Volumes finis pour les problèmes elliptiques hétérogènes anisotropes sur maillages généraux

PARTIE 3

Franck BOYER

Laboratoire d'Analyse, Topologie et Probabilités CNRS / Université Paul Cézanne

Ecole d'été du GDR MOAD Fréjus, 31 Aout - 3 Septembre 2009

Les schémas DDFV et m-DDFV pour la diffusion scalaire

- Introduction
- Construction du schéma
- Analyse du schéma
- Implémentation
- Le schéma m-DDFV
 - La méthode en 1D
 - La méthode en 2D
 - DDFV vs m-DDFV
 - Un solveur non-linéaire
- Les schémas DDFV et m-DDFV pour le problème de Stokes
 - La méthode DDFV pour Stokes
 - Résultats numériques
 - Le problème avec viscosité discontinue
 - Bilan

1 Les schémas DDFV et m-DDFV pour la diffusion scalaire

- Introduction
- Construction du schéma
- Analyse du schéma
- Implémentation
- Le schéma m-DDFV
 - La méthode en 1D
 - La méthode en 2D
 - DDFV vs m-DDFV
 - Un solveur non-linéaire

2 Les schémas DDFV et m-DDFV pour le problème de Stokes

- La méthode DDFV pour Stokes
- Résultats numériques
- Le problème avec viscosité discontinue
- Bilan

Les schémas DDFV et m-DDFV pour la diffusion scalaire

Introduction

- Construction du schéma
- Analyse du schéma
- Implémentation
- Le schéma m-DDFV
 - La méthode en 1D
 - La méthode en 2D
 - DDFV vs m-DDFV
 - Un solveur non-linéaire

2 Les schémas DDFV et m-DDFV pour le problème de Stokes

- La méthode DDFV pour Stokes
- Résultats numériques
- Le problème avec viscosité discontinue
- Bilan

PROBLÉMATIQUE ET NOTATIONS

▶ Schéma DDFV (DISCRETE DUALITY FINITE VOLUME) pour

$$\begin{bmatrix} -\operatorname{div} \left(\varphi(x, \nabla u(x))\right) = f(x), & \operatorname{dans} \Omega, \\ u = 0, \ \operatorname{sur} \partial\Omega, \end{bmatrix}$$

• Ω est un ouvert polygonal de \mathbb{R}^2 .

• $u \mapsto -\operatorname{div}(\varphi(\cdot, \nabla u))$ est monotone coercif (de type Leray–Lions). EXEMPLES

• Loi de Darcy

$$-\operatorname{div}(A(x)\nabla u) = f$$
, avec A SDP,

• Loi de Darcy-Forchheimer

$$-\text{div}\,\left(\frac{\alpha\nabla u}{1+\sqrt{1+\beta|\nabla u|}}\right) = f.$$

 \bullet *p*-laplacien

$$-\operatorname{div}\left(|\nabla u|^{p-2}\nabla u\right) = f.$$

Hypothèses sur φ

- Soit $p \in]1, \infty[$, $p' = \frac{p}{p-1}$ et $f \in L^{p'}(\Omega)$. $\triangleright p \ge 2$ pour simplifier.
- $\varphi:\Omega\times\mathbb{R}^2\to\mathbb{R}^2$ est une fonction de Caratheodory telle que :

$$(\varphi(x,\xi),\xi) \ge C_{\varphi}|\xi|^p - \frac{1}{C_{\varphi}},\tag{H}_1$$

$$|\varphi(x,\xi)| \le C_{\varphi} \left(|\xi|^{p-1} + 1 \right). \tag{H}_2$$

$$\left(\varphi(x,\xi)-\varphi(x,\eta),\xi-\eta\right) \ge \frac{1}{C_{\varphi}}|\xi-\eta|^p.$$
 (\mathcal{H}_3)

 $|\varphi(x,\xi) - \varphi(x,\eta)| \le C_{\varphi} \left(1 + |\xi|^{p-2} + |\eta|^{p-2}\right) |\xi - \eta|. \qquad (\mathcal{H}_4)$

• φ est lipschitzienne en x.

Les schémas DDFV et m-DDFV pour la diffusion scalaire

- Introduction
- Construction du schéma
- Analyse du schéma
- Implémentation
- Le schéma m-DDFV
 - La méthode en 1D
 - La méthode en 2D
 - DDFV vs m-DDFV
 - Un solveur non-linéaire

2 Les schémas DDFV et m-DDFV pour le problème de Stokes

- La méthode DDFV pour Stokes
- Résultats numériques
- Le problème avec viscosité discontinue
- Bilan

Schémas DDFV

(Hermeline '00) (Domelevo-Omnes '05) (Andreianov-Boyer-Hubert '07) MAILLAGES

Franck BOYER VF pour les problèmes elliptiques - Partie 3

SCHÉMAS DDFV

NOTATIONS ET HYPOTHÈSES SUR LES MAILLAGES

QUELQUES NOTATIONS

Régularité des maillages

$$\sin \alpha_{\mathcal{T}} \stackrel{\text{def}}{=} \min_{\mathcal{D} \in \mathfrak{D}} |\sin \alpha_{\mathcal{D}}|,$$
$$\operatorname{reg}(\mathcal{T}) \stackrel{\text{def}}{=} \max \left(\frac{1}{\alpha_{\mathcal{T}}}, \max_{\mathcal{D} \in \mathfrak{D}} \max_{\mathcal{Q} \in \mathfrak{Q}_{\mathcal{D}}} \frac{\mathrm{d}_{\mathcal{D}}}{\sqrt{|\mathcal{Q}|}}, \max_{\substack{\mathcal{K} \in \mathfrak{M} \\ \mathcal{D} \in \mathfrak{D}_{\mathcal{K}}}} \frac{\mathrm{d}_{\mathcal{K}}}{\mathrm{d}_{\mathcal{D}}}, \max_{\substack{\mathcal{K}^* \in \mathfrak{M}^* \\ \mathcal{D} \in \mathfrak{D}_{\mathcal{K}^*}}} \frac{\mathrm{d}_{\mathcal{K}^*}}{\mathrm{d}_{\mathcal{D}}} \right).$$

Franck BOYER VF pour les problèmes elliptiques - Partie 3

GRADIENT DISCRET

$$\nabla_{\mathcal{D}}^{\tau} u^{\tau} = \frac{1}{\sin \alpha_{\mathcal{D}}} \left(\frac{u_{\mathcal{L}} - u_{\mathcal{K}}}{|\sigma^*|} \boldsymbol{\nu} + \frac{u_{\mathcal{L}^*} - u_{\mathcal{K}^*}}{|\sigma|} \boldsymbol{\nu}^* \right), \quad \forall \operatorname{diamant} \mathcal{D}.$$

REMARQUE

 $\begin{aligned} |\sigma| &= d_{\mathcal{K}^* \mathcal{L}^*}, \\ |\sigma^*| &= d_{\mathcal{K} \mathcal{L}}. \end{aligned}$

$$\begin{array}{ll} \text{Définition équivalente} \quad \nabla_{\mathcal{D}}^{\tau} u^{\tau} = \frac{1}{2|\mathcal{D}|} \bigg(|\sigma|(u_{\mathcal{L}} - u_{\mathcal{K}})\boldsymbol{\nu} + |\sigma^{*}|(u_{\mathcal{L}^{*}} - u_{\mathcal{K}^{*}})\boldsymbol{\nu}^{*} \bigg),\\ \text{Autre définition équivalente} \quad \begin{cases} \nabla_{\mathcal{D}}^{\tau} u^{\tau} \cdot (x_{\mathcal{L}} - x_{\mathcal{K}}) = u_{\mathcal{L}} - u_{\mathcal{K}},\\ \nabla_{\mathcal{D}}^{\tau} u^{\tau} \cdot (x_{\mathcal{L}^{*}} - x_{\mathcal{K}^{*}}) = u_{\mathcal{L}^{*}} - u_{\mathcal{K}^{*}}. \end{cases} \end{array}$$

GRADIENT DISCRET

$$\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} = \frac{1}{\sin \alpha_{\mathcal{D}}} \left(\frac{u_{\mathcal{L}} - u_{\mathcal{K}}}{|\sigma^*|} \boldsymbol{\nu} + \frac{u_{\mathcal{L}^*} - u_{\mathcal{K}^*}}{|\sigma|} \boldsymbol{\nu}^* \right), \quad \forall \text{ diamant } \mathcal{D}.$$

Méthode DDFV

Formulation Volumes Finis :

$$a_{\mathcal{K}}(u^{\mathcal{T}}) \stackrel{\text{def}}{=} -\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} |\sigma| \left(\varphi_{\mathcal{D}}(\nabla_{\mathcal{D}}^{\mathcal{T}}u^{\mathcal{T}}), \boldsymbol{\nu}_{\mathcal{K}}\right) = |\kappa| f_{\mathcal{K}}, \quad \forall \kappa \in \mathfrak{M},$$
$$a_{\mathcal{K}^*}(u^{\mathcal{T}}) \stackrel{\text{def}}{=} -\sum_{\sigma^* \in \mathcal{E}_{\mathcal{K}^*}} |\sigma^*| \left(\varphi_{\mathcal{D}}(\nabla_{\mathcal{D}}^{\mathcal{T}}u^{\mathcal{T}}), \boldsymbol{\nu}_{\mathcal{K}^*}\right) = |\kappa^*| f_{\mathcal{K}^*}, \,\forall \kappa^* \in \mathfrak{M}^*,$$

où

 $\varphi_{\mathcal{D}}(\xi) = \frac{1}{|\mathcal{D}|} \int_{\mathcal{D}} \varphi(x,\xi) \, dx$, flux de masse approché sur le diamant

GRADIENT DISCRET

$$\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} = \frac{1}{\sin \alpha_{\mathcal{D}}} \left(\frac{u_{\mathcal{L}} - u_{\mathcal{K}}}{|\sigma^*|} \boldsymbol{\nu} + \frac{u_{\mathcal{L}^*} - u_{\mathcal{K}^*}}{|\sigma|} \boldsymbol{\nu}^* \right), \quad \forall \operatorname{diamant} \mathcal{D}.$$

MÉTHODE DDFV

Formulation Volumes Finis :

$$a_{\kappa}(u^{\tau}) \stackrel{\text{def}}{=} -\sum_{\sigma \in \mathcal{E}_{\kappa}} |\sigma| \left(\varphi_{\mathcal{D}}(\nabla_{\mathcal{D}}^{\tau}u^{\tau}), \boldsymbol{\nu}_{\kappa}\right) = |\kappa| f_{\kappa}, \quad \forall \kappa \in \mathfrak{M},$$
$$a_{\kappa^*}(u^{\tau}) \stackrel{\text{def}}{=} -\sum_{\sigma^* \in \mathcal{E}_{\kappa^*}} |\sigma^*| \left(\varphi_{\mathcal{D}}(\nabla_{\mathcal{D}}^{\tau}u^{\tau}), \boldsymbol{\nu}_{\kappa^*}\right) = |\kappa^*| f_{\kappa^*}, \,\forall \kappa^* \in \mathfrak{M}^*,$$

PROPOSITION (INTÉGRATION PAR PARTIES DISCRÈTES)

Pour tous $u^{\tau}, v^{\tau} \in \mathbb{R}^{\mathcal{T}}$, on a

$$\sum_{\kappa \in \mathfrak{M}} a_{\kappa}(u^{\tau}) v_{\kappa} + \sum_{\kappa^* \in \mathfrak{M}^*} a_{\kappa^*}(u^{\tau}) v_{\kappa^*} = 2 \sum_{\mathcal{D} \in \mathfrak{D}} |\mathcal{D}| \left(\varphi_{\mathcal{D}}(\nabla_{\mathcal{D}}^{\tau} u^{\tau}), \nabla_{\mathcal{D}}^{\tau} v^{\tau} \right).$$

GRADIENT DISCRET

$$\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} = \frac{1}{\sin \alpha_{\mathcal{D}}} \left(\frac{u_{\mathcal{L}} - u_{\mathcal{K}}}{|\sigma^*|} \boldsymbol{\nu} + \frac{u_{\mathcal{L}^*} - u_{\mathcal{K}^*}}{|\sigma|} \boldsymbol{\nu}^* \right), \quad \forall \text{ diamant } \mathcal{D}.$$

MÉTHODE DDFV

PROPOSITION (INTÉGRATION PAR PARTIES DISCRÈTES)

Pour tous
$$u^{\tau}, v^{\tau} \in \mathbb{R}^{T}$$
, on a

$$\sum_{\kappa \in \mathfrak{M}} a_{\kappa}(u^{\tau}) v_{\kappa} + \sum_{\kappa^* \in \mathfrak{M}^*} a_{\kappa^*}(u^{\tau}) v_{\kappa^*} = 2 \sum_{\mathcal{D} \in \mathfrak{D}} |\mathcal{D}| \left(\varphi_{\mathcal{D}}(\nabla_{\mathcal{D}}^{\tau} u^{\tau}), \nabla_{\mathcal{D}}^{\tau} v^{\tau} \right).$$

Formulation équivalente (Dualité Discrète) : On cherche $u^{\tau} \in \mathbb{R}^{\mathcal{T}}$ tel que $\forall v^{\tau} \in \mathbb{R}^{\mathcal{T}}$,

$$2\sum_{\mathcal{D}\in\mathfrak{D}}|\mathcal{D}|\left(\varphi_{\mathcal{D}}(\nabla_{\mathcal{D}}^{\tau}u^{\tau}),\nabla_{\mathcal{D}}^{\tau}v^{\tau}\right)=\sum_{\kappa\in\mathfrak{M}}|\kappa|f_{\kappa}v_{\kappa}+\sum_{\kappa^{*}\in\mathfrak{M}^{*}}|\kappa^{*}|f_{\kappa^{*}}v_{\kappa^{*}}.$$

Les schémas DDFV et m-DDFV pour la diffusion scalaire

- Introduction
- Construction du schéma

• Analyse du schéma

- Implémentation
- Le schéma m-DDFV
 - La méthode en 1D
 - La méthode en 2D
 - DDFV vs m-DDFV
 - Un solveur non-linéaire

Les schémas DDFV et m-DDFV pour le problème de Stokes

- La méthode DDFV pour Stokes
- Résultats numériques
- Le problème avec viscosité discontinue
- Bilan

12/76

PROPOSITION (INTÉGRATION PAR PARTIES DISCRÈTES)

Pour tous $u^{\tau}, v^{\tau} \in \mathbb{R}^{\mathcal{T}}$, on a

$$\sum_{\kappa \in \mathfrak{M}} a_{\kappa}(u^{\tau}) v_{\kappa} + \sum_{\kappa^* \in \mathfrak{M}^*} a_{\kappa^*}(u^{\tau}) v_{\kappa^*} = 2 \sum_{\mathcal{D} \in \mathfrak{D}} |\mathcal{D}| \left(\varphi_{\mathcal{D}}(\nabla_{\mathcal{D}}^{\tau} u^{\tau}), \nabla_{\mathcal{D}}^{\tau} v^{\tau} \right).$$

On veut montrer la bijectivité de l'application

$$a: u^{\mathsf{T}} \mapsto a(u^{\mathsf{T}}) \stackrel{\text{def}}{=} \left((a_{\mathsf{K}}(u^{\mathsf{T}}))_{\mathsf{K}}, (a_{\mathsf{K}^*}(u^{\mathsf{T}}))_{\mathsf{K}^*} \right) \in \mathbb{R}^{\mathsf{T}}.$$

- Monotonie : φ monotone \Rightarrow *a* est monotone.
- Surjectivité : φ coercive \Rightarrow *a* est coercive car

$$\|u^{\tau}\|_{1,p,\mathcal{T}} \stackrel{\text{\tiny def}}{=} \left(\sum_{\mathcal{D}\in\mathfrak{D}} |\mathcal{D}| |\nabla_{\mathcal{D}}^{\tau} u^{\tau}|^{p}\right)^{\frac{1}{p}}$$

est une norme sur $\mathbb{R}^{\mathcal{T}}$.

Analyse de DDFV

• La formule d'intégration par parties discrète avec $v^\tau = u^\tau$ donne

$$2\sum_{\mathcal{D}\in\mathfrak{D}}|\mathcal{D}|\left(\varphi_{\mathcal{D}}(\nabla_{\mathcal{D}}^{\tau}u^{\tau}),\nabla_{\mathcal{D}}^{\tau}u^{\tau}\right)=\sum_{\kappa\in\mathfrak{M}}|\kappa|f_{\kappa}u_{\kappa}+\sum_{\kappa^{*}\in\mathfrak{M}^{*}}|\kappa^{*}|f_{\kappa^{*}}u_{\kappa^{*}}.$$

• Mais, par hypothèse sur φ

$$\forall \mathcal{D} \in \mathfrak{D}, \ (\varphi_{\mathcal{D}}(\nabla_{\mathcal{D}}^{\tau}u^{\tau}), \nabla_{\mathcal{D}}^{\tau}u^{\tau}) \ge C_1 |\nabla_{\mathcal{D}}^{\tau}u^{\tau}|^p - C_2,$$

• D'où

$$2C_1 \|u^{\tau}\|_{1,p,\mathcal{T}}^p \le 2C_2 |\Omega| + \|f\|_{L^{p'}} (\|u^{\mathfrak{M}}\|_{L^p} + \|u^{\mathfrak{M}^*}\|_{L^p}).$$

THÉORÈME (INÉGALITÉ DE POINCARÉ Preuve)

Il existe une constante C dépendant de Ω , de p et de reg (\mathcal{T}) telle que

$$\forall u^{\tau} \in \mathbb{R}^{\mathcal{T}}, \quad \|u^{\mathfrak{M}}\|_{L^{p}} + \|u^{\mathfrak{M}^{*}}\|_{L^{p}} \leq C \|u^{\tau}\|_{1,p,\mathcal{T}}.$$

CONCLUSION : La solution vérifie $||u^{\tau}||_{1,p,\mathcal{T}} \leq C\left(1 + ||f||_{L^{p'}}^{\frac{1}{p-1}}\right).$

THÉORÈME

Soit \mathcal{T}_n une suite de maillages DDFV, telle que size $(\mathcal{T}_n) \to 0$ et reg (\mathcal{T}_n) est bornée. Alors, la solution $u^{\mathcal{T}_n}$ du schéma converge vers la solution exacte de la façon suivante

$$\begin{split} u^{\mathfrak{M}_{n}} & \xrightarrow[n \to \infty]{} u \ dans \ L^{p}(\Omega), \\ u^{\mathfrak{M}_{n}^{*}} & \xrightarrow[n \to \infty]{} u \ dans \ L^{p}(\Omega), \\ \nabla^{\mathcal{T}_{n}} u^{\mathcal{T}_{n}} & \xrightarrow[n \to \infty]{} \nabla u \ dans \ (L^{p}(\Omega))^{2}, \\ \sum_{\mathcal{D} \in \mathfrak{D}} \mathbf{1}_{\mathcal{D}} \varphi_{\mathcal{D}} (\nabla^{\mathcal{T}_{n}} u^{\mathcal{T}_{n}}) \xrightarrow[n \to \infty]{} \varphi(\cdot, \nabla u) \ dans \ (L^{p'}(\Omega))^{2}. \end{split}$$

REMARQUE : On a convergence **forte** des gradients et des flux.

Preuve convergence

On suppose que φ est régulière par rapport à x

- Equation de Laplace : $\varphi(x,\xi) = \xi$, p = 2 : (Domelevo Omnès, 05) \Rightarrow Convergence à l'ordre 1 de la solution et du gradient.
- Cas général : (Andreianov B. Hubert, 07)

THÉORÈME

On suppose que $u \in W^{2,p}(\Omega)$ et

$$\varphi \text{ est Lip. sur } \Omega, \text{ avec } \left| \frac{\partial \varphi}{\partial x}(x,\xi) \right| \leq C_{\varphi} \left(1 + |\xi|^{p-1} \right), \quad \forall \xi \in \mathbb{R}^2, \ (\mathcal{H}_5)$$

alors il existe $C(\operatorname{reg}(\mathcal{T}))$ telle que on a

$$\|u - u^{\mathfrak{M}}\|_{L^{p}} + \|u - u^{\mathfrak{M}^{*}}\|_{L^{p}} + \|\nabla u - \nabla^{\tau} u^{\tau}\|_{L^{p}} \le C h^{\frac{1}{p-1}}.$$

Les schémas DDFV et m-DDFV pour la diffusion scalaire

- Introduction
- Construction du schéma
- Analyse du schéma

• Implémentation

- Le schéma m-DDFV
 - La méthode en 1D
 - La méthode en 2D
 - DDFV vs m-DDFV
 - Un solveur non-linéaire

2 Les schémas DDFV et m-DDFV pour le problème de Stokes

- La méthode DDFV pour Stokes
- Résultats numériques
- Le problème avec viscosité discontinue
- Bilan

IMPLÉMENTATION

Cas linéaire

- La matrice est construite en parcourant les arêtes (i.e. les diamants). Pour chacune de ces arêtes, on assemble 4 termes.
- Stencil :
 - Indépendant du tenseur de diffusion.
 - La ligne correspondant à une inconnue u_{κ} a au plus 2N + 1 coefficients non nuls où N est le nombre d'arêtes de κ .
- La matrice est symétrique définie positive.
- Dans le cas d'un maillage orthogonal admissible, le système se découple en deux schémas VF4.
- Possibilité de résoudre le schéma par décomposition de domaine sans recouvrement.

IMPLÉMENTATION

Cas linéaire

- La matrice est construite en parcourant les arêtes (i.e. les diamants). Pour chacune de ces arêtes, on assemble 4 termes.
- Stencil :
 - Indépendant du tenseur de diffusion.
 - La ligne correspondant à une inconnue u_{κ} a au plus 2N + 1 coefficients non nuls où N est le nombre d'arêtes de κ .
- La matrice est symétrique définie positive.
- Dans le cas d'un maillage orthogonal admissible, le système se découple en deux schémas VF4.
- Possibilité de résoudre le schéma par décomposition de domaine sans recouvrement.

CAS NON-LINÉAIRE

- Si φ dépend d'un potentiel $\varphi = \nabla_{\xi} \Phi$, le schéma s'écrit alors comme l'équation d'Euler-Lagrange d'une bonne fonctionnelle
 - Méthodes de gradient
 - Méthode de Newton
- Dans le cas général, on peut aussi utiliser une méthode de type décomposition-coordination (Voir plus loin).

Les schémas DDFV et m-DDFV pour la diffusion scalaire

- Introduction
- Construction du schéma
- Analyse du schéma
- Implémentation
- Le schéma m-DDFV
 - La méthode en 1D
 - ${\color{red}\bullet}$ La méthode en 2D
 - DDFV vs m-DDFV
 - Un solveur non-linéaire

2 Les schémas DDFV et m-DDFV pour le problème de Stokes

- La méthode DDFV pour Stokes
- Résultats numériques
- Le problème avec viscosité discontinue
- Bilan

OBJECTIFS

- Prendre en compte les discontinuités de coefficients dans le problème sans perdre la précision.
- Possibilité de coupler deux problèmes avec des non-linéarités différentes (Darcy / Darcy–Forcheimer).
- Les discontinuités peuvent avoir lieu à travers
 - Les arêtes primales.
 - Les arêtes duales.
 - Les deux ...
- On veut conserver le même stencil que pour DDFV.

OBJECTIFS

- Prendre en compte les discontinuités de coefficients dans le problème sans perdre la précision.
- Possibilité de coupler deux problèmes avec des non-linéarités différentes (Darcy / Darcy–Forcheimer).
- Les discontinuités peuvent avoir lieu à travers
 - Les arêtes primales.
 - Les arêtes duales.
 - Les deux ...
- On veut conserver le même stencil que pour DDFV.

Principe général

- On s'inspire du travail effectué pour VF4 :
 - On introduit des inconnues artificielles bien choisies sur les arêtes.
 - On demande une forme de conservativité locale des flux.
 - On élimine les inconnues intermédiaires et on obtient des flux numériques qui ne dépendent que des inconnues principales du problème.
- Il faut adapter à la diffusion non-linéaire.
- Il faut bien tenir compte de la géométrie particulière du schéma.

Le problème en 1D

$$\Omega =]-1, 1[, \varphi(x, \cdot) = \begin{cases} \varphi_{-}(\cdot), \text{si } x < 0, \\ \varphi_{+}(\cdot), \text{si } x > 0. \end{cases}$$

$$-\partial_x(\varphi(x,\partial_x u)) = f, \text{ dans } \Omega \iff \begin{cases} -\partial_x(\varphi_-(\partial_x u)) = f, \text{ sur }] - 1, 0[, \\ -\partial_x(\varphi_+(\partial_x u)) = f, \text{ sur }]0, 1[, \\ u^+(0) = u^-(0), \\ \varphi_+(\partial_x u^+(0)) = \varphi_-(\partial_x u^-(0)). \end{cases}$$

Le problème en 1D

$$\Omega =]-1,1[, \ \varphi(x,\cdot) = \begin{cases} \varphi_-(\cdot), \text{si } x < 0, \\ \varphi_+(\cdot), \text{si } x > 0. \end{cases}$$

Soit $x_0 = -1 < \ldots < x_N = 0 < \ldots < x_{N+M} = 1$ une subdivision de [-1, 1]. Le schéma VF en 1D s'écrit pour $i \in \{0, N + M - 1\}$:

$$-F_{i+1} + F_i = \int_{x_i}^{x_{i+1}} f(x) \, dx. \tag{1}$$

avec

$$F_{i} = \varphi(x_{i}, \nabla_{i}u^{\tau}), \quad \nabla_{i}u^{\tau} = \frac{u_{i+\frac{1}{2}} - u_{i-\frac{1}{2}}}{x_{i+\frac{1}{2}} - x_{i-\frac{1}{2}}}, \quad \forall i \neq N,$$
(2)

QUESTION : Comment définir le flux F_N ?

LE NOUVEAU GRADIENT

On cherche \tilde{u} tel que pour

$$\nabla_{\scriptscriptstyle N}^{\scriptscriptstyle +} u^{\scriptscriptstyle T} = \frac{u_{\scriptscriptstyle N+\frac{1}{2}} - \tilde{u}}{h_{\scriptscriptstyle N}^{\scriptscriptstyle +}}, \quad \nabla_{\scriptscriptstyle N}^{\scriptscriptstyle -} u^{\scriptscriptstyle T} = \frac{\tilde{u} - u_{\scriptscriptstyle N-\frac{1}{2}}}{h_{\scriptscriptstyle N}^{\scriptscriptstyle -}},$$

on ait

$$\varphi_+(\nabla_N^+ u^{\tau}) = \varphi_-(\nabla_N^- u^{\tau}).$$

Franck BOYER VF pour les problèmes elliptiques - Partie 3

LE NOUVEAU GRADIENT

On cherche en fait \tilde{u} sous la forme

$$\tilde{u} = \bar{u} + \delta$$
, avec $\bar{u} = \frac{h_N^- u_{N+\frac{1}{2}} + h_N^+ u_{N-\frac{1}{2}}}{h_N^- + h_N^+}$.

 soit

$$abla_{\scriptscriptstyle N}^+ u^{\scriptscriptstyle T} =
abla_{\scriptscriptstyle N} u^{\scriptscriptstyle T} - rac{\delta}{h_{\scriptscriptstyle N}^+}, \;\; ext{et}\;
abla_{\scriptscriptstyle N}^- u^{\scriptscriptstyle T} =
abla_{\scriptscriptstyle N} u^{\scriptscriptstyle T} + rac{\delta}{h_{\scriptscriptstyle N}^-}.$$

Franck BOYER VF pour les problèmes elliptiques - Partie 3

THÉORÈME (CAS $p \ge 2$)

• Pour tout $u^{\tau} \in \mathbb{R}^N$, il existe un unique δ tel que

$$F_{\scriptscriptstyle N} \stackrel{\text{\tiny def}}{=} \varphi_{\scriptscriptstyle -} \left(\nabla_{\scriptscriptstyle N} u^{\scriptscriptstyle \mathcal{T}} + \frac{\delta}{h_{\scriptscriptstyle N}^{\scriptscriptstyle -}} \right) = \varphi_{\scriptscriptstyle +} \left(\nabla_{\scriptscriptstyle N} u^{\scriptscriptstyle \mathcal{T}} - \frac{\delta}{h_{\scriptscriptstyle N}^{\scriptscriptstyle +}} \right),$$

celui-ci est noté $\delta_N(\nabla_N u^{\mathcal{T}})$.

- L'application $\nabla_{\scriptscriptstyle N} u^{\scriptscriptstyle T} \mapsto \delta_{\scriptscriptstyle N}(\nabla_{\scriptscriptstyle N} u^{\scriptscriptstyle T})$ est monotone.
- Le nouveau schéma VF admet une unique solution $u^{\tau} \in \mathbb{R}^{\mathcal{T}}$.
- Le flux F_N est consistant à l'ordre $h^{\frac{1}{p-1}}$. Preuve

PREUVE DES TROIS PREMIERS POINTS : Monotonite, coercivité, ...

EXEMPLE

Pour deux flux de type p-laplacien

$$\begin{split} \varphi_-(\xi) &= k_- |\xi+G_-|^{p-2}(\xi+G_-), \\ \varphi_+(\xi) &= k_+ |\xi+G_+|^{p-2}(\xi+G_+), \end{split}$$

où $k_-, k_+ \in \mathbb{R}^+$ et $G_-, G_+ \in \mathbb{R}^2$. Tous calculs faits on trouve

$$F_{N} = \left(\frac{k_{-}^{\frac{1}{p-1}}k_{+}^{\frac{1}{p-1}}(h_{N}^{-}+h_{N}^{+})}{h_{N}^{+}k_{-}^{\frac{1}{p-1}}+h_{N}^{-}k_{+}^{\frac{1}{p-1}}}\right)^{p-1} \left|\nabla_{N}u^{\tau}+\overline{G}\right|^{p-2} \left(\nabla_{N}u^{\tau}+\overline{G}\right),$$

où \overline{G} est la moyenne arithmétique pondérée de G_- et G_+ définie par

$$\overline{G} = \frac{h_N^- G_- + h_N^+ G_+}{h_N^- + h_N^+}.$$

Attention : les calculs ne sont en général pas explicites.

La méthode en 2D

 $\triangleright \nabla^{\mathcal{N}}_{\mathcal{D}} u^{\mathcal{T}}$ est constant sur chaque quart de diamant

$$\nabla^{\mathcal{N}}_{\mathcal{D}} u^{\tau} = \sum_{\mathcal{Q} \in \mathfrak{Q}_{\mathcal{D}}} \mathbf{1}_{\mathcal{Q}} \nabla^{\mathcal{N}}_{\mathcal{Q}} u^{\tau},$$

- $\delta^{\mathcal{D}} = {}^{t}\!(\delta^{\mathcal{D}}_{\kappa}, \delta^{\mathcal{D}}_{\mathcal{L}}, \delta^{\mathcal{D}}_{\kappa^{*}}, \delta^{\mathcal{D}}_{\mathcal{L}^{*}}) \in \mathbb{R}^{4}$ est à déterminer.
- B_{Q} est une matrice 2×4 qui ne dépend que de la géométrie.

$$B_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^*}} = \frac{2}{\sin \alpha_{\mathcal{D}}} \left(\frac{\boldsymbol{\nu}^*}{|\sigma_{\mathcal{K}^*}|}, 0, \frac{\boldsymbol{\nu}}{|\sigma_{\mathcal{K}}|}, 0 \right) = \frac{1}{|\mathcal{Q}_{\mathcal{K},\mathcal{K}^*}|} \left(|\sigma_{\mathcal{K}}| \boldsymbol{\nu}^*, 0, |\sigma_{\mathcal{K}^*}| \boldsymbol{\nu}, 0 \right).$$

Franck BOYER VF pour les problèmes elliptiques - Partie 3

ON DEMANDE LA CONSERVATIVITÉ DES FLUX NUMÉRIQUES On note

$$\varphi_{\mathcal{Q}}(\xi) = \frac{1}{|\mathcal{Q}|} \int_{\mathcal{Q}} \varphi(x,\xi) \, dx.$$

On cherche à déterminer $\delta^{\mathcal{D}} \in \mathbb{R}^4$ tel que

25/76

ON DEMANDE LA CONSERVATIVITÉ DES FLUX NUMÉRIQUES On note

$$\varphi_{\mathcal{Q}}(\xi) = \frac{1}{|\mathcal{Q}|} \int_{\mathcal{Q}} \varphi(x,\xi) \, dx.$$

On cherche à déterminer $\delta^{\mathcal{D}} \in \mathbb{R}^4$ tel que

$$\begin{cases} \left(\varphi_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^{*}}}(\nabla_{\mathcal{D}}^{\tau}u^{T}+B_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^{*}}}\delta^{\mathcal{D}}),\boldsymbol{\nu}^{*}\right) = \left(\varphi_{\mathcal{Q}_{\mathcal{K},\mathcal{L}^{*}}}(\nabla_{\mathcal{D}}^{\tau}u^{T}+B_{\mathcal{Q}_{\mathcal{K},\mathcal{L}^{*}}}\delta^{\mathcal{D}}),\boldsymbol{\nu}^{*}\right) \\ \left(\varphi_{\mathcal{Q}_{\mathcal{L},\mathcal{K}^{*}}}(\nabla_{\mathcal{D}}^{\tau}u^{T}+B_{\mathcal{Q}_{\mathcal{L},\mathcal{K}^{*}}}\delta^{\mathcal{D}}),\boldsymbol{\nu}^{*}\right) = \left(\varphi_{\mathcal{Q}_{\mathcal{L},\mathcal{L}^{*}}}(\nabla_{\mathcal{D}}^{\tau}u^{T}+B_{\mathcal{Q}_{\mathcal{L},\mathcal{K}^{*}}}\delta^{\mathcal{D}}),\boldsymbol{\nu}^{*}\right) \\ \left(\varphi_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^{*}}}(\nabla_{\mathcal{D}}^{\tau}u^{T}+B_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^{*}}}\delta^{\mathcal{D}}),\boldsymbol{\nu}\right) = \left(\varphi_{\mathcal{Q}_{\mathcal{L},\mathcal{L}^{*}}}(\nabla_{\mathcal{D}}^{\tau}u^{T}+B_{\mathcal{Q}_{\mathcal{L},\mathcal{K}^{*}}}\delta^{\mathcal{D}}),\boldsymbol{\nu}\right) \\ \left(\varphi_{\mathcal{Q}_{\mathcal{K},\mathcal{L}^{*}}}(\nabla_{\mathcal{D}}^{\tau}u^{T}+B_{\mathcal{Q}_{\mathcal{K},\mathcal{L}^{*}}}\delta^{\mathcal{D}}),\boldsymbol{\nu}\right) = \left(\varphi_{\mathcal{Q}_{\mathcal{L},\mathcal{L}^{*}}}(\nabla_{\mathcal{D}}^{\tau}u^{T}+B_{\mathcal{Q}_{\mathcal{L},\mathcal{L}^{*}}}\delta^{\mathcal{D}}),\boldsymbol{\nu}\right) \\ \iff \sum_{\mathcal{Q}\in\mathfrak{Q}_{\mathcal{D}}} |\mathcal{Q}|^{t}B_{\mathcal{Q}}.\varphi_{\mathcal{Q}}(\nabla_{\mathcal{D}}^{\tau}u^{T}+B_{\mathcal{Q}}\delta^{\mathcal{D}}) = 0. \end{cases}$$

DANS LE CAS LINÉAIRE

$$\underbrace{\left(\sum_{\mathcal{Q}\in\mathfrak{Q}_{\mathcal{D}}}|\mathcal{Q}|^{t}B_{\mathcal{Q}}A_{\mathcal{Q}}B_{\mathcal{Q}}\right)}_{\text{matrice SDP}}\delta^{\mathcal{P}} = \text{second membre linéaire en }\nabla^{\mathcal{T}}_{\mathcal{D}}u^{\mathcal{T}}.$$

Franck BOYER VF pour les problèmes elliptiques - Partie 3

ON DEMANDE LA CONSERVATIVITÉ DES FLUX NUMÉRIQUES On note

$$\varphi_{\mathcal{Q}}(\xi) = \frac{1}{|\mathcal{Q}|} \int_{\mathcal{Q}} \varphi(x,\xi) \, dx.$$

On cherche à déterminer $\delta^{\mathcal{D}} \in \mathbb{R}^4$ tel que

$$\begin{cases} \left(\varphi_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^{*}}}(\nabla_{\mathcal{D}}^{\tau}u^{\mathcal{T}}+B_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^{*}}}\delta^{\mathcal{D}}),\boldsymbol{\nu}^{*}\right) = \left(\varphi_{\mathcal{Q}_{\mathcal{K},\mathcal{L}^{*}}}(\nabla_{\mathcal{D}}^{\tau}u^{\mathcal{T}}+B_{\mathcal{Q}_{\mathcal{K},\mathcal{L}^{*}}}\delta^{\mathcal{D}}),\boldsymbol{\nu}^{*}\right) \\ \left(\varphi_{\mathcal{Q}_{\mathcal{L},\mathcal{K}^{*}}}(\nabla_{\mathcal{D}}^{\tau}u^{\mathcal{T}}+B_{\mathcal{Q}_{\mathcal{L},\mathcal{K}^{*}}}\delta^{\mathcal{D}}),\boldsymbol{\nu}^{*}\right) = \left(\varphi_{\mathcal{Q}_{\mathcal{L},\mathcal{L}^{*}}}(\nabla_{\mathcal{D}}^{\tau}u^{\mathcal{T}}+B_{\mathcal{Q}_{\mathcal{L},\mathcal{K}^{*}}}\delta^{\mathcal{D}}),\boldsymbol{\nu}^{*}\right) \\ \left(\varphi_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^{*}}}(\nabla_{\mathcal{D}}^{\tau}u^{\mathcal{T}}+B_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^{*}}}\delta^{\mathcal{D}}),\boldsymbol{\nu}\right) = \left(\varphi_{\mathcal{Q}_{\mathcal{L},\mathcal{L}^{*}}}(\nabla_{\mathcal{D}}^{\tau}u^{\mathcal{T}}+B_{\mathcal{Q}_{\mathcal{L},\mathcal{K}^{*}}}\delta^{\mathcal{D}}),\boldsymbol{\nu}\right) \\ \left(\varphi_{\mathcal{Q}_{\mathcal{K},\mathcal{L}^{*}}}(\nabla_{\mathcal{D}}^{\tau}u^{\mathcal{T}}+B_{\mathcal{Q}_{\mathcal{K},\mathcal{L}^{*}}}\delta^{\mathcal{D}}),\boldsymbol{\nu}\right) = \left(\varphi_{\mathcal{Q}_{\mathcal{L},\mathcal{L}^{*}}}(\nabla_{\mathcal{D}}^{\tau}u^{\mathcal{T}}+B_{\mathcal{Q}_{\mathcal{L},\mathcal{L}^{*}}}\delta^{\mathcal{D}}),\boldsymbol{\nu}\right) \\ \Longleftrightarrow \sum_{\mathcal{Q}\in\mathfrak{Q}_{\mathcal{D}}} |\mathcal{Q}|^{t}B_{\mathcal{Q}}.\varphi_{\mathcal{Q}}(\nabla_{\mathcal{D}}^{\tau}u^{\mathcal{T}}+B_{\mathcal{Q}}\delta^{\mathcal{D}}) = 0. \end{cases}$$

PROPOSITION (CAS GÉNÉRAL)

Pour tout $u^{\tau} \in \mathbb{R}^{\mathcal{T}}$, et tout diamant \mathcal{D} , il existe un **unique** $\delta^{\mathcal{D}} \in \mathbb{R}^4$ assurant la conservativité des flux. Pour tout \mathcal{D} , l'application $\nabla_{\mathcal{D}}^{\tau} u^{\tau} \mapsto \delta^{\mathcal{D}}(\nabla_{\mathcal{D}}^{\tau} u^{\tau})$ est monotone.

Franck BOYER VF pour les problèmes elliptiques - Partie 3

La méthode en 2D

LE SCHÉMA M-DDFV

On remplace dans le schéma DDFV, le flux approché

$$\varphi_{\mathcal{D}}(\nabla_{\mathcal{D}}^{\tau}u^{\tau}) = \frac{1}{|\mathcal{D}|} \int_{\mathcal{D}} \varphi(x, \nabla_{\mathcal{D}}^{\tau}u^{\tau}) \, dx,$$

par

$$\varphi_{\mathcal{D}}^{\mathcal{N}}(\nabla_{\mathcal{D}}^{\mathcal{T}}u^{\mathcal{T}}) = \frac{1}{|\mathcal{D}|} \sum_{\mathcal{Q} \in \mathfrak{Q}_{\mathcal{D}}} |\mathcal{Q}| \varphi_{\mathcal{Q}}(\underbrace{\nabla_{\mathcal{D}}^{\mathcal{T}}u^{\mathcal{T}} + B_{\mathcal{Q}}\delta^{\mathcal{D}}(\nabla_{\mathcal{D}}^{\mathcal{T}}u^{\mathcal{T}})}_{=\nabla_{\mathcal{Q}}^{\mathcal{N}}u^{\mathcal{T}}}),$$

La méthode en 2D

LE SCHÉMA M-DDFV

On remplace dans le schéma DDFV, le flux approché

$$\varphi_{\mathcal{D}}(\nabla_{\mathcal{D}}^{\mathsf{T}} u^{\mathsf{T}}) = \frac{1}{|\mathcal{D}|} \int_{\mathcal{D}} \varphi(x, \nabla_{\mathcal{D}}^{\mathsf{T}} u^{\mathsf{T}}) \, dx,$$

par

$$\varphi_{\mathcal{D}}^{\mathcal{N}}(\nabla_{\mathcal{D}}^{\mathcal{T}}u^{\mathcal{T}}) = \frac{1}{|\mathcal{D}|} \sum_{\mathcal{Q} \in \mathfrak{Q}_{\mathcal{D}}} |\mathcal{Q}| \varphi_{\mathcal{Q}}(\underbrace{\nabla_{\mathcal{D}}^{\mathcal{T}}u^{\mathcal{T}} + B_{\mathcal{Q}}\delta^{\mathcal{D}}(\nabla_{\mathcal{D}}^{\mathcal{T}}u^{\mathcal{T}})}_{=\nabla_{\mathcal{Q}}^{\mathcal{N}}u^{\mathcal{T}}}),$$

Formulation en dualité discrète sur les diamants

$$2\sum_{\mathcal{D}\in\mathbf{\mathfrak{D}}}|\mathcal{D}|\left(\varphi_{\mathcal{D}}^{\mathcal{N}}(\nabla_{\mathcal{D}}^{\mathcal{T}}u^{\mathcal{T}}),\nabla_{\mathcal{D}}^{\mathcal{T}}v^{\mathcal{T}}\right)=\int_{\Omega}fv^{\mathfrak{M}}dx+\int_{\Omega}fv^{\mathfrak{M}^{*}}dx, \quad \forall v^{\mathcal{T}}\in\mathbb{R}^{\mathcal{T}}.$$
LE SCHÉMA M-DDFV

On remplace dans le schéma DDFV, le flux approché

$$\varphi_{\mathcal{D}}(\nabla_{\mathcal{D}}^{\mathsf{T}} u^{\mathsf{T}}) = \frac{1}{|\mathcal{D}|} \int_{\mathcal{D}} \varphi(x, \nabla_{\mathcal{D}}^{\mathsf{T}} u^{\mathsf{T}}) \, dx,$$

par

$$\varphi_{\mathcal{D}}^{\mathcal{N}}(\nabla_{\mathcal{D}}^{\mathcal{T}}u^{\mathcal{T}}) = \frac{1}{|\mathcal{D}|} \sum_{\mathcal{Q} \in \mathfrak{Q}_{\mathcal{D}}} |\mathcal{Q}| \varphi_{\mathcal{Q}}(\underbrace{\nabla_{\mathcal{D}}^{\mathcal{T}}u^{\mathcal{T}} + B_{\mathcal{Q}}\delta^{\mathcal{D}}(\nabla_{\mathcal{D}}^{\mathcal{T}}u^{\mathcal{T}})}_{=\nabla_{\mathcal{Q}}^{\mathcal{N}}u^{\mathcal{T}}}),$$

Formulation en dualité discrète sur les diamants

$$2\sum_{\mathcal{D}\in\mathfrak{D}}|\mathcal{D}|\left(\varphi_{\mathcal{D}}^{\mathcal{N}}(\nabla_{\mathcal{D}}^{\mathcal{T}}u^{\mathcal{T}}),\nabla_{\mathcal{D}}^{\mathcal{T}}v^{\mathcal{T}}\right)=\int_{\Omega}fv^{\mathfrak{M}}dx+\int_{\Omega}fv^{\mathfrak{M}^{*}}dx, \quad \forall v^{\mathcal{T}}\in\mathbb{R}^{\mathcal{T}}.$$

Formulation en dualité discrète sur les quarts de diamant

$$2\sum_{\mathcal{Q}\in\mathfrak{Q}}|\mathcal{Q}|\left(\varphi_{\mathcal{Q}}(\nabla^{\mathcal{N}}_{\mathcal{Q}}\boldsymbol{u}^{\mathcal{T}}),\nabla^{\mathcal{N}}_{\mathcal{Q}}\boldsymbol{v}^{\mathcal{T}}\right)=\int_{\Omega}fv^{\mathfrak{M}}dx+\int_{\Omega}fv^{\mathfrak{M}^{*}}dx,\ \forall v^{\mathcal{T}}\in\mathbb{R}^{\mathcal{T}}.$$

Exemple dans le cas linéaire

Si φ est **linéaire** i.e. $\varphi(z,\xi)=A(z)\xi,$ le nouveau flux numérique s'écrit

$$\varphi_{\mathcal{D}}^{\mathcal{N}}(\xi) = A_{\mathcal{D}}^{\mathcal{N}}\xi.$$

Si de plus A est constante par mailles primales, on retrouve les schémas de Hermeline (03) pour lesquels les calculs sont explicites. Le tenseur de diffusion équivalent obtenu est :

$$(A_{\mathcal{D}}^{\mathcal{N}}\boldsymbol{\nu},\boldsymbol{\nu}) = \frac{(|\sigma_{\mathcal{K}}| + |\sigma_{\mathcal{L}}|)(A_{\mathcal{K}}\boldsymbol{\nu},\boldsymbol{\nu})(A_{\mathcal{L}}\boldsymbol{\nu},\boldsymbol{\nu})}{|\sigma_{\mathcal{L}}|(A_{\mathcal{K}}\boldsymbol{\nu},\boldsymbol{\nu}) + |\sigma_{\mathcal{K}}|(A_{\mathcal{L}}\boldsymbol{\nu},\boldsymbol{\nu})},$$

$$(A_{\mathcal{D}}^{\mathcal{N}}\boldsymbol{\nu}^{*},\boldsymbol{\nu}^{*}) = \frac{|\sigma_{\mathcal{L}}|(A_{\mathcal{L}}\boldsymbol{\nu}^{*},\boldsymbol{\nu}^{*}) + |\sigma_{\kappa}|(A_{\kappa}\boldsymbol{\nu}^{*},\boldsymbol{\nu}^{*})}{|\sigma_{\kappa}| + |\sigma_{\mathcal{L}}|} - \frac{|\sigma_{\kappa}||\sigma_{\mathcal{L}}|}{|\sigma_{\kappa}| + |\sigma_{\mathcal{L}}|} \frac{((A_{\kappa}\boldsymbol{\nu},\boldsymbol{\nu}^{*}) - (A_{\mathcal{L}}\boldsymbol{\nu},\boldsymbol{\nu}^{*}))^{2}}{|\sigma_{\mathcal{L}}|(A_{\kappa}\boldsymbol{\nu},\boldsymbol{\nu}) + |\sigma_{\kappa}|(A_{\mathcal{L}}\boldsymbol{\nu},\boldsymbol{\nu})},$$

$$(A_{\mathcal{D}}^{\mathcal{N}}\boldsymbol{\nu},\boldsymbol{\nu}^{*}) = \frac{|\sigma_{\mathcal{L}}|(A_{\mathcal{L}}\boldsymbol{\nu},\boldsymbol{\nu}^{*})(A_{\mathcal{K}}\boldsymbol{\nu},\boldsymbol{\nu}) + |\sigma_{\mathcal{K}}|(A_{\mathcal{K}}\boldsymbol{\nu},\boldsymbol{\nu}^{*})(A_{\mathcal{L}}\boldsymbol{\nu},\boldsymbol{\nu})}{|\sigma_{\mathcal{L}}|(A_{\mathcal{K}}\boldsymbol{\nu},\boldsymbol{\nu}) + |\sigma_{\mathcal{K}}|(A_{\mathcal{L}}\boldsymbol{\nu},\boldsymbol{\nu})},$$

Commentaires

Le schéma obtenu s'écrit

$$\mathcal{F}\left(\left(\nabla^{\tau}_{\mathcal{D}}u^{\tau} + B_{\mathcal{Q}}\delta^{\mathcal{P}}(\nabla^{\tau}_{\mathcal{D}}u^{\tau})\right)_{\mathcal{Q}\in\mathfrak{Q}}\right) = \text{termes sources},$$

avec sur chaque diamant

$$\delta^{\mathcal{P}}(\xi) = \mathcal{G}_{\xi}^{-1}(0) \quad \longleftarrow \text{ syst. de 4 éq à 4 inconnues.}$$

Le schéma obtenu s'écrit

$$\mathcal{F}\left(\left(\nabla_{\mathcal{D}}^{\tau}u^{\tau} + B_{\mathcal{Q}}\delta^{\mathcal{P}}(\nabla_{\mathcal{D}}^{\tau}u^{\tau})\right)_{\mathcal{Q}\in\mathfrak{Q}}\right) = \text{termes sources},$$

avec sur chaque diamant

$$\delta^{\mathcal{P}}(\xi) = \mathcal{G}_{\xi}^{-1}(0) \quad \longleftarrow \text{ syst. de 4 éq à 4 inconnues.}$$

Cas linéaire

- Les applications $\xi \mapsto \delta^{\mathcal{D}}(\xi)$ sont linéaires et leurs matrices sont calculées au tout début de la résolution (elles ne dépendent que du maillage et de φ). On peut, par exemple, appliquer une méthode de pivot de Gauss pour résoudre simultanément tous les petits systèmes 4×4 .
- La matrice globale du schéma m-DDFV est donc : linéaire, symétrique, défini positive, et a exactement le même stencil que celle du schéma DDFV classique. Cette variante est donc totalement indolore du point de vue des coûts de calcul.

Le schéma obtenu s'écrit

$$\mathcal{F}\left(\left(\nabla_{\mathcal{D}}^{\tau}u^{\tau} + B_{\mathcal{Q}}\delta^{\mathcal{P}}(\nabla_{\mathcal{D}}^{\tau}u^{\tau})\right)_{\mathcal{Q}\in\mathfrak{Q}}\right) = \text{termes sources},$$

avec sur chaque diamant

$$\delta^{\mathcal{P}}(\xi) = \mathcal{G}_{\xi}^{-1}(0) \quad \longleftarrow \text{ syst. de 4 éq à 4 inconnues.}$$

Cas non-linéaire

- Le calcul exact des applications non-linéaires $\xi \mapsto \delta^{\mathcal{D}}(\xi)$ est impossible en général.
- La résolution du système global par une méthode de Newton est possible mais pas nécessairement aisée (le calcul de la Jacobienne du système n'est pas trivial ...).

Théorème

Le schéma m-DDFV possède une **unique** solution $u^{\tau} \in \mathbb{R}^{T}$ qui dépend continûment des données.

THÉORÈME (CAS $p \ge 2$)

On suppose que φ est régulière par morceaux et que le maillage est compatible avec les discontinuités de φ . Si u est régulière sur chaque quart de diamant Q, on a

$$\|u - u^{\mathfrak{M}}\|_{L^{p}} + \|u - u^{\mathfrak{M}^{*}}\|_{L^{p}} + \|\nabla u - \nabla^{\mathcal{N}} u^{\mathcal{T}}\|_{L^{p}} \le C h^{\frac{1}{p-1}}$$

Dans le cas linéaire (p = 2) on retrouve la convergence à l'ordre 1 attendue.

DDFV vs m-DDFV

 $\overline{\Omega} = \overline{\Omega_1} \cup \overline{\Omega_2}$ avec $\Omega_1 =]0, 0.5[\times]0, 1[$ et $\Omega_2 =]0.5, 1[\times]0, 1[$

UN EXEMPLE LINÉAIRE :

$$-\operatorname{div}(A(x)\nabla u) = f$$
, avec $A(x) = \operatorname{Id} \operatorname{dans} \Omega_1$, $A(x) = \begin{pmatrix} 10 & 2\\ 2 & 1 \end{pmatrix}$ dans Ω_2 .

• schéma DDFV : ordre $\frac{1}{2}$

• schéma m-DDFV : ordre 1

Franck BOYER VF pour les problèmes elliptiques - Partie 3

DDFV VS M-DDFV Un exemple non-linéaire

$$\begin{cases} \text{Pour } x \in \Omega_1, \quad \varphi(x,\xi) = |\xi|^{p-2}\xi, \\ \text{Pour } x \in \Omega_2, \quad \varphi(x,\xi) = (A\xi,\xi)^{\frac{p-2}{2}}A\xi, \text{ avec } A = \begin{pmatrix} 2 & 0 \\ 0 & 5 \end{pmatrix} \end{cases}$$

On choisit p = 3.0

31/76 Franck BOYER VF pour les problèmes elliptiques - Partie 3

DDFV vs m-DDFV UN COUPLAGE LINÉAIRE / NON-LINÉAIRE

 $\varphi(x,\xi) = |\xi|^{p_i - 2} \xi \text{ dans } \Omega_i$

$$u(x) = \begin{cases} x_1 \left(\left(\lambda^{\frac{p_2-1}{p_1-1}} - 1 \right) (2x_1 - 1) + 1 \right) \text{ pour } x_1 \le 0.5\\ (1 - x_1)((1 + \lambda)(2x_1 - 1) + 1) \text{ pour } x_1 \ge 0.5 \end{cases}$$

 \rightsquigarrow Sauts de gradient importants à l'interface

On prend p_1	$=2, p_2=4$			
h	DDFV	m-DDFV	DDFV	m-DDFV
	$L^p(\Omega)$	$L^p(\Omega)$	$W^{1,p}(\Omega)$	$W^{1,p}(\Omega)$
7.25E-02	4.70E-01	3.61E-02	$2.5E{+}01$	1.41
3.63E-02	2.36E-01	9.14E-02	$2.03E{+}01$	6.62E-01
1.81E-02	1.19E-01	2.24E-03	$1.65E{+}01$	3.11E-01
9.07 E- 03	6.01E-02	4.46E-04	$1.34E{+}01$	1.47E-01
ordres	0.98	2.11	0.30	1.08

 \sim 1 0 Ā

Remarques sur le cas potentiel

Si φ provient d'un potentiel Φ

$$\begin{cases} \varphi(x,\xi) &= \nabla_{\xi} \Phi(x,\xi), \text{ pour tout } \xi \in \mathbb{R}^2 \text{ p.p. } x \in \Omega, \\ \Phi(x,0) &= 0, \text{ p.p. } x \in \Omega. \end{cases}$$

PROPOSITION

La solution u^{τ} du schéma m-DDFV est l'unique minimum de

$$\begin{split} J^{\mathcal{T}}(v^{\tau}) &= 2\sum_{\boldsymbol{\nu}\in\mathfrak{D}}\sum_{\mathcal{Q}\in\mathfrak{Q}_{\mathcal{D}}}|\mathcal{Q}|\Phi_{\mathcal{Q}}(\nabla_{\mathcal{Q}}^{\mathcal{N}}v^{\tau})\\ &-\sum_{\boldsymbol{\kappa}}|\boldsymbol{\kappa}|f_{\boldsymbol{\kappa}}v_{\boldsymbol{\kappa}} - \sum_{\boldsymbol{\kappa}^{*}}|\boldsymbol{\kappa}^{*}|f_{\boldsymbol{\kappa}^{*}}v_{\boldsymbol{\kappa}^{*}}, \ \forall v^{\tau}\in\mathbb{R}^{\mathcal{T}}\\ avec \ \Phi_{\mathcal{Q}}(\cdot) &= \frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}\Phi(\boldsymbol{x},\cdot)d\boldsymbol{x}. \end{split}$$

Remarques sur le cas potentiel

Notation : $\Delta = (\mathbb{R}^4)^{\mathfrak{D}}$.

PROPOSITION

Le couple $(u^{\tau}, (\delta^{\mathcal{D}}(\nabla^{\tau}_{\mathcal{D}}u^{\tau}))_{\mathcal{D}})$ est l'unique minimum de la fonctionnelle

$$J^{\mathcal{T},\Delta}(v^{\tau},\tilde{\delta}) = 2\sum_{\mathcal{D}\in\mathfrak{D}}\sum_{\mathcal{Q}\in\mathfrak{Q}_{\mathcal{D}}} |\mathcal{Q}|\Phi_{\mathcal{Q}}(\nabla_{\mathcal{D}}^{\tau}v^{\tau} + B_{\mathcal{Q}}\tilde{\delta}^{\mathcal{D}}) -\sum_{\kappa} |\kappa| f_{\kappa}v_{\kappa} - \sum_{\kappa^{*}} |\kappa^{*}| f_{\kappa^{*}}v_{\kappa^{*}}, \quad \forall v^{\tau} \in \mathbb{R}^{\mathcal{T}}, \ \forall \tilde{\delta} \in \Delta.$$

Principe

Pour un diamant $\mathcal D$ fixé, $\delta^{\mathcal D}(\nabla^{\tau}_{\mathcal D} u^{\tau})$ minimise la contribution élémentaire

$$\tilde{\delta}^{\mathcal{D}} \in \mathbb{R}^4 \mapsto \sum_{\mathcal{Q} \in \mathfrak{Q}_{\mathcal{D}}} |\varrho| \Phi_{\mathcal{Q}} (\nabla_{\mathcal{D}}^{\tau} u^{\tau} + B_{\mathcal{Q}} \tilde{\delta}^{\mathcal{D}}).$$

ALGO. DE TYPE DÉCOMPOSITION-COORDINATION Formulation Lagrangienne augmentée

FONCTIONNELLE NON QUADRATIQUE (voir (Glowinsky & al.)) On se donne une famille $\mathcal{A} = (A_{\mathcal{Q}})_{\mathcal{Q} \in \mathfrak{Q}}$ de matrices 2 × 2 SDP

$$\begin{split} L^{\mathcal{T},\Delta}_{\mathcal{A}}(v^{\tau},\tilde{\delta},g,\lambda) &\stackrel{\text{def}}{=} 2\sum_{\mathcal{Q}\in\mathfrak{Q}} |\mathcal{Q}|\Phi_{\mathcal{Q}}(g_{\mathcal{Q}}) - \sum_{\kappa} |\kappa| f_{\kappa} v_{\kappa} - \sum_{\kappa^{*}} |\kappa^{*}| f_{\kappa^{*}} v_{\kappa^{*}} \\ &+ 2\sum_{\mathcal{Q}\in\mathfrak{Q}} |\mathcal{Q}| (\lambda_{\mathcal{Q}},g_{\mathcal{Q}} - \nabla^{\tau}_{\mathcal{D}}v^{\tau} - B_{\mathcal{Q}}\tilde{\delta}^{\mathcal{D}}) \\ &+ \sum_{\mathcal{Q}\in\mathfrak{Q}} |\mathcal{Q}| \left(A_{\mathcal{Q}}(g_{\mathcal{Q}} - \nabla^{\tau}_{\mathcal{D}}v^{\tau} - B_{\mathcal{Q}}\tilde{\delta}^{\mathcal{D}}), (g_{\mathcal{Q}} - \nabla^{\tau}_{\mathcal{D}}v^{\tau} - B_{\mathcal{Q}}\tilde{\delta}^{\mathcal{D}}) \right), \\ &\quad \forall v^{\tau} \in \mathbb{R}^{\mathcal{T}}, \forall \tilde{\delta} \in \Delta, \forall g, \lambda \in (\mathbb{R}^{2})^{\mathfrak{Q}}. \end{split}$$

THÉORÈME

La solution u^{τ} du schéma m-DDFV s'obtient à partir de l'unique point-selle du Lagrangien $L_{\mathcal{A}}^{\mathcal{T},\Delta}$.

• Terme d'augmentation standard : $A_Q = r$ Id.

LE SOLVEUR ITÉRATIF

• *Etape 1* : Trouver $(u^{\tau,n}, \delta_{\mathcal{D}}^n) \in \mathbb{R}^T \times \Delta$ solution de

$$\begin{split} & 2\sum_{\mathcal{Q}\in\mathfrak{Q}}|\mathcal{Q}|\bigg(A_{\mathcal{Q}}(\nabla_{\mathcal{D}}^{\mathcal{T}}u^{\mathcal{T},n}+B_{\mathcal{Q}}\delta_{\mathcal{D}}^{n}-g_{\mathcal{Q}}^{n-1}),\nabla_{\mathcal{D}}^{\mathcal{T}}v^{\mathcal{T}}\bigg)\\ &=\sum_{\kappa}|\kappa|f_{\kappa}v_{\kappa}+\sum_{\kappa^{*}}|\kappa^{*}|f_{\kappa^{*}}v_{\kappa^{*}}+2\sum_{\mathcal{Q}\in\mathfrak{Q}}|\mathcal{Q}|(\lambda_{\mathcal{Q}}^{n-1},\nabla_{\mathcal{D}}^{\mathcal{T}}v^{\mathcal{T}}), \ \forall v^{\mathcal{T}}\in\mathbb{R}^{\mathcal{T}}. \end{split}$$

 $\sum_{\mathcal{Q}\in\mathfrak{Q}_{\mathcal{D}}}|\mathcal{Q}|^{t}B_{\mathcal{Q}}A_{\mathcal{Q}}(B_{\mathcal{Q}}\delta_{\mathcal{D}}^{n}+\nabla_{\mathcal{D}}^{\tau}u^{\tau,n}-g_{\mathcal{Q}}^{n-1})-\sum_{\mathcal{Q}\in\mathfrak{Q}_{\mathcal{D}}}|\mathcal{Q}|^{t}B_{\mathcal{Q}}\lambda_{\mathcal{Q}}^{n-1}=0,\,\forall\mathcal{D}\in\mathfrak{D}.$

LE SOLVEUR ITÉRATIF

• *Etape 1* : Trouver $(u^{\tau,n}, \delta_{\mathcal{D}}^n) \in \mathbb{R}^{\mathcal{T}} \times \Delta$ solution de

$$2\sum_{\mathcal{Q}\in\mathfrak{Q}}|\mathcal{Q}|\left(A_{\mathcal{Q}}(\nabla_{\mathcal{D}}^{\tau}u^{\tau,n}+B_{\mathcal{Q}}\delta_{\mathcal{D}}^{n}-g_{\mathcal{Q}}^{n-1}),\nabla_{\mathcal{D}}^{\tau}v^{\tau}\right)$$
$$=\sum_{\kappa}|\kappa|f_{\kappa}v_{\kappa}+\sum_{\kappa^{*}}|\kappa^{*}|f_{\kappa^{*}}v_{\kappa^{*}}+2\sum_{\mathcal{Q}\in\mathfrak{Q}}|\mathcal{Q}|(\lambda_{\mathcal{Q}}^{n-1},\nabla_{\mathcal{D}}^{\tau}v^{\tau}), \quad \forall v^{\tau}\in\mathbb{R}^{T}.$$

$$\sum_{\mathcal{Q}\in\mathfrak{Q}_{\mathcal{D}}}|\mathcal{Q}|^{t}B_{\mathcal{Q}}A_{\mathcal{Q}}(B_{\mathcal{Q}}\delta_{\mathcal{D}}^{n}+\nabla_{\mathcal{D}}^{\tau}u^{\tau,n}-g_{\mathcal{Q}}^{n-1})-\sum_{\mathcal{Q}\in\mathfrak{Q}_{\mathcal{D}}}|\mathcal{Q}|^{t}B_{\mathcal{Q}}\lambda_{\mathcal{Q}}^{n-1}=0,\,\forall\mathcal{D}\in\mathfrak{D}.$$

• <u>Etape 2</u>: Sur chaque \mathcal{Q} , trouver $g_{\mathcal{Q}}^n \in \mathbb{R}^2$ solution de

$$\varphi_{\mathcal{Q}}(g_{\mathcal{Q}}^{n}) + \lambda_{\mathcal{Q}}^{n-1} + A_{\mathcal{Q}}(g_{\mathcal{Q}}^{n} - \nabla_{\mathcal{D}}^{\tau} u^{\tau,n} - B_{\mathcal{Q}} \delta_{\mathcal{D}}^{n}) = 0.$$

LE SOLVEUR ITÉRATIF

• <u>Etape 1</u>: Trouver $(u^{\tau,n}, \delta_{\mathcal{D}}^n) \in \mathbb{R}^{\mathcal{T}} \times \Delta$ solution de

$$2\sum_{\mathcal{Q}\in\mathfrak{Q}}|\mathcal{Q}|\left(A_{\mathcal{Q}}(\nabla_{\mathcal{D}}^{\tau}u^{\tau,n}+B_{\mathcal{Q}}\delta_{\mathcal{D}}^{n}-g_{\mathcal{Q}}^{n-1}),\nabla_{\mathcal{D}}^{\tau}v^{\tau}\right)$$
$$=\sum_{\kappa}|\kappa|f_{\kappa}v_{\kappa}+\sum_{\kappa^{*}}|\kappa^{*}|f_{\kappa^{*}}v_{\kappa^{*}}+2\sum_{\mathcal{Q}\in\mathfrak{Q}}|\mathcal{Q}|(\lambda_{\mathcal{Q}}^{n-1},\nabla_{\mathcal{D}}^{\tau}v^{\tau}), \quad \forall v^{\tau}\in\mathbb{R}^{T}.$$

$$\sum_{\mathcal{Q}\in\mathfrak{Q}_{\mathcal{D}}}|\mathcal{Q}|^{t}B_{\mathcal{Q}}A_{\mathcal{Q}}(B_{\mathcal{Q}}\delta_{\mathcal{D}}^{n}+\nabla_{\mathcal{D}}^{\tau}u^{\tau,n}-g_{\mathcal{Q}}^{n-1})-\sum_{\mathcal{Q}\in\mathfrak{Q}_{\mathcal{D}}}|\mathcal{Q}|^{t}B_{\mathcal{Q}}\lambda_{\mathcal{Q}}^{n-1}=0,\,\forall\mathcal{D}\in\mathfrak{D}.$$

• <u>Etape 2</u>: Sur chaque \mathcal{Q} , trouver $g_{\mathcal{Q}}^n \in \mathbb{R}^2$ solution de

$$\varphi_{\mathcal{Q}}(g_{\mathcal{Q}}^{n}) + \lambda_{\mathcal{Q}}^{n-1} + A_{\mathcal{Q}}(g_{\mathcal{Q}}^{n} - \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T},n} - B_{\mathcal{Q}} \delta_{\mathcal{D}}^{n}) = 0.$$

• <u>Etape 3</u>: Sur chaque \mathcal{Q} calculer $\lambda_{\mathcal{Q}}^n \in \mathbb{R}^2$ par

$$\lambda_{\mathcal{Q}}^{n} = \lambda_{\mathcal{Q}}^{n-1} + A_{\mathcal{Q}}(g_{\mathcal{Q}}^{n} - \nabla_{\mathcal{D}}^{\tau} u^{\tau, n} - B_{\mathcal{Q}} \delta_{\mathcal{D}}^{n}).$$

UN SOLVEUR ITÉRATIF

Convergence et résultats numériques

THÉORÈME

Pour toute famille de matrices d'augmentation \mathcal{A} , l'algorithme précédent converge vers l'unique solution du schéma m-DDFV.

▶ Preuve de la convergence

Bien qu'issu de l'optimisation, le solveur itératif et le théorème sont valables aussi dans le cas **non-potentiel**.

UN SOLVEUR ITÉRATIF

Convergence et résultats numériques

THÉORÈME

Pour toute famille de matrices d'augmentation \mathcal{A} , l'algorithme précédent converge vers l'unique solution du schéma m-DDFV.

▶ Preuve de la convergence

augmentation anisotrope A_Q adaptée au problème

Partie 3 - Plan

Les schémas DDFV et m-DDFV pour la diffusion scalaire

- Introduction
- Construction du schéma
- Analyse du schéma
- Implémentation
- Le schéma m-DDFV
 - La méthode en 1D
 - La méthode en 2D
 - DDFV vs m-DDFV
 - Un solveur non-linéaire

Les schémas DDFV et m-DDFV pour le problème de Stokes

- La méthode DDFV pour Stokes
- Résultats numériques
- Le problème avec viscosité discontinue
- Bilan

Partie 3 - Plan

Les schémas DDFV et m-DDFV pour la diffusion scalaire

- Introduction
- Construction du schéma
- Analyse du schéma
- Implémentation
- Le schéma m-DDFV
 - La méthode en 1D
 - La méthode en 2D
 - DDFV vs m-DDFV
 - Un solveur non-linéaire

Les schémas DDFV et m-DDFV pour le problème de Stokes

- La méthode DDFV pour Stokes
- Résultats numériques
- Le problème avec viscosité discontinue
- Bilan

Problème de Stokes, avec viscosité régulière

▶ Problème

$$\begin{cases} \operatorname{div}(-2\eta(x)\mathrm{D}\mathbf{u} + p\mathrm{Id}) = \mathbf{f} & \operatorname{dans} \Omega, \\ \operatorname{div}(\mathbf{u}) = 0 & \operatorname{dans} \Omega, \\ \mathbf{u} = 0 & \operatorname{sur} \partial\Omega, \\ \int_{\Omega} p(x)\mathrm{d}x = 0. \end{cases}$$

avec
$$D\mathbf{u} = \frac{1}{2}(\nabla \mathbf{u} + {}^t\nabla \mathbf{u}),$$

• $\mathbf{f} \in (L^2(\Omega))^2,$
• $\eta \in C^2(\Omega)$ avec

$$0 < \underline{\mathbf{C}}_{\eta} \le \eta(x) \le \overline{\mathbf{C}}_{\eta}, \quad \forall x \in \Omega.$$

▶ Objectifs

- Ecrire un schéma DDFV bien posé pour (S).
- Démontrer des estimations d'erreur pour ce problème.

(S)

RAPPELS SUR LES MAILLAGES DDFV

Franck BOYER VF pour les problèmes elliptiques - Partie 3

Inconnues en vitesse : centres et sommets Inconnues en pression : cellules diamants.

$$\begin{cases} \operatorname{div}(-\nabla \mathbf{u} + p\operatorname{Id}) = \mathbf{f}, \\ \operatorname{div}(\mathbf{u}) = \operatorname{Tr}(\nabla \mathbf{u}) = 0. \end{cases}$$

Inconnues en vitesse : centres et sommets Inconnues en pression : cellules diamants.

$$\begin{cases} \mathbf{div}^{\boldsymbol{\tau}}(-\nabla^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}} + p^{\mathfrak{D}}\mathrm{Id}) = \mathbf{f}^{\boldsymbol{\tau}}, \\ \mathrm{Tr}(\nabla^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}}) = 0. \end{cases}$$

- On ne sait pas si le problème discret est bien posé sur un maillage général.
- En revanche, on sait que le problème est bien posé sur des maillages constitués de
 - triangles conformes à angles aigus
 - rectangles non conformes

(Delcourte '07)

Inconnues en vitesse : centres et sommets Inconnues en pression : cellules diamants.

$$\begin{cases} \mathbf{div}^{\boldsymbol{\tau}}(-\nabla^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}} + p^{\mathfrak{D}}\mathrm{Id}) = \mathbf{f}^{\boldsymbol{\tau}}, \\ \mathrm{Tr}(\nabla^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}}) = 0. \end{cases}$$

- On ne sait pas si le problème discret est bien posé sur un maillage général.
- En revanche, on sait que le problème est bien posé sur des maillages constitués de
 - triangles conformes à angles aigus
 - rectangles non conformes

```
(Delcourte '07)
```

- On n'a pas d'inégalité inf-sup uniforme pour ce problème.
- Les estimations d'erreur que l'on peut obtenir sont donc faibles (et ne concernent que sur la vitesse). (Krell '08)

Inconnues en vitesse : centres et sommets Inconnues en pression : cellules diamants.

${\it Que \ faire ?}$

▶ Stabilisation de l'équation de conservation de la masse par un terme en pression (ou en des "dérivées" de la pression)

$$\begin{cases} \mathbf{div}^{\boldsymbol{\tau}}(-\nabla^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}} + p^{\mathfrak{D}}\mathrm{Id}) = \mathbf{f}^{\boldsymbol{\tau}}, \\ \mathrm{Tr}(\nabla^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}}) + S^{\mathfrak{D}}(p^{\mathfrak{D}}) = 0. \end{cases}$$
(Stab)

- Existence et unicité pour tout maillages DDFV.
- Estimations d'erreur optimales en vitesse et pression si on choisit une stabilisation par une sorte de laplacien de pression (inspiré de (Brezzi-Pitkäranta '84)). (Krell '09)

► Alternative possible (duale) : approcher la pression aux centres et sommets et la vitesse sur les diamants, puis se ramener à des formulations en tourbillon. (Delcourte-Domelevo-Omnès '07)

Problème de Stokes incompressible par Volumes Finis

- Maillages décalés
 - Schémas MAC (Harlow–Welsh '65), (Nicolaides '92)
 Schéma cell-centered (Blanc-Eymard-Herbin '05)
 DDFV (Delcourte-Domelevo-Omnès '07), (Krell '08-'09) ≈ généralisation de MAC en maillage quelconque
- Schémas colocalisés
 - Schémas cell-centered (Eymard-Herbin-Latché '06 \rightarrow '08)
 - Schémas volumes finis mixtes

ard-Herbin-Latché '06 →'08) (Droniou-Eymard '06)

$$\operatorname{div}^{\mathcal{D}} \mathbf{u}^{\boldsymbol{\tau}} = \operatorname{Tr} \nabla^{\mathcal{D}} \mathbf{u}^{\boldsymbol{\tau}} = \frac{1}{\sin(\alpha_{\mathcal{D}})} \left(\frac{\mathbf{u}_{\mathcal{L}} - \mathbf{u}_{\boldsymbol{\kappa}}}{|\sigma^*|} \cdot \boldsymbol{\nu} + \frac{\mathbf{u}_{\mathcal{L}^*} - \mathbf{u}_{\boldsymbol{\kappa}^*}}{|\sigma|} \cdot \boldsymbol{\nu}^* \right).$$

TENSEUR DES TAUX DE DÉFORMATION DISCRET

$$\begin{aligned} \mathrm{D}^{\mathfrak{D}} &: \left(\mathbb{R}^{2}\right)^{\tau} \longrightarrow \quad \left(\mathcal{M}_{2}(\mathbb{R})\right)^{\mathfrak{D}} \\ & \mathbf{u}^{\boldsymbol{\tau}} \longmapsto \quad \left(\mathrm{D}^{\mathcal{D}}\mathbf{u}^{\boldsymbol{\tau}}\right)_{\mathcal{D}\in\mathfrak{D}} \end{aligned}$$

avec

$$D^{\mathcal{D}}\mathbf{u}^{\boldsymbol{\tau}} = \frac{1}{2} \left(\nabla^{\mathcal{D}}\mathbf{u}^{\boldsymbol{\tau}} + {}^{t} (\nabla^{\mathcal{D}}\mathbf{u}^{\boldsymbol{\tau}}) \right)$$

GRADIENT DISCRET D'UN CHAMP DE VECTEURS DE $(\mathbb{R}^2)^{\mathcal{T}}$ $\nabla^{\mathfrak{D}} : (\mathbb{R}^2)^{\mathcal{T}} \longrightarrow (\mathcal{M}_2(\mathbb{R}))^{\mathfrak{D}}$ $\mathbf{u}^{\mathcal{T}} = \begin{pmatrix} u^{\mathcal{T}} \\ v^{\mathcal{T}} \end{pmatrix} \mapsto (\nabla^{\mathcal{D}} \mathbf{u}^{\mathcal{T}})_{\mathcal{D} \in \mathfrak{D}}$ \mathcal{L} Cellule diamant

Divergence discrète d'un champ de matrices de $(\mathcal{M}_2(\mathbb{R}))^{\mathfrak{D}}$

$$\begin{aligned} \operatorname{div}^{\boldsymbol{\tau}} : (\mathcal{M}_{2}(\mathbb{R}))^{\mathfrak{D}} \to (\mathbb{R}^{2})^{\boldsymbol{\tau}} \\ \kappa \in \mathfrak{M}, \quad \frac{1}{|\kappa|} \int_{\kappa} \operatorname{div}(\xi(x)) \mathrm{d}x &= \frac{1}{|\kappa|} \sum_{\sigma \subset \partial \kappa} \int_{\sigma} \xi(s) \boldsymbol{\nu} \mathrm{d}s \\ \operatorname{div}^{\boldsymbol{\kappa}} \xi^{\mathfrak{D}} &= \frac{1}{|\kappa|} \sum_{\sigma \subset \partial \kappa} |\sigma| \xi^{\mathcal{D}} \boldsymbol{\nu} \end{aligned}$$

Franck BOYER VF pour les problèmes elliptiques - Partie 3

DIVERGENCE DISCRÈTE D'UN CHAMP DE MATRICES DE $(\mathcal{M}_2(\mathbb{R}))^{\mathfrak{D}}$

$$\begin{split} \mathbf{div}^{\boldsymbol{\tau}} : (\mathcal{M}_2(\mathbb{R}))^{\mathfrak{D}} \to \left(\mathbb{R}^2\right)^{\boldsymbol{\tau}} \\ & \kappa \in \mathfrak{M}, \quad \mathbf{div}^{\boldsymbol{\kappa}} \boldsymbol{\xi}^{\mathfrak{D}} \;\; = \;\; \frac{1}{|\kappa|} \sum_{\boldsymbol{\sigma} \subset \partial \kappa} |\boldsymbol{\sigma}| \boldsymbol{\xi}^{\boldsymbol{\nu}} \boldsymbol{\nu} \\ & \kappa^* \in \mathfrak{M}^* \cup \partial \mathfrak{M}^*, \quad \mathbf{div}^{\boldsymbol{\kappa}^*} \boldsymbol{\xi}^{\mathfrak{D}} \;\; = \;\; \frac{1}{|\kappa^*|} \sum_{\boldsymbol{\sigma}^* \subset \partial \kappa^*} |\boldsymbol{\sigma}^*| \boldsymbol{\xi}^{\boldsymbol{\nu}} \boldsymbol{\nu}^* \\ & \mathbf{div}^{\mathfrak{M}} \boldsymbol{\xi}^{\mathfrak{D}} = \left(\left(\mathbf{div}^{\boldsymbol{\kappa}} \boldsymbol{\xi}^{\mathfrak{D}} \right)_{\kappa \in \mathfrak{M}} \right) \quad \mathbf{div}^{\mathfrak{M}^*} \boldsymbol{\xi}^{\mathfrak{D}} \;\; = \;\; \left(\left(\mathbf{div}^{\boldsymbol{\kappa}^*} \boldsymbol{\xi}^{\mathfrak{D}} \right)_{\kappa^* \in \mathfrak{M}^*} \right). \end{split}$$

44/76

Franck BOYER VF pour les problèmes elliptiques - Partie 3

OUTIL FONDAMENTAL (Dualité discrète)

$$\forall \xi^{\mathfrak{D}} \in (\mathcal{M}_{2}(\mathbb{R}))^{\mathfrak{D}}, \ \forall \mathbf{u}^{\boldsymbol{\tau}} \in \mathbb{E}_{0}^{\boldsymbol{\tau}}, \ -\int_{\Omega} \mathbf{div}^{\boldsymbol{\tau}}(\xi^{\mathfrak{D}}) \cdot \mathbf{u}^{\boldsymbol{\tau}} = \int_{\Omega} (\xi^{\mathfrak{D}} : \nabla^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}}).$$

Inégalité de Korn discrète

LEMME

Pour tout
$$\mathbf{u}^{\boldsymbol{\tau}} \in \left(\mathbb{R}^2\right)^{\boldsymbol{\tau}}$$
,

$$\| \mathbf{D}^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}} \|_{2} \leq \| \nabla^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}} \|_{2}.$$

LEMME

Pour tout $\mathbf{u}^{\boldsymbol{\tau}} \in \mathbb{E}_0^{\boldsymbol{\tau}}$,

$$\operatorname{\mathbf{div}}^{\tau}\left({}^{t}\nabla^{\mathfrak{D}}\mathbf{u}^{\tau}\right) = \operatorname{\mathbf{div}}^{\tau}\left(\operatorname{Tr}(\nabla^{\mathfrak{D}}\mathbf{u}^{\tau})\operatorname{Id}\right).$$

Théorème (Inegalité de Korn discrète)

Pour tout $\mathbf{u}^{\boldsymbol{\tau}} \in \mathbb{E}_0^{\boldsymbol{\tau}}$,

$$\|\nabla^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}}\|_{2} \leq \sqrt{2}\|D^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}}\|_{2}.$$

▶ Preuve

Schéma S-DDFV

On note

$$\eta_{\mathcal{D}} = \eta(x_{\mathcal{D}}).$$

 \blacktriangleright Sur les cellules primales κ

$$\begin{split} \int_{\kappa} \mathbf{f} &= \int_{\kappa} \operatorname{div}(-2\eta \mathrm{D}\mathbf{u} + p\mathrm{Id}) = \sum_{\sigma \subset \partial \kappa} \int_{\sigma} (-2\eta \mathrm{D}\mathbf{u} + p\mathrm{Id}) \boldsymbol{\nu} \\ &\approx |\kappa| \operatorname{div}^{\kappa} (-2\eta^{\mathfrak{D}} \mathrm{D}^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}} + p^{\mathfrak{D}} \mathrm{Id}) := \sum_{\sigma \subset \partial \kappa} |\sigma| (-2\eta_{\mathcal{D}} \mathrm{D}^{\mathcal{D}}\mathbf{u}^{\boldsymbol{\tau}} + p^{\mathcal{D}} \mathrm{Id}) \boldsymbol{\nu}. \end{split}$$

▶ Sur les cellules duales κ^*

$$\int_{\kappa^*} \mathbf{f} = \int_{\kappa^*} \operatorname{div}(-2\eta \mathrm{D}\mathbf{u} + p\mathrm{Id}) = \sum_{\sigma^* \subset \partial \kappa^*} \int_{\sigma^*} (-2\eta \mathrm{D}\mathbf{u} + p\mathrm{Id}) \boldsymbol{\nu}^*$$
$$\approx |\kappa^*| \operatorname{div}^{\kappa^*}(-2\eta^{\mathfrak{D}} \mathrm{D}^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}} + p^{\mathfrak{D}}\mathrm{Id}) := \sum_{\sigma^* \subset \partial \kappa^*} |\sigma^*| (-2\eta_{\mathfrak{D}} \mathrm{D}^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}} + p^{\mathfrak{D}}\mathrm{Id}) \boldsymbol{\nu}^*$$

Schéma S-DDFV

47/76

 \blacktriangleright Sur les cellules diamants $\mathcal D$

$$\int_{\mathcal{D}} 0 = \int_{\mathcal{D}} \operatorname{div}(\mathbf{u}) = \int_{\mathcal{D}} \operatorname{Tr}(\nabla \mathbf{u}) \approx |\mathcal{D}| \operatorname{Tr}(\nabla^{\mathcal{D}} \mathbf{u}^{\tau}).$$

▶ On stabilise cette équation à la (Brezzi–Pitkäranta '84) :

$$\mathrm{Tr}(\nabla^{\mathcal{D}}\mathbf{u}^{\boldsymbol{\tau}}) = 0$$

devient

Schéma S-DDFV

Trouver $\mathbf{u}^{\boldsymbol{\tau}} \in \mathbb{E}_{0}^{\boldsymbol{\tau}}$ et $p^{\mathfrak{D}} \in \mathbb{R}^{\mathfrak{D}}$ tels que, $\mathbf{div}^{\mathfrak{m}}(-2\eta^{\mathfrak{D}}\mathbf{D}^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}} + p^{\mathfrak{D}}\mathbf{Id}) = \mathbf{f}^{\mathfrak{m}},$ $\mathbf{div}^{\mathfrak{m}*}(-2\eta^{\mathfrak{D}}\mathbf{D}^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}} + p^{\mathfrak{D}}\mathbf{Id}) = \mathbf{f}^{\mathfrak{m}*},$ (S-DDFV) $\mathrm{Tr}(\nabla^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}}) - \lambda h_{\mathfrak{D}}^{2}\Delta^{\mathfrak{D}}p^{\mathfrak{D}} = 0,$ $\sum_{\mathfrak{D}\in\mathfrak{D}} |\mathcal{D}|p^{\mathfrak{D}} = 0.$

THÉORÈME (EXISTENCE ET UNICITÉ)

Soit \mathcal{T} un maillage DDFV.

Pour tout valeur de $\lambda > 0$, le schéma (S-DDFV) admet une unique solution.

THÉORÈME

Soit \mathcal{T} un maillage DDFV général. On note $(\mathbf{u}^{\tau}, p^{\mathfrak{D}}) \in (\mathbb{R}^2)^{\tau} \times \mathbb{R}^{\mathfrak{D}}$ la solution du schéma (S-DDFV). On suppose :

• $\eta \ est \ \mathcal{C}^2 \ sur \ \overline{\Omega}$

• La solution exacte du problème vérifie $(\mathbf{u}, p) \in (H^2(\Omega))^2 \times H^1(\Omega)$, Il existe alors $C(\operatorname{reg}(\mathcal{T}), \mathbf{u}, p, \eta) > 0$:

$$\|\mathbf{u} - \mathbf{u}^{\boldsymbol{\tau}}\|_2 + \|\nabla \mathbf{u} - \nabla^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}}\|_2 \leq C \ size(\mathcal{T})$$

et

$$\|p - p^{\mathfrak{D}}\|_2 \leq C \operatorname{size}(\mathcal{T})$$

Taux de convergence optimal.
OUTIL PRINCIPAL

▶ La forme bilinéaire associée au problème

$$B(\mathbf{u}^{\tau}, p^{\mathfrak{D}}; \widetilde{\mathbf{u}}^{\tau}, \widetilde{p}^{\mathfrak{D}}) = \int_{\Omega} \mathbf{div}^{\tau} (-2\eta^{\mathfrak{D}} \mathbf{D}^{\mathfrak{D}} \mathbf{u}^{\tau} + p^{\mathfrak{D}} Id) \cdot \widetilde{\mathbf{u}}^{\tau} + \int_{\Omega} (\operatorname{Tr}(\nabla^{\mathfrak{D}} \mathbf{u}^{\tau}) - \lambda h_{\mathfrak{D}}^{2} \Delta^{\mathfrak{D}} p^{\mathfrak{D}}) \widetilde{p}^{\mathfrak{D}}.$$

On sait qu'on n'a pas la coercivité au sens traditionnel

$$\|\nabla^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}}\|_{2}^{2} + \|p^{\mathfrak{D}}\|_{2}^{2} \leq C_{2}B(\mathbf{u}^{\boldsymbol{\tau}}, p^{\mathfrak{D}}; \mathbf{u}^{\boldsymbol{\tau}}, p^{\mathfrak{D}}).$$

On a seulement une estimée

$$\begin{split} \| \nabla^{\mathfrak{D}} \mathbf{u}^{\mathcal{T}} \|_{2}^{2} + \lambda | p^{\mathfrak{D}} |_{h}^{2} &\leq C_{2} B(\mathbf{u}^{\mathcal{T}}, p^{\mathfrak{D}}; \mathbf{u}^{\mathcal{T}}, p^{\mathfrak{D}}) \\ \text{avec} \ | p^{\mathfrak{D}} |_{h}^{2} &= \sum_{\mathfrak{s} \in \mathfrak{S}} (h_{\mathcal{D}}^{2} + h_{\mathcal{D}'}^{2}) (p^{\mathcal{D}'} - p^{\mathcal{D}})^{2}. \end{split}$$

OUTIL PRINCIPAL

▶ La forme bilinéaire associée au problème

$$B(\mathbf{u}^{\tau}, p^{\mathfrak{D}}; \widetilde{\mathbf{u}}^{\tau}, \widetilde{p}^{\mathfrak{D}}) = \int_{\Omega} \mathbf{div}^{\tau} (-2\eta^{\mathfrak{D}} \mathbf{D}^{\mathfrak{D}} \mathbf{u}^{\tau} + p^{\mathfrak{D}} Id) \cdot \widetilde{\mathbf{u}}^{\tau} + \int_{\Omega} (\operatorname{Tr}(\nabla^{\mathfrak{D}} \mathbf{u}^{\tau}) - \lambda h_{\mathfrak{D}}^{2} \Delta^{\mathfrak{D}} p^{\mathfrak{D}}) \widetilde{p}^{\mathfrak{D}}.$$

On sait qu'on n'a pas la coercivité au sens traditionnel

$$\|\nabla^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}}\|_{2}^{2} + \|p^{\mathfrak{D}}\|_{2}^{2} \le C_{2}B(\mathbf{u}^{\boldsymbol{\tau}}, p^{\mathfrak{D}}; \mathbf{u}^{\boldsymbol{\tau}}, p^{\mathfrak{D}}).$$

On a seulement une estimée

$$\begin{split} \| \nabla^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}} \|_{2}^{2} + \lambda | p^{\mathfrak{D}} |_{h}^{2} &\leq C_{2} B(\mathbf{u}^{\boldsymbol{\tau}}, p^{\mathfrak{D}}; \mathbf{u}^{\boldsymbol{\tau}}, p^{\mathfrak{D}}) \\ \text{avec} \ | p^{\mathfrak{D}} |_{h}^{2} &= \sum_{s \in \mathfrak{S}} (h_{\mathcal{D}}^{2} + h_{\mathcal{D}'}^{2}) (p^{\mathcal{D}'} - p^{\mathcal{D}})^{2}. \\ \blacktriangleright \text{ Idée} : \text{ Trouver } \widetilde{\mathbf{u}}^{\boldsymbol{\tau}}, \widetilde{p}^{\mathfrak{D}} \ (\approx \mathbf{u}^{\boldsymbol{\tau}}, p^{\mathfrak{D}}) \text{ pour avoir l'inégalité inf-sup} \\ \| \nabla^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}} \|_{2}^{2} + \| p^{\mathfrak{D}} \|_{2}^{2} &\leq C_{2} \frac{B(\mathbf{u}^{\boldsymbol{\tau}}, p^{\mathfrak{D}}; \widetilde{\mathbf{u}}^{\boldsymbol{\tau}}, \widetilde{p}^{\mathfrak{D}})}{\| \nabla^{\mathfrak{D}} \widetilde{\mathbf{u}}^{\boldsymbol{\tau}} \|_{2}^{2} + \| \widetilde{p}^{\mathfrak{D}} \|_{2}^{2}. \end{split}$$

PROPOSITION

Pour tout
$$(\mathbf{u}^{\tau}, p^{\mathfrak{D}}) \in \mathbb{E}_{0}^{\tau} \times \mathbb{R}^{\mathfrak{D}}$$
 avec $\sum_{\mathcal{D} \in \mathfrak{D}} |\mathcal{D}| p^{\mathcal{D}} = 0$, il existe
 $(\widetilde{\mathbf{u}}^{\tau}, \widetilde{p}^{\mathfrak{D}}) \in \mathbb{E}_{0}^{\tau} \times \mathbb{R}^{\mathfrak{D}}$ et $C_{1}, C_{2} > 0$:
 $\|\nabla^{\mathfrak{D}} \widetilde{\mathbf{u}}^{\tau}\|_{2}^{2} + \|\widetilde{p}^{\mathfrak{D}}\|_{2}^{2} \leq C_{1} \left(\|\nabla^{\mathfrak{D}} \mathbf{u}^{\tau}\|_{2}^{2} + \|p^{\mathfrak{D}}\|_{2}^{2}\right),$
et
 $\|\nabla^{\mathfrak{D}} \mathbf{u}^{\tau}\|_{2}^{2} + \|p^{\mathfrak{D}}\|_{2}^{2} \leq C_{2}B(\mathbf{u}^{\tau}, p^{\mathfrak{D}}; \widetilde{\mathbf{u}}^{\tau}, \widetilde{p}^{\mathfrak{D}}).$

Preuve

PROPOSITION

Pour tout
$$(\mathbf{u}^{\tau}, p^{\mathfrak{D}}) \in \mathbb{E}_{0}^{\tau} \times \mathbb{R}^{\mathfrak{D}}$$
 avec $\sum_{\mathcal{D} \in \mathfrak{D}} |\mathcal{D}| p^{\mathcal{D}} = 0$, il existe
 $(\widetilde{\mathbf{u}}^{\tau}, \widetilde{p}^{\mathfrak{D}}) \in \mathbb{E}_{0}^{\tau} \times \mathbb{R}^{\mathfrak{D}}$ et $C_{1}, C_{2} > 0$:
 $\| \nabla^{\mathfrak{D}} \widetilde{\mathbf{u}}^{\tau} \|_{2}^{2} + \| \widetilde{p}^{\mathfrak{D}} \|_{2}^{2} \leq C_{1} \left(\| \nabla^{\mathfrak{D}} \mathbf{u}^{\tau} \|_{2}^{2} + \| p^{\mathfrak{D}} \|_{2}^{2} \right),$
et
 $\| \nabla^{\mathfrak{D}} \mathbf{u}^{\tau} \|_{2}^{2} + \| p^{\mathfrak{D}} \|_{2}^{2} \leq C_{2} B(\mathbf{u}^{\tau}, p^{\mathfrak{D}}; \widetilde{\mathbf{u}}^{\tau}, \widetilde{p}^{\mathfrak{D}}).$

▶ Preuve

COROLLAIRE

La solution $(\mathbf{u}^{\boldsymbol{\tau}}, p^{\mathfrak{D}}) \in \mathbb{E}_{0}^{\boldsymbol{\tau}} \times \mathbb{R}^{\mathfrak{D}}$ du schéma (S-DDFV), vérifie $\| \nabla^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}} \|_{2}^{2} + \| p^{\mathfrak{D}} \|_{2}^{2} \leq C \| \mathbf{f}^{\boldsymbol{\tau}} \|_{2}^{2}.$

Partie 3 - Plan

Les schémas DDFV et m-DDFV pour la diffusion scalaire

- Introduction
- Construction du schéma
- Analyse du schéma
- Implémentation
- Le schéma m-DDFV
 - La méthode en 1D
 - La méthode en 2D
 - DDFV vs m-DDFV
 - Un solveur non-linéaire

2 Les schémas DDFV et m-DDFV pour le problème de Stokes

- La méthode DDFV pour Stokes
- Résultats numériques
- Le problème avec viscosité discontinue
- Bilan

Cas 1 - Tourbillons de Green-Taylor

$$\mathbf{u}(x,y) = \begin{pmatrix} \frac{1}{2}\sin(2\pi x)\cos(2\pi y) \\ -\frac{1}{2}\cos(2\pi x)\sin(2\pi y) \end{pmatrix},$$
$$p(x,y) = \frac{1}{8}\cos(4\pi x)\sin(4\pi y),$$
$$\eta(x,y) = 1.$$

Lignes de courant

Cas 1 - Tourbillons de Green-Taylor

Cas 1 - Tourbillons de Green-Taylor

$$\mathbf{u}(x,y) = \begin{pmatrix} 1000x^2(1-x)^2 2y(1-y)(1-2y) \\ -1000y^2(1-y)^2 2x(1-x)(1-2x) \end{pmatrix},$$
$$p(x,y) = x^2 + y^2 - \frac{2}{3},$$
$$\eta(x,y) = 2x + y + 1.$$

Lignes de courant

Franck BOYER VF pour les problèmes elliptiques - Partie 3

CAS 2

Lignes de courant

Franck BOYER VF pour les problèmes elliptiques - Partie 3

CAS 3

Partie 3 - Plan

Les schémas DDFV et m-DDFV pour la diffusion scalaire

- Introduction
- Construction du schéma
- Analyse du schéma
- Implémentation
- Le schéma m-DDFV
 - La méthode en 1D
 - La méthode en 2D
 - DDFV vs m-DDFV
 - Un solveur non-linéaire

2 Les schémas DDFV et m-DDFV pour le problème de Stokes

- La méthode DDFV pour Stokes
- Résultats numériques
- Le problème avec viscosité discontinue
- Bilan

LE PROBLÈME À VISCOSITÉ DISCONTINUE

LE PROBLÈME

$$\begin{aligned} \operatorname{div} (-2\eta_i \mathrm{D}\mathbf{u} + p\mathrm{Id}) &= \mathbf{f}, & \operatorname{dans} \Omega_i, \\ \operatorname{div}(\mathbf{u}) &= 0, & \operatorname{dans} \Omega_i, \\ \mathbf{u} &= 0, & \operatorname{sur} \partial\Omega, \\ & \int_{\Omega} p(x) \mathrm{d}x = 0, \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & &$$

•
$$\Omega_1 \cap \Omega_2 = \emptyset$$
 et $\overline{\Omega} = \overline{\Omega_1} \cup \overline{\Omega_2}$,

- $\Gamma = \partial \Omega_1 \cap \partial \Omega_2$,
- $\vec{\mathbf{n}}$ est une normale à Γ et $\llbracket a \rrbracket = (a_{\mid \Omega_1} a_{\mid \Omega_2})_{\mid \Gamma}$ est le saut sur Γ .
- Viscosité η constante par morceaux

$$\eta = \begin{cases} \eta_1 > 0, & \text{dans } \Omega_1, \\ \eta_2 > 0, & \text{dans } \Omega_2. \end{cases}$$

Hypothèse simplificatrice : la pression est continue sur Γ .

▶ On construit $\nabla_{\mathcal{D}}^{\mathcal{N}} \mathbf{u}^{\boldsymbol{\tau}}$ constant sur chaque quart de diamant

$$\nabla_{\mathcal{D}}^{\mathcal{N}} \mathbf{u}^{\boldsymbol{\tau}} = \sum_{\mathcal{Q} \in \mathfrak{Q}_{\mathcal{D}}} \mathbf{1}_{\mathcal{Q}} \nabla_{\mathcal{Q}}^{\mathcal{N}} \mathbf{u}^{\boldsymbol{\tau}},$$

Franck BOYER VF pour les problèmes elliptiques - Partie 3

MAILLAGE DUAL BARYCENTRIQUE

Définition des quarts de diamants?

Alternative \longrightarrow Maillage dual barycentrique : (Hermeline '00), (Delcourte–Domelevo–Omnes '07)

MAILLAGE DUAL BARYCENTRIQUE

Alternative \longrightarrow Maillage dual barycentrique : (Hermeline '00), (Delcourte–Domelevo–Omnes '07)

Maillage dual classique

Maillage dual barycentrique

MAILLAGE DUAL BARYCENTRIQUE

CONSERVATIVITÉ LOCALE DES FLUX EXACTS A travers σ_{κ} , elle s'écrit

$$\int_{\sigma_{\mathcal{K}}} \eta_{|\overline{\mathcal{Q}_{\mathcal{K},\mathcal{K}^*}}} \mathrm{D}\mathbf{u}_{|\overline{\mathcal{Q}_{\mathcal{K},\mathcal{K}^*}}} . \boldsymbol{\nu}^* \mathrm{d}s = \int_{\sigma_{\mathcal{K}}} \eta_{|\overline{\mathcal{Q}_{\mathcal{K},\mathcal{L}^*}}} \mathrm{D}\mathbf{u}_{|\overline{\mathcal{Q}_{\mathcal{K},\mathcal{L}^*}}} . \boldsymbol{\nu}^* \mathrm{d}s.$$

Franck BOYER VF pour les problèmes elliptiques - Partie 3

► CONSERVATIVITÉ LOCALE DES FLUX NUMÉRIQUES On note $\eta_{Q} = \eta(x_{Q})$. On impose alors à la matrice 4×2 , $\delta^{\mathcal{P}}$ de vérifier

$$\underbrace{\eta_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^{*}}}(2\mathrm{D}^{\mathcal{D}}\mathbf{u}^{\mathcal{T}} + B_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^{*}}}\boldsymbol{\delta}^{\mathcal{D}} + {}^{t}(B_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^{*}}}\boldsymbol{\delta}^{\mathcal{D}}))\boldsymbol{\nu}^{*}}_{\overset{\mathrm{def}}{=}\varphi_{\mathcal{Q}_{\mathcal{K},\mathcal{L}^{*}}}(\boldsymbol{\delta}^{\mathcal{D}})} = \underbrace{\eta_{\mathcal{Q}_{\mathcal{K},\mathcal{L}^{*}}}(2\mathrm{D}^{\mathcal{D}}\mathbf{u}^{\mathcal{T}} + B_{\mathcal{Q}_{\mathcal{K},\mathcal{L}^{*}}}\boldsymbol{\delta}^{\mathcal{D}} + {}^{t}(B_{\mathcal{Q}_{\mathcal{K},\mathcal{L}^{*}}}\boldsymbol{\delta}^{\mathcal{D}}))\boldsymbol{\nu}^{*}}_{\overset{\mathrm{def}}{=}\varphi_{\mathcal{Q}_{\mathcal{K},\mathcal{L}^{*}}}(\boldsymbol{\delta}^{\mathcal{D}})}$$

Franck BOYER VF pour les problèmes elliptiques - Partie 3

PROPOSITION

Pour tout $\mathcal{D} \in \mathfrak{D}$ et tout $D^{\mathcal{D}}\mathbf{u}^{\tau} \in \mathcal{M}_{2,2}^{S}(\mathbb{R})$, il existe au moins un $\boldsymbol{\delta}^{\mathcal{D}}(D^{\mathcal{D}}\mathbf{u}^{\tau}) \in \mathcal{M}_{n_{\mathcal{D}},2}(\mathbb{R})$ vérifiant (*).

▶ Preuve

EXEMPLES

$$\implies \boldsymbol{\delta}^{\boldsymbol{\mathcal{D}}} = 0 \text{ et donc } \mathbf{D}_{\boldsymbol{\varphi}}^{\mathcal{N}} \mathbf{u}^{\boldsymbol{\mathcal{T}}} = \mathbf{D}^{\mathcal{D}} \mathbf{u}^{\boldsymbol{\mathcal{T}}}, \; \forall \boldsymbol{\varphi}.$$

EXEMPLES

Tous les calculs se font alors à la main (ou avec MAPLE ...).

Comparaison entre les tenseurs des taux de déformation discrets

PROPOSITION

Il existe $C(\operatorname{reg}(\mathcal{T}),\eta) > 0$, telle que pour tout $\mathbf{u}^{\tau} \in (\mathbb{R}^2)^{\tau}$:

 $\| \mathbb{D}^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}} \|_{2} \leq \| \mathbb{D}^{\mathcal{N}}_{\mathfrak{Q}} \mathbf{u}^{\boldsymbol{\tau}} \|_{2} \leq C \| \mathbb{D}^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}} \|_{2}.$

Comparaison entre les tenseurs des taux de déformation discrets

PROPOSITION

Il existe $C(\operatorname{reg}(\mathcal{T}),\eta) > 0$, telle que pour tout $\mathbf{u}^{\tau} \in (\mathbb{R}^2)^{\tau}$:

 $\| \mathbb{D}^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}} \|_{2} \leq \| \mathbb{D}^{\mathcal{N}}_{\mathfrak{Q}} \mathbf{u}^{\boldsymbol{\tau}} \|_{2} \leq C \| \mathbb{D}^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}} \|_{2}.$

• La première inégalité s'obtient à partir de :

$$|\mathcal{D}| D^{\mathcal{D}} \mathbf{u}^{\mathcal{T}} = \sum_{\mathcal{Q} \in \mathfrak{Q}_{\mathcal{D}}} |\mathcal{Q}| D^{\mathcal{N}}_{\mathcal{Q}} \mathbf{u}^{\mathcal{T}}.$$

• Deuxième inégalité : on utilise la définition des nouveaux gradients

$$\sum_{\varrho \in \mathfrak{Q}_{\mathcal{D}}} |\varrho| \eta_{\varrho} \| \mathbb{D}_{\varrho}^{\vee} \mathbf{u}^{\tau} \|_{\mathcal{F}}^{2} = \sum_{\varrho \in \mathfrak{Q}_{\mathcal{D}}} |\varrho| \eta_{\varrho} (\mathbb{D}_{\varrho}^{\vee} \mathbf{u}^{\tau} : \mathbb{D}^{\mathcal{D}} \mathbf{u}^{\tau}).$$

Franck BOYER VF pour les problèmes elliptiques - Partie 3

On remplace dans le schéma S-DDFV, le tenseur des contraintes visqueuses discret $\eta^{\mathfrak{D}} \mathbf{D}^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}}$ par

$$\varphi_{\mathcal{D}}(\eta, \mathcal{D}^{\mathfrak{D}}\mathbf{u}^{\mathcal{T}}) = \frac{1}{|\mathcal{D}|} \sum_{\varrho \in \mathfrak{Q}_{\mathcal{D}}} |\varrho| \eta_{\varrho} \left(\underbrace{\mathcal{D}^{\mathcal{D}}\mathbf{u}^{\mathcal{T}} + \frac{1}{2} \left[B_{\varrho} \boldsymbol{\delta}^{\mathcal{P}} (\mathcal{D}^{\mathcal{D}}\mathbf{u}^{\mathcal{T}}) + {}^{t} (B_{\varrho} \boldsymbol{\delta}^{\mathcal{P}} (\mathcal{D}^{\mathcal{D}}\mathbf{u}^{\mathcal{T}})) \right]}_{= \mathcal{D}_{\varrho}^{\mathcal{N}} \mathbf{u}^{\mathcal{T}}} \right)$$

Trouver
$$\mathbf{u}^{\boldsymbol{\tau}} \in \mathbb{E}_{0}^{\boldsymbol{\tau}}$$
 et $p^{\mathfrak{D}} \in \mathbb{R}^{\mathfrak{D}}$ tels que,
 $\mathbf{div}^{\mathfrak{M}}(-2\varphi_{\mathcal{D}}(\eta, \mathbf{D}^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}}) + p^{\mathfrak{D}}\mathbf{Id}) = \mathbf{f}^{\mathfrak{M}},$
 $\mathbf{div}^{\mathfrak{M}^{\ast}}(-2\varphi_{\mathcal{D}}(\eta, \mathbf{D}^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}}) + p^{\mathfrak{D}}\mathbf{Id}) = \mathbf{f}^{\mathfrak{M}^{\ast}},$ (S-m-DDFV)
 $\mathrm{Tr}(\nabla^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}}) - \lambda h_{\mathfrak{D}}^{2}\Delta^{\mathfrak{D}}p^{\mathfrak{D}} = 0,$
 $\sum_{\mathcal{D}\in\mathfrak{D}} |\mathcal{D}|p^{\mathcal{D}} = 0.$

SCHÉMA S-M-DDFV : UN CAS PARTICULIER UTILE

$$\varphi_{\mathcal{D}}(\eta, \mathcal{D}^{\mathfrak{D}}\mathbf{u}^{\tau}) = \frac{1}{|\mathcal{D}|} \sum_{\varrho \in \mathfrak{Q}_{\mathcal{D}}} |\varrho| \eta_{\varrho} \left(\underbrace{\mathcal{D}^{\mathcal{D}}\mathbf{u}^{\tau} + \frac{1}{2} \left[B_{\varrho} \boldsymbol{\delta}^{\mathcal{P}} (\mathcal{D}^{\mathcal{D}}\mathbf{u}^{\tau}) + {}^{t} (B_{\varrho} \boldsymbol{\delta}^{\mathcal{P}} (\mathcal{D}^{\mathcal{D}}\mathbf{u}^{\tau})) \right]}_{= \mathcal{D}_{\varrho}^{\mathcal{N}} \mathbf{u}^{\tau}} \right)$$

SI η est constante par mailles primales

THÉORÈME

Pour tout maillage \mathcal{T} , il existe une unique solution $(\mathbf{u}^{\boldsymbol{\tau}}, p^{\mathfrak{D}})$ au schéma S-m-DDFV pour tout $\lambda > 0$.

▶ Preuve

THÉORÈME (NOUVELLE INÉGALITÉ DE KORN DISCRÈTE)

Il existe une constante $C(\operatorname{reg}(\mathcal{T})) > 0$ telle que, pour tout $\mathbf{u}^{\mathcal{T}} \in \mathbb{E}_0^{\mathcal{T}}$

 $\|\nabla_{\mathfrak{Q}}^{\mathcal{N}}\mathbf{u}^{\boldsymbol{\tau}}\|_{2} \leq C \|\mathbf{D}_{\mathfrak{Q}}^{\mathcal{N}}\mathbf{u}^{\boldsymbol{\tau}}\|_{2}.$

▶ Preuve

Analyse du schéma S-m-DDFV

THÉORÈME

On suppose que η est Lipschitzienne sur chaque quart de diamant :

$$|\eta(x) - \eta(x')| \le C_{\eta}|x - x'|, \quad \forall \ \mathcal{Q} \in \mathfrak{Q}, \forall x, x' \in \overline{\mathcal{Q}}.$$

Si **u** est régulière sur chaque quart de diamant \mathcal{Q} et si $p \in H^1(\Omega)$, on a

$$\|\mathbf{u} - \mathbf{u}^{\boldsymbol{\tau}}\|_{2} + \|\nabla \mathbf{u} - \nabla_{\mathfrak{Q}}^{\mathcal{N}} \mathbf{u}^{\boldsymbol{\tau}}\|_{2} \leq C \ \text{size}(\mathcal{T}),$$

$$\|p - p^{\mathfrak{D}}\|_2 \leq C \operatorname{size}(\mathcal{T}).$$

REMARQUES

- L'ordre 1 est optimal.
- La construction du schéma et son analyse se généralise au cas (plus réaliste) ou on prend en compte les discontinuités de pression.

- Inégalité de Korn discrète.
- Stabilité du schéma S-m-DDFV.
- Estimation de consistance. Si **u** est régulière sur chaque quart de diamant Q, la difficulté principale est la preuve de la consistance du nouveau gradient

$$\sum_{\mathcal{Q}\in\mathfrak{Q}_{\mathcal{D}}}\int_{\mathcal{Q}}|D\mathbf{u}(x)-\mathrm{D}_{\mathcal{Q}}^{\scriptscriptstyle N}\mathbb{P}_{\boldsymbol{c}}^{\boldsymbol{\tau}}\mathbf{u}|^{2}\,dx\leq C\mathrm{size}(\mathcal{T})^{2}\sum_{\mathcal{Q}\in\mathfrak{Q}_{\mathcal{D}}}\int_{\mathcal{Q}}(|\nabla\mathbf{u}|^{2}+|\nabla^{2}\mathbf{u}|^{2})\,dx.$$

C'est délicat car la construction des nouveaux gradients ne fait intervenir que leur partie symétrique.

Retour sur le troisième cas

Lignes de courant

Comparaisons S-DDFV et S-m-DDFV

Maillage

Ordre pour S-m-DDFV =1.85 Ordre pour S-DDFV =0.83

Comparaisons S-DDFV et S-m-DDFV

Partie 3 - Plan

Les schémas DDFV et m-DDFV pour la diffusion scalaire

- Introduction
- Construction du schéma
- Analyse du schéma
- Implémentation
- Le schéma m-DDFV
 - La méthode en 1D
 - La méthode en 2D
 - DDFV vs m-DDFV
 - Un solveur non-linéaire

2 Les schémas DDFV et m-DDFV pour le problème de Stokes

- La méthode DDFV pour Stokes
- Résultats numériques
- Le problème avec viscosité discontinue
- Bilan
BILAN

- Grâce à un **terme stabilisant** (d'autres choix sont possibles), l'approche DDFV avec vitesse aux centres et aux sommets et pression sur les diamants a toutes les bonnes propriétés attendues :
 - Système bien posé et stable sur des maillages très généraux.
 - Structure algébrique du système discret identique à celle du problème continu et à celle d'autres schémas plus connus

 \rightsquigarrow adaptation de solveurs et préconditionneurs efficaces

- Estimations d'erreur :
 - Ordre 1 en pression en norme L^2
 - Ordre 1 en vitesse en norme H^1 .
 - Numériquement : ordre 2 en vitesse en norme L^2 .
- Implémentation en parcourant les arêtes (=les diamants).
- Viscosité discontinue : on garde les bonnes propriétés en adoptant l'approche S-m-DDFV.

Celle-ci est assez lourde sur le papier mais indolore numériquement.

BILAN

• Extensions possibles

- Prise en compte des discontinuités de pression.
- Conditions aux limites en contrainte ou sauts de contrainte dans le système (tension de surface).
- Dépendance non-linéaire de la viscosité en fonction de Du.
- Ajout du terme non-linéaire $\mathbf{u} \cdot \nabla \mathbf{u}$ de Navier-Stokes en utilisant les flux de masse stabilisés.
- Le cas 3D.

Fin de la troisième partie!

Preuve de l'inégalité de Korn discrète

▶ On veut montrer que $\|\nabla^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}}\|_{2} \leq \sqrt{2}\|D^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}}\|_{2}$:

$$2 \| \mathbb{D}^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}} \|_{2}^{2} = \| \nabla^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}} \|_{2}^{2} + \int_{\Omega} ({}^{t} (\nabla^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}}) : \nabla^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}}).$$

Preuve de l'inégalité de Korn discrète

 $\blacktriangleright \text{ On veut montrer que } \|\nabla^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}}\|\|_{2} \leq \sqrt{2} \|D^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}}\|\|_{2}:$

$$2 \|\!|\!| \mathbb{D}^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}} \|\!|\!|_{2}^{2} = \|\!|\!| \nabla^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}} \|\!|\!|_{2}^{2} + \int_{\Omega} ({}^{t} (\nabla^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}}) : \nabla^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}}).$$

On utilise la formule de Stokes discrète

$$\begin{split} \int_{\Omega} \left({}^{t} (\nabla^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}}) : \nabla^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}} \right) &= - \int_{\Omega} \mathbf{div}^{\boldsymbol{\tau}} \left({}^{t} (\nabla^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}}) \right) \cdot \mathbf{u}^{\boldsymbol{\tau}} \\ &= - \int_{\Omega} \mathbf{div}^{\boldsymbol{\tau}} (\operatorname{Tr}(\nabla^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}}) \operatorname{Id}) \cdot \mathbf{u}^{\boldsymbol{\tau}} \end{split}$$

Preuve de l'inégalité de Korn discrète

 $\blacktriangleright \text{ On veut montrer que } \|\nabla^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}}\|\|_{2} \leq \sqrt{2} \|D^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}}\|\|_{2}:$

$$2 \|\!|\!| \mathbb{D}^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}} \|\!|\!|_{2}^{2} = \|\!|\!| \nabla^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}} \|\!|\!|_{2}^{2} + \int_{\Omega} ({}^{t} (\nabla^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}}) : \nabla^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}}).$$

On utilise la formule de Stokes discrète

$$\begin{split} \int_{\Omega} \left({}^{t} (\nabla^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}}) : \nabla^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}} \right) &= - \int_{\Omega} \mathbf{div}^{\boldsymbol{\tau}} \left({}^{t} (\nabla^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}}) \right) \cdot \mathbf{u}^{\boldsymbol{\tau}} \\ &= - \int_{\Omega} \mathbf{div}^{\boldsymbol{\tau}} (\mathrm{Tr}(\nabla^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}}) \mathrm{Id}) \cdot \mathbf{u}^{\boldsymbol{\tau}} \end{split}$$

A nouveau par Stokes discret et $\operatorname{Tr} \nabla^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}} = (\operatorname{Id}: \nabla^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}}):$

$$\int_{\Omega} \left({}^{t} \left(\nabla^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}} \right) : \nabla^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}} \right) = \int_{\Omega} (\operatorname{Tr}(\nabla^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}}) \operatorname{Id} : \nabla^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}}) = \| \operatorname{Tr} \nabla^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}} \|_{2}^{2} \ge 0.$$

Franck BOYER VF pour les problèmes elliptiques - Partie 3

Existence et unicité pour le schéma

Soient $\mathbf{u}^{\tau} \in \mathbb{E}_0^{\tau}$ et $p^{\mathfrak{D}} \in \mathbb{R}^{\mathfrak{D}}$ tels que

$$\begin{cases} \mathbf{div}^{\mathfrak{M}}(-2\eta^{\mathfrak{D}}\mathbb{D}^{\mathfrak{D}}\mathbf{u}^{\mathcal{T}}+p^{\mathfrak{D}}\mathrm{Id})=0,\\ \mathbf{div}^{\mathfrak{M}*}(-2\eta^{\mathfrak{D}}\mathbb{D}^{\mathfrak{D}}\mathbf{u}^{\mathcal{T}}+p^{\mathfrak{D}}\mathrm{Id})=0,\\ \mathrm{Tr}(\nabla^{\mathfrak{D}}\mathbf{u}^{\mathcal{T}})-\lambda h_{\mathfrak{D}}^{2}\Delta^{\mathfrak{D}}p^{\mathfrak{D}}=0,\\ \sum_{\boldsymbol{\mathcal{D}}\in\mathfrak{D}}|\boldsymbol{\mathcal{D}}|p^{\mathcal{D}}=0. \end{cases}$$

EXISTENCE ET UNICITÉ POUR LE SCHÉMA

Soient $\mathbf{u}^{\boldsymbol{\tau}} \in \mathbb{E}_0^{\boldsymbol{\tau}}$ et $p^{\mathfrak{D}} \in \mathbb{R}^{\mathfrak{D}}$ tels que

$$\begin{cases} \mathbf{div}^{\mathfrak{M}}(-2\eta^{\mathfrak{D}}\mathbf{D}^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}}+p^{\mathfrak{D}}\mathbf{Id})=0,\\ \mathbf{div}^{\mathfrak{M}*}(-2\eta^{\mathfrak{D}}\mathbf{D}^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}}+p^{\mathfrak{D}}\mathbf{Id})=0,\\ \mathrm{Tr}(\nabla^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}})-\lambda h_{\mathfrak{D}}^{2}\Delta^{\mathfrak{D}}p^{\mathfrak{D}}=0,\\ \sum_{\boldsymbol{\nu}\in\mathfrak{D}}|\boldsymbol{\nu}|p^{\boldsymbol{\nu}}=0.\end{cases}$$

$$\begin{split} \int_{\Omega} \mathbf{div}^{\boldsymbol{\tau}} (-2\eta^{\mathfrak{D}} \mathrm{D}^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}} + p^{\mathfrak{D}} \mathrm{Id}) \cdot \mathbf{u}^{\boldsymbol{\tau}} \\ &= \int_{\Omega} \left(2\eta^{\mathfrak{D}} \mathrm{D}^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}} : \mathrm{D}^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}} \right) - \int_{\Omega} \mathrm{Tr}(\nabla^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}}) p^{\mathfrak{D}}. \end{split}$$

1/2

Existence et unicité pour le schéma

Soient
$$\mathbf{u}^{\tau} \in \mathbb{E}_0^{\tau}$$
 et $p^{\mathfrak{D}} \in \mathbb{R}^{\mathfrak{D}}$ tels que

$$\begin{cases} \mathbf{div}^{\mathfrak{M}}(-2\eta^{\mathfrak{D}}\mathbf{D}^{\mathfrak{D}}\mathbf{u}^{\mathcal{T}}+p^{\mathfrak{D}}\mathbf{Id})=0,\\ \mathbf{div}^{\mathfrak{M}*}(-2\eta^{\mathfrak{D}}\mathbf{D}^{\mathfrak{D}}\mathbf{u}^{\mathcal{T}}+p^{\mathfrak{D}}\mathbf{Id})=0,\\ \mathrm{Tr}(\nabla^{\mathfrak{D}}\mathbf{u}^{\mathcal{T}})-\lambda h_{\mathfrak{D}}^{2}\Delta^{\mathfrak{D}}p^{\mathfrak{D}}=0,\\ \sum_{\mathcal{D}\in\mathfrak{D}}|\mathcal{D}|p^{\mathcal{D}}=0.\end{cases}$$

$$\begin{split} \int_{\Omega} \mathbf{div}^{\boldsymbol{\tau}} (-2\eta^{\mathfrak{D}} \mathbf{D}^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}} + p^{\mathfrak{D}} \mathbf{Id}) \cdot \mathbf{u}^{\boldsymbol{\tau}} \\ &= \int_{\Omega} \left(2\eta^{\mathfrak{D}} \mathbf{D}^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}} : \mathbf{D}^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}} \right) - \int_{\Omega} \mathrm{Tr}(\nabla^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}}) p^{\mathfrak{D}}. \end{split}$$

L'équation de conservation de la masse donne

$$\begin{split} &-\int_{\Omega} \operatorname{Tr}(\nabla^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}}) p^{\mathfrak{D}} = -\int_{\Omega} \lambda h_{\mathfrak{D}}^{2} \Delta^{\mathfrak{D}} p^{\mathfrak{D}} p^{\mathfrak{D}} = \lambda |p^{\mathfrak{D}}|_{h}^{2},\\ &\text{où } |p^{\mathfrak{D}}|_{h}^{2} = \sum_{s \in \mathfrak{S}} (h_{\mathcal{D}}^{2} + h_{\mathcal{D}'}^{2}) (p^{\mathcal{D}'} - p^{\mathcal{D}})^{2} \sim h^{2} ||p||_{H^{1}}^{2}. \end{split}$$

On utilise l'inégalité de Korn discrète

$$0 = \int_{\Omega} \mathbf{div}^{\tau} (-2\eta^{\mathfrak{D}} \mathbf{D}^{\mathfrak{D}} \mathbf{u}^{\tau} + p^{\mathfrak{D}} \mathbf{Id}) \cdot \mathbf{u}^{\tau} \ge \underline{\mathbf{C}}_{\eta} \| \nabla^{\mathfrak{D}} \mathbf{u}^{\tau} \|_{2}^{2} + \lambda |p^{\mathfrak{D}}|_{h}^{2}.$$

On utilise l'inégalité de Korn discrète

$$0 = \int_{\Omega} \mathbf{div}^{\tau} (-2\eta^{\mathfrak{D}} \mathbf{D}^{\mathfrak{D}} \mathbf{u}^{\tau} + p^{\mathfrak{D}} \mathbf{Id}) \cdot \mathbf{u}^{\tau} \ge \underline{\mathbf{C}}_{\eta} \| \nabla^{\mathfrak{D}} \mathbf{u}^{\tau} \|_{2}^{2} + \lambda |p^{\mathfrak{D}}|_{h}^{2}.$$

On trouve donc

$$|\!|\!| \nabla^{\mathfrak{D}} \mathbf{u}^{\boldsymbol{\tau}} |\!|\!|_2^2 = 0 \quad \text{et} \quad |p^{\mathfrak{D}}|_h^2 = 0.$$

D'où $\mathbf{u}^{\boldsymbol{\tau}} = \mathbf{0}$ et $p^{\mathfrak{D}} = c$. Par la condition de normalisation $\sum_{\mathcal{D} \in \mathfrak{D}} |\mathcal{D}| p^{\mathcal{D}} = 0$, on obtient $p^{\mathfrak{D}} = 0$.

Preuve de la stabilité

LEMME

Soit \mathcal{T} un maillage de Ω . Il existe C > 0 qui dépend seulement de $\operatorname{reg}(\mathcal{T})$, telle que pour tout $\mathbf{v} \in (H^1(\Omega))^2$ et tout $p^{\mathfrak{D}} \in \mathbb{R}^{\mathfrak{D}}$, on a

$$\sum_{\mathcal{D}\in\mathfrak{D}}\int_{\mathcal{D}}p^{\mathcal{D}}\left(\operatorname{div}^{\mathcal{D}}(\mathbf{v}^{\boldsymbol{\tau}})-\operatorname{div}(\mathbf{v})\right)dx\leq C|p^{\mathfrak{D}}|_{h}\|\mathbf{v}\|_{H^{1}}.$$

 $o\hat{\mathbf{v}} \, \mathbf{v}^{\tau} = \mathbb{P}_{m}^{\tau} \mathbf{v}$ est la projection-moyenne de \mathbf{v} sur le maillage. Preuve

Preuve de la stabilité

LEMME

Soit \mathcal{T} un maillage de Ω . Il existe C > 0 qui dépend seulement de $\operatorname{reg}(\mathcal{T})$, telle que pour tout $\mathbf{v} \in (H^1(\Omega))^2$ et tout $p^{\mathfrak{D}} \in \mathbb{R}^{\mathfrak{D}}$, on a

$$\sum_{\mathcal{D}\in\mathfrak{D}}\int_{\mathcal{D}}p^{\mathcal{D}}\left(\operatorname{div}^{\mathcal{D}}(\mathbf{v}^{\boldsymbol{\tau}})-\operatorname{div}(\mathbf{v})\right)dx\leq C|p^{\mathfrak{D}}|_{h}\|\mathbf{v}\|_{H^{1}}.$$

où $\mathbf{v}^{\tau} = \mathbb{P}_{m}^{\tau} \mathbf{v}$ est la projection-moyenne de \mathbf{v} sur le maillage. Preuve

- D'après le lemme de Necas, il existe $\mathbf{v} \in (H_0^1(\Omega))^2$ tel que div $(\mathbf{v}) = -p^{\mathfrak{D}}, \quad \|\mathbf{v}\|_{H^1} < C \|p^{\mathfrak{D}}\|_{L^2}.$
- On calcule $B(\mathbf{u}^{\tau}, p^{\mathfrak{D}}, \mathbf{v}^{\tau}, 0)$ et, avec le lemme, on trouve $B(\mathbf{u}^{\tau}, p^{\mathfrak{D}}, \mathbf{v}^{\tau}, 0) \ge C_1 \|p^{\mathfrak{D}}\|_{L^2}^2 - C_2 \|\nabla^{\mathfrak{D}} \mathbf{u}^{\tau}\|_{L^2}^2 - C_3 |p^{\mathfrak{D}}|_h^2.$
- On a déjà vu que

$$B(\mathbf{u}^{\tau}, p^{\mathfrak{D}}, \mathbf{u}^{\tau}, p^{\mathfrak{D}}) \ge C \|\nabla^{\mathfrak{D}} \mathbf{u}^{\tau}\|_{L^{2}}^{2} + \lambda |p^{\mathfrak{D}}|_{h}^{2}.$$

• Pour $\xi > 0$ assez petit, on pose $\widetilde{\mathbf{u}}^{\tau} = \mathbf{u}^{\tau} + \xi \mathbf{v}^{\tau}, \, \widetilde{p}^{\mathfrak{D}} = p^{\mathfrak{D}}.$

PREUVE DE LA STABILITÉ

• Expression de la divergence discrète de $\mathbf{u}^{\boldsymbol{\tau}}$

$$\operatorname{div}^{\mathcal{D}} \mathbf{v}^{\boldsymbol{\tau}} = \frac{1}{2|\mathcal{D}|} \left(|\sigma| (\mathbf{v}_{\mathcal{L}} - \mathbf{v}_{\kappa}) \cdot \boldsymbol{\nu} + |\sigma^*| (\mathbf{v}_{\mathcal{L}^*} - \mathbf{v}_{\kappa^*}) \cdot \boldsymbol{\nu}^* \right).$$
$$\Longrightarrow \operatorname{div}^{\mathcal{D}} \mathbf{v}^{\boldsymbol{\tau}} = \frac{1}{|\mathcal{D}|} \sum_{\boldsymbol{\mathfrak{s}} \in \mathcal{E}_{\mathcal{D}}} m_{\boldsymbol{\mathfrak{s}}} \frac{\mathbf{v}_{\kappa} + \mathbf{v}_{\kappa^*}}{2} \cdot \boldsymbol{\nu}_{\mathcal{D}, \boldsymbol{\mathfrak{s}}}.$$

PREUVE DE LA STABILITÉ

 \bullet Expression de la divergence discrète de $\mathbf{u}^{\boldsymbol{\tau}}$

$$\operatorname{div}^{\mathcal{D}} \mathbf{v}^{\boldsymbol{\tau}} = \frac{1}{2|\mathcal{D}|} \left(|\sigma| (\mathbf{v}_{\mathcal{L}} - \mathbf{v}_{\kappa}) \cdot \boldsymbol{\nu} + |\sigma^*| (\mathbf{v}_{\mathcal{L}^*} - \mathbf{v}_{\kappa^*}) \cdot \boldsymbol{\nu}^* \right).$$
$$\Longrightarrow \operatorname{div}^{\mathcal{D}} \mathbf{v}^{\boldsymbol{\tau}} = \frac{1}{|\mathcal{D}|} \sum_{\mathfrak{s} \in \mathcal{E}_{\mathcal{D}}} m_{\mathfrak{s}} \frac{\mathbf{v}_{\kappa} + \mathbf{v}_{\kappa^*}}{2} \cdot \boldsymbol{\nu}_{\mathcal{D},\mathfrak{s}}.$$

• Par conservativité locale :

$$\int_{\mathcal{D}} (\operatorname{div}^{\mathcal{D}} \mathbf{v}^{\mathcal{T}} - \operatorname{div} \mathbf{v}) = \sum_{\mathfrak{s} \in \mathcal{E}_{\mathcal{D}}} m_{\mathfrak{s}} \underbrace{\frac{1}{m_{\mathfrak{s}}} \int_{\mathfrak{s}} \left(\frac{\mathbf{v}_{\kappa} + \mathbf{v}_{\kappa^{*}}}{2} - \mathbf{v} \right)}_{\overset{\text{def}}{=} R_{\mathfrak{s}}(\mathbf{v})} \cdot \boldsymbol{\nu}_{\mathcal{D}, \mathfrak{s}}.$$

$$\sum_{\mathcal{D}\in\mathfrak{D}} p^{\mathcal{D}} \int_{\mathcal{D}} (\operatorname{div}^{\mathcal{D}} \mathbf{v}^{\boldsymbol{\tau}} - \operatorname{div} \mathbf{v}) = \sum_{\mathfrak{s}} m_{\mathfrak{s}} (p^{\mathcal{D}} - p^{\mathcal{D}'}) R_{\mathfrak{s}}(\mathbf{v}) \cdot \boldsymbol{\nu}_{\mathfrak{s}}.$$

Preuve de la stabilité

• Par conservativité locale :

$$\int_{\mathcal{D}} (\operatorname{div}^{\mathcal{D}} \mathbf{v}^{\mathcal{T}} - \operatorname{div} \mathbf{v}) = \sum_{\mathfrak{s} \in \mathcal{E}_{\mathcal{D}}} m_{\mathfrak{s}} \underbrace{\frac{1}{m_{\mathfrak{s}}} \int_{\mathfrak{s}} \left(\frac{\mathbf{v}_{\kappa} + \mathbf{v}_{\kappa^*}}{2} - \mathbf{v} \right)}_{\overset{\text{def}}{=} R_{\mathfrak{s}}(\mathbf{v})} \cdot \boldsymbol{\nu}_{\mathcal{D}, \mathfrak{s}}.$$

$$\sum_{\mathcal{D}\in\mathfrak{D}} p^{\mathcal{D}} \int_{\mathcal{D}} (\operatorname{div}^{\mathcal{D}} \mathbf{v}^{\mathcal{T}} - \operatorname{div} \mathbf{v}) = \sum_{\mathfrak{s}} m_{\mathfrak{s}} (p^{\mathcal{D}} - p^{\mathcal{D}'}) R_{\mathfrak{s}}(\mathbf{v}) \cdot \boldsymbol{\nu}_{\mathfrak{s}}.$$

• Par Cauchy-Schwarz on a

$$\left|\sum_{\mathcal{D}\in\mathfrak{D}} p^{\mathcal{D}} \int_{\mathcal{D}} (\operatorname{div}^{\mathcal{D}} \mathbf{v}^{\mathcal{T}} - \operatorname{div} \mathbf{v}) \right| \leq \underbrace{\left(\sum_{\mathfrak{s}} m_{\mathfrak{s}}^{2} (p^{\mathcal{D}} - p^{\mathcal{D}'})^{2}\right)^{\frac{1}{2}}}_{\leq C ||p^{\mathfrak{D}}|_{h}} \underbrace{\left(\sum_{\mathfrak{s}} |R_{\mathfrak{s}}(\mathbf{v})|^{2}\right)^{\frac{1}{2}}}_{\leq C ||\mathbf{v}||_{H^{1}}}$$
(Retour

On a un problème linéaire

$$\sum_{\varrho \in \mathfrak{Q}_{\mathcal{D}}} |\varrho| \varphi_{\varrho}(\boldsymbol{\delta}^{\mathcal{P}}) B_{\varrho} = 0 \Longleftrightarrow \mathcal{A} \boldsymbol{\delta}^{\mathcal{P}} = \mathcal{B}(D^{\mathcal{D}} \mathbf{u}^{\mathcal{T}}),$$

avec $\mathcal{A}: M_{4,2}(\mathbb{R}) \mapsto M_{2,4}(\mathbb{R})$ et $\mathcal{B}: M_{2,2}(\mathbb{R}) \mapsto M_{4,2}(\mathbb{R})$.

On a un problème linéaire

$$\sum_{\varrho \in \mathfrak{Q}_{\mathcal{D}}} |\varrho| \varphi_{\varrho}(\boldsymbol{\delta}^{\mathcal{P}}) B_{\varrho} = 0 \Longleftrightarrow \mathcal{A} \boldsymbol{\delta}^{\mathcal{P}} = \mathcal{B}(D^{\mathcal{D}} \mathbf{u}^{\mathcal{T}}),$$

avec $\mathcal{A} : M_{4,2}(\mathbb{R}) \mapsto M_{2,4}(\mathbb{R})$ et $\mathcal{B} : M_{2,2}(\mathbb{R}) \mapsto M_{4,2}(\mathbb{R})$. ETUDIONS LE NOYAU DE \mathcal{A} On multiplie par $\delta^{\mathcal{P}}$ et on prend la trace

$$\sum_{\varrho \in \mathfrak{Q}_{\mathcal{D}}} |\varrho| (\underbrace{2\eta_{\varrho} \mathcal{D}^{\mathcal{D}} \mathbf{u}^{\mathcal{T}} + \eta_{\varrho} (B_{\varrho} \boldsymbol{\delta}^{\mathcal{P}} + {}^{t} \boldsymbol{\delta}^{\mathcal{P}} {}^{t} B_{\varrho})}_{\varphi_{\varrho} (\boldsymbol{\delta}^{\mathcal{P}})} : B_{\varrho} \boldsymbol{\delta}^{\mathcal{P}}) = 0.$$

Si donc $\mathcal{B}(D^{\mathcal{D}}\mathbf{u}^{\boldsymbol{\tau}})$ est nul, on obtient

$$\sum_{\varrho \in \mathfrak{Q}_{\mathcal{D}}} |\varrho| \eta_{\varrho} ({}^{t} \boldsymbol{\delta}^{\mathcal{D} t} B_{\varrho} + B_{\varrho} \boldsymbol{\delta}^{\mathcal{D}} : B_{\varrho} \boldsymbol{\delta}^{\mathcal{D}}) = \sum_{\varrho \in \mathfrak{Q}_{\mathcal{D}}} |\varrho| \eta_{\varrho} |\!|\!| B_{\varrho} \boldsymbol{\delta}^{\mathcal{D}} + {}^{t} \boldsymbol{\delta}^{\mathcal{D} t} B_{\varrho} |\!|\!|_{\mathcal{F}}^{2} = 0.$$

On en déduit

$${}^{t}\boldsymbol{\delta}^{\boldsymbol{\mathcal{D}}\,t}B_{\boldsymbol{\mathcal{Q}}} + B_{\boldsymbol{\mathcal{Q}}}\boldsymbol{\delta}^{\boldsymbol{\mathcal{D}}} = 0, \quad \forall \; \boldsymbol{\mathcal{Q}} \in \mathfrak{Q}_{\boldsymbol{\mathcal{D}}}.$$

Preuve de l'existence de $\delta^{\mathcal{P}}$

- 2 cas à considérer
 - Cas 1 : Si $\alpha_{\kappa} \neq \alpha_{\mathcal{L}}$,

$${}^{t}\boldsymbol{\delta}^{\mathcal{D}t}B_{\mathcal{Q}} + B_{\mathcal{Q}}\boldsymbol{\delta}^{\mathcal{D}} = 0, \quad \forall \ \mathcal{Q} \in \mathfrak{Q}_{\mathcal{D}}, \Longrightarrow \boldsymbol{\delta}^{\mathcal{D}} = 0.$$

PROPOSITION

Il existe un **unique** $\delta^{\mathcal{P}}$ vérifiant $\mathcal{A}\delta^{\mathcal{P}} = \mathcal{B}(D^{\mathcal{D}}\mathbf{u}^{\mathcal{T}})$. **MAIS** on a seulement une estimation

$$\|\boldsymbol{\delta}^{\boldsymbol{\mathcal{P}}}\| \leq \frac{C}{|\sin(\alpha_{\kappa} - \alpha_{\mathcal{L}})|} \| \mathbf{D}^{\mathcal{P}} \mathbf{u}^{\boldsymbol{\mathcal{T}}} \|.$$

MORALITÉ : Le maillage dual barycentrique est à éviter si α_{κ} et $\alpha_{\mathcal{L}}$ sont trop proches !

Preuve de l'existence de $\delta^{\mathcal{P}}$

- 2 cas à considérer
 - Cas 1 : Si $\alpha_{\kappa} \neq \alpha_{\mathcal{L}}$,

$${}^{t}\boldsymbol{\delta}^{\boldsymbol{\mathcal{D}} t}B_{\mathcal{Q}} + B_{\mathcal{Q}}\boldsymbol{\delta}^{\boldsymbol{\mathcal{D}}} = 0, \quad \forall \ \mathcal{Q} \in \mathfrak{Q}_{\mathcal{D}}, \Longrightarrow \boldsymbol{\delta}^{\boldsymbol{\mathcal{D}}} = 0.$$

• Cas 2 : Si $\alpha_{\mathcal{K}} = \alpha_{\mathcal{L}},$

 ${}^{t}\boldsymbol{\delta}^{\boldsymbol{\mathcal{D}} t}B_{\mathcal{Q}} + B_{\mathcal{Q}}\boldsymbol{\delta}^{\boldsymbol{\mathcal{P}}} = 0, \quad \forall \ \mathcal{Q} \in \mathfrak{Q}_{\mathcal{D}}, \text{ implique seulement}$

$$\boldsymbol{\delta^{\mathcal{P}}} \in \operatorname{Vect}(\boldsymbol{\delta_0}), \quad \boldsymbol{\delta_0} \stackrel{\text{def}}{=} \begin{pmatrix} -\frac{{}^t\boldsymbol{\nu}}{|\boldsymbol{\sigma_{\mathcal{K}}}|} \\ \frac{{}^t\boldsymbol{\nu}}{|\boldsymbol{\sigma_{\mathcal{L}}}|} \\ \frac{{}^t\boldsymbol{\nu}^*}{|\boldsymbol{\sigma_{\mathcal{K}^*}}|} \\ -\frac{{}^t\boldsymbol{\nu}}{|\boldsymbol{\sigma_{\mathcal{L}^*}}|} \end{pmatrix}$$

- Néanmoins, $\mathcal{B}(D^{\mathcal{D}}\mathbf{u}^{\mathcal{T}})$ est toujours dans l'image de \mathcal{A} .
- On détermine complètement $\delta^{\mathcal{P}}$ en demandant $(\delta^{\mathcal{P}}, \delta_0) = 0$.
- On a alors une estimation

$$\|\boldsymbol{\delta}^{\boldsymbol{\mathcal{D}}}\| \leq C \|\mathbf{D}^{\mathcal{D}}\mathbf{u}^{\boldsymbol{\mathcal{T}}}\|.$$

• Retour 83/ 76

EXISTENCE ET UNICITÉ POUR S-M-DDFV

Soient $\mathbf{u}^{\tau} \in \mathbb{E}_0^{\tau}$ et $p^{\mathfrak{D}} \in \mathbb{R}^{\mathfrak{D}}$ tels que

$$\begin{cases} \operatorname{\mathbf{div}}^{\boldsymbol{\tau}}(-2\varphi^{\mathfrak{D}}(\eta, \mathrm{D}^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}}) + p^{\mathfrak{D}}\mathrm{Id}) = 0, \\ \operatorname{Tr}(\nabla^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}}) - \lambda h_{\mathfrak{D}}^{2}\Delta^{\mathfrak{D}}p^{\mathfrak{D}} = 0, \\ \sum_{\boldsymbol{\nu}\in\mathfrak{D}} |\boldsymbol{\nu}|p^{\boldsymbol{\nu}} = 0. \end{cases}$$

EXISTENCE ET UNICITÉ POUR S-M-DDFV

Soient
$$\mathbf{u}^{\tau} \in \mathbb{E}_{0}^{\tau}$$
 et $p^{\mathfrak{D}} \in \mathbb{R}^{\mathfrak{D}}$ tels que

$$\begin{cases} \mathbf{div}^{\tau}(-2\varphi^{\mathfrak{D}}(\eta, \mathbf{D}^{\mathfrak{D}}\mathbf{u}^{\tau}) + p^{\mathfrak{D}}\mathbf{Id}) = 0, \\ \operatorname{Tr}(\nabla^{\mathfrak{D}}\mathbf{u}^{\tau}) - \lambda h_{\mathfrak{D}}^{2}\Delta^{\mathfrak{D}}p^{\mathfrak{D}} = 0, \\ \sum_{\mathcal{D}\in\mathfrak{D}} |\mathcal{D}|p^{\mathcal{D}} = 0. \end{cases}$$

$$\int_{\Omega} \mathbf{div}^{\boldsymbol{\tau}} (-2\varphi^{\mathfrak{D}}(\eta, \mathbf{D}^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}}) + p^{\mathfrak{D}}\mathbf{Id}) \cdot \mathbf{u}^{\boldsymbol{\tau}} = \int_{\Omega} \left(2\varphi^{\mathfrak{D}}(\eta, \mathbf{D}^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}}) : \nabla^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}} \right) + \lambda |p^{\mathfrak{D}}|_{h}^{2}$$

$$\int_{\Omega} 2(\varphi^{\mathfrak{D}}(\eta, \mathrm{D}^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}}) : \nabla^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}})$$
$$= \sum_{\mathcal{D}\in\mathfrak{D}} \sum_{\varrho\in\mathfrak{Q}_{\mathcal{D}}} |\varrho| \eta_{\varrho} (\mathrm{D}_{\varrho}^{\mathcal{N}}\mathbf{u}^{\boldsymbol{\tau}} : 2\mathrm{D}^{\mathcal{D}}\mathbf{u}^{\boldsymbol{\tau}})$$

EXISTENCE ET UNICITÉ POUR S-M-DDFV

Solient
$$\mathbf{u}^{\boldsymbol{\tau}} \in \mathbb{E}_{0}^{\boldsymbol{\tau}}$$
 et $p^{\mathfrak{D}} \in \mathbb{R}^{\mathfrak{D}}$ tels que

$$\begin{cases} \mathbf{div}^{\boldsymbol{\tau}}(-2\varphi^{\mathfrak{D}}(\eta, \mathbf{D}^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}}) + p^{\mathfrak{D}}\mathbf{Id}) = 0, \\ \operatorname{Tr}(\nabla^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}}) - \lambda h_{\mathfrak{D}}^{2}\Delta^{\mathfrak{D}}p^{\mathfrak{D}} = 0, \\ \sum_{\mathcal{D}\in\mathfrak{D}} |\mathcal{D}|p^{\mathcal{D}} = 0. \end{cases}$$

$$\int_{\Omega} \mathbf{div}^{\boldsymbol{\tau}} (-2\varphi^{\mathfrak{D}}(\eta, \mathrm{D}^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}}) + p^{\mathfrak{D}}\mathrm{Id}) \cdot \mathbf{u}^{\boldsymbol{\tau}} = \int_{\Omega} \left(2\varphi^{\mathfrak{D}}(\eta, \mathrm{D}^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}}) : \nabla^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}} \right) + \lambda |p^{\mathfrak{D}}|_{h}^{2}.$$

$$\int_{\Omega} 2(\varphi^{\mathfrak{D}}(\eta, \mathbf{D}^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}}) : \nabla^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}})$$
$$= \sum_{\mathcal{D}\in\mathfrak{D}} \sum_{\varrho\in\mathfrak{Q}_{\mathcal{D}}} |\varrho| \eta_{\varrho} (\mathbf{D}_{\varrho}^{\mathcal{N}}\mathbf{u}^{\boldsymbol{\tau}} : 2\mathbf{D}_{\varrho}^{\mathcal{N}}\mathbf{u}^{\boldsymbol{\tau}} \underbrace{-B_{\varrho}\boldsymbol{\delta}^{\boldsymbol{\mathcal{P}}} - {}^{t}\boldsymbol{\delta}^{\boldsymbol{\mathcal{P}}t}B_{\varrho}}_{\text{contribution nulle}})$$

car, par définition de $\delta^{\mathcal{P}}$, on a

$$\sum_{\varrho \in \mathfrak{Q}_{\mathcal{D}}} |_{\varrho} |_{\eta_{\varrho}} (\mathbf{D}_{\varrho}^{\mathcal{N}} \mathbf{u}^{\boldsymbol{\tau}} : B_{\varrho} \boldsymbol{\delta}^{\boldsymbol{\mathcal{P}}}) = 0.$$

84/76

On utilise l'inégalité de Korn pour le nouveau gradient

$$0 = \int_{\Omega} \left(2\varphi^{\mathfrak{D}}(\eta, \mathcal{D}^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}}) : \nabla^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}} \right) + \lambda |p^{\mathfrak{D}}|_{h}^{2} \ge C |\!|\!| \nabla_{\mathfrak{Q}}^{\mathcal{N}}\mathbf{u}^{\boldsymbol{\tau}} |\!|\!|_{2}^{2} + \lambda |p^{\mathfrak{D}}|_{h}^{2}.$$

Il vient

$$|\!|\!| \nabla^{\scriptscriptstyle \mathcal{N}}_{\mathfrak{Q}} \mathbf{u}^{\boldsymbol{\tau}} |\!|\!|_2^2 = 0 \quad \text{et} \quad |p^{\mathfrak{D}}|_h^2 = 0.$$

et donc

$$\mathbf{u}^{\boldsymbol{\tau}} = \mathbf{0},$$
$$p^{\mathfrak{D}} = 0.$$

◀ Retour

2/2

• Comme
$$\sum_{\varrho \in \mathfrak{Q}_{\mathcal{D}}} |\varrho| B_{\varrho} = 0$$
, on trouve

$$\sum_{\boldsymbol{\varrho} \in \mathfrak{Q}_{\mathcal{D}}} |\boldsymbol{\varrho}| \| \nabla_{\boldsymbol{\varrho}}^{\mathcal{N}} \mathbf{u}^{\boldsymbol{\tau}} \|_{\mathcal{F}}^{2} = |\mathcal{D}| \| \nabla^{\mathcal{D}} \mathbf{u}^{\boldsymbol{\tau}} \|_{\mathcal{F}}^{2} + \sum_{\boldsymbol{\varrho} \in \mathfrak{Q}_{\mathcal{D}}} |\boldsymbol{\varrho}| \| B_{\boldsymbol{\varrho}} \boldsymbol{\delta}^{\boldsymbol{\tau}} \|_{\mathcal{F}}^{2}.$$

• Comme
$$\sum_{\varrho \in \mathfrak{Q}_{\mathcal{D}}} |\varrho| B_{\varrho} = 0$$
, on trouve

$$\sum_{\varrho \in \mathfrak{Q}_{\mathcal{D}}} |\varrho| \| \nabla_{\varrho}^{\mathcal{N}} \mathbf{u}^{\mathcal{T}} \|_{\mathcal{F}}^{2} = |\mathcal{D}| \| \nabla^{\mathcal{D}} \mathbf{u}^{\mathcal{T}} \|_{\mathcal{F}}^{2} + \sum_{\varrho \in \mathfrak{Q}_{\mathcal{D}}} |\varrho| \| B_{\varrho} \boldsymbol{\delta}^{\mathcal{P}} \|_{\mathcal{F}}^{2}.$$

• On démontre (c'est la partie assez difficile) que

$$\sum_{\boldsymbol{\varrho}\in\mathfrak{Q}_{\mathcal{D}}}|\boldsymbol{\varrho}||\!|\!|B_{\boldsymbol{\varrho}}\boldsymbol{\delta}^{\boldsymbol{\mathcal{D}}}|\!|\!|_{\mathcal{F}}^{2} \leq C\sum_{\boldsymbol{\varrho}\in\mathfrak{Q}_{\mathcal{D}}}|\boldsymbol{\varrho}||\!|\!|B_{\boldsymbol{\varrho}}\boldsymbol{\delta}^{\boldsymbol{\mathcal{D}}}+{}^{t}\boldsymbol{\delta}^{\boldsymbol{\mathcal{D}}t}B_{\boldsymbol{\varrho}}|\!|\!|_{\mathcal{F}}^{2},$$

• Comme
$$\sum_{\varrho \in \mathfrak{Q}_{\mathcal{D}}} |\varrho| B_{\varrho} = 0$$
, on trouve

$$\sum_{\varrho \in \mathfrak{Q}_{\mathcal{D}}} |\varrho| \| \nabla_{\varrho}^{\mathcal{N}} \mathbf{u}^{\mathcal{T}} \|_{\mathcal{F}}^{2} = |\mathcal{D}| \| \nabla^{\mathcal{D}} \mathbf{u}^{\mathcal{T}} \|_{\mathcal{F}}^{2} + \sum_{\varrho \in \mathfrak{Q}_{\mathcal{D}}} |\varrho| \| B_{\varrho} \boldsymbol{\delta}^{\mathcal{D}} \|_{\mathcal{F}}^{2}.$$

• On démontre (c'est la partie assez difficile) que

$$\sum_{\boldsymbol{\varrho}\in\mathfrak{Q}_{\mathcal{D}}}|\boldsymbol{\varrho}||\!|\!|B_{\boldsymbol{\varrho}}\boldsymbol{\delta}^{\boldsymbol{\mathcal{D}}}|\!|\!|_{\mathcal{F}}^{2} \leq C\sum_{\boldsymbol{\varrho}\in\mathfrak{Q}_{\mathcal{D}}}|\boldsymbol{\varrho}||\!|\!|B_{\boldsymbol{\varrho}}\boldsymbol{\delta}^{\boldsymbol{\mathcal{D}}}+{}^{t}\boldsymbol{\delta}^{\boldsymbol{\mathcal{D}}t}B_{\boldsymbol{\varrho}}|\!|\!|_{\mathcal{F}}^{2},$$

• On utilise la définition de $\delta^{\mathcal{P}}$ pour obtenir

$$\sum_{\mathcal{Q}\in\mathfrak{Q}_{\mathcal{D}}} |\varrho| |\!|\!|\!| B_{\mathcal{Q}} \boldsymbol{\delta}^{\mathcal{D}} + {}^{t} \boldsymbol{\delta}^{\mathcal{D}} {}^{t} B_{\mathcal{Q}} |\!|\!|_{\mathcal{F}}^{2} \leq C |\mathcal{D}| |\!|\!|\!| \mathbb{D}^{\mathcal{D}} \mathbf{u}^{\mathcal{T}} |\!|_{\mathcal{F}}^{2}.$$

Il s'en suit

$$\sum_{\mathcal{Q} \in \mathfrak{Q}_{\mathcal{D}}} \| \mathcal{Q} \| \| \nabla_{\mathcal{Q}}^{\mathcal{N}} \mathbf{u}^{\boldsymbol{\tau}} \| \|_{\mathcal{F}}^{2} \leq |\mathcal{D}| \| \| \nabla^{\mathcal{D}} \mathbf{u}^{\boldsymbol{\tau}} \| \|_{\mathcal{F}}^{2} + C |\mathcal{D}| \| \| D^{\mathcal{D}} \mathbf{u}^{\boldsymbol{\tau}} \| \|_{\mathcal{F}}^{2}$$

• Comme
$$\sum_{\varrho \in \mathfrak{Q}_{\mathcal{D}}} |\varrho| B_{\varrho} = 0$$
, on trouve
 $\sum_{\varrho \in \mathfrak{Q}_{\mathcal{D}}} |\varrho| \| \nabla_{\varrho}^{\mathcal{N}} \mathbf{u}^{\tau} \|_{\mathcal{F}}^{2} = |\mathcal{D}| \| \nabla^{\mathcal{D}} \mathbf{u}^{\tau} \|_{\mathcal{F}}^{2} + \sum_{\varrho \in \mathfrak{Q}_{\mathcal{D}}} |\varrho| \| B_{\varrho} \boldsymbol{\delta}^{\mathcal{D}} \|_{\mathcal{F}}^{2}.$

• On démontre (c'est la partie assez difficile) que

$$\sum_{\boldsymbol{\varrho}\in\mathfrak{Q}_{\mathcal{D}}}|\boldsymbol{