence † MAPMO, Université d'Orléans

Orléans, Juin 2009

1 INTRODUCTION

- 2 Contrôlabilité du problème semi-discret en espace
- 8 Contrôlabilité du problème complètement discret
- **4** UN PEU D'EXPLORATION NUMÉRIQUE
- **6** CONCLUSIONS ET PERSPECTIVES

1 INTRODUCTION

- 2 Contrôlabilité du problème semi-discret en espace
- 8 Contrôlabilité du problème complètement discret
- (4) UN PEU D'EXPLORATION NUMÉRIQUE
- **5** Conclusions et perspectives

NOTATIONS

On s'intéresse au problème parabolique suivant

$$(S) \begin{cases} \partial_t y - \nabla \cdot (\gamma \nabla y) = \mathbf{1}_{\boldsymbol{\omega}} \ v & \text{dans } Q = (0, T) \times \Omega \\ y = 0 & \text{sur } \Sigma = (0, T) \times \partial \Omega \\ y(0) = y^0 & \text{dans } \Omega \end{cases}$$

où T > 0, Ω un ouvert régulier de \mathbb{R}^n , $\omega \in \Omega$, $\gamma = \gamma(x) \in W^{1,\infty}(\Omega)$, $y^0 \in L^2(\Omega)$ quelconque et $v \in L^2(Q)$ est le contrôle.

Coût du contrôle :
$$||v||_{L^2(Q)} = \left(\int_0^T \int_{\omega} |v|^2 \, dx \, dt\right)^{\frac{1}{2}}$$

NOTATIONS

On s'intéresse au problème parabolique suivant

$$(S) \begin{cases} \partial_t y - \nabla \cdot (\gamma \nabla y) = \mathbf{1}_{\boldsymbol{\omega}} \ v & \text{dans } Q = (0, T) \times \Omega \\ y = 0 & \text{sur } \Sigma = (0, T) \times \partial \Omega \\ y(0) = y^0 & \text{dans } \Omega \end{cases}$$

où T > 0, Ω un ouvert régulier de \mathbb{R}^n , $\omega \in \Omega$, $\gamma = \gamma(x) \in W^{1,\infty}(\Omega)$, $y^0 \in L^2(\Omega)$ quelconque et $v \in L^2(Q)$ est le contrôle.

Coût du contrôle :
$$||v||_{L^2(Q)} = \left(\int_0^T \int_{\omega} |v|^2 \, dx \, dt\right)^{\frac{1}{2}}$$

Problèmes de contrôle

Peut-on trouver $v \in L^2(Q)$ tel que la solution y de (S) vérifie :

• $y(T) = y_T$, avec $y_T \in L^2(\Omega)$ quelconque donné. NON

NOTATIONS

On s'intéresse au problème parabolique suivant

$$(S) \begin{cases} \partial_t y - \nabla \cdot (\gamma \nabla y) = \mathbf{1}_{\boldsymbol{\omega}} \ v & \text{dans } Q = (0, T) \times \Omega \\ y = 0 & \text{sur } \Sigma = (0, T) \times \partial \Omega \\ y(0) = y^0 & \text{dans } \Omega \end{cases}$$

où T > 0, Ω un ouvert régulier de \mathbb{R}^n , $\omega \in \Omega$, $\gamma = \gamma(x) \in W^{1,\infty}(\Omega)$, $y^0 \in L^2(\Omega)$ quelconque et $v \in L^2(Q)$ est le contrôle.

Coût du contrôle :
$$||v||_{L^2(Q)} = \left(\int_0^T \int_{\omega} |v|^2 \, dx \, dt\right)^{\frac{1}{2}}$$

Problèmes de contrôle

Peut-on trouver $v \in L^2(Q)$ tel que la solution y de (S) vérifie :

• $y(T) = y_T$, avec $y_T \in L^2(\Omega)$ quelconque donné. NON • $|y(T) - y_T|_{L^2(\Omega)} \le \varepsilon$, avec $y_T \in L^2(\Omega)$ et $\varepsilon > 0$ donnés. OUI mais coût $\to \infty$ quand $\varepsilon \to 0$

NOTATIONS

On s'intéresse au problème parabolique suivant

$$(S) \begin{cases} \partial_t y - \nabla \cdot (\gamma \nabla y) = \mathbf{1}_{\boldsymbol{\omega}} \ v & \text{dans } Q = (0, T) \times \Omega \\ y = 0 & \text{sur } \Sigma = (0, T) \times \partial \Omega \\ y(0) = y^0 & \text{dans } \Omega \end{cases}$$

où T > 0, Ω un ouvert régulier de \mathbb{R}^n , $\omega \in \Omega$, $\gamma = \gamma(x) \in W^{1,\infty}(\Omega)$, $y^0 \in L^2(\Omega)$ quelconque et $v \in L^2(Q)$ est le contrôle.

Coût du contrôle :
$$||v||_{L^2(Q)} = \left(\int_0^T \int_{\omega} |v|^2 \, dx \, dt\right)^{\frac{1}{2}}$$

Problèmes de contrôle

Peut-on trouver $v \in L^2(Q)$ tel que la solution y de (S) vérifie :

• $y(T) = y_T$, avec $y_T \in L^2(\Omega)$ quelconque donné. NON • $|y(T) - y_T|_{L^2(\Omega)} \le \varepsilon$, avec $y_T \in L^2(\Omega)$ et $\varepsilon > 0$ donnés. OUI mais coût $\to \infty$ quand $\varepsilon \to 0$ • y(T) = 0. OUI, équivalent au contrôle aux trajectoires

Observabilité

Problème adjoint

$$(S^*) \begin{cases} -\partial_t q - \nabla \cdot (\gamma \nabla q) = 0 & \text{dans } Q \\ q = 0 & \text{sur } \Sigma \\ q(T) = q_F & \text{dans } \Omega, \end{cases}$$

avec $q_F \in L^2(\Omega)$ quelconque.

Observabilité

Problème adjoint

$$(S^*) \begin{cases} -\partial_t q - \nabla \cdot (\gamma \nabla q) = 0 & \text{dans } Q \\ q = 0 & \text{sur } \Sigma \\ q(T) = q_F & \text{dans } \Omega, \end{cases}$$

avec $q_F \in L^2(\Omega)$ quelconque.

THÉORÈME

Le système (S) est contrôlable à zéro au temps T si et seulement si le système adjoint (S^*) est observable au temps T > 0, i.e. s'il existe $C_{obs} > 0$ telle que **toute solution** de (S^*) vérifie

$$|q(0)|_{L^2(\Omega)}^2 \le C_{\text{obs}} \iint_{(0,T)\times\omega} |q(t,x)|^2 \, dt \, dx.$$

Dans ce cas, il existe un contrôle v pour (S) tel que

$$||v||_{L^2(Q)} \le \sqrt{C_{\text{obs}}} |y^0|_{L^2(\Omega)}.$$

Preuves de la contrôlabilité à zéro pour (S)

STRATÉGIE 1 : CONSTRUCTION EXPLICITE DU CONTRÔLE (Lebeau-Robbiano, '95)

- Preuve d'une **mauvaise** inégalité d'observabilité **partielle**, c'est-à-dire sur les basses fréquences de l'opérateur $-\nabla \cdot (\gamma \nabla \cdot)$.
- Celle-ci découle d'une inégalité spectrale pour l'opérateur elliptique $-\nabla \cdot (\gamma \nabla \cdot)$.
- Celle-ci provient elle-même d'une inégalité de Carleman locale sur un opérateur elliptique augmenté du type

$$\partial_t^2 + \nabla \cdot (\gamma \nabla \cdot)$$

• Construction du contrôle par un découpage de l'intervalle de temps ; utilisation de la dissipation parabolique.

Preuves de la contrôlabilité à zéro pour (S)

STRATÉGIE 1 : CONSTRUCTION EXPLICITE DU CONTRÔLE (Lebeau-Robbiano, '95)

- Preuve d'une **mauvaise** inégalité d'observabilité **partielle**, c'est-à-dire sur les basses fréquences de l'opérateur $-\nabla \cdot (\gamma \nabla \cdot)$.
- Celle-ci découle d'une inégalité spectrale pour l'opérateur elliptique $-\nabla \cdot (\gamma \nabla \cdot)$.
- Celle-ci provient elle-même d'une inégalité de Carleman locale sur un opérateur elliptique augmenté du type

$$\partial_t^2 + \nabla \cdot (\gamma \nabla \cdot)$$

• Construction du contrôle par un découpage de l'intervalle de temps ; utilisation de la dissipation parabolique.

STRATÉGIE 2 : PREUVE DIRECTE DE L'INÉGALITÉ D'OBSERVABILITÉ (Fursikov-Imanuvilov, '96)

• Preuve d'une inégalité de Carleman globale sur l'opérateur parabolique

$$\partial_t - \nabla \cdot (\gamma \nabla \cdot)$$

La méthode de Lebeau-Robbiano

INÉGALITÉ SPECTRALE

Soient $\mu_1 \leq \mu_2 \leq \cdots \leq \mu_k \dots$ les valeurs propres de l'opérateur $-\nabla \cdot (\gamma \nabla \cdot)$ avec CL de Dirichlet homogène et $(\phi_k)_{k \in \mathbb{N}}$ la base Hilbertienne de $L^2(\Omega)$ formée des fonctions propres associées.

THÉORÈME (LEBEAU-ROBBIANO, '95)

Il existe C > 0 telle que pour tout $\mu > 0$

$$\sum_{\mu_i \le \mu} |\alpha_i|^2 \le C e^{C\sqrt{\mu}} \int_{\omega} \Big| \sum_{\mu_i \le \mu} \alpha_i \phi_i(x) \Big|^2 dx, \qquad (\alpha_i)_i \subset \mathbb{R}$$

Inégalité spectrale

Soient $\mu_1 \leq \mu_2 \leq \cdots \leq \mu_k \dots$ les valeurs propres de l'opérateur $-\nabla \cdot (\gamma \nabla \cdot)$ avec CL de Dirichlet homogène et $(\phi_k)_{k \in \mathbb{N}}$ la base Hilbertienne de $L^2(\Omega)$ formée des fonctions propres associées.

THÉORÈME (LEBEAU-ROBBIANO, '95)

Il existe C > 0 telle que pour tout $\mu > 0$

$$\sum_{\mu_i \le \mu} |\alpha_i|^2 \le C e^{C\sqrt{\mu}} \int_{\omega} \Big| \sum_{\mu_i \le \mu} \alpha_i \phi_i(x) \Big|^2 dx, \qquad (\alpha_i)_i \subset \mathbb{R}$$

THÉORÈME (OBSERVABILITÉ PARTIELLE)

Il existe C > 0 telle que toute solution du problème adjoint (S^*) avec $q_F \in E_{\mu} = \text{Vect}(\phi_k, \ \mu_k \leq \mu)$, vérifie

$$|q(0)|_{L^2(\Omega)}^2 \le C \frac{e^{C\sqrt{\mu}}}{T} \iint_{(0,T)\times\omega} |q(t,x)|^2 dt dx.$$

En utilisant les résultats précédents, on obtient directement un résultat de contrôlabilité pour des données contenant un nombre fini de modes propres de l'opérateur.

THÉORÈME (CONTRÔLABILITÉ PARTIELLE)

Pour $\mu > 0$ quelconque fixé, le système

$$(S_{\mu}) \begin{cases} \partial_t y - \nabla \cdot (\gamma \nabla y) = \prod_{E_{\mu}} (1_{\omega} v) & dans \ Q = (0, T) \times \Omega \\ y = 0 & sur \ \Sigma = (0, T) \times \partial \Omega \\ y(0) = y^0 \in \underline{E}_{\mu} \end{cases}$$

est exactement contrôlable à 0 avec un contrôle v qui vérifie

$$||v||_{L^2(Q)} \le C \frac{e^{C\sqrt{\mu}}}{\sqrt{T}} |y^0|_{L^2(\Omega)}.$$

LA MÉTHODE DE LEBEAU-ROBBIANO

- On considère $E_{2^{2j}} = \operatorname{Vect}(\phi_k, \ \mu_k \leq 2^{2j}).$
- On écrit $[0,T] = \bigcup_{j \in \mathbb{N}} [a_j, a_{j+1}]$
 - $a_0 = 0, a_{j+1} = a_j + 2T_j$, pour tout $j \in \mathbb{N}$

•
$$T_j = K 2^{-j\rho}$$
 avec $\rho \in (0,1)$

• K choisi pour que
$$2\sum_{j=0}^{\infty} T_j = T$$

3

La méthode de Lebeau-Robbiano

- On considère $E_{2^{2j}} = \operatorname{Vect}(\phi_k, \ \mu_k \leq 2^{2j}).$
- On écrit $[0,T] = \bigcup_{j \in \mathbb{N}} [a_j, a_{j+1}]$
 - $a_0 = 0, a_{j+1} = a_j + 2T_j$, pour tout $j \in \mathbb{N}$
 - $T_j = K2^{-j\rho}$ avec $\rho \in (0,1)$
 - K choisi pour que $2\sum_{j=0}^{\infty} T_j = T$

CONSTRUCTION DU CONTRÔLE COMPLET

Le contrôle ainsi obtenu *in fine* vérifie

$$||v||_{L^2(Q)} \le C |y^0|_{L^2(\Omega)}.$$

Problématiques numériques

Comment calculer numériquement un contrôle à zéro pour (S) ?

• Pour les problèmes de contrôle approché à $\varepsilon > 0$ près : (Glowinski-Lions, '94)

On écrit le système d'EDP qui donne le HUM contrôle \implies Discrétisation \implies Résolution

Comment peut-on faire tendre ε , δt , h vers 0?

PROBLÉMATIQUES NUMÉRIQUES

Comment calculer numériquement un contrôle à zéro pour (S) ?

• Pour les problèmes de contrôle approché à $\varepsilon > 0$ près : (Glowinski-Lions, '94)

On écrit le système d'EDP qui donne le HUM contrôle \implies Discrétisation \implies Résolution

Comment peut-on faire tendre ε , δt , h vers 0?

• Autre stratégie :

On discrétise d'abord le système (S)

 \implies Ce système discret est-il contrôlable à zéro?

 \implies Si oui, peut-on évaluer le coût du contrôle en fonction de $h, \delta t$?

1 INTRODUCTION

2 Contrôlabilité du problème semi-discret en espace

3 Contrôlabilité du problème complètement discret

(4) UN PEU D'EXPLORATION NUMÉRIQUE

5 Conclusions et perspectives

NOTATIONS

On se place en 1D Maillage unif. - diff. finies

OK en multi-D cartésien OK sur maillage régulier

$$\mathfrak{M} = (x_i)_{1 \le i \le N}$$

$$\mathfrak{M} = (x_{i+\frac{1}{2}})_{0 \le i \le N}$$

NOTATIONS

On se place en 1D Maillage unif. - diff. finies OK en multi-D cartésien OK sur maillage régulier

$$\begin{split} \mathfrak{M} &= (x_i)_{1 \leq i \leq N} \\ \overline{\mathfrak{M}} &= (x_{i+\frac{1}{2}})_{0 \leq i \leq N} \end{split}$$

• Fonctions discrètes

$$u = (u_i)_{1 \le i \le N} \in \mathbb{R}^{\mathfrak{m}}, \qquad v = (v_{i+\frac{1}{2}})_{0 \le i \le N} \in \mathbb{R}^{\overline{\mathfrak{m}}}.$$

• Dérivées discrètes (CL Dirichlet $\Leftrightarrow u_0 = u_{N+1} = 0$)

$$\left((Du)_{i+\frac{1}{2}} = \frac{u_{i+1} - u_i}{h}\right)_{0 \le i \le N} \in \mathbb{R}^{\overline{\mathfrak{M}}}, \quad \left((\bar{D}v)_i = \frac{v_{i+\frac{1}{2}} - v_{i-\frac{1}{2}}}{h}\right)_{1 \le i \le N} \in \mathbb{R}^{\mathfrak{M}},$$

• Intégrales discrètes et normes

$$\int_{\Omega} u = \sum_{i=1}^{N} h u_i, \quad \int_{\Omega} v = \sum_{i=0}^{N} h v_{i+\frac{1}{2}}, \ \|u\|_{L^2(Q)}^2 = \int_{0}^{T} \sum_{i=1}^{N} h |u_i(t)|^2 \, dt, \dots$$

12/48

Problème semi-discrétisé en espace

On note $\mathcal{A}^{\mathfrak{m}} = -\bar{D}(\gamma D \cdot)$ et on considère le système d'EDO suivant

$$(S_h) \begin{cases} \partial_t y + \mathcal{A}^{\mathfrak{M}} y = 1_\omega \ v & \text{dans } Q = (0, T) \times \mathfrak{M} \\ y_0 = y_{N+1} = 0 \\ y(0) = y^0 \in \mathbb{R}^{\mathfrak{M}} \end{cases}$$

Problème semi-discrétisé en espace

On note $\mathcal{A}^{\mathfrak{m}} = -\bar{D}(\gamma D \cdot)$ et on considère le système d'EDO suivant

$$(S_h) \begin{cases} \partial_t y + \mathcal{A}^{\mathfrak{M}} y = 1_{\omega} v & \text{dans } Q = (0, T) \times \mathfrak{M} \\ y_0 = y_{N+1} = 0 \\ y(0) = y^0 \in \mathbb{R}^{\mathfrak{M}} \end{cases}$$

Problème de contrôle à zéro

- A maillage fixé, peut-on trouver $v \in L^2(Q)$ tel que y(T) = 0?
- Si oui, a-t'on $||v||_{L^2(Q)} \le C |y^0|_{L^2(\Omega)}$ uniformément en h?

Problème semi-discrétisé en espace

On note $\mathcal{A}^{\mathfrak{m}} = -\bar{D}(\gamma D \cdot)$ et on considère le système d'EDO suivant

$$(S_h) \begin{cases} \partial_t y + \mathcal{A}^{\mathfrak{M}} y = 1_{\omega} v & \text{dans } Q = (0, T) \times \mathfrak{M} \\ y_0 = y_{N+1} = 0 \\ y(0) = y^0 \in \mathbb{R}^{\mathfrak{M}} \end{cases}$$

Problème de contrôle à zéro

- A maillage fixé, peut-on trouver $v \in L^2(Q)$ tel que y(T) = 0?
- Si oui, a-t'on $||v||_{L^2(Q)} \le C|y^0|_{L^2(\Omega)}$ uniformément en h?

QUELQUES RÉFÉRENCES

- (Lopez-Zuazua, '98) : OUI 1D, coeffs constants, maillage uniforme, contrôle frontière. Utilisent la forme explicite des éléments propres de la matrice du Laplacien.
- (Zuazua, '03,'06) : contre-exemple en dimension 2 : existence de modes propres localisés en espace associés à des très hautes fréquences.
- (Labbé-Trélat, '06) : Cadre plus général mais résultat moins précis.

(Kavian '01, Zuazua '03)

Géométrie cartésienne : $\Omega =]0, 1[^2$. Maillage carré uniforme.

(Kavian '01, Zuazua '03) GÉOMÉTRIE CARTÉSIENNE : $\Omega =]0, 1[^2$. Maillage carré uniforme. COEFFICIENTS CONSTANTS : $\gamma(x) = 1$

Matrice de l'opérateur $\mathcal{A}^{\mathfrak{m}} = -\bar{D}D = \text{matrice du Laplacien standard.}$

$$(-\bar{D}Dy)_{i,j} = \frac{4y_{i,j} - y_{i-1,j} - y_{i+1,j} - y_{i,j-1} - y_{i,j+1}}{h^2}$$

(Kavian '01, Zuazua '03) GÉOMÉTRIE CARTÉSIENNE : $\Omega =]0, 1[^2$. Maillage carré uniforme. COEFFICIENTS CONSTANTS : $\gamma(x) = 1$

Matrice de l'opérateur $\mathcal{A}^{\mathfrak{m}} = -\bar{D}D = \text{matrice du Laplacien standard.}$

$$(-\bar{D}Dy)_{i,j} = \frac{4y_{i,j} - y_{i-1,j} - y_{i+1,j} - y_{i,j-1} - y_{i,j+1}}{h^2}$$

UN VECTEUR PROPRE LOCALISÉ EN ESPACE On prend $\psi_{i,j} = (-1)^i \delta_{i,j}$.

$$(-\bar{D}D\psi)_{i,j} = \frac{4}{h^2}(-1)^i\delta_{i,j} = \frac{4}{h^2}\psi_{i,j}.$$

(Kavian '01, Zuazua '03) GÉOMÉTRIE CARTÉSIENNE : $\Omega =]0, 1[^2$. Maillage carré uniforme. COEFFICIENTS CONSTANTS : $\gamma(x) = 1$

Matrice de l'opérateur $\mathcal{A}^{\mathfrak{m}} = -\overline{D}D =$ matrice du Laplacien standard.

$$(-\bar{D}Dy)_{i,j} = \frac{4y_{i,j} - y_{i-1,j} - y_{i+1,j} - y_{i,j-1} - y_{i,j+1}}{h^2}$$

UN VECTEUR PROPRE LOCALISÉ EN ESPACE On prend $\psi_{i,j} = (-1)^i \delta_{i,j}$.

$$(-\bar{D}D\psi)_{i,j} = \frac{4}{h^2}(-1)^i\delta_{i,j} = \frac{4}{h^2}\psi_{i,j}.$$

SUPPOSONS QUE ω NE RENCONTRE PAS LA DIAGONALE Pour tout contrôle v, la solution de (S) vérifie

$$\frac{d}{dt}(y(t),\psi)_{L^2(\Omega)} = (y^0,\psi)_{L^2(\Omega)}e^{-\frac{4}{h^2}t}.$$

Bilan : Le mode selon ψ n'est pas contrôlable. Mais c'est un mode très haute fréquence $\sim \frac{4}{h^2}$.

14/48

Nos résultats

THÉORÈME

Il existe $h_0 > 0$ et C > 0 tel que pour tout $0 < h < h_0$, il existe un contrôle v pour le système (S_h) vérifiant

- La solution y de (S_h) est telle que $|y(T)|_{L^2(\Omega)} \leq Ce^{-\frac{C}{\hbar^2}}|y^0|_{L^2(\Omega)}$.
- On a l'estimation $||v||_{L^2(Q)} \le C |y^0|_{L^2(\Omega)}$.

De façon plus précise :

• Il existe une proportion du spectre (ind. de h) exactement contrôlable à zéro uniformément par rapport à h.

Nos résultats

Théorème

Il existe $h_0 > 0$ et C > 0 tel que pour tout $0 < h < h_0$, il existe un contrôle v pour le système (S_h) vérifiant

- La solution y de (S_h) est telle que $|y(T)|_{L^2(\Omega)} \leq Ce^{-\frac{C}{\hbar^2}}|y^0|_{L^2(\Omega)}$.
- On a l'estimation $||v||_{L^2(Q)} \le C |y^0|_{L^2(\Omega)}$.

De façon plus précise :

• Il existe une proportion du spectre (ind. de *h*) exactement contrôlable à zéro uniformément par rapport à *h*.

Théorème

Il existe $h_0 > 0$ et $C_{obs} > 0$ tel que pour tout $0 < h < h_0$, toute solution du problème adjoint (S_h^*) vérifie

$$|q(0)|_{L^{2}(\Omega)}^{2} \leq C_{\text{obs}} \iint_{(0,T)\times\omega} |q(t,x)|^{2} dt dx + Ce^{-\frac{C}{\hbar^{2}}} |q_{F}|_{L^{2}(\Omega)}^{2}.$$

• On choisit n'importe quelle fonction $\phi(h) \gg e^{-C/h^2}$, typiquement $\phi(h) = h^{\beta} \ (\beta > 0 \text{ quelconque}).$

3

- On choisit n'importe quelle fonction $\phi(h) \gg e^{-C/h^2}$, typiquement $\phi(h) = h^{\beta} \ (\beta > 0 \text{ quelconque}).$
- Pour toute donnée initiale discrète $y^0 \in \mathbb{R}^m$, on définit

$$q_F \in \mathbb{R}^{\mathfrak{m}} \xrightarrow{J^{\mathfrak{m}}} \frac{1}{2} \int_0^T |q(t)|^2_{L^2(\omega)} dt + \frac{\phi(h)}{2} |q_F|^2_{L^2(\Omega)} + (y^0, q(0))_{L^2(\Omega)},$$

où q est la solution du problème adjoint pour la donnée finale q_F .

- On choisit n'importe quelle fonction $\phi(h) \gg e^{-C/h^2}$, typiquement $\phi(h) = h^{\beta} \ (\beta > 0 \text{ quelconque}).$
- Pour toute donnée initiale discrète $y^0 \in \mathbb{R}^m$, on définit

$$q_F \in \mathbb{R}^{\mathfrak{m}} \xrightarrow{J^{\mathfrak{m}}} \frac{1}{2} \int_0^T |q(t)|^2_{L^2(\omega)} dt + \frac{\phi(h)}{2} |q_F|^2_{L^2(\Omega)} + (y^0, q(0))_{L^2(\Omega)},$$

où q est la solution du problème adjoint pour la donnée finale q_F .

PROPOSITION

- La fonctionnelle $J^{\mathfrak{m}}$ admet un unique minimiseur $q_{opt} \in \mathbb{R}^{\mathfrak{m}}$.
- Si on pose v = 1_ωq où q est la solution du problème adjoint pour la donnée finale q_{opt}.
 - $|y(T)|_{L^2(\Omega)} \le \sqrt{C_{obs}} \sqrt{\phi(h)} |y^0|_{L^2(\Omega)}.$
 - $\|v\|_{L^2(Q)} \le \sqrt{C_{obs}} |y^0|_{L^2(\Omega)}.$

- On choisit n'importe quelle fonction $\phi(h) \gg e^{-C/h^2}$, typiquement $\phi(h) = h^{\beta} \ (\beta > 0 \text{ quelconque}).$
- Pour toute donnée initiale discrète $y^0 \in \mathbb{R}^m$, on définit

$$q_F \in \mathbb{R}^{\mathfrak{m}} \xrightarrow{J^{\mathfrak{m}}} \frac{1}{2} \int_0^T |q(t)|^2_{L^2(\omega)} dt + \frac{\phi(h)}{2} |q_F|^2_{L^2(\Omega)} + (y^0, q(0))_{L^2(\Omega)},$$

où q est la solution du problème adjoint pour la donnée finale q_F .

PROPOSITION

- La fonctionnelle $J^{\mathfrak{m}}$ admet un unique minimiseur $q_{opt} \in \mathbb{R}^{\mathfrak{m}}$.
- Si on pose v = 1_ωq où q est la solution du problème adjoint pour la donnée finale q_{opt}.

•
$$|y(T)|_{L^2(\Omega)} \leq \sqrt{C_{obs}} \sqrt{\phi(h)} |y^0|_{L^2(\Omega)}.$$

- $||v||_{L^2(Q)} \le \sqrt{C_{obs}} |y^0|_{L^2(\Omega)}.$
- Minimisation de $J^{\mathfrak{M}} \Longrightarrow$ gradient conjugué.
- (Labbé-Trélat '06) : Résultat similaire mais la valeur de β est imposée par les propriétés du schéma et de l'équation.

$$J^{\mathfrak{m}}(q_F) = \frac{1}{2} \int_0^T |q(t)|^2_{L^2(\omega)} dt + \frac{\phi(h)}{2} |q_F|^2_{L^2(\Omega)} + \underbrace{(y^0, q(0))_{L^2(\Omega)}}_{=(e^{-T\mathcal{A}^{\mathfrak{m}}}y^0, q_F)_{L^2(\Omega)}}$$

Comment calculer le gradient de $J^{\mathfrak{M}}$?

$$J^{\mathfrak{M}}(q_F) = \frac{1}{2} \int_0^T |q(t)|^2_{L^2(\omega)} dt + \frac{\phi(h)}{2} |q_F|^2_{L^2(\Omega)} + \underbrace{(y^0, q(0))_{L^2(\Omega)}}_{=(e^{-T\mathcal{A}^{\mathfrak{M}}} y^0, q_F)_{L^2(\Omega)}}$$

Comment calculer le gradient de $J^{\mathfrak{m}}$?

 \bigcirc q_F est donné. On calcule la solution q du problème adjoint

$$-\partial_t q + \mathcal{A}^{\mathfrak{m}} q = 0, \quad q(T) = q_F,$$

2 On résout ensuite le problème direct

$$\partial_t w + \mathcal{A}^{\mathfrak{m}} w = \mathbf{1}_{\omega} q(t), \quad w(0) = 0.$$

[●] Alors pour tout $\tilde{q}_F \in \mathbb{R}^m$, on a

$$\iint_{]0,T[\times\omega} q(t,x)\tilde{q}(t,x)\,dt\,dx = (w(T),\tilde{q}_F)_{L^2(\Omega)}.$$
$$J^{\mathfrak{M}}(q_F) = \frac{1}{2} \int_0^T |q(t)|^2_{L^2(\omega)} dt + \frac{\phi(h)}{2} |q_F|^2_{L^2(\Omega)} + \underbrace{(y^0, q(0))_{L^2(\Omega)}}_{=(e^{-T\mathcal{A}^{\mathfrak{M}}} y^0, q_F)_{L^2(\Omega)}}$$

Comment calculer le gradient de $J^{\mathfrak{m}}$?

 \bigcirc q_F est donné. On calcule la solution q du problème adjoint

$$-\partial_t q + \mathcal{A}^{\mathfrak{m}} q = 0, \quad q(T) = q_F,$$

2 On résout ensuite le problème direct

$$\partial_t w + \mathcal{A}^{\mathfrak{m}} w = \mathbf{1}_{\omega} q(t), \quad w(0) = 0.$$

• Alors pour tout $\tilde{q_F} \in \mathbb{R}^m$, on a $\iint_{]0,T[\times\omega} q(t,x)\tilde{q}(t,x) dt dx = (w(T), \tilde{q}_F)_{L^2(\Omega)}.$

OPÉRATEUR HUM (HILBERT UNIQUENESS METHOD, J.L.LIONS)

L'opérateur $\Lambda^{\mathfrak{m}}: q_F \in \mathbb{R}^{\mathfrak{m}} \mapsto w(T) \in \mathbb{R}^{\mathfrak{m}}$ défini ci-dessus est appelé l'opérateur HUM associé au problème et on a

$$\nabla J^{\mathfrak{M}}(q_F) = \Lambda^{\mathfrak{M}} q_F + \phi(h) q_F + e^{-T \mathcal{A}^{\mathfrak{M}}} y_0.$$

RÉSUMÉ : Pour calculer le contrôle discret $v = 1_{\omega}q$, on doit résoudre

$$(\Lambda^{\mathfrak{M}} + \phi(h)\mathrm{Id}) q_F = -e^{-T\mathcal{A}^{\mathfrak{M}}}y^0. \tag{(\star)}$$

3/3

RÉSUMÉ : Pour calculer le contrôle discret $v = 1_{\omega}q$, on doit résoudre

$$(\Lambda^{\mathfrak{M}} + \phi(h) \mathrm{Id}) \ q_F = -e^{-T\mathcal{A}^{\mathfrak{M}}} y^0. \tag{(\star)}$$

Gradient conjugué

- Raisonnable car $\Lambda^{\mathfrak{m}} + \phi(h)$ Id est SDP.
- MAIS : La matrice de $\Lambda^{\mathfrak{M}}$ n'est pas aisément accessible et elle est pleine.
- En réalité chaque produit matrice-vecteur est donné par :
 - On résout un problème rétrograde de t = T à t = 0.
 - On résout un problème direct de t = 0 à t = T.
- Le système est très mal conditionné, en particulier quand $\phi(h)$ est petit, ou quand ω est petit.
- Trouver un préconditionneur efficace est un problème ouvert important.

RÉSUMÉ : Pour calculer le contrôle discret $v = 1_{\omega}q$, on doit résoudre

$$(\Lambda^{\mathfrak{m}} + \phi(h) \mathrm{Id}) \ q_F = -e^{-T\mathcal{A}^{\mathfrak{m}}} y^0. \tag{(\star)}$$

Gradient conjugué

- Raisonnable car $\Lambda^{\mathfrak{m}} + \phi(h)$ Id est SDP.
- MAIS : La matrice de $\Lambda^{\mathfrak{M}}$ n'est pas aisément accessible et elle est pleine.
- En réalité chaque produit matrice-vecteur est donné par :
 - On résout un problème rétrograde de t = T à t = 0.
 - On résout un problème direct de t = 0 à t = T.
- Le système est très mal conditionné, en particulier quand $\phi(h)$ est petit, ou quand ω est petit.
- Trouver un préconditionneur efficace est un problème ouvert important.

REMARQUE IMPORTANTE : $v = 1_{\omega}q$ est borné L^2 unif.en h. **BIEN QUE** la solution q_F de (\star) satisfait

$$\|q_F\|_{L^2(\Omega)} \underset{h \to 0}{\sim} \frac{1}{\sqrt{\phi(h)}} \longrightarrow \infty.$$

Exemples numériques

Dynamique du système contrôlé

- 100 mailles ; T = 1 ; Domaine de contrôle $\omega =]0.5, 0.8[; \phi(h) = h^4.$
- Donnée initiale $y^0 = \sin(\pi x)^{10}$; Coeff. de diffusion $\gamma(x) = 0.1$.
- 218 it de GC (tolérance = 10^{-8}).
- Distance à la cible atteinte ~ 10^{-5} . Coût du contrôle ~ 0.66.

Exemples numériques

Dynamique du système contrôlé

- 100 mailles ; T = 1 ; Domaine de contrôle $\omega =]0.5, 0.8[; \phi(h) = h^4.$
- Donnée initiale $y^0 = \sin(\pi x)^{10}$; Coeff. de diffusion $\gamma(x) = 0.1$.
- 218 it de GC (tolérance = 10^{-8}).
- Distance à la cible atteinte ~ 10^{-5} . Coût du contrôle ~ 0.66.

Norme $L^2(\omega)$ du contrôle en fonction de t

EXEMPLES NUMÉRIQUES Dynamique du système contrôlé

- 100 mailles (non uniforme!); T = 1; $\omega = [0.4, 0.6]$; $\phi(h) = h^4$.
- Coeff. de diffusion $10^{-2} < \gamma(x) < 0.2$.
- 183 it de GC (tolérance = 10^{-8}).
- Distance à la cible atteinte ~ 10^{-4} . Coût du contrôle ~ 2.52.

- Mêmes données que précédemment $(\phi(h) = h^4)$
- On fait seulement varier le pas d'espace.

N = 1/h	nb it GC	distance à la cible	coût du contrôle
50	87	$4,2510^{-5}$	0.622
100	218	10^{-5}	0.66
200	617	$2,1 \ 10^{-6}$	0.686
400	1869	$5 \ 10^{-7}$	0.797
800	6030	$1.2 \ 10^{-7}$	0.717
comportement	$\sim N^{1.6}$	$\sim h^2 = \sqrt{\phi(h)}$	

- Mêmes données que précédemment $(\phi(h) = h^2)$
- On fait seulement varier le pas d'espace.

N = 1/h	nb it GC	distance à la cible	coût du contrôle
50	25	$3,510^{-3}$	0.467
100	40	$1,610^{-3}$	0.522
200	65	7.5710^{-4}	0.564
400	110	3.4810^{-4}	0.596
800	196	1.610^{-4}	0.621
comportement	$\sim N$	$\sim h = \sqrt{\phi(h)}$	

- Mêmes données que précédemment $(\phi(h) = h)$
- On fait seulement varier le pas d'espace.

N = 1/h	nb it GC	distance à la cible	coût du contrôle
50	9	2.710^{-2}	0.265
100	11	2.010^{-2}	0.311
200	13	1.4410^{-2}	0.356
400	15	1.010^{-2}	0.398
800	18	6.910^{-3}	0.434
comportement	\sim cte	$\sim h^{\frac{1}{2}} = \sqrt{\phi(h)}$	

$$\begin{split} |\nabla \psi| &\geq c \text{ et } \psi > 0 \text{ dans } Q, \quad \partial_{n_x} \psi(t,x) < 0 \text{ dans } (0,T) \times \partial \Omega, \\ \partial_t \psi &\geq c \text{ sur } \{0\} \times (\Omega \setminus \omega), \quad \nabla_x \psi = 0 \text{ et } \partial_t \psi \leq -c \text{ sur } \{T\} \times \Omega. \end{split}$$

$$|\nabla \psi| \ge c \text{ et } \psi > 0 \text{ dans } Q, \quad \partial_{n_x} \psi(t,x) < 0 \text{ dans } (0,T) \times \partial \Omega,$$

$$\partial_t \psi \ge c \operatorname{sur} \{0\} \times (\Omega \setminus \omega), \quad \nabla_x \psi = 0 \operatorname{et} \partial_t \psi \le -c \operatorname{sur} \{T\} \times \Omega.$$

On pose $\varphi = e^{\lambda \psi}$ et on considère l'opérateur $P = -\partial_t^2 - \nabla \cdot (\gamma \nabla \cdot)$

THÉORÈME

Pour $\lambda \geq 1$ assez grand, il existe C > 0 et $s_0 \geq 1$ tel que

$$s^{3} \|e^{s\varphi}u\|_{L^{2}(Q)}^{2} + s\|e^{s\varphi}\nabla u\|_{L^{2}(Q)}^{2} + s|e^{s\varphi(0,.)}\partial_{t}u(0,.)|_{L^{2}(\Omega)}^{2} + se^{2s\varphi(T)}|\partial_{t}u(T,.)|_{L^{2}(\Omega)}^{2} + s^{3}e^{2s\varphi(T)}|u(T,.)|_{L^{2}(\Omega)}^{2} \leq C\left(\|e^{s\varphi}Pu\|_{L^{2}(Q)}^{2} + se^{2s\varphi(T)}|\nabla_{x}u(T,.)|_{L^{2}(\Omega)}^{2} + s|e^{s\varphi(0,.)}\partial_{t}u(0,.)|_{L^{2}(\omega)}^{2}\right),$$

pour tout $s \ge s_0$, et tout $u \in H^2(Q)$, avec u(0) = 0, et u = 0 sur $\partial \Omega$.

Approximation Numérique et Contrôle

$$\begin{split} |\nabla \psi| &\geq c \text{ et } \psi > 0 \text{ dans } Q, \quad \partial_{n_x} \psi(t,x) < 0 \text{ dans } (0,T) \times \partial \Omega, \\ \partial_t \psi &\geq c \text{ sur } \{0\} \times (\Omega \setminus \omega), \quad \nabla_x \psi = 0 \text{ et } \partial_t \psi \leq -c \text{ sur } \{T\} \times \Omega. \end{split}$$

On pose $\varphi = e^{\lambda \psi}$ et on considère l'opérateur $P = -\partial_t^2 - \nabla \cdot (\gamma \nabla \cdot)$ • Si u(0) = 0, u = 0 sur $\partial \Omega$ et Pu = 0

$$s^{3}e^{2s\varphi(T)}|u(T,.)|^{2}_{L^{2}(\Omega)}$$

$$\leq C\left(se^{2s\varphi(T)}|\nabla_{x}u(T,.)|^{2}_{L^{2}(\Omega)}+s|e^{s\varphi(0,.)}\partial_{t}u(0,.)|^{2}_{L^{2}(\omega)}\right).$$

$$\begin{split} |\nabla \psi| &\geq c \text{ et } \psi > 0 \text{ dans } Q, \quad \partial_{n_x} \psi(t,x) < 0 \text{ dans } (0,T) \times \partial \Omega, \\ \partial_t \psi &\geq c \text{ sur } \{0\} \times (\Omega \setminus \omega), \quad \nabla_x \psi = 0 \text{ et } \partial_t \psi \leq -c \text{ sur } \{T\} \times \Omega. \end{split}$$

On pose $\varphi = e^{\lambda \psi}$ et on considère l'opérateur $P = -\partial_t^2 - \nabla \cdot (\gamma \nabla \cdot)$ • Si u(0) = 0, u = 0 sur $\partial \Omega$ et Pu = 0

$$s^{3}e^{2s\varphi(T)}|u(T,.)|^{2}_{L^{2}(\Omega)}$$

$$\leq C\left(se^{2s\varphi(T)}|\nabla_{x}u(T,.)|^{2}_{L^{2}(\Omega)}+s|e^{s\varphi(0,.)}\partial_{t}u(0,.)|^{2}_{L^{2}(\omega)}\right).$$

CHOIX D'UN *u* PARTICULIER : Pour $\mu > 0$ et $(\alpha_j)_j \subset \mathbb{R}$

$$u(t,x) = \sum_{\mu_j \le \mu} \alpha_j \frac{\sinh(\sqrt{\mu_j}t)}{\sqrt{\mu_j}} \phi_j(x) \implies Pu = 0.$$

$$s^{3}e^{2s\varphi(T)}|u(T,.)|^{2}_{L^{2}(\Omega)}$$

$$\leq C\left(se^{2s\varphi(T)}|\nabla_{x}u(T,.)|^{2}_{L^{2}(\Omega)} + se^{2s\sup\varphi(0)}|\partial_{t}u(0,.)|^{2}_{L^{2}(\omega)}\right).$$
avec $u(t,x) = \sum_{\mu_{j} \leq \mu} \alpha_{j} \frac{\sinh(\sqrt{\mu_{j}}t)}{\sqrt{\mu_{j}}} \phi_{j}(x), \quad \mu > 0, \quad (\alpha_{j})_{j} \subset \mathbb{R}.$

POUR LE PB CONTINU

PRINCIPE DES PREUVES L'INÉGALITÉ DE LEBEAU-ROBBIANO REVISITÉE ...

$$s^{3}e^{2s\varphi(T)}|u(T,.)|^{2}_{L^{2}(\Omega)}$$

$$\leq C\left(se^{2s\varphi(T)}|\nabla_{x}u(T,.)|^{2}_{L^{2}(\Omega)} + se^{2s\sup\varphi(0)}|\partial_{t}u(0,.)|^{2}_{L^{2}(\omega)}\right).$$
avec $u(t,x) = \sum_{\mu_{j} \leq \mu} \alpha_{j} \frac{\sinh(\sqrt{\mu_{j}}t)}{\sqrt{\mu_{j}}} \phi_{j}(x), \quad \mu > 0, \quad (\alpha_{j})_{j} \subset \mathbb{R}.$

Evaluation des différents termes

$$|u(T,.)|_{L^{2}(\Omega)}^{2} = \sum_{\mu_{j} \leq \mu} |\alpha_{j}|^{2} \left(\frac{\sinh(\sqrt{\mu_{j}}T)}{\sqrt{\mu_{j}}}\right)^{2} \geq \frac{1}{\mu} \left(\sum_{\mu_{j} \leq \mu} |\sinh(\sqrt{\mu_{j}}T)|^{2} |\alpha_{j}|^{2}\right)$$

$$s^{3}e^{2s\varphi(T)}|u(T,.)|^{2}_{L^{2}(\Omega)}$$

$$\leq C\left(se^{2s\varphi(T)}|\nabla_{x}u(T,.)|^{2}_{L^{2}(\Omega)} + se^{2s\sup\varphi(0)}|\partial_{t}u(0,.)|^{2}_{L^{2}(\omega)}\right).$$
avec $u(t,x) = \sum_{\mu_{j} \leq \mu} \alpha_{j} \frac{\sinh(\sqrt{\mu_{j}}t)}{\sqrt{\mu_{j}}} \phi_{j}(x), \quad \mu > 0, \quad (\alpha_{j})_{j} \subset \mathbb{R}.$

EVALUATION DES DIFFÉRENTS TERMES

$$|u(T,.)|_{L^2(\Omega)}^2 = \sum_{\mu_j \le \mu} |\alpha_j|^2 \left(\frac{\sinh(\sqrt{\mu_j}T)}{\sqrt{\mu_j}}\right)^2 \ge \frac{1}{\mu} \left(\sum_{\mu_j \le \mu} |\sinh(\sqrt{\mu_j}T)|^2 |\alpha_j|^2\right)$$
$$|\nabla_x u(T,.)|_{L^2(\Omega)}^2 \le C' \left(\sum_{\mu_j \le \mu} \left(\sinh(\sqrt{\mu_j}T)\right)^2 |\alpha_j|^2\right).$$

$$s^{3}e^{2s\varphi(T)}|u(T,.)|^{2}_{L^{2}(\Omega)}$$

$$\leq C\left(se^{2s\varphi(T)}|\nabla_{x}u(T,.)|^{2}_{L^{2}(\Omega)} + se^{2s\sup\varphi(0)}|\partial_{t}u(0,.)|^{2}_{L^{2}(\omega)}\right).$$
avec $u(t,x) = \sum_{\mu_{j} \leq \mu} \alpha_{j} \frac{\sinh(\sqrt{\mu_{j}}t)}{\sqrt{\mu_{j}}} \phi_{j}(x), \quad \mu > 0, \quad (\alpha_{j})_{j} \subset \mathbb{R}.$

EVALUATION DES DIFFÉRENTS TERMES

$$\begin{aligned} |u(T,.)|_{L^2(\Omega)}^2 &= \sum_{\mu_j \le \mu} |\alpha_j|^2 \left(\frac{\sinh(\sqrt{\mu_j}T)}{\sqrt{\mu_j}}\right)^2 \ge \frac{1}{\mu} \left(\sum_{\mu_j \le \mu} |\sinh(\sqrt{\mu_j}T)|^2 |\alpha_j|^2\right) \\ |\nabla_x u(T,.)|_{L^2(\Omega)}^2 \le C' \left(\sum_{\mu_j \le \mu} \left(\sinh(\sqrt{\mu_j}T)\right)^2 |\alpha_j|^2\right). \\ |\partial_t u(0,.)|_{L^2(\omega)}^2 &= \int_{\omega} \left|\sum_{\mu_j \le \mu} \alpha_j \phi_j(x)\right|^2 dx. \end{aligned}$$

22/48

$$s^{3}e^{2s\varphi(T)}|u(T,.)|^{2}_{L^{2}(\Omega)}$$

$$\leq C\left(se^{2s\varphi(T)}|\nabla_{x}u(T,.)|^{2}_{L^{2}(\Omega)}+se^{2s\sup\varphi(0)}|\partial_{t}u(0,.)|^{2}_{L^{2}(\omega)}\right).$$

avec
$$u(t,x) = \sum_{\mu_j \le \mu} \alpha_j \frac{\sinh(\sqrt{\mu_j}t)}{\sqrt{\mu_j}} \phi_j(x), \quad \mu > 0, \quad (\alpha_j)_j \subset \mathbb{R}.$$

BILAN : On choisit $s \sim C\sqrt{\mu}$ et on trouve

$$\left(\sum_{\mu_j \le \mu} |\alpha_j|^2\right) \le C e^{C\sqrt{\mu}} \int_{\omega} \left|\sum_{\mu_j \le \mu} \alpha_j \phi_j(x)\right|^2 \, dx.$$

ADAPTATION AU PROBLÈME SEMI-DISCRET

BUTS :

- Obtention d'une inégalité de Lebeau-Robbiano discrète.
- Pour cela, on va prouver une inégalité de Carleman discrète pour l'opérateur elliptique semi-discret

$$P = -\partial_t^2 - \bar{D}(\gamma D \cdot).$$

Adaptation au problème semi-discret

BUTS :

- Obtention d'une inégalité de Lebeau-Robbiano discrète.
- Pour cela, on va prouver une inégalité de Carleman discrète pour l'opérateur elliptique semi-discret

$$P = -\partial_t^2 - \bar{D}(\gamma D \cdot).$$

CE QUI MARCHE À L'IDENTIQUE :

- Si on a Carleman discret : la preuve de l'inégalité de Lebeau-Robbiano sera la même.
- Si on a l'inégalité de Lebeau-Robbiano discrète : preuve de l'inégalité d'observabilité partielle similaire.
- Ensuite, construction du contrôle semi-discret identique.

Adaptation au problème semi-discret

BUTS :

- Obtention d'une inégalité de Lebeau-Robbiano discrète.
- Pour cela, on va prouver une inégalité de Carleman discrète pour l'opérateur elliptique semi-discret

$$P = -\partial_t^2 - \bar{D}(\gamma D \cdot).$$

CE QUI MARCHE À L'IDENTIQUE :

- Si on a Carleman discret : la preuve de l'inégalité de Lebeau-Robbiano sera la même.
- Si on a l'inégalité de Lebeau-Robbiano discrète : preuve de l'inégalité d'observabilité partielle similaire.
- Ensuite, construction du contrôle semi-discret identique.

Les difficultés :

- L'inégalité de Lebeau-Robbiano discrète est fausse sans hypothèse supplémentaire.
- L'inégalité de Carleman discrète ne peut donc pas être vraie non plus en toute généralité.

Des restrictions **vont nécessairement apparaître** dans la preuve.

L'inégalité de Lebeau-Robbiano discrète

Soit $\mathcal{A}^{\mathfrak{M}}$ l'opérateur elliptique discret $\mathcal{A}^{\mathfrak{M}} := -\bar{D}(\gamma D \cdot)$ défini sur un maillage \mathfrak{M} constitué de N points. On note $(\mu_j^{\mathfrak{M}})_{1 \leq j \leq N}$ ses valeurs propres et $(\phi_j)_{1 < j < N}$ la base $L^2(\Omega)$ -orthonormale associée.

L'inégalité de Lebeau-Robbiano discrète

Soit $\mathcal{A}^{\mathfrak{M}}$ l'opérateur elliptique discret $\mathcal{A}^{\mathfrak{M}} := -\bar{D}(\gamma D \cdot)$ défini sur un maillage \mathfrak{M} constitué de N points. On note $(\mu_j^{\mathfrak{M}})_{1 \leq j \leq N}$ ses valeurs propres et $(\phi_j)_{1 \leq j \leq N}$ la base $L^2(\Omega)$ -orthonormale associée. INÉGALITÉ ATTENDUE

$$\sum_{\substack{\mu_k \in \mu^{\mathfrak{M}} \\ \mu_k \leq \mu}} |\alpha_k|^2 \le C e^{C\sqrt{\mu}} \int_{\omega} \Big| \sum_{\substack{\mu_k \in \mu^{\mathfrak{M}} \\ \mu_k \leq \mu}} \alpha_k \phi_k \Big|^2, \qquad \forall (\alpha_k)_{1 \le k \le N} \in \mathbb{R}^N.$$

RAPPEL :
$$\int_{\omega} u = \sum_{x_i \in \omega} h \, u(x_i) \Leftarrow \text{ somme de taille } N_{\omega} = \operatorname{Card}(\omega \cap \mathfrak{M})$$

L'inégalité de Lebeau-Robbiano discrète

Soit $\mathcal{A}^{\mathfrak{M}}$ l'opérateur elliptique discret $\mathcal{A}^{\mathfrak{M}} := -\bar{D}(\gamma D \cdot)$ défini sur un maillage \mathfrak{M} constitué de N points. On note $(\mu_j^{\mathfrak{M}})_{1 \leq j \leq N}$ ses valeurs propres et $(\phi_j)_{1 \leq j \leq N}$ la base $L^2(\Omega)$ -orthonormale associée. INÉGALITÉ ATTENDUE

$$\sum_{\substack{\mu_k \in \mu^{\mathfrak{M}} \\ \mu_k \leq \mu}} |\alpha_k|^2 \le C e^{C\sqrt{\mu}} \int_{\omega} \left| \sum_{\substack{\mu_k \in \mu^{\mathfrak{M}} \\ \mu_k \leq \mu}} \alpha_k \phi_k \right|^2, \qquad \forall (\alpha_k)_{1 \le k \le N} \in \mathbb{R}^N.$$

RAPPEL :
$$\int_{\omega} u = \sum_{x_i \in \omega} h u(x_i) \iff \text{somme de taille } N_{\omega} = \text{Card}(\omega \cap \mathfrak{M})$$

Remarque fondamentale

Pour des raisons de dimension cette inégalité ne peut être vraie, au mieux, que dans un sous-espace de \mathbb{R}^N de dimension N_ω

On peut espérer qu'elle soit vraie pour les N_ω premiers modes propres.

proportion constante du spectre
$$\sim \frac{|\omega|}{|\Omega|} \Rightarrow \left| \mu \lesssim \frac{1}{h^2} \frac{|\omega|}{|\Omega|} \right|.$$

PRINCIPE DES PREUVES L'inégalité de Lebeau-Robbiano discrète

THÉORÈME

Il existe C > 0, $\varepsilon_1 > 0$ et $h_0 > 0$ tels que, dès que $h \le h_0$, on a l'inégalité suivante

$$\sum_{\substack{\mu_k \in \mu^{\mathfrak{M}} \\ \mu_k \leq \mu}} |\alpha_k|^2 \le C e^{C\sqrt{\mu}} \int_{\omega} \left| \sum_{\substack{\mu_k \in \mu^{\mathfrak{M}} \\ \mu_k \leq \mu}} \alpha_k \phi_k \right|^2, \qquad \forall (\alpha_k)_{1 \le k \le N} \subset \mathbb{R},$$

pour tout $0 < \mu \leq \frac{\varepsilon_1}{h^2}$.

INÉGALITÉ D'OBSERVABILITÉ PARTIELLE

• On obtient la même inégalité d'observabilité partielle en $\frac{e^{C\sqrt{\mu}}}{T}$, uniformément en h, pour les $\mu \leq \frac{\varepsilon_1}{h^2}$.

Contrôlabilité à zéro

- On montre la contrôlabilité exacte à zéro pour tous les modes inférieurs à $\frac{\varepsilon_1}{h^2}$, avec un contrôle uniformément borné en h.
- Les autres modes sont naturellement dissipés exponentiellement, ce qui montre la contrôlabilité à zéro à une distance $e^{-\frac{C}{\hbar^2}}$ près.

2/2

Idée de la preuve pour le problème continu 1D :

• Estimations à poids exponentiels : $\rho = e^{s\varphi} = e^{se^{\lambda\psi}}$.

• On pose
$$f = -Pu = \partial_t^2 u + \partial_x (\gamma \partial_x u)$$
, et $u = \rho v$.

$$\rho^{-1}\left(\partial_t^2(\rho v) + \partial_x(\gamma \partial_x(\rho v))\right) = \rho^{-1}f.$$

Idée de la preuve pour le problème continu 1D :

• Estimations à poids exponentiels : $\rho = e^{s\varphi} = e^{se^{\lambda\psi}}$.

• On pose
$$f = -Pu = \partial_t^2 u + \partial_x (\gamma \partial_x u)$$
, et $u = \rho v$.

$$\rho^{-1}\left(\partial_t^2(\rho v) + \partial_x(\gamma \partial_x(\rho v))\right) = \rho^{-1}f.$$

• On développe les dérivées ($\gamma = \text{cte} = 1$) en posant $r = \rho^{-1}$

$$\underbrace{\frac{\partial_t^2 v + \partial_x^2 v + r(\partial_t^2 \rho) v + r(\partial_x^2 \rho) v}_{=Av}}_{=Bv} + \underbrace{\frac{2r(\partial_t \rho)(\partial_t v) + r(\partial_x \rho)(\partial_x v)}_{=Bv}}_{=Bv} = rf.$$

Idée de la preuve pour le problème continu 1D :

• Estimations à poids exponentiels : $\rho = e^{s\varphi} = e^{se^{\lambda\psi}}$

• On pose
$$f = -Pu = \partial_t^2 u + \partial_x (\gamma \partial_x u)$$
, et $u = \rho v$.
 $\rho^{-1} \left(\partial_t^2 (\rho v) + \partial_x (\gamma \partial_x (\rho v)) \right) = \rho^{-1} f.$

- On développe les dérivées ($\gamma = \text{cte} = 1$) en posant $r = \rho^{-1}$ $\underbrace{\partial_t^2 v + \partial_x^2 v + r(\partial_t^2 \rho)v + r(\partial_x^2 \rho)v}_{=Av} + \underbrace{2r(\partial_t \rho)(\partial_t v) + r(\partial_x \rho)(\partial_x v)}_{=Bv} = rf.$
- On élève au carré

$$||Av||_{L^{2}(Q)}^{2} + ||Bv||_{L^{2}(Q)}^{2} + 2(Av, Bv)_{L^{2}(Q)} = ||rf||_{L^{2}(Q)}^{2},$$

Idée de la preuve pour le problème continu 1D :

• Estimations à poids exponentiels : $\rho = e^{s\varphi} = e^{se^{\lambda\psi}}$

• On pose
$$f = -Pu = \partial_t^2 u + \partial_x (\gamma \partial_x u)$$
, et $u = \rho v$.
 $\rho^{-1} \left(\partial_t^2 (\rho v) + \partial_x (\gamma \partial_x (\rho v)) \right) = \rho^{-1} f.$

- On développe les dérivées ($\gamma = \text{cte} = 1$) en posant $r = \rho^{-1}$ $\underbrace{\partial_t^2 v + \partial_x^2 v + r(\partial_t^2 \rho)v + r(\partial_x^2 \rho)v}_{=Av} + \underbrace{2r(\partial_t \rho)(\partial_t v) + r(\partial_x \rho)(\partial_x v)}_{=Bv} = rf.$
- On élève au carré et on ne garde que le double produit $2(Av, Bv)_{L^2(Q)} \le ||rf||_{L^2(Q)}^2,$

Idée de la preuve pour le problème continu 1D :

• Estimations à poids exponentiels : $\rho = e^{s\varphi} = e^{se^{\lambda\psi}}$

• On pose
$$f = -Pu = \partial_t^2 u + \partial_x (\gamma \partial_x u)$$
, et $u = \rho v$.
 $\rho^{-1} \left(\partial_t^2 (\rho v) + \partial_x (\gamma \partial_x (\rho v)) \right) = \rho^{-1} f.$

- On développe les dérivées ($\gamma = \text{cte} = 1$) en posant $r = \rho^{-1}$ $\underbrace{\partial_t^2 v + \partial_x^2 v + r(\partial_t^2 \rho)v + r(\partial_x^2 \rho)v}_{=Av} + \underbrace{2r(\partial_t \rho)(\partial_t v) + r(\partial_x \rho)(\partial_x v)}_{=Bv} = rf.$
- On élève au carré et on ne garde que le double produit

$$2(Av, Bv)_{L^2(Q)} \le ||rf||_{L^2(Q)}^2,$$

• Nombreuses intégrations par parties dans le terme $(Av, Bv)_{L^2}$. On utilise les C.L., la D.I. u(0) = 0 et les propriétés de ψ .

Idée de la preuve pour le problème continu 1D :

• Estimations à poids exponentiels : $\rho = e^{s\varphi} = e^{se^{\lambda\psi}}$

• On pose
$$f = -Pu = \partial_t^2 u + \partial_x (\gamma \partial_x u)$$
, et $u = \rho v$.
 $\rho^{-1} \left(\partial_t^2 (\rho v) + \partial_x (\gamma \partial_x (\rho v)) \right) = \rho^{-1} f.$

- On développe les dérivées ($\gamma = \text{cte} = 1$) en posant $r = \rho^{-1}$ $\underbrace{\partial_t^2 v + \partial_x^2 v + r(\partial_t^2 \rho)v + r(\partial_x^2 \rho)v}_{=Av} + \underbrace{2r(\partial_t \rho)(\partial_t v) + r(\partial_x \rho)(\partial_x v)}_{=Bv} = rf.$
- On élève au carré et on ne garde que le double produit

$$2(Av, Bv)_{L^2(Q)} \le ||rf||_{L^2(Q)}^2,$$

- Nombreuses intégrations par parties dans le terme $(Av, Bv)_{L^2}$. On utilise les C.L., la D.I. u(0) = 0 et les propriétés de ψ .
- Choix, a posteriori, des paramètres λ et s suffisament grands pour absorber les mauvais termes par les bons.

1/2

Idée de la preuve pour le problème continu 1D :

• Estimations à poids exponentiels : $\rho = e^{s\varphi} = e^{se^{\lambda\psi}}$

• On pose
$$f = -Pu = \partial_t^2 u + \partial_x (\gamma \partial_x u)$$
, et $u = \rho v$.
 $\rho^{-1} \left(\partial_t^2 (\rho v) + \partial_x (\gamma \partial_x (\rho v)) \right) = \rho^{-1} f.$

- On développe les dérivées ($\gamma = \text{cte} = 1$) en posant $r = \rho^{-1}$ $\underbrace{\partial_t^2 v + \partial_x^2 v + r(\partial_t^2 \rho)v + r(\partial_x^2 \rho)v}_{=Av} + \underbrace{2r(\partial_t \rho)(\partial_t v) + r(\partial_x \rho)(\partial_x v)}_{=Bv} = rf.$
- On élève au carré et on ne garde que le double produit

$$2(Av, Bv)_{L^2(Q)} \le \|rf\|_{L^2(Q)}^2,$$

- Nombreuses intégrations par parties dans le terme $(Av, Bv)_{L^2}$. On utilise les C.L., la D.I. u(0) = 0 et les propriétés de ψ .
- Choix, a posteriori, des paramètres λ et s suffisament grands pour absorber les mauvais termes par les bons.
- L'inégalité obtenue est valable pour tout $\lambda \ge \lambda_1$ et tout $s \ge s_1$.

LA PREUVE DANS LE CAS DISCRET :

- On prend les mêmes poids que dans le cas continu.
- Les intégrations par parties discrètes et les dérivations discrètes de produits font apparaître des nouveaux termes.

$$\frac{\partial_t^2 v + r\overline{\overline{\rho}}\,\overline{D}Dv + r(\partial_t^2\rho)\,v + r(\overline{D}D\rho)\,\overline{\overline{v}}}_{=Av} + \underbrace{2r(\partial_t\rho)(\partial_tv) + 2r\overline{D\rho}\,\overline{Dv}}_{=Bv}$$

- Les termes en plus sont **petits** en h mais **grands** en s et λ .
- On va contrôler tous les nouveaux termes sous une condition

$$sh \leq \varepsilon_0,$$

avec un ε_0 bien choisi qui ne dépendra que des données.

• Comme on prend ensuite $s \sim \sqrt{\mu}$, on obtient bien $\mu \leq \frac{\varepsilon_1}{h^2}$.

UN PEU DE CALCUL DIFFÉRENTIEL DISCRET

DÉRIVATION DE PRODUITS

 $f_i \in \mathbb{R}^m, g_i \in \mathbb{R}^{\overline{m}}$

$$D(f_1f_2) = (Df_1)\overline{f_2} + (Df_2)\overline{f_1},$$

$$\overline{D}(g_1g_2) = (\overline{D}g_1)\overline{g_2} + (\overline{D}g_2)\overline{g_1}.$$

MOYENNE DE PRODUITS

$$\overline{f_1f_2}=\overline{f_1}\,\,\overline{f_2}+rac{h^2}{4}(Df_1)(Df_2).$$

DOUBLES MOYENNES

$$\overline{\overline{f}} = f + \frac{h^2}{4}\overline{D}Df,$$

Par exemple (Rappel : $r = \rho^{-1}$)

$$r\overline{\overline{\rho}} = 1 + \frac{h^2}{4}r(\overline{D}D\rho) \approx 1 + \frac{h^2}{4}r\partial_x^2\rho \approx 1 + \frac{h^2s^2}{4}(\partial_x\phi)^2\underbrace{r\rho}_{=1} + \cdots$$

INTÉGRATIONS PAR PARTIES DISCRÈTES $f \in \mathbb{R}^{\overline{m}}$ et $g \in \mathbb{R}^m$

$$\int_{\Omega} f(Dg) = -\int_{\Omega} (\bar{D}f)g + f_{N+1}g_{N+\frac{1}{2}} - f_0g_{\frac{1}{2}}.$$

1 INTRODUCTION

- 2 Contrôlabilité du problème semi-discret en espace
- 8 Contrôlabilité du problème complètement discret
- (4) UN PEU D'EXPLORATION NUMÉRIQUE
- **5** Conclusions et perspectives
DISCRÉTISATION EN TEMPS

Contrôlabilité

On a vu que le système d'EDO suivant

$$(S_h) \begin{cases} \partial_t y + \mathcal{A}^{\mathfrak{M}} y = 1_{\omega} v & \text{dans } Q = (0, T) \times \mathfrak{M} \\ y_0 = y_{N+1} = 0 \\ y(0) = y^0 \in \mathbb{R}^{\mathfrak{M}} \end{cases}$$

est contrôlable à zéro uniformément en h à une erreur $\exp.$ petite près. OBSERVABILITÉ

On a également obtenu l'inégalité d'observabilité uniforme en h

$$|q(0)|_{L^{2}(\Omega)}^{2} \leq C_{\text{obs}} \iint_{(0,T)\times\omega} |q(t,x)|^{2} dt dx + Ce^{-\frac{C}{h^{2}}} |q_{F}|_{L^{2}(\Omega)}^{2}.$$

pour toute solution du problème adjoint

$$(S_h^*) \begin{cases} -\partial_t q + \mathcal{A}^{\mathfrak{M}} q = 0 & \text{dans } Q = (0, T) \times \mathfrak{M} \\ q_0 = q_{N+1} = 0, \\ q(T) = q_F \in \mathbb{R}^{\mathfrak{M}} \end{cases}$$

CADRE DISCRET EN TEMPS? (Zheng, '08), (Ervedoza, Valein, '09)

DISCRÉTISATION EN TEMPS SCHÉMA D'EULER IMPLICITE

Soit $M \ge 1$ un entier et $\delta t = T/M$. SCHÉMA D'EULER IMPLICITE

$$(S_{h,\delta t}) \begin{cases} \frac{y^{n+1} - y^n}{\delta t} + \mathcal{A}^{\mathfrak{M}} y^{n+1} = 1_{\omega} v^{n+1}, \quad \forall 0 \le n \le M - 1 \\ y^0 \in \mathbb{R}^{\mathfrak{M}}. \end{cases}$$

- Le contrôle est donné par (vⁿ)_{1≤n≤M}, avec vⁿ ∈ ℝ^m.
 La solution au temps final est y^M ∈ ℝ^m.
- Le schéma est inconditionellement stable.

DISCRÉTISATION EN TEMPS Schéma d'Euler implicite

Soit $M \ge 1$ un entier et $\delta t = T/M$. SCHÉMA D'EULER IMPLICITE

$$(S_{h,\delta t}) \begin{cases} \frac{y^{n+1} - y^n}{\delta t} + \mathcal{A}^{\mathfrak{M}} y^{n+1} = 1_{\omega} v^{n+1}, & \forall 0 \le n \le M - 1 \\ y^0 \in \mathbb{R}^{\mathfrak{M}}. \end{cases}$$

- Le contrôle est donné par $(v^n)_{1 \le n \le M}$, avec $v^n \in \mathbb{R}^m$.
- La solution au temps final est $y^{\overline{M}} \in \mathbb{R}^{\mathfrak{m}}$.
- Le schéma est inconditionellement stable.

QUESTIONS

• A δt et h fixés, le système est-il contrôlable à zéro?

• Si oui, le coût du contrôle
$$||v||_{L^2(Q)} = \left(\sum_{n=1}^M \delta t |v^n|_{L^2(\omega)}^2\right)^{\overline{2}}$$
 est-il uniformément borné en h et δt ?

1

DISCRÉTISATION EN TEMPS Schéma d'Euler implicite

Soit $M \ge 1$ un entier et $\delta t = T/M$. SCHÉMA D'EULER IMPLICITE

$$(S_{h,\delta t}) \begin{cases} \frac{y^{n+1} - y^n}{\delta t} + \mathcal{A}^{\mathfrak{m}} y^{n+1} = 1_{\omega} v^{n+1}, & \forall 0 \le n \le M - 1 \\ y^0 \in \mathbb{R}^{\mathfrak{m}}. \end{cases}$$

- Le contrôle est donné par $(v^n)_{1 \leq n \leq M}$, avec $v^n \in \mathbb{R}^m$.
- La solution au temps final est $y^{\overline{M}} \in \mathbb{R}^{\mathfrak{m}}$.
- Le schéma est inconditionellement stable.

QUESTIONS

• A δt et h fixés, le système est-il contrôlable à zéro?

• Si oui, le coût du contrôle
$$||v||_{L^2(Q)} = \left(\sum_{n=1}^M \delta t |v^n|_{L^2(\omega)}^2\right)^{\frac{1}{2}}$$
 est-il

uniformément borné en h et δt ?

Début de réponses

- On s'attend à une cible en e^{-C/h^2} .
- Si M = 1, le contrôle n'existe que si y^0 est supporté dans ω .

DISCRÉTISATION EN TEMPS θ -schéma

Soit $M \ge 1$ un entier et $\delta t = T/M$. θ -SCHÉMA, AVEC $\theta \in [\frac{1}{2}, 1]$

$$(S_{h,\delta t,\theta}) \begin{cases} \frac{y^{n+1} - y^n}{\delta t} + \mathcal{A}^{\mathfrak{m}}(\theta y^{n+1} + (1-\theta)y^n) = 1_{\omega} v^{n+1}, & \forall 0 \le n \le M-1 \\ y^0 \in \mathbb{R}^{\mathfrak{m}}. \end{cases}$$

- Le contrôle est donné par $(v^n)_{1 \le n \le M}$, avec $v^n \in \mathbb{R}^m$.
- La solution au temps final est $y^M \in \mathbb{R}^m$.
- Le schéma est inconditionnellement stable.
- Pour $\theta = 1$: Euler implicite.
- Pour $\theta = 1/2$: Crank-Nicholson.

NOTION D'OBSERVABILITÉ POUR CES SCHÉMAS

On fixe le maillage \mathfrak{M} , le pas de temps δt et $\theta \in [\frac{1}{2}, 1]$. On note $F = \ker(\mathrm{Id} - \delta t(1-\theta)\mathcal{A}^{\mathfrak{M}})$ et E un sev de $\mathbb{R}^{\mathfrak{M}}$ t.q. $\mathcal{A}^{\mathfrak{M}}E \subset E$.

Théorème (Contrôlabilité ⇔ Observabilité)

Soit $C_{obs} > 0$. Les énoncés suivants sont équivalents :

• Pour tout $y^0 \in \mathbb{R}^m$, il existe un contrôle v pour $(S_{h,\delta t,\theta})$ tel que $\|v\| \leq \sqrt{C_{obs}} |y^0|_{L^2(\Omega)},$

et tel que la solution y vérifie $\Pi_{E \cap F^{\perp}} y^M = 0$. 2 Toute solution $(q^n)_n$ du problème adjoint suivant

$$(S_{h,\delta t,\theta}^*) \begin{cases} q^{M+1} = q_F \in E \cap F^{\perp}, \\ \frac{q^M - q^{M+1}}{\delta t} + \theta \mathcal{A}^{\mathfrak{M}} q^M = 0, \\ \frac{q^n - q^{n+1}}{\delta t} + \mathcal{A}^{\mathfrak{M}} (\theta q^n + (1-\theta)q^{n+1}) = 0, \quad \forall M-1 \ge n \ge 1, \end{cases}$$

$$\textit{v\'erifie} \qquad |q^1 - \delta t(1-\theta)\mathcal{A}^{\mathfrak{m}}q^1|_{L^2(\Omega)}^2 \leq C_{\textit{obs}} \sum_{n=1}^M \delta t |q^n|_{L^2(\omega)}^2.$$

F. Boyer Approximation Numérique et Contrôle

Controlâbilité du schéma complet

Théorème (cas $1/2 < \theta \leq 1$ - énoncé approximatif ...)

Il existe $C_{obs}, C > 0$, tels que pour tout h assez petit et $\delta t \leq h$, on a :

Pour tout $y^0 \in \mathbb{R}^m$, il existe un contrôle $v = (v^n)_{1 \le n \le M}$ tel que :

• La solution $(y^n)_{0 \le n \le M}$ de $(S_{h,\delta t,\theta})$ vérifie

$$|y^{M}|_{L^{2}(\Omega)} \leq Ce^{-C/h}|y^{0}|_{L^{2}(\Omega)}.$$

• Le contrôle v vérifie

$$\sum_{n=1}^{M} \delta t |v^{n}|_{L^{2}(\omega)}^{2} \leq C_{obs}^{2} |y^{0}|_{L^{2}(\Omega)}^{2}.$$

CRANK-NICHOLSON : $\theta = 1/2$: Résultat similaire avec $\delta t \leq h^2$.

THÉORÈME (CAS $1/2 < \theta \leq 1$ - énoncé approximatif ...)

Il existe $C_{obs}, C > 0$ tels que pour h assez petit et $\delta t \leq h$, on a

$$|q^{1} - \delta t(1-\theta)\mathcal{A}^{\mathfrak{m}}q^{1}|_{L^{2}(\Omega)}^{2} \leq C_{obs}^{2} \sum_{n=1}^{M} \delta t |q^{n}|_{L^{2}(\omega)}^{2} + Ce^{-\frac{C}{h}} |q^{M+1}|_{L^{2}(\Omega)}^{2},$$

pour tout $(q^n)_n$ solution du problème adjoint $(S^*_{h,\delta t,\theta})$ associée à toute donnée finale $q_F \in \mathbb{R}^m$.

Algorithme de calcul

Pour tout maillage \mathfrak{M} tel que $h \leq h_0$, et tout $y^0 \in \mathbb{R}^m$, on considère la fonctionnelle $q_F \in \mathbb{R}^m \mapsto J^m_{\delta t}(q_F)$ définie par

$$J_{\delta t}^{\mathfrak{M}}(q_{F}) = \frac{1}{2} \sum_{n=1}^{M} \delta t |q^{n}|_{L^{2}(\omega)}^{2} + \frac{\phi(h)}{2} |q_{F}|_{L^{2}(\Omega)}^{2} + (y^{0}, q^{1} - \delta t(1-\theta)\mathcal{A}^{\mathfrak{M}}q^{1})_{L^{2}(\Omega)},$$

où $(q^n)_n$ est solution du pb adjoint pour la donnée finale $q^{M+1} = q_F$.

Algorithme de calcul

Pour tout maillage \mathfrak{M} tel que $h \leq h_0$, et tout $y^0 \in \mathbb{R}^m$, on considère la fonctionnelle $q_F \in \mathbb{R}^m \mapsto J^m_{\delta t}(q_F)$ définie par

$$J_{\delta t}^{\mathfrak{M}}(q_{F}) = \frac{1}{2} \sum_{n=1}^{M} \delta t |q^{n}|_{L^{2}(\omega)}^{2} + \frac{\phi(h)}{2} |q_{F}|_{L^{2}(\Omega)}^{2} + (y^{0}, q^{1} - \delta t(1-\theta)\mathcal{A}^{\mathfrak{M}}q^{1})_{L^{2}(\Omega)},$$

où $(q^n)_n$ est solution du pb adjoint pour la donnée finale $q^{M+1} = q_F$.

PROPOSITION

 $J_{\delta t}^{\mathfrak{M}}$ a un unique minimiseur $q_{F,opt,\delta t} \in \mathbb{R}^{\mathfrak{M}}$. La solution $(q^n)_n$ du pb adjoint associé est telle que si on pose

$$v^n = \mathbf{1}_{\omega} q^n, \forall 1 \le n \le M_1$$

- Borne uniforme du coût : $\sum_{n=1}^{M} \delta t |v^{n}|_{L^{2}(\omega)}^{2} \leq C_{obs}^{2} |y^{0}|_{L^{2}(\Omega)}^{2}.$
- Taille de la cible : la solution $(y^n)_n$ du problème contrôlé vérifie

$$|y^M|_{L^2(\Omega)} \le \sqrt{\phi(h)} C_{obs} |y^0|_{L^2(\Omega)}.$$

ESTIMATION D'ERREUR EN TEMPS

On suppose fixée une fonction $h \mapsto \phi(h) \gg e^{-C/h}$.

• Pour le problème semi-discret : un contrôle $t \mapsto v(t)$ uniformément borné en h donné par la minimisation de

$$J^{\mathfrak{M}}(q_F) = \frac{1}{2} \int_0^T |q(t)|^2_{L^2(\omega)} dt + \frac{\phi(h)}{2} |q_F|^2_{L^2(\Omega)} + (y^0, q(0))_{L^2(\Omega)}.$$

ESTIMATION D'ERREUR EN TEMPS

On suppose fixée une fonction $h \mapsto \phi(h) \gg e^{-C/h}$.

• Pour le problème semi-discret : un contrôle $t \mapsto v(t)$ uniformément borné en h donné par la minimisation de

$$J^{\mathfrak{M}}(q_F) = \frac{1}{2} \int_0^T |q(t)|^2_{L^2(\omega)} dt + \frac{\phi(h)}{2} |q_F|^2_{L^2(\Omega)} + (y^0, q(0))_{L^2(\Omega)}.$$

• Pour les problèmes complètement discrets : un contrôle discret $(v^n)_n$ uniformément borné en h et δt , par minimisation de

$$J_{\delta t}^{\mathfrak{M}}(q_{F}) = \frac{1}{2} \sum_{n=1}^{M} \delta t |q^{n}|_{L^{2}(\omega)}^{2} + \frac{\phi(h)}{2} |q_{F}|_{L^{2}(\Omega)}^{2} + (y^{0}, q^{1} - \delta t(1 - \theta)\mathcal{A}^{\mathfrak{M}}q^{1})_{L^{2}(\Omega)}$$

On note alors $v_{\delta t}(t) = \sum_{n=1}^{M} v^{n} \mathbf{1}_{](n-1)\delta t, n\delta t[}(t).$

ESTIMATION D'ERREUR EN TEMPS

On suppose fixée une fonction $h \mapsto \phi(h) \gg e^{-C/h}$.

• Pour le problème se mi-discret : un contrôle $t\mapsto v(t)$ uniformément borné en h donné par la minimisation de

$$J^{\mathfrak{M}}(q_F) = \frac{1}{2} \int_0^T |q(t)|^2_{L^2(\omega)} dt + \frac{\phi(h)}{2} |q_F|^2_{L^2(\Omega)} + (y^0, q(0))_{L^2(\Omega)}.$$

• Pour les problèmes complètement discrets : un contrôle discret $(v^n)_n$ uniformément borné en h et δt , par minimisation de

$$J_{\delta t}^{\mathfrak{M}}(q_{F}) = \frac{1}{2} \sum_{n=1}^{M} \delta t |q^{n}|_{L^{2}(\omega)}^{2} + \frac{\phi(h)}{2} |q_{F}|_{L^{2}(\Omega)}^{2} + (y^{0}, q^{1} - \delta t(1 - \theta)\mathcal{A}^{\mathfrak{M}}q^{1})_{L^{2}(\Omega)}$$

On note alors $v_{\delta t}(t) = \sum_{n=1}^{M} v^{n} \mathbf{1}_{](n-1)\delta t, n\delta t[}(t).$

THÉORÈME (ESTIMATION D'ERREUR)

A maillage \mathfrak{M} fixé, $||v_{\delta t} - v||_{L^2(Q)} \le C_h |y^0|_{L^2(\Omega)} \delta t$.

EXEMPLES NUMÉRIQUES Schéma d'Euler implicite

- Mêmes données que dans le cas semi-discret.
- On fixe un maillage de 100 points et on fait varier δt .

$1/\delta t$	nb it GC	distance à la cible	coût du contrôle
10	136	3.910^{-5}	1.069
20	139	2.010^{-5}	0.884
40	144	1.710^{-5}	0.767
80	143	1.310^{-5}	0.714
160	141	1.110^{-5}	0.688
320	170	1.010^{-5}	0.674
640	173	1.010^{-5}	0.667
1280	174	9.610^{-6}	0.664
2560	183	9.510^{-6}	0.662
∞	218	10^{-5}	0.660
comportement	\sim cte	\sim cte	$\sim \delta t$

- Mêmes données que dans le cas semi-discret.
- On fixe un maillage de 100 points et on fait varier δt .

$1/\delta t$	nb it GC	distance à la cible	coût du contrôle
10	139	1.810^{-5}	0.688
20	157	1.010^{-5}	0.660
40	186	9.410^{-6}	0.660
80	202	9.410^{-6}	0.660
160	202	9.410^{-6}	0.660
320	201	9.410^{-5}	0.660
640	202	9.410^{-5}	0.660
∞	218	10^{-5}	0.660
comportement	\sim cte	\sim cte	$\sim \delta t^2$

Observabilité partielle

• On utilise l'inégalité de Lebeau-Robbiano discrète et la même preuve que dans le cas continu.

Observabilité partielle

• On utilise l'inégalité de Lebeau-Robbiano discrète et la même preuve que dans le cas continu.

CONSTRUCTION DU CONTRÔLE

- Découpage du temps discret $\{0, \dots, M\}$ en paquets de taille $2M_j$.
- On alterne le contrôle à zéro des fréquences $\leq 2^{2j}$ pendant M_j pas de temps, puis on fait M_j pas de temps d'évolution libre.
- On utilise la dissipation parabolique du schéma :

Observabilité partielle

• On utilise l'inégalité de Lebeau-Robbiano discrète et la même preuve que dans le cas continu.

CONSTRUCTION DU CONTRÔLE

- Découpage du temps discret $\{0, \dots, M\}$ en paquets de taille $2M_j$.
- On alterne le contrôle à zéro des fréquences $\leq 2^{2j}$ pendant M_j pas de temps, puis on fait M_j pas de temps d'évolution libre.
- On utilise la dissipation parabolique du schéma :
 - Pour Euler implicite, la matrice d'itération du schéma est

$$B^{\mathfrak{M}} = (\mathrm{Id} + \delta t \mathcal{A}^{\mathfrak{M}})^{-1}.$$

• Pour le $\theta\text{-schéma},$ la matrice d'itération du schéma est

$$B^{\mathfrak{M}} = (\mathrm{Id} + \theta \delta t \mathcal{A}^{\mathfrak{M}})^{-1} (\mathrm{Id} - (1 - \theta) \delta t \mathcal{A}^{\mathfrak{M}}).$$

• A comparer à

$$e^{-\delta t \mathcal{A}^{\mathfrak{M}}}$$

1 INTRODUCTION

- 2 Contrôlabilité du problème semi-discret en espace
- 8 Contrôlabilité du problème complètement discret
- **4** Un peu d'exploration numérique
- **5** Conclusions et perspectives

ESTIMATION DE LA CONSTANTE D'OBSERVABILITÉ Principe

RAPPEL

Il existe $C_{obs} > 0$ tel que pour tout h assez petit, toute solution du problème adjoint (S_h^*) vérifie

$$|q(0)|_{L^{2}(\Omega)}^{2} \leq C_{obs} \left(\iint_{(0,T)\times\omega} |q(t,x)|^{2} dt dx + \phi(h) |q_{F}|_{L^{2}(\Omega)}^{2} \right).$$

ESTIMATION DE LA CONSTANTE D'OBSERVABILITÉ Principe

RAPPEL

Il existe $C_{obs} > 0$ tel que pour tout h assez petit, toute solution du problème adjoint (S_h^*) vérifie

$$|e^{-T\mathcal{A}^{\mathfrak{M}}}q_F|^2_{L^2(\Omega)} \le C_{\text{obs}}\left((\Lambda^{\mathfrak{M}}q_F, q_F)_{L^2(\Omega)} + \phi(h)|q_F|^2_{L^2(\Omega)}\right).$$

ESTIMATION DE LA CONSTANTE D'OBSERVABILITÉ Principe

RAPPEL

Il existe $C_{obs}>0$ tel que pour tout h assez petit, toute solution du problème adjoint (S^*_h) vérifie

$$|e^{-T\mathcal{A}^{\mathfrak{M}}}q_F|^2_{L^2(\Omega)} \le C_{\text{obs}}\left((\Lambda^{\mathfrak{M}}q_F, q_F)_{L^2(\Omega)} + \phi(h)|q_F|^2_{L^2(\Omega)}\right).$$

Estimation de C_{obs}

(

• Il s'agit de résoudre un problème aux valeurs propres généralisé

$$Aq = \lambda Bq,$$

avec A et B symétriques définies positives.

• Méthode de la puissance : $q_F^0 \in \mathbb{R}^{\mathfrak{M}}$, quelconque.

$$\begin{cases} r^{k+1} = \frac{e^{-2T\mathcal{A}^{\mathfrak{M}}}q_{F}^{k}}{|e^{-2T\mathcal{A}^{\mathfrak{M}}}q_{F}^{k}|_{L^{2}(\Omega)}}\\ q_{F}^{k+1} = (\Lambda^{\mathfrak{M}} + \phi(h)\mathrm{Id})^{-1}r^{k+1}. \end{cases}$$
on a alors :
$$|e^{-2T\mathcal{A}^{\mathfrak{M}}}q_{F}^{k}|_{L^{2}(\Omega)} \longrightarrow C_{obs}$$

Données

• Coeff. de diffusion $\gamma = 0.1$; $\phi(h) = h^4$.

Données

• Coeff. de diffusion $\gamma = 0.1$; $\phi(h) = h^4$.

Données

• Coeff. de diffusion $\gamma = 0.1$; $\phi(h) = h^4$.

Données

• Coeff. de diffusion $\gamma = 0.1$; $\phi(h) = h^4$.

STRUCTURE DE L'OPERATEUR HUM

LE HUM OPERATEUR A-T'IL UN NOYAU?

• La matrice $\Lambda^{\mathfrak{M}} = (\Lambda_{ij})$ permet d'écrire

$$(\Lambda^{\mathfrak{M}}q)_i = \sum_{j=1}^N \Lambda_{ij}q_j = \int_{\Omega} \frac{\Lambda_i}{h} q(\cdot)$$

• On va donc regarder le comportement quand $h \to 0$ de

$$B_{ij} = \frac{1}{h} \Lambda_{ij}.$$

• S'il y a un noyau, on va obtenir une fonction b telle que

$$B_{ij} \approx b(x_i, x_j).$$

 $\bullet\,$ Quelle est la régularité de $b\,?$ Etude des dérivées successives de b

$$B'_{i+\frac{1}{2}j} = \frac{B_{i+1j} - B_{ij}}{h},$$
$$B''_{ij} = \frac{B'_{i+\frac{1}{2}j} - B'_{i-\frac{1}{2}j}}{h}.$$

• $\omega =]0.5, 0.8[$. Diffusion $0.06 \le \gamma(x) \le 0.14.$

F. Boyer Approximation Numérique et Contrôle

• $\omega =]0.5, 0.8[$. Diffusion $0.06 \le \gamma(x) \le 0.14$.

Calcul des normes sur tout Ω

Maillage uniforme Semi-discret

N	$ B _{\infty}$	$\ B'\ _{\infty}$	$\ B''\ _{\infty}$
50	0.717	4.487	257.069
100	0.705	4.986	509.200
200	0.699	5.510	1011.378
400	0.696	6.046	2013.575

STRUCTURE DE L'OPERATEUR HUM

• $\omega =]0.5, 0.8[$. Diffusion $0.06 \le \gamma(x) \le 0.14.$

Calcul des normes sur tout Ω

Maillage uniforme Semi-discret

N	$ B _{\infty}$	$\ B'\ _{\infty}$	$\ B''\ _{\infty}$
50	0.717	4.487	257.069
100	0.705	4.986	509.200
200	0.699	5.510	1011.378
400	0.696	6.046	2013.575

Calcul des normes loin de ω

Maillage uniforme Semi-discret

N	$ B _{\infty}$	$\ B'\ _{\infty}$	$\ B''\ _{\infty}$
50	0.346	1.385	9.090
100	0.330	1.314	6.893
200	0.335	1.331	6.605
400	0.337	1.339	6.454

• $\omega =]0.5, 0.8[$. Diffusion $0.06 \le \gamma(x) \le 0.14.$

N = 50

• $\omega =]0.5, 0.8[$. Diffusion $0.06 \le \gamma(x) \le 0.14.$

N = 100

• $\omega =]0.5, 0.8[$. Diffusion $0.06 \le \gamma(x) \le 0.14.$

N = 200

• $\omega =]0.5, 0.8[$. Diffusion $0.06 \le \gamma(x) \le 0.14.$

• $\omega =]0.5, 0.8[$. Diffusion $0.06 \le \gamma(x) \le 0.14.$

45/48

F. Boyer Approximation Numérique et Contrôle

• $\omega =]0.5, 0.8[$. Diffusion $0.06 \le \gamma(x) \le 0.14.$

STRUCTURE DE L'OPERATEUR HUM

Conjectures

- L'opérateur HUM est un opérateur à noyau $(x, y) \mapsto b(x, y)$.
- $\bullet \ b$ est régulière sur le complémentaire de

$$\Delta_{\omega} = \{(x, x), x \in \overline{\omega}\}.$$

• La singularité de b sur $\partial \Delta_\omega$ est du second ordre et de la forme

$$\partial_x^2 b \sim \frac{1}{2\gamma(x)} \delta_{\Delta_\omega} \Longleftrightarrow \partial_x(\gamma(x)\partial_x b) \sim \frac{1}{2} \delta_{\Delta_\omega}.$$

1 INTRODUCTION

- 2 Contrôlabilité du problème semi-discret en espace
- 8 Contrôlabilité du problème complètement discret
- (4) UN PEU D'EXPLORATION NUMÉRIQUE
- **6** CONCLUSIONS ET PERSPECTIVES

CONCLUSIONS

- Résultats de contrôlabilité uniforme en h pour un état final exponentiellement petit en h.
- Inégalités d'observabilité uniformes associées.
- Coefficients variables (en x!).
- Maillages cartésiens réguliers en multi-D.
- Cas semi-discret et complètement discret.
- Algorithmes de calcul avec estimation *a priori* de la taille de la cible.

CONCLUSIONS

- Résultats de contrôlabilité uniforme en h pour un état final exponentiellement petit en h.
- Inégalités d'observabilité uniformes associées.
- Coefficients variables (en x!).
- Maillages cartésiens réguliers en multi-D.
- Cas semi-discret et complètement discret.
- Algorithmes de calcul avec estimation *a priori* de la taille de la cible.

Perspectives

- Le cas des maillages non structurés est complètement ouvert.
- Amélioration du solveur par un préconditionneur.
- Etude plus fine de l'opérateur HUM $\Lambda^{\mathfrak{m}}$.
- Etude de la constante d'observabilité en fonction des paramètres du problème (domaine de contrôle, régularité des coefficients, ...).
- Inégalités de Carleman discrètes pour les problèmes paraboliques \Rightarrow coefficients dépendant du temps.
- Problèmes semi-linéaires. Systèmes.