Controllability of parabolic PDEs Methods - Results - Open problems

Franck BOYER

IMT, Université Paul Sabatier - Toulouse 3 Institut universitaire de France

Ecole Polytechnique, CMAP, March 2017

1 INTRODUCTION

2 GENERALITIES

- **3** CONTROL OF PARABOLIC SCALAR EQUATIONS HEAT EQUATION
 - The 1D case
 - Multi-D case

4 CONTROL OF PARABOLIC SYSTEMS

- Preliminaries
- Constant coefficients
- Variable coefficients

5 CONCLUSIONS

1 INTRODUCTION

2 GENERALITIES

- **3** CONTROL OF PARABOLIC SCALAR EQUATIONS HEAT EQUATION
 - The 1D case
 - Multi-D case

CONTROL OF PARABOLIC SYSTEMS

- Preliminaries
- Constant coefficients
- Variable coefficients

5 CONCLUSIONS

GENERAL DYNAMICAL SYSTEM

$$(S) \begin{cases} y' = F(t, y, v), \\ y(0) = y_0, \end{cases}$$

 $t \mapsto y(t)$ is the state (possibly infinite dimensional), $t \mapsto v(t)$ is the control.

TYPICAL CONTROLLABILITY QUESTION

For a given initial data y_0 , can we find a control v such that the corresponding solution of (*S*) has a prescribed behavior ?

IN THIS TALK : Let T > 0 and y_T a fixed target.

- Exact controllability : Can I find a control v such that $y(T) = y_T$?
- Approximate controllability : Can I find a control v such that $||y(T) y_T||$ is as small as desired ?
- Only linear problems.

where $A \in M_n(\mathbb{R})$, $B \in M_{n,m}(\mathbb{R})$, $y(t) \in \mathbb{R}^n$ and $v(t) \in \mathbb{R}^m$.

THEOREM (KALMAN CRITERION)

Let T > 0. The following propositions are equivalent.

- (1) Problem (S) is exactly controllable at time T.
- (2) Problem (S) is approximately controllable at time T.
- (3) The matrices A and B satisfy

$$\operatorname{rank}(K) = n$$
, with $K = (B|AB| \dots |A^{n-1}B) \in M_{n,mn}(\mathbb{R})$.

REMARKS

- Approximate and exact controllability are equivalent.
- The controllability of the system is **independent of** *T*.
- There exists a generalization of this criterion for time dependent linear ODEs.

where $A \in M_n(\mathbb{R})$, $B \in M_{n,m}(\mathbb{R})$, $y(t) \in \mathbb{R}^n$ and $v(t) \in \mathbb{R}^m$.

THEOREM (KALMAN CRITERION)

Let T > 0. The following propositions are equivalent.

- (1) Problem (S) is exactly controllable at time T.
- (2) Problem (S) is approximately controllable at time T.
- (3) The matrices A and B satisfy

$$\operatorname{rank}(K) = n$$
, with $K = (B|AB| \dots |A^{n-1}B) \in M_{n,mn}(\mathbb{R})$.

SKETCH OF PROOF

The set of reachable states at time T from an initial data y_0 is affine

$$R_T(y_0) = \{y_{v,y_0}(T), v \in L^2(0,T;\mathbb{R}^m)\}.$$

(1)
$$\Leftrightarrow R_T(y_0) = \mathbb{R}^n \Leftrightarrow R_T(y_0)$$
 is dense in $\mathbb{R}^n \Leftrightarrow (2)$.

where $A \in M_n(\mathbb{R})$, $B \in M_{n,m}(\mathbb{R})$, $y(t) \in \mathbb{R}^n$ and $v(t) \in \mathbb{R}^m$.

THEOREM (KALMAN CRITERION)

Let T > 0. The following propositions are equivalent.

- (1) Problem (S) is exactly controllable at time T.
- (2) Problem (S) is approximately controllable at time T.
- (3) The matrices A and B satisfy

$$\operatorname{rank}(K) = n$$
, with $K = (B|AB| \dots |A^{n-1}B) \in M_{n,mn}(\mathbb{R})$.

SKETCH OF PROOF

 $\begin{array}{l} (1) \Rightarrow (3) : \text{Assume that } \operatorname{rank}(K) < n, \text{ there exists } \psi \in \mathbb{R}^n \setminus \{0\} \text{ such that } {}^t \psi K = 0. \\ \Longrightarrow \left({}^t \psi P(A)B = 0, \ \forall P \in \mathbb{R}[X] \right) \Longrightarrow \left(\forall s \in \mathbb{R}, \, {}^t \psi e^{sA}B = 0 \right). \end{array}$

Thus, for any control v, we have

$$\frac{d}{dt}({}^t\psi e^{tA}y(t)) = {}^t\psi e^{tA}Bv(t) = 0.$$

It follows that $\psi \perp (e^{TA}R_T(y_0) - y_0)$.

where $A \in M_n(\mathbb{R})$, $B \in M_{n,m}(\mathbb{R})$, $y(t) \in \mathbb{R}^n$ and $v(t) \in \mathbb{R}^m$.

THEOREM (KALMAN CRITERION)

Let T > 0. The following propositions are equivalent.

- (1) Problem (S) is exactly controllable at time T.
- (2) Problem (S) is approximately controllable at time T.
- (3) The matrices A and B satisfy

$$\operatorname{rank}(K) = n$$
, with $K = (B|AB| \dots |A^{n-1}B) \in M_{n,mn}(\mathbb{R})$.

SKETCH OF PROOF

(3) \Rightarrow (1) : Assume that (S) is not controllable at time T. Thus, there exists $\psi \neq 0$ such that $\psi \perp (R_T(y_0) - e^{-TA}y_0)$. By the Duhamel formula,

$$0 = {}^{t}\psi \int_0^T e^{-(T-t)A} Bv(t) dt, \quad \forall v : [0,T] \to \mathbb{R}^m.$$

We take $v(t) = B^* e^{-(T-t)A^*} \psi$ to obtain $0 = \int_0^T \left\| {}^t \psi e^{-(T-t)A} B \right\|_2^2 dt$. It follows that ${}^t \psi e^{sA} B = 0$, $\forall s \in \mathbb{R}$, and then ${}^t \psi K = 0$ which gives rank(K) < n.

where $A \in M_n(\mathbb{R})$, $B \in M_{n,m}(\mathbb{R})$, $y(t) \in \mathbb{R}^n$ and $v(t) \in \mathbb{R}^m$.

THEOREM (KALMAN CRITERION)

Let T > 0. The following propositions are equivalent.

- (1) Problem (S) is exactly controllable at time T.
- (2) Problem (S) is approximately controllable at time T.
- (3) The matrices A and B satisfy

$$\operatorname{rank}(K) = n$$
, with $K = (B|AB| \dots |A^{n-1}B) \in M_{n,mn}(\mathbb{R})$.

ALTERNATIVE (CONSTRUCTIVE) PROOF IN THE CASE m = 1 AND $y_T = 0$ **Cascade structure** : Use the change of variable y = Kz (*K* is invertible !)

$$z'(t) + \begin{pmatrix} 0 & \cdots & \cdots & 0 & a_0 \\ 1 & 0 & \cdots & \vdots & a_1 \\ 0 & 1 & \ddots & \vdots & a_2 \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \cdots & 0 & 1 & a_n \end{pmatrix} z(t) = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} v(t) \implies \begin{cases} \text{Choose a suitable } z_n \text{ (flat at } T) \\ \text{then compute } z_{n-1}, \dots, z_1 \text{ and finally } v \end{cases}$$

I INTRODUCTION

2 GENERALITIES

- **3** CONTROL OF PARABOLIC SCALAR EQUATIONS HEAT EQUATION
 - The 1D case
 - Multi-D case

CONTROL OF PARABOLIC SYSTEMS

- Preliminaries
- Constant coefficients
- Variable coefficients

5 CONCLUSIONS

(Jackson-Byrne, 2000)

CANCER THERAPY MODEL

$\partial_t d - \operatorname{div}(D_d(x)\nabla d)$	$+ \lambda d$	$= b(x)\mathbf{v}(t,x),$	drugs
$\partial_t p - \operatorname{div}(D_p(x)\nabla p)$	$-F_p(p)$	$= -C_p(d,p),$	sensitive cells
$\partial_t q - \operatorname{div}(D_q(x)\nabla q)$	$-F_a(q)$	$= -C_a(d,q),$	unsensitive cells

MAIN FEATURES :

- Reaction-diffusion system
- Possibly different diffusions
- Only one control acting on the drug concentration !
- Importance of coupling / interaction terms. No direct coupling between p and q.
- A reasonable control should be non-negative and bounded.

THIS PROBLEM IS MUCH TOO COMPLEX UP TO NOW

- Linearisation ?
- Same diffusions ?
- 1D case ?
- Relax constraints on the control ?

ABSTRACT LINEAR PARABOLIC CONTROL PROBLEM

- Two Hilbert spaces : the state space $(E, \langle ., . \rangle)$ and the control space (U, [., .]).
- $\mathcal{A}: D(\mathcal{A}) \subset E \mapsto E$ is some *elliptic* operator.
- $\mathcal{B}: U \mapsto D(\mathcal{A}^*)'$ the control operator, \mathcal{B}^* its adjoint.
- COMPATIBILITY ASSUMPTION : we assume that

$$\left(t\mapsto \mathcal{B}^{\star}e^{-t\mathcal{A}^{\star}}\psi\right)\in L^{2}(0,T;U), \text{ and } \left[\left[\mathcal{B}^{\star}e^{-\mathcal{A}^{\star}}\psi\right]_{L^{2}(0,T;U)}\leq C\left\|\psi\right\|, \ \forall\psi\in E.$$

Our controlled parabolic problem is

(S)
$$\begin{cases} \partial_t y + \mathcal{A} y = \mathcal{B} v & \text{in }]0, T[, \\ y(0) = y_0, \end{cases}$$

Here, $y_0 \in E$ is the initial data, $v \in L^2(]0, \overline{T[, U)}$ is the control we are looking for.

THEOREM (WELL-POSEDNESS OF (S) IN A DUAL SENSE)

For any $y_0 \in E$ and $v \in L^2(0,T;U)$, there exists a unique $y = y_{v,y_0} \in C^0([0,T],E)$ such that

$$\langle y(t),\psi\rangle - \langle y_0,e^{-t\mathcal{A}^*}\psi\rangle = \int_0^t \left[v(s),\mathcal{B}^*e^{-(t-s)\mathcal{A}^*}\psi\right]\,ds,\,\,\forall t\in[0,T],\forall\psi\in E.$$

DISTRIBUTED CONTROL FOR SCALAR EQUATION

$$\begin{cases} \partial_t y - \Delta y = \mathbf{1}_{\omega} v, & \text{in } \Omega \\ y = 0, & \text{on } \partial \Omega. \end{cases}$$

with $\omega \subset \Omega$ strict subset (the case $\omega = \Omega$ is straightforward). DIRICHLET BOUNDARY CONTROL FOR SCALAR EQUATION

$$\mathcal{B}^{\star} = \mathbf{1}_{\Gamma_0} \partial_n$$

 $\mathcal{B}^{\star} = \mathbf{1}_{\omega}$

$$\begin{cases} \partial_t y - \Delta y = 0, \text{ in } \Omega \\ y = \mathbf{1}_{\Gamma_0} v, \text{ on } \partial \Omega. \end{cases}$$

where $\Gamma_0 \subset \partial \Omega$ is a subset of the boundary.

DISTRIBUTED CONTROL FOR SCALAR EQUATION

$$\begin{cases} \partial_t y - \Delta y = \mathbf{1}_\omega v, & \text{in } \Omega \\ y = 0, & \text{on } \partial \Omega. \end{cases}$$

with $\omega \subset \Omega$ strict subset (the case $\omega = \Omega$ is straightforward). DIRICHLET BOUNDARY CONTROL FOR SCALAR EQUATION

$$\mathcal{B}^{\star} = \mathbf{1}_{\Gamma_0} \partial_n$$

 $\mathcal{B}^{\star} = \mathbf{1}_{\omega}$

$$\begin{cases} \partial_t y - \Delta y = 0, \text{ in } \Omega \\ y = \mathbf{1}_{\Gamma_0} v, \text{ on } \partial \Omega. \end{cases}$$

where $\Gamma_0 \subset \partial \Omega$ is a subset of the boundary.

COUPLED PARABOLIC SYSTEM WITH FEW DISTRIBUTED CONTROLS $\mathcal{B}^* = \mathbf{1}_{\omega} B^*$ $y(t,x) \in \mathbb{R}^n, A(t,x) \in M_n(\mathbb{R}), B \in M_{n,m}(\mathbb{R}), \text{ with } m < n$

$$\begin{cases} \partial_t y - \Delta y + A(t, x)y = \mathbf{1}_{\omega} Bv, & \text{in } \Omega \\ y = 0, & \text{on } \partial \Omega. \end{cases}$$

COUPLED PARABOLIC SYSTEM WITH FEW BOUNDARY CONTROLS $\mathcal{B}^* = \mathbf{1}_{\Gamma_0} B^* \partial_n$ $y(t,x) \in \mathbb{R}^n, A(t,x) \in M_n(\mathbb{R}), B \in M_{n,m}(\mathbb{R}), \text{ with } m < n$

$$\begin{cases} \partial_t y - \Delta y + A(t, x)y = 0, & \text{in } \Omega\\ y = \mathbf{1}_{\Gamma_0} Bv, & \text{on } \partial\Omega. \end{cases}$$

$$(S) \begin{cases} \partial_t y + \mathcal{A}y = \mathcal{B}v & \text{in }]0, T[, \\ y(0) = y_0. \end{cases}$$

FUNDAMENTAL REMARK FOR PARABOLIC PDES

Due to regularisation effects, not all targets can be reached !

APPROXIMATE (NULL-)CONTROL PROBLEM AT TIME *T* FROM *y*₀

For any $\delta > 0$, is there a $v_{\delta} \in L^2(]0, T[, U)$ such that $||y_{v_{\delta}, y_0}(T)|| \leq \delta$?

NULL-CONTROL PROBLEM AT TIME T FROM y_0

Is there a $v \in L^2(]0, T[, U)$ such that $y_{v,y_0}(T) = 0$?

This is equivalent to the control to the trajectories.

(Fattorini-Russell, '71) (Lebeau-Robbiano, '95)

(Fursikov-Imanuvilov, '96) (Alessandrini-Escauriaza, '08)

(Ammar-Khodja, Benabdallah, González-Burgos, de Teresa, '11)

CONTROLABILITY VS. UNIQUE CONTINUATION VS. OBSERVABILITY

$$(S) \begin{cases} \partial_t y + \mathcal{A}y = \mathcal{B}v & \text{in }]0, T[, \\ y(0) = y_0. \end{cases} \qquad (S^*) \begin{cases} -\partial_t q + \mathcal{A}^* q = 0 & \text{in }]0, T[, \\ q(T) = q_F. \end{cases}$$

THEOREM (APPROXIMATE CONTROLLABILITY AND UNIQUE CONTINUATION) *Let* T > 0 *given*.

(S) is AC from any initial data
$$\iff \begin{cases} Any solution q \text{ of } (S^*) \\ such that \mathcal{B}^*q(t) = 0, \forall t \in [0, T] \\ satisfies q \equiv 0. \end{cases}$$

REMARK : This property is, in general, **independent** of *T*. SKETCH OF PROOF : Let $P : v \in L^2(0,T;U) \mapsto y_v(T) \in E$

 $\operatorname{Im}(P)$ is dense $\iff \ker P^* = \{0\}.$

CONTROLABILITY VS. UNIQUE CONTINUATION VS. OBSERVABILITY

$$(S) \begin{cases} \partial_t y + \mathcal{A}y = \mathcal{B}v & \text{in }]0, T[, \\ y(0) = y_0. \end{cases} \qquad (S^*) \begin{cases} -\partial_t q + \mathcal{A}^* q = 0 & \text{in }]0, T[, \\ q(T) = q_F. \end{cases}$$

THEOREM (NULL CONTROLLABILITY AND OBSERVABILITY)

(S) is NC from any initial data
$$\iff \begin{cases} Any \text{ solution } q \text{ of } (S^*) \\ \text{satisfies } \|q(0)\|^2 \le C_T^2 \int_0^T \|\mathcal{B}^*q(t)\|^2 dt. \end{cases}$$

The control v with minimal L^2 norm for a data y_0 satisfies $||v||_{L^2(0,T;U)} \leq C_T ||y_0||$.

REMARK : This property **may depend** of *T*. **SKETCH OF PROOF** : Let $P : v \in L^2(0, T; U) \mapsto y_v(T) \in E$ and $Q = e^{-TA}$

$$\operatorname{Im}(P) \subset \operatorname{Im}(Q) \iff \|Q^* x\| \le C \|P^* x\|, \ \forall x.$$

I INTRODUCTION

2 GENERALITIES

3 CONTROL OF PARABOLIC SCALAR EQUATIONS - HEAT EQUATION

- The 1D case
- Multi-D case

CONTROL OF PARABOLIC SYSTEMS

- Preliminaries
- Constant coefficients
- Variable coefficients

5 CONCLUSIONS

I INTRODUCTION

2 GENERALITIES

3 CONTROL OF PARABOLIC SCALAR EQUATIONS - HEAT EQUATION

- The 1D case
- Multi-D case

CONTROL OF PARABOLIC SYSTEMS

- Preliminaries
- Constant coefficients
- Variable coefficients

5 CONCLUSIONS

THE MOMENTS METHOD IN 1D

 (λ_k, ϕ_k) : eigenelements of $\mathcal{A} = \mathcal{A}^* = -\partial_x(\gamma(x)\partial_x \bullet)$ with Dirichlet BC.

PROPOSITION

A function $v \in L^2(0,T;U)$ is a null-control for the problem

$$\partial_t y + \mathcal{A} y = \mathcal{B} v, \ y(0) = y_0,$$

if and only if

$$-\left\langle y_0, e^{-\lambda_k T} \phi_k \right\rangle = \int_0^T \left[v(t), e^{-\lambda_k (T-t)} \mathcal{B}^\star \phi_k \right] dt, \ \forall k \ge 1.$$

This is a moment problem.

STRATEGY : If we are able to build a family of functions $\overline{q_k} \in L^2(0, T; U)$ such that

$$\int_0^T \left[\overline{q_l}(t), e^{-\lambda_k(T-t)} \mathcal{B}^* \phi_k\right] dt = \delta_{kl}, \ \forall k, l \ge 1,$$

then the control problem can be formally solved by

$$v(t) = -\sum_{l\geq 1} \left\langle y_0, e^{-\lambda_l T} \phi_l \right\rangle \overline{q_l}(t).$$

(Fattorini-Russell, '71-'74)

THEOREM (BIORTHOGONAL FAMILIES OF EXPONENTIAL FUNCTIONS)

Let $(\sigma_k)_k$ be an increasing sequence of distinct positive numbers. We assume that, for some $\rho > 0$ and some $\mathcal{N} : (0, +\infty) \to (0, +\infty)$, we have

$$\sum_{k\geq\mathcal{N}(\varepsilon)}\frac{1}{\sigma_k}\leq\varepsilon,\;\forall\varepsilon>0,\;\;\text{and}\;\;\sigma_{k+1}-\sigma_k\geq\rho,\;\;\forall k\geq1.$$

Then, for any T > 0, there exists a sequence of functions $(q_k)_k \subset L^2(0,T)$ such that

$$\int_0^T q_k(s) e^{-(T-s)\sigma_l} ds = \delta_{kl}, \forall k, l, \text{ and } \|q_k\|_{L^2(0,T)} \leq K_{\varepsilon,T,\mathcal{N},\rho} e^{\varepsilon\sigma_k}, \forall \varepsilon > 0, \forall k \geq 1,$$

where $K_{\varepsilon,T,\mathcal{N},\rho}$ only depends on T, ε , ρ , \mathcal{N} but not on the sequence $(\sigma_k)_k$.

REMARKS

- Good news : Those conditions are satisfied in 1D for heat-like equations.
- Bad news : There are not satisfied in higher dimension.
- The estimates are somehow uniform with respect to the sequence of eigenvalues.
- Extension possible to more general sets of functions $s \mapsto s^{j} e^{-(T-s)\sigma_{l}}$.

THE MOMENTS METHOD IN 1D

WHAT WE WANT

$$\int_0^T \left[\overline{q_l}(t), e^{-\lambda_k(T-t)} \mathcal{B}^* \phi_k\right] dt = \delta_{kl}, \quad \forall k, l \ge 1,$$

and set $v = -\sum_{l \ge 1} \left\langle y_0, e^{-\lambda_l T} \phi_l \right\rangle \overline{q_l}.$

CONSTRUCTION

We define

$$\overline{q_k}(t) = q_k(t) \frac{\mathcal{B}^* \phi_k}{\left[\!\left[\mathcal{B}^* \phi_k\right]\!\right]^2} \in U,$$

so that $[\![\overline{q_k}]\!]_{L^2(0,T;U)} = |\!|q_k|\!|_{L^2(0,T)} [\![\mathcal{B}^*\phi_k]\!]^{-1}$.

• Distributed control :

 $U = L^2(\Omega), \mathcal{B}^* \phi_k = 1_\omega \phi_k.$

It can be proved that, for some C_{ω} we have

$$\llbracket \mathcal{B}^* \phi_k \rrbracket = \Vert \phi_k \Vert_{L^2(\omega)} \ge C_{\omega}, \ \forall k \ge 1.$$

• Boundary control at x = 1: It can be proved that $U = \mathbb{R}, \mathcal{B}^* \phi_k = \gamma(1) \phi'_k(1).$

$$\llbracket \mathcal{B}^{\star} \phi_{k} \rrbracket = |\gamma(1)\phi_{k}^{\prime}(1)| \geq C\sqrt{\lambda_{k}}.$$
CONCLUSION : We have $\llbracket \left\langle y_{0}, e^{-\lambda_{l}T}\phi_{l} \right\rangle \overline{q_{l}} \rrbracket_{L^{2}(0,T;U)} \leq C_{\varepsilon}e^{-\lambda_{l}T}e^{\varepsilon\lambda_{l}},$ taking $\varepsilon = T/2$ shows that the series that defines ν converges !

EXPECTED RESULTS

• Null(?)-controllability results for semi-discrete parabolic equations

$$\begin{cases} \partial_t y^h + \mathcal{A}_h y^h = \mathcal{B}_h v_h \\ y^h(0) = y^{0,h} \in E_h, \end{cases}$$

where A_h is the finite difference discretisation operator

$$(\mathcal{A}_{h}y)_{i} = -\frac{1}{h} \left(\gamma(x_{i+1/2}) \frac{y_{i+1} - y_{i}}{h} - \gamma(x_{i-1/2}) \frac{y_{i} - y_{i-1}}{h} \right),$$

and the discrete control operator is given by

$$\mathcal{B}_h = egin{pmatrix} 0 \ dots \ 0 \ dots \ 0 \ rac{\gamma_{N+1/2}}{h_N h_{N+1/2}} \end{pmatrix}, \qquad ext{or} \qquad \mathcal{B}_h = 1_\omega.$$

THEOREM

For any p > 0 there exists C > 0, $h_0 > 0$ such that for any $h < h_0$, any $y^{0,h}$, there exists a $v_h \in L^2(0, T, U_h)$ such that

$$\|v_h\|_{L^2(0,T;U_h)} \le C \|y^{0,h}\|_h$$
, and $\|y^h(T)\|_h \le C \|y^{0,h}\|_h h^p$.

EXPECTED RESULTS

• Null(?)-controllability results for semi-discrete parabolic equations

$$\begin{cases} \partial_t y^h + \mathcal{A}_h y^h = \mathcal{B}_h v_h \\ y^h(0) = y^{0,h} \in E_h, \end{cases}$$

Tools : Biotho. Families + discrete spectral properties for \mathcal{A}_h

(Allonsius-B.-Morancey, '16) $\lambda_k^h > Ck^2, \quad \forall k, \forall h.$

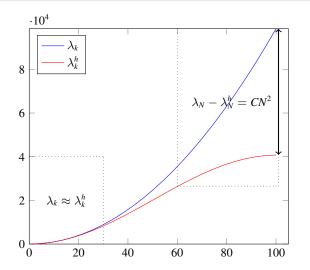
 $\lambda_{k+1}^h - \lambda_k^h \ge \rho, \ \forall h, \ \forall k \le \frac{C}{L}.$

- Uniform growth rate for eigenvalues
- Uniform spectral gap
- Uniform lower bounds for discrete eigenfunctions

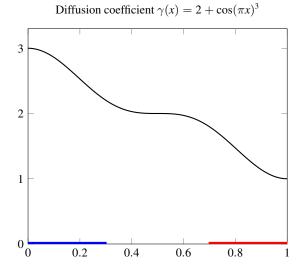
$$\|\phi_k^h\|_{L^2(\omega)} \ge C, \ \forall h, \forall k \le \frac{C}{h} \text{ for distributed control} \\ |\partial_r \phi_k^h| \ge C, \ \forall h, \forall k \le \frac{C}{h} \text{ for boundary control.}$$

REMARKS

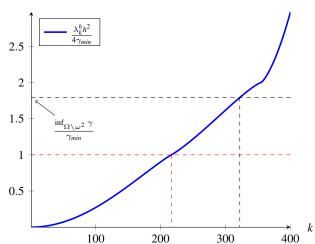
- Those properties are straightforward for the Laplace operator on uniform grids.
- Our results are uniform for a constant portion of the spectrum.



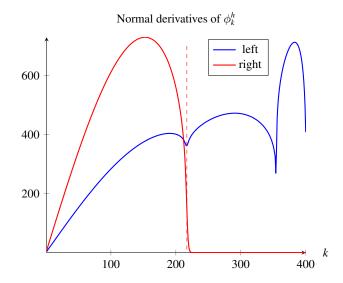
Typical error estimate (useless for large k): $|\lambda_k^h - \lambda_k| \approx Ch^2 \lambda_k^2$. However uniform discrete gap holds: $\inf_{k \leq N} |\lambda_{k+1}^h - \lambda_k^h| \approx C$

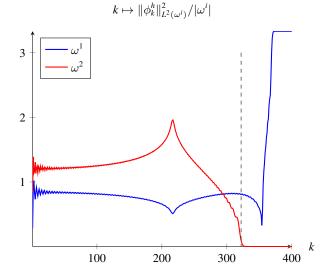


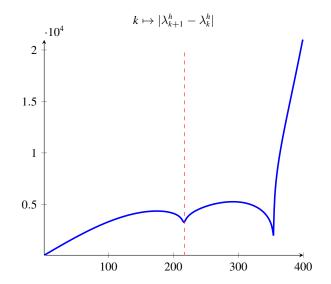
Two observation domains : $\omega^1 = (0, 0.3), \, \omega^2 = (0.7, 1).$

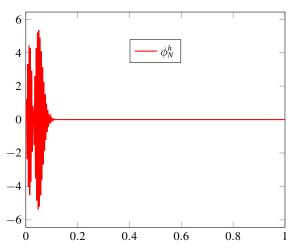


Rescaled discrete spectrum









The last discrete eigenfunction

$$\partial_t y - 0.1 \partial_x^2 y = 1_{]0.3, 0.8[}v,$$

 $T = 1, y_0(x) = \sin(\pi x)^{10}.$

NUMERICAL EXAMPLES

THE 1D HEAT EQUATION WITH UNSTABLE MODES

$$\partial_t y - 0.1 \partial_x^2 y - 1.5 y = 1_{]0.3, 0.8[} v,$$

 $T = 1, y_0(x) = \sin(\pi x)^{10}.$

I INTRODUCTION

2 GENERALITIES

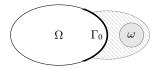
- **3** CONTROL OF PARABOLIC SCALAR EQUATIONS HEAT EQUATION
 - The 1D case
 - Multi-D case

CONTROL OF PARABOLIC SYSTEMS

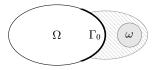
- Preliminaries
- Constant coefficients
- Variable coefficients

5 CONCLUSIONS

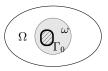
Distributed controllability \Rightarrow Boundary controllability



DISTRIBUTED CONTROLLABILITY \Rightarrow Boundary controllability



Boundary controllability \Rightarrow Distributed controllability



Let $(\phi_k, \lambda_k)_k$ the eigenelements of $\mathcal{A} = -\Delta$. Let $E_\mu = \operatorname{Span}\{\overline{\phi_k}, \lambda_k \leq \mu\}$.

Let $(\phi_k, \lambda_k)_k$ the eigenelements of $\mathcal{A} = -\Delta$. Let $E_\mu = \text{Span}\{\overline{\phi_k}, \lambda_k \le \mu\}$. (1) SPECTRAL INEQUALITY (a.k.a. Lebeau-Robbiano inequality)

 $\|\psi\|_{L^2(\Omega)} \le C e^{C\sqrt{\mu}} \|\psi\|_{L^2(\omega)}, \ \forall \psi \in E_{\mu}.$

Let $(\phi_k, \lambda_k)_k$ the eigenelements of $\mathcal{A} = -\Delta$. Let $E_\mu = \text{Span}\{\overline{\phi_k}, \lambda_k \le \mu\}$. (1) SPECTRAL INEQUALITY (a.k.a. Lebeau-Robbiano inequality)

$$\|\psi\|_{L^2(\Omega)} \le C e^{C\sqrt{\mu}} \|\psi\|_{L^2(\omega)}, \ \forall \psi \in E_{\mu}.$$

(2) PARTIAL (LOW-FREQUENCIES) OBSERVABILITY INEQUALITY

$$\|e^{-\tau \mathcal{A}}q^F\|^2_{L^2(\Omega)} \le C \frac{e^{C\sqrt{\mu}}}{\tau} \int_0^{\tau} \|e^{-s\mathcal{A}}q^F\|^2_{L^2(\omega)} ds, \ \forall q^F \in E_{\mu}.$$

Let $(\phi_k, \lambda_k)_k$ the eigenelements of $\mathcal{A} = -\Delta$. Let $E_\mu = \text{Span}\{\overline{\phi_k}, \lambda_k \le \mu\}$. (1) SPECTRAL INEQUALITY (a.k.a. Lebeau-Robbiano inequality)

$$\|\psi\|_{L^2(\Omega)} \le C e^{C\sqrt{\mu}} \|\psi\|_{L^2(\omega)}, \ \forall \psi \in E_{\mu}.$$

(2) PARTIAL (LOW-FREQUENCIES) OBSERVABILITY INEQUALITY

$$\|e^{-\tau\mathcal{A}}q^F\|^2_{L^2(\Omega)} \leq C rac{e^{C\sqrt{\mu}}}{\tau} \int_0^{\tau} \|e^{-s\mathcal{A}}q^F\|^2_{L^2(\omega)} ds, \ \forall q^F \in E_{\mu}.$$

(3) PARTIAL (LOW-FREQUENCIES) CONTROLLABILITY : for any $y_0 \in E_{\mu}, \tau > 0$ there exists $v \in L^2(]0, \tau[\times \omega)$ such that the solution of

$$\begin{cases} \partial_t \hat{y} - \Delta \hat{y} = \mathbb{P}_{E_{\mu}} \left(\mathbf{1}_{\omega} v \right), & \text{in } \Omega \\ \hat{y}(0, .) = y_0 \in E_{\mu} \end{cases}$$

satisfies $\hat{y}(\tau) = 0$ and moreover $\|v\|_{L^2(]0,\tau[\times\omega)} \leq C\tau^{-1} e^{\sqrt{\mu}} \|y_0\|_{L^2(\Omega)}$.

4

Let $(\phi_k, \lambda_k)_k$ the eigenelements of $\mathcal{A} = -\Delta$. Let $E_\mu = \text{Span}\{\overline{\phi_k}, \lambda_k \le \mu\}$. (1) SPECTRAL INEQUALITY (a.k.a. Lebeau-Robbiano inequality)

$$\|\psi\|_{L^2(\Omega)} \le C e^{C\sqrt{\mu}} \|\psi\|_{L^2(\omega)}, \ \forall \psi \in E_{\mu}.$$

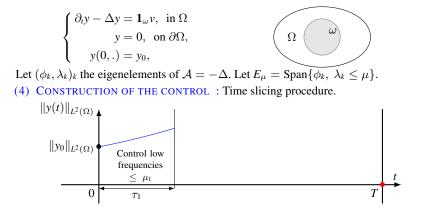
(2) PARTIAL (LOW-FREQUENCIES) OBSERVABILITY INEQUALITY

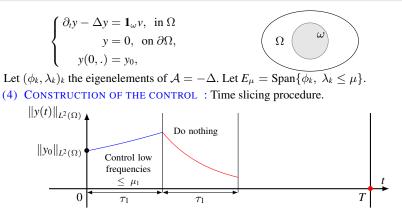
$$\|e^{-\tau \mathcal{A}}q^{F}\|_{L^{2}(\Omega)}^{2} \leq C \frac{e^{C\sqrt{\mu}}}{\tau} \int_{0}^{\tau} \|e^{-s\mathcal{A}}q^{F}\|_{L^{2}(\omega)}^{2} ds, \ \forall q^{F} \in E_{\mu}.$$

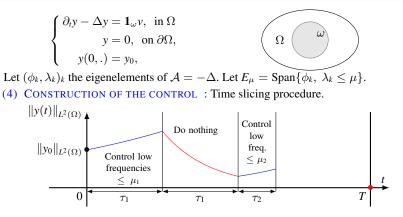
(3) PARTIAL (LOW-FREQUENCIES) CONTROLLABILITY : for any $y_0 \in E, \tau > 0$ there exists $v \in L^2(]0, \tau[\times \omega)$ such that the solution of

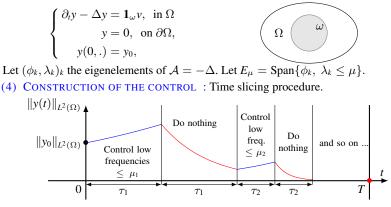
$$\begin{cases} \partial_t y - \Delta y = \mathbf{1}_\omega v, & \text{in } \Omega \\ y(0, .) = y_0 \in \mathbf{E} \end{cases}$$

satisfies $\mathbb{P}_{E_{\mu}}y(\tau) = 0$ and moreover $\|v\|_{L^2(]0,\tau[\times\omega)} \leq C\tau^{-1}e^{\sqrt{\mu}}\|y_0\|_{L^2(\Omega)}$.









At the end, the control v is shown to satisfy

 $\|v\|_{L^2(]0,T[\times\omega)} \leq C \|y_0\|_{L^2(\Omega)}.$

CONSEQUENCE

By duality, we obtain the uniform observability inequality for the adjoint system.

There exists C > 0 such that

$$\int_{\Omega} \bigg| \sum_{\lambda_k \leq \mu} a_k \phi_k \bigg|^2 \leq C e^{C\sqrt{\mu}} \int_{\omega} \bigg| \sum_{\lambda_k \leq \mu} a_k \phi_k \bigg|^2, \quad \forall (a_k)_k \in \mathbb{R}^{\mathbb{N}}.$$

AN ELLIPTIC GLOBAL CARLEMAN ESTIMATE IN $]0, T^*[\times \Omega]$ For a suitable weight function $(t, x) \mapsto \varphi(t, x)$ (s.t. in particular $\nabla_x \varphi(T^*) = 0$)

$$s^{3} \|e^{s\varphi}u\|_{L^{2}(\Omega_{T^{*}})}^{2} + s\|e^{s\varphi}\nabla u\|_{L^{2}(\Omega_{T^{*}})}^{2} + s\|e^{s\varphi(0,.)}\partial_{t}u(0,.)\|_{L^{2}(\Omega)}^{2} + se^{2s\varphi(T^{*})}\|\partial_{t}u(T^{*},.)\|_{L^{2}(\Omega)}^{2} + s^{3}e^{2s\varphi(T^{*})}\|u(T^{*},.)\|_{L^{2}(\Omega)}^{2} \leq C\left(\|e^{s\varphi}(\partial_{t}^{2} + \Delta)u\|_{L^{2}(\Omega_{T^{*}})}^{2} + se^{2s\varphi(T^{*})}\|\nabla_{x}u(T^{*},.)\|_{L^{2}(\Omega)}^{2} + s\|e^{s\varphi(0,.)}\partial_{t}u(0,.)\|_{L^{2}(\omega)}^{2}\right),$$

for any $s \ge s_0$, and all smooth u, with u(0, .) = 0, and u = 0 on $\partial \Omega$.

STANDARD NOTATION

 $\Omega_T =]0, T[\times \Omega,$ $\omega_T =]0, T[\times \omega.$

There exists C > 0 such that

$$\int_{\Omega} \bigg| \sum_{\lambda_k \leq \mu} a_k \phi_k \bigg|^2 \leq C e^{C\sqrt{\mu}} \int_{\omega} \bigg| \sum_{\lambda_k \leq \mu} a_k \phi_k \bigg|^2, \quad \forall (a_k)_k \in \mathbb{R}^{\mathbb{N}}$$

AN ELLIPTIC GLOBAL CARLEMAN ESTIMATE IN $]0, T^*[\times \Omega]$ For all *u* such that u(0, .) = 0, u = 0 on $\partial\Omega$ and $(\partial_t^2 + \Delta)u = 0$, we have

$$s^{3}e^{2s\varphi(T^{*})}\|u(T^{*},.)\|_{L^{2}(\Omega)}^{2} \leq C\left(se^{2s\varphi(T^{*})}\|\nabla_{x}u(T^{*},.)\|_{L^{2}(\Omega)}^{2} + s\|e^{s\varphi(0,.)}\partial_{t}u(0,.)\|_{L^{2}(\omega)}^{2}\right)$$

There exists C > 0 such that

$$\int_{\Omega} \bigg| \sum_{\lambda_k \leq \mu} a_k \phi_k \bigg|^2 \leq C e^{C\sqrt{\mu}} \int_{\omega} \bigg| \sum_{\lambda_k \leq \mu} a_k \phi_k \bigg|^2, \quad \forall (a_k)_k \in \mathbb{R}^{\mathbb{N}}.$$

AN ELLIPTIC GLOBAL CARLEMAN ESTIMATE IN $]0, T^*[\times \Omega]$ For all *u* such that u(0, .) = 0, u = 0 on $\partial\Omega$ and $(\partial_t^2 + \Delta)u = 0$, we have

$$s^{3}e^{2s\varphi(T^{*})}\|u(T^{*},.)\|_{L^{2}(\Omega)}^{2} \leq C\left(se^{2s\varphi(T^{*})}\|\nabla_{x}u(T^{*},.)\|_{L^{2}(\Omega)}^{2} + s\|e^{s\varphi(0,.)}\partial_{t}u(0,.)\|_{L^{2}(\omega)}^{2}\right)$$

APPLY THIS ESTIMATE TO THE FOLLOWING FUNCTION

$$\left\{ \begin{aligned} u(t,x) &= \sum_{\lambda_k \le \mu} a_k \frac{\sinh(\sqrt{\lambda_k}t)}{\sqrt{\lambda_k}} \phi_k(x). \\ \|\nabla_x u(T^*,.)\|_{L^2(\Omega)}^2 &= \sum_{\lambda_k \le \mu} |a_k|^2 |\sinh(\sqrt{\lambda_k}T^*)|^2 \\ &\leq \mu \sum_{\lambda_k \le \mu} |a_k|^2 \left| \frac{\sinh(\sqrt{\lambda_k}T^*)}{\sqrt{\lambda_k}} \right|^2 \le \mu \|u(T^*,.)\|_{L^2(\Omega)}^2. \end{aligned} \right\} \Rightarrow \text{Take } s \sim \sqrt{\mu}$$

There exists C > 0 *such that*

$$\int_{\Omega} \bigg| \sum_{\lambda_k \leq \mu} a_k \phi_k \bigg|^2 \leq C e^{C\sqrt{\mu}} \int_{\omega} \bigg| \sum_{\lambda_k \leq \mu} a_k \phi_k \bigg|^2, \quad \forall (a_k)_k \in \mathbb{R}^{\mathbb{N}}.$$

An elliptic global Carleman estimate in]0, $T^*[imes \Omega]$

$$u(t,x) = \sum_{\lambda_k \leq \mu} a_k \frac{\sinh(\sqrt{\lambda_k}t)}{\sqrt{\lambda_k}} \phi_k(x).$$

Carleman estimate $\implies \mu e^{2\sqrt{\mu}\varphi(T^*)} |u(T^*,.)|^2_{L^2(\Omega)} \le C e^{2\sqrt{\mu}\max\varphi(0,.)} |\partial_t u(0,.)|^2_{L^2(\omega)}.$

STRAIGHTFORWARD COMPUTATIONS

$$\begin{aligned} \|u(T^*,.)\|_{L^2(\Omega)}^2 &= \sum_{\lambda_k \le \mu} |a_k|^2 \left| \frac{\sinh(\sqrt{\lambda_k}T^*)}{\sqrt{\lambda_k}} \right|^2 \ge C \sum_{\lambda_k \le \mu} |a_k|^2 = C \int_{\Omega} \left| \sum_{\lambda_k \le \mu} a_k \phi_k \right|^2, \\ \|\partial_t u(0,.)\|_{L^2(\omega)}^2 &= \int_{\omega} \left| \sum_{\lambda_k \le \mu} a_k \phi_k \right|^2. \end{aligned}$$

A DISCRETE LEBEAU-ROBBIANO INEQUALITY

Let \mathcal{A}_h be a multi-D finite difference discretization of \mathcal{A} and $(\phi_k^h, \lambda_k^h)_{1 \le k \le N_h}$ be the eigenelements of \mathcal{A}_h . For any $\mu > 0$, we set $E_{\mu}^h = \operatorname{Span}(\phi_k^h, \lambda_k^h \le \mu)$.

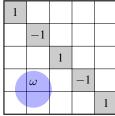
QUESTION

Is it true that

$$\|\psi^h\|_{L^2(\Omega)} \le C e^{C\sqrt{\mu}} \|\psi^h\|_{L^2(\omega)}, \quad \forall \psi^h \in E^h_{\mu}, \tag{(\star)}$$

for some C independent of h?

- Answer 1 : No ... for linear algebra reasons.
- Answer 2 : for the 5-point discrete Laplace on a uniform grid



There exists a non trivial
$$\phi_k^h$$
 such that $1_\omega \phi_k^h = 0$.

A DISCRETE LEBEAU-ROBBIANO INEQUALITY

Let \mathcal{A}_h be a multi-D finite difference discretization of \mathcal{A} and $(\phi_k^h, \lambda_k^h)_{1 \le k \le N_h}$ be the eigenelements of \mathcal{A}_h . For any $\mu > 0$, we set $E_{\mu}^h = \operatorname{Span}(\phi_k^h, \lambda_k^h \le \mu)$.

QUESTION

Is it true that

$$|\psi^{h}||_{L^{2}(\Omega)} \leq C e^{C\sqrt{\mu}} ||\psi^{h}||_{L^{2}(\omega)}, \quad \forall \psi^{h} \in E^{h}_{\mu}, \tag{(\star)}$$

for some C independent of h?

(B.-Hubert-Le Rousseau, '09-'11)

THEOREM

Under some standard assumptions, there exist $h_0 > 0$, $C, \tilde{C} > 0$ such that (*) holds for any $h < h_0$ and any

 $\mu < \tilde{C}/h^2.$

THEOREM ((SAME AS BEFORE BUT MULTI-D))

For any p > 0 there exists C > 0, $h_0 > 0$ such that for any $h < h_0$, any $y^{0,h}$, there exists a $v_h \in L^2(0, T, U_h)$ such that

 $\|v_h\|_{L^2(0,T;U_h)} \leq C \|y^{0,h}\|_h$, and $\|y^h(T)\|_h \leq C \|y^{0,h}\|_h h^p$.

(Fursikov-Imanuvilov, '96)

Let
$$\gamma(t) = \frac{1}{\sqrt{t(T-t)}}$$
. There is a smooth $x \mapsto \beta(x)$ so that, with $\varphi(t, x) = \gamma(t)^2 \beta(x)$

THEOREM (PARABOLIC CARLEMAN ESTIMATE)

For any $d \in \mathbb{R}$, there exists C > 0 such that for any s large enough, and any smooth function q, such that q = 0 on $\partial\Omega$, we have

$$s^{d} \| e^{s\varphi} \gamma^{d} q \|_{L^{2}(\Omega_{T})}^{2} + s^{d-4} \| e^{s\varphi} \gamma^{d-4} \partial_{t} q \|_{L^{2}(\Omega_{T})}^{2} + s^{d-4} \| e^{s\varphi} \gamma^{d-4} \Delta q \|_{L^{2}(\Omega_{T})}^{2}$$

$$\leq C \left(s^{d} \| e^{s\varphi} \gamma^{d} q \|_{L^{2}(\omega_{T})}^{2} + s^{d-3} \| e^{s\varphi} \gamma^{d-3} (-\partial_{t} q + \Delta q) \|_{L^{2}(\Omega_{T})}^{2} \right)$$

COROLLARY (OBSERVABILITY)

For any solution of the adjoint problem $-\partial_t q + \Delta q = 0$, q = 0 on $\partial \Omega$ we have

$$\|q(0)\|_{L^2(\Omega)}^2 \le C \int_{T/4}^{3T/4} \|q(t)\|_{L^2(\Omega)}^2 dt \le C' \int_0^T \int_\omega |q|^2 dt,$$

by using the parabolic dissipation property and the Carleman estimate.

DISCRETE VERSIONS ...

I INTRODUCTION

2 GENERALITIES

- **3** CONTROL OF PARABOLIC SCALAR EQUATIONS HEAT EQUATION
 - The 1D case
 - Multi-D case

4 CONTROL OF PARABOLIC SYSTEMS

- Preliminaries
- Constant coefficients
- Variable coefficients

5 CONCLUSIONS

I INTRODUCTION

2 GENERALITIES

- **3** CONTROL OF PARABOLIC SCALAR EQUATIONS HEAT EQUATION
 - The 1D case
 - Multi-D case

4 CONTROL OF PARABOLIC SYSTEMS

- Preliminaries
- Constant coefficients
- Variable coefficients

5 CONCLUSIONS

$$y(t,x) \in \mathbb{R}^n, A(t,x) \in M_n(\mathbb{R}), B \in M_{n,m}(\mathbb{R})$$

BOUNDARY CONTROL

$$(S_D) \begin{cases} \partial_t y - \Delta y + A(t, x)y = \mathbf{1}_{\omega} Bv, & \text{in } \Omega \\ y = 0, & \text{on } \partial \Omega. \end{cases} \qquad (S_B) \begin{cases} \partial_t y - \Delta y + A(t, x)y = 0, & \text{in } \Omega \\ y = \mathbf{1}_{\Gamma_0} Bv, & \text{on } \partial \Omega. \end{cases}$$

$$y(t,x) \in \mathbb{R}^n, A(t,x) \in M_n(\mathbb{R}), B \in M_{n,m}(\mathbb{R})$$

BOUNDARY CONTROL

$$(S_D) \begin{cases} \partial_t y - \Delta y + A(t, x)y = \mathbf{1}_{\omega} Bv, & \text{in } \Omega \\ y = 0, & \text{on } \partial \Omega. \end{cases} \qquad (S_B) \begin{cases} \partial_t y - \Delta y + A(t, x)y = 0, & \text{in } \Omega \\ y = \mathbf{1}_{\Gamma_0} Bv, & \text{on } \partial \Omega. \end{cases}$$

- In the case rank(B) = n (in particular $m \ge n$) :
 - Distributed and boundary controllability are equivalent.
 - Controllability proofs works almost the same as in the scalar case (Fursikov-Imanuvilov strategy for instance).
- 2 In the case rank(B) < n (important in applications !) :
 - Distributed and boundary controllability are not equivalent.
 - Controllability proofs have to be adapted.
 - Many results in 1D. The multi-D case is much more difficult in particular for (S_B) .

$$y(t,x) \in \mathbb{R}^n, A(t,x) \in M_n(\mathbb{R}), B \in M_{n,m}(\mathbb{R})$$

BOUNDARY CONTROL

$$(S_D) \begin{cases} \partial_t y - \Delta y + A(t, x)y = \mathbf{1}_{\omega} Bv, & \text{in } \Omega \\ y = 0, & \text{on } \partial \Omega. \end{cases} \qquad (S_B) \begin{cases} \partial_t y - \Delta y + A(t, x)y = 0, & \text{in } \Omega \\ y = \mathbf{1}_{\Gamma_0} Bv, & \text{on } \partial \Omega. \end{cases}$$

- In the case rank(B) = n (in particular $m \ge n$) :
 - Distributed and boundary controllability are equivalent.
 - Controllability proofs works almost the same as in the scalar case (Fursikov-Imanuvilov strategy for instance).
- 2 In the case rank(B) < n (important in applications !) :
 - Distributed and boundary controllability are not equivalent.
 - Controllability proofs have to be adapted.
 - Many results in 1D. The multi-D case is much more difficult in particular for (S_B) .

Some surprising features I will discuss

- The "geometry" of the control domain ω has an influence on the controllability of the system.
- It may exist a minimal time T_0 for the null-controllability
 - For $T > T_0$: the system is null-controllable.
 - For $T < T_0$: the system is not null-controllable.

I INTRODUCTION

2 GENERALITIES

- **3** CONTROL OF PARABOLIC SCALAR EQUATIONS HEAT EQUATION
 - The 1D case
 - Multi-D case

4 CONTROL OF PARABOLIC SYSTEMS

- Preliminaries
- Constant coefficients
- Variable coefficients

5 CONCLUSIONS

(Ammar-Khodja, Benabdallah, Dupaix, González-Burgos, '09) (González-Burgos, de Teresa '10)

$$(S_D) \begin{cases} \partial_t y - \Delta y + Ay = \mathbf{1}_{\omega} Bv, \text{ in } \Omega \\ y = 0, \text{ on } \partial\Omega. \end{cases}$$

THEOREM

System (S_D) is null-controllable at time T if and only if $\operatorname{rank}(B|AB| \cdots |A^{n-1}B) = n$.

(Ammar-Khodja, Benabdallah, Dupaix, González-Burgos, '09) (González-Burgos, de Teresa '10)

$$(S_D) \begin{cases} \partial_t y - \Delta y + Ay = \mathbf{1}_{\omega} Bv, \text{ in } \Omega \\ y = 0, \text{ on } \partial\Omega. \end{cases}$$

THEOREM

System (S_D) is null-controllable at time T if and only if $rank(B|AB| \cdots |A^{n-1}B) = n$.

SKETCH OF PROOF : in the case n = 2, m = 1.

• Kalman rank condition \Rightarrow canonical (**cascade**) form $A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

Adjoint system
$$\begin{cases} -\partial_t q_1 - \Delta q_1 + q_2 &= 0\\ -\partial_t q_2 - \Delta q_2 &= 0 \end{cases}$$

• Carleman estimate for q_i , $i = 1, 2, d_i \ge 4$

$$\begin{split} s^{d_i} \| e^{s\varphi} \gamma^{d_i} q_i \|_{L^2(\Omega_T)}^2 + s^{d_i - 4} \| e^{s\varphi} \gamma^{d_i - 4} \partial_t q_i \|_{L^2(\Omega_T)}^2 + s^{d_i - 4} \| e^{s\varphi} \gamma^{d_i - 4} \Delta q_i \|_{L^2(\Omega_T)}^2 \\ & \leq C \left(s^{d_i} \| e^{s\varphi} \gamma^{d_i} q_i \|_{L^2(\omega_T)}^2 + s^{d_i - 3} \| e^{s\varphi} \gamma^{d_i - 3} (-\partial_t q_i + \Delta q_i) \|_{L^2(\Omega_T)}^2 \right) \end{split}$$

(Ammar-Khodja, Benabdallah, Dupaix, González-Burgos, '09) (González-Burgos, de Teresa '10)

$$(S_D) \begin{cases} \partial_t y - \Delta y + Ay = \mathbf{1}_{\omega} Bv, & \text{in } \Omega \\ y = 0, & \text{on } \partial \Omega. \end{cases}$$

THEOREM

System (S_D) is null-controllable at time T if and only if $rank(B|AB| \cdots |A^{n-1}B) = n$.

SKETCH OF PROOF : in the case n = 2, m = 1.

• Kalman rank condition \Rightarrow canonical (**cascade**) form $A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

Adjoint system
$$\begin{cases} -\partial_t q_1 - \Delta q_1 + q_2 &= 0\\ -\partial_t q_2 - \Delta q_2 &= 0 \end{cases}$$

• Carleman estimate for q_i , $i = 1, 2, d_i \ge 4$

$$\varepsilon s^{d_1} \| e^{s\varphi} \gamma^{d_1} q_1 \|_{L^2(\Omega_T)}^2 + s^{d_2} \| e^{s\varphi} \gamma^{d_2} q_2 \|_{L^2(\Omega_T)}^2 + s^{d_2 - 4} \| e^{s\varphi} \gamma^{d_2 - 4} (|\partial_t q_2| + |\Delta q_2|) \|_{L^2(\Omega_T)}^2 \\ \leq C \left(\varepsilon s^{d_1} \| e^{s\varphi} \gamma^{d_1} q_1 \|_{L^2(\omega_T)}^2 + s^{d_2} \| e^{s\varphi} \gamma^{d_2} q_2 \|_{L^2(\omega_T)}^2 + \varepsilon s^{d_1 - 3} \| e^{s\varphi} \gamma^{d_1 - 3} q_2 \|_{L^2(\Omega_T)}^2 \right)$$

/ 42

(Ammar-Khodja, Benabdallah, Dupaix, González-Burgos, '09) (González-Burgos, de Teresa '10)

$$(S_D) \begin{cases} \partial_t y - \Delta y + Ay = \mathbf{1}_{\omega} Bv, \text{ in } \Omega \\ y = 0, \text{ on } \partial\Omega. \end{cases}$$

THEOREM

System (S_D) is null-controllable at time T if and only if $rank(B|AB| \cdots |A^{n-1}B) = n$.

SKETCH OF PROOF : in the case n = 2, m = 1.

• Kalman rank condition \Rightarrow canonical (**cascade**) form $A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

Adjoint system
$$\begin{cases} -\partial_t q_1 - \Delta q_1 + q_2 &= 0\\ -\partial_t q_2 - \Delta q_2 &= 0 \end{cases}$$

• Carleman estimate for q_i , i = 1, 2. We choose $d_1 = 7$ and $d_2 = 4$

$$s^{7} \|e^{s\varphi} \gamma^{7} q_{1}\|_{L^{2}(\Omega_{T})}^{2} + s^{4} \|e^{s\varphi} \gamma^{4} q_{2}\|_{L^{2}(\Omega_{T})}^{2} + \|e^{s\varphi} (|\partial_{t} q_{2}| + |\Delta q_{2}|)\|_{L^{2}(\Omega_{T})}^{2}$$

$$\leq C \left(s^{7} \|e^{s\varphi} \gamma^{7} q_{1}\|_{L^{2}(\omega_{T})}^{2} + s^{4} \|e^{s\varphi} \gamma^{4} q_{2}\|_{L^{2}(\omega_{T})}^{2}\right)$$
Eliminate the last term :
$$\int_{\omega_{T}} q_{2}^{2} = \int_{\omega_{T}} q_{2} (\partial_{t} q_{1} + \Delta q_{1}) \sim \int_{\omega_{T}} q_{1} (-\partial_{t} q_{2} + \Delta q_{2})$$

(Fernández-Cara, González-Burgos, de Teresa, '10) (Ammar-Khodja, Benabdallah, González-Burgos, de Teresa, '11)

$$(S_B) \begin{cases} \partial_t y - \partial_x^2 y + Ay = 0, & \text{in }]0, \pi[\\ y(t,0) = Bv, & y(t,\pi) = 0. \end{cases}$$

MAIN ISSUE : Carleman-like methods are useless !MOMENTS METHOD \implies restriction to the 1D case. (Fernández-Cara, González-Burgos, de Teresa, '10) (Ammar-Khodja, Benabdallah, González-Burgos, de Teresa, '11)

$$(S_B) \begin{cases} \partial_t y - \partial_x^2 y + Ay = 0, \text{ in }]0, \pi[\\ y(t,0) = Bv, y(t,\pi) = 0. \end{cases}$$

THEOREM

System (S_B) is null-controllable at time T if and only if

$$\operatorname{rank}(B_k|A_kB_k|\cdots|A_k^{kn-1}B_k)=kn, \ \forall k\geq 1,$$

with

$$A_{k} = \begin{pmatrix} A - \lambda_{1}I & & \\ & A - \lambda_{2}I & & \\ & & \ddots & \\ & & & A - \lambda_{k}I \end{pmatrix}, \text{ and } B_{k} = \begin{pmatrix} B \\ B \\ \vdots \\ B \end{pmatrix}.$$

- Kalman condition rank $(B|AB|...|A^{n-1}B) = n$ is necessary but not sufficient.
- Example for n = 2: Let $Sp(A^*) = {\mu_1, \mu_2}$.

(*) is null-controllable
$$\Leftrightarrow \begin{cases} \text{Kalman condition} \\ \lambda_k - \lambda_l \neq \mu_1 - \mu_2, \ \forall k \neq l. \end{cases}$$

$$(S_D) \begin{cases} \partial_t y - \begin{pmatrix} 1 & 0 \\ 0 & \mathbf{d} \end{pmatrix} \partial_x^2 y + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} y = \mathbf{1}_\omega \begin{pmatrix} 1 \\ 0 \end{pmatrix} \nu, \text{ in }]0, \pi[\\ y(t, 0) = y(t, \pi) = 0, \end{cases}$$

Results for d = 1

- (S_D) is app. controllable at T for any T > 0.
- (S_D) is null-controllable at T for any T > 0.

BOUNDARY CONTROL

$$(S_B) \begin{cases} \partial_t y - \begin{pmatrix} 1 & 0 \\ 0 & \mathbf{d} \end{pmatrix} \partial_x^2 y + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} y = 0, & \text{in }]0, \pi[\\ y(t,0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} v, & y(t,\pi) = 0, \end{cases}$$

Results for d = 1

- (S_B) is app. controllable at T for any T > 0.
- (S_B) is null-controllable at T for any T > 0.

$$(S_D) \begin{cases} \partial_t y - \begin{pmatrix} 1 & 0 \\ 0 & \mathbf{d} \end{pmatrix} \partial_x^2 y + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} y = \mathbf{1}_\omega \begin{pmatrix} 1 \\ 0 \end{pmatrix} v, \text{ in }]0, \pi[\\ y(t, 0) = y(t, \pi) = 0, \end{cases}$$

Results for d = 1

- (S_D) is app. controllable at T for any T > 0.
- (S_D) is null-controllable at T for any T > 0.

Results for $d \neq 1$

- (S_D) is app. controllable at T for any T > 0.
- (S_D) is null-controllable at T for any T > 0.

BOUNDARY CONTROL

$$S_B \begin{cases} \partial_t y - \begin{pmatrix} 1 & 0 \\ 0 & \mathbf{d} \end{pmatrix} \partial_x^2 y + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} y = 0, & \text{in }]0, \pi[\\ y(t, 0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} v, & y(t, \pi) = 0, \end{cases}$$

Results for d = 1

- (S_B) is app. controllable at T for any T > 0.
- (S_B) is null-controllable at T for any T > 0.

RESULTS FOR $d \neq 1$

• (S_B) is app. controllable at T if and only if

$$\sqrt{d} \not\in \mathbb{Q}.$$

• (S_B) is null-controllable at T if and only if

$$T \ge \begin{cases} +\infty, & \text{if } \sqrt{d} \in \mathbb{Q}, \\ c_0(\Lambda), & \text{if } \sqrt{d} \notin \mathbb{Q}, \end{cases}$$

 $\Lambda = \{k^2, dk^2\}_k, c_0 =$ condensation index.

Main issue :

The biorthogonal families of $(e^{-\Lambda_p t})_p$ satisfy $||q_p||_{L^2(0,T)} \leq C_{\varepsilon,T} e^{(\varepsilon + c_0(\Lambda))\operatorname{Re}(\Lambda_p)}$.

CONTROL OF PARABOLIC SYSTEMS

SOME MULTI-D RESULTS FOR BOUNDARY CONTROLS

(Olive, '14)

$$(S_B) \begin{cases} \partial_t y - \Delta y + Ay = 0, \text{ in } \Omega \subset \mathbb{R}^d \\ y = \mathbf{1}_{\Gamma_0} Bv, \text{ on } \partial\Omega. \end{cases}$$

THEOREM

Let $(\lambda_k)_k$ the eigenvalues of $-\Delta$ and $(\mu_i)_{1 \le i \le n}$ the eigenvalues of A^* . Assume that

$$\lambda_k + \mu_i = \lambda_l + \mu_j \iff \begin{cases} \lambda_k = \lambda_l \\ \mu_i = \mu_j \end{cases}.$$
 (C)

System (S_B) *is approximately controllable at time* T > 0 *if and only if*

$$\operatorname{rank}(B|AB|\cdots|A^{n-1}B)=n$$

REMARK 1 : If A has only one eigenvalue (in particular in the cascade form), condition (C) holds. **REMARK** 2 : In 1D : condition (C) is necessary if m = 1.

(Olive, '14)

$$(S_B) \begin{cases} \partial_t y - \Delta y + Ay = 0, \text{ in } \Omega \subset \mathbb{R}^d \\ y = \mathbf{1}_{\Gamma_0} Bv, \text{ on } \partial\Omega. \end{cases}$$

EXAMPLE ON A 2D RECTANGLE DOMAIN

Theorem (case $\Gamma_0 \subset \gamma_R$)

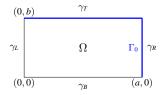
The 2D system (S_B) is approximately controllable if and only if so is the 1D system

$$\begin{cases} \partial_t y - \partial_x^2 y + Ay = 0, & in \]0, a|\\ y(t,0) = 0, & y(t,a) = Bv. \end{cases}$$

(Olive, '14)

$$(S_B) \begin{cases} \partial_t y - \Delta y + Ay = 0, \text{ in } \Omega \subset \mathbb{R}^d \\ y = \mathbf{1}_{\Gamma_0} Bv, \text{ on } \partial\Omega. \end{cases}$$

EXAMPLE ON A 2D RECTANGLE DOMAIN



Theorem (case $\Gamma_0 = \gamma_R \cup \gamma_T$)

• If n = 2: The 2D system (S_B) is approximately controllable if and only if

 $\operatorname{rank}(B|AB) = 2.$

• For $n \ge 4$:

There exists a system (S_B) satisfying the Kalman condition and which is **not** approximately controllable.

CONTROL OF PARABOLIC SYSTEMS

(Benabdallah, B., González-Burgos, Olive, '14)

$$(S_B) \begin{cases} \partial_t y - \Delta y + Ay = 0, \text{ in } \Omega =]0, \pi[\times \Omega_2] \\ y = \mathbf{1}_{\{0\} \times \omega_2} Bv, \text{ on } \partial\Omega. \end{cases}$$

$\begin{array}{c} & & \\$

THEOREM

System (S_B) is null-controllable at time T > 0 if and only if

$$\operatorname{rank}(B_k|A_kB_k|\cdots|A_k^{nk-1}B_k)=nk, \ \forall k\geq 1.$$

REMARKS

- Same condition as for the 1D case.
- The controllability is independent of *T*.

MAIN IDEAS OF THE PROOF

- Infinite dimensional variant of the Lebeau-Robbiano strategy in the variable $x_2 \in \Omega_2$ to deal with the **subdomain** ω_2 .
- Each stage of the LR method requires to solve a **1D boundary control problem** in the variable $x_1 \in \Omega_1$ whose cost C_T needs to be estimated.

I INTRODUCTION

2 GENERALITIES

- **3** CONTROL OF PARABOLIC SCALAR EQUATIONS HEAT EQUATION
 - The 1D case
 - Multi-D case

4 CONTROL OF PARABOLIC SYSTEMS

- Preliminaries
- Constant coefficients
- Variable coefficients

5 CONCLUSIONS

$$(S_D) \begin{cases} \partial_t y - \partial_x^2 y + \begin{pmatrix} 0 & 0 \\ a_{21}(x) & 0 \end{pmatrix} y = \mathbf{1}_{\omega} \begin{pmatrix} 1 \\ 0 \end{pmatrix} v, \text{ in }]0, 1[\\ y(t,0) = y(t,1) = 0, \end{cases}$$

• If $\text{Supp}(a_{21}) \cap \omega \neq \emptyset$ then (S_D) is null-controllable at any time T > 0.

$$(S_D) \begin{cases} \partial_t y - \partial_x^2 y + \begin{pmatrix} 0 & 0 \\ a_{21}(x) & 0 \end{pmatrix} y = \mathbf{1}_{\omega} \begin{pmatrix} 1 \\ 0 \end{pmatrix} v, \text{ in }]0, 1[\\ y(t,0) = y(t,1) = 0, \end{cases}$$

• If $\text{Supp}(a_{21}) \cap \omega = \emptyset$ and $a_{21} \ge 0$, $a_{21} \ne 0$ then (S_D) is null-controllable at any time T > 0. (Rosier, de Teresa, '11)

$$a_{21}(x) = \mathbf{1}_{]0.7, 0.9[}(x),$$

$$\omega =]0.1, 0.5[,$$

$$y_0(x) = \begin{pmatrix} \sin(3\pi x) \\ \sin(\pi x)^{10} \end{pmatrix}.$$

$$(S_D) \begin{cases} \partial_t y - \partial_x^2 y + \begin{pmatrix} 0 & 0 \\ a_{21}(x) & 0 \end{pmatrix} y = \mathbf{1}_{\omega} \begin{pmatrix} 1 \\ 0 \end{pmatrix} v, \text{ in }]0, 1[\\ y(t,0) = y(t,1) = 0, \end{cases}$$

• If $\text{Supp}(a_{21}) \cap \omega = \emptyset$ and a_{21} changes its sign

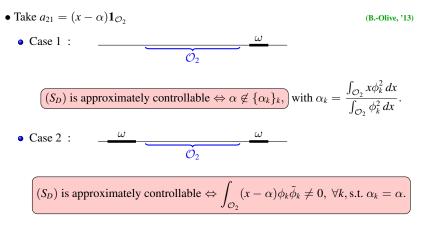
• There are some cases (depending on *a*₂₁ and *ω*) that are **not approximately** controllable.

(B., Olive, '13)

• It may exist a minimal time $T_0 > 0$ for the null-controllability.

(Ammar-Khodja, Benabdallah, González-Burgos, de Teresa, '14)

SOME 1D VARIABLE COEFFICIENTS SYSTEMS



Here $\tilde{\phi}_k$ is the other solution of $(-\partial_x^2 - \lambda_k)\tilde{\phi}_k = 0$.

Some 1D VARIABLE COEFFICIENTS SYSTEMS

• Take
$$a_{21} = \mathbf{1}_{\mathcal{O}_2} - \mathbf{1}_{\mathcal{O}_2'}$$
 (B-Olive, '13)
 $\mathcal{O}_2 =]\alpha - d, \alpha[, \mathcal{O}_2' =]\alpha, \alpha + d[,$
• Case 1 :
 $\underbrace{\mathcal{O}_2 \quad \mathcal{O}_2'}_{\mathcal{O}_2'}$
(S_D) is approximately controllable $\Leftrightarrow d \notin \mathbb{Q}$ and $\alpha \notin \mathbb{Q}$
• Case 2 :
 $\underbrace{\mathcal{O}_2 \quad \mathcal{O}_2'}_{\mathcal{O}_2'}$
(S_D) is approximately controllable $\Leftrightarrow d \notin \mathbb{Q}$
 $a_{21}(x) = \mathbf{1}_{]1/2 - 1/2\sqrt{3}, 1/2[}(x)$
 $-\mathbf{1}_{]1/2, 1/2 + 1/2\sqrt{3}[}(x),$
 $\omega =]0.8, 1.0[,$
 $y_0(x) = \begin{pmatrix} \sin(\pi x)^{10} \\ -2\sin(2\pi x)^{10} \end{pmatrix}$.

$$(S_D) \begin{cases} \partial_t y - \partial_x^2 y + \begin{pmatrix} 0 & 0 & 0 \\ a_{21}(x) & 0 & 0 \\ a_{31}(x) & 0 & 0 \end{pmatrix} y = \mathbf{1}_{\omega} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} v, \text{ in }]0, 1[$$

$$y(t, 0) = y(t, 1) = 0,$$
(B., Olive, '13)
(B., Olive, '13)
(B., Olive, '13)
(B., Olive, '13)
(Case 1 :

$$O_2$$
(S_D) is not approximately controllable
(S_D) is approximately controllable $\Leftrightarrow \alpha_3 \notin \mathbb{Q}$ and $\delta_3 \notin \mathbb{Q}$

$$(S_D) \begin{cases} \partial_t y - \partial_x^2 y + \begin{pmatrix} 0 & 0 & 0 \\ a_{21}(x) & 0 & 0 \\ 0 & a_{32}(x) & 0 \end{pmatrix} y = \mathbf{1}_\omega \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} v, \text{ in }]0,1[\\ y(t,0) = y(t,1) = 0, \end{cases}$$

• Take $\omega =]1/2, 1[$

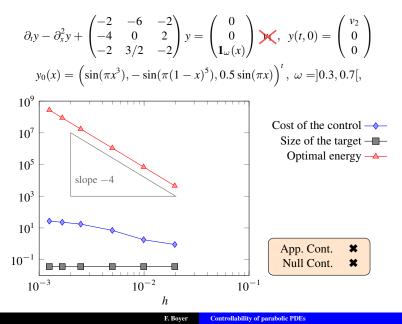
• Case 1 :
$$a_{21} = \mathbf{1}_{]0,1/2[}$$
 and $a_{31} = \mathbf{1}_{]0,1/2[}$

 (S_D) is approximately controllable

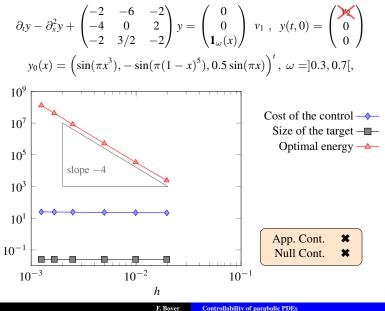
• Case 2 :
$$a_{21} = \mathbf{1}_{]0,1/2[}$$
 and $a_{31} = x - 1/2$

 (S_D) is **not** approximately controllable

$$\partial_t y - \partial_x^2 y + \begin{pmatrix} -2 & -6 & -2 \\ -4 & 0 & 2 \\ -2 & 3/2 & -2 \end{pmatrix} y = \begin{pmatrix} 0 \\ 0 \\ \mathbf{1}_{\omega}(x) \end{pmatrix} \not\searrow, \quad y(t,0) = \begin{pmatrix} v_2 \\ 0 \\ 0 \end{pmatrix}$$
$$y_0(x) = \left(\sin(\pi x^3), -\sin(\pi(1-x)^5), 0.5\sin(\pi x)\right)^t, \quad \omega =]0.3, 0.7[,$$

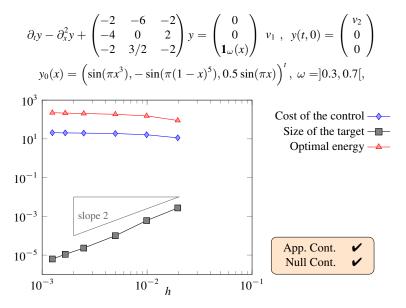


$$\partial_t y - \partial_x^2 y + \begin{pmatrix} -2 & -6 & -2 \\ -4 & 0 & 2 \\ -2 & 3/2 & -2 \end{pmatrix} y = \begin{pmatrix} 0 \\ 0 \\ \mathbf{1}_{\omega}(x) \end{pmatrix} v_1 , \quad y(t,0) = \begin{pmatrix} \mathbf{y} \\ 0 \\ 0 \end{pmatrix}$$
$$y_0(x) = \left(\sin(\pi x^3), -\sin(\pi(1-x)^5), 0.5\sin(\pi x) \right)^t, \quad \omega =]0.3, 0.7[,$$



F. Boyer

$$\partial_t y - \partial_x^2 y + \begin{pmatrix} -2 & -6 & -2 \\ -4 & 0 & 2 \\ -2 & 3/2 & -2 \end{pmatrix} y = \begin{pmatrix} 0 \\ 0 \\ \mathbf{1}_{\omega}(x) \end{pmatrix} v_1 , \quad y(t,0) = \begin{pmatrix} v_2 \\ 0 \\ 0 \end{pmatrix} y_0(x) = \left(\sin(\pi x^3), -\sin(\pi(1-x)^5), 0.5\sin(\pi x)\right)^t, \quad \omega =]0.3, 0.7[,$$



I INTRODUCTION

2 GENERALITIES

- **3** CONTROL OF PARABOLIC SCALAR EQUATIONS HEAT EQUATION
 - The 1D case
 - Multi-D case

CONTROL OF PARABOLIC SYSTEMS

- Preliminaries
- Constant coefficients
- Variable coefficients

5 CONCLUSIONS

CONCLUSIONS

VARIOUS AVAILABLE METHODS WITH DIFFERENT STRENGTHS AND WEAKNESS

- Moment methods (need precise spectral estimates)
- Carleman methods
 - Parabolic Carleman \Rightarrow direct proof of observability
 - Elliptic Carleman \Rightarrow Lebeau-Robbiano strategy
- Transmutation methods
- Multiplier methods
- ...

VARIOUS RESULTS

- Boundary and Distributed control problems may not be equivalent.
- Unconditional approximate or null controllability.
- Minimal null-control time (even $T_0 = +\infty$!) could appear.

No general controllability criterion available even for linear systems

NUMEROUS OPEN PROBLEMS

- Boundary control of parabolic systems in multi-D
- Time-space dependent coupling coefficients (even in 1D)
- Different diffusion coefficients

$$\begin{cases} \partial_t y - \begin{pmatrix} \partial_x (\gamma_1(x)\partial_x \cdot) & 0\\ 0 & \partial_x (\gamma_2(x)\partial_x \cdot) \end{pmatrix} y + Ay = \mathbf{1}_{\omega} Bv, \text{ in }]0, \pi[\\ y(t,0) = y(t,\pi) = 0, \end{cases}$$

• Higher-order coupling terms. Cross diffusions.

$$\begin{cases} \partial_t y - \begin{pmatrix} \Delta & \alpha \Delta \\ 0 & \Delta \end{pmatrix} y + Ay = \mathbf{1}_{\omega} Bv, & \text{in } \Omega \\ y = 0, & \text{on } \partial \Omega \end{cases}$$

OTHER KIND OF PARABOLIC MODELS

- Nonlinear systems
- Navier-Stokes
- Degenerate parabolic equations

OTHER KIND OF QUESTIONS

- More detailed numerical analysis and adapted algorithms.
- Optimal control / Constrained control.
- Stabilization.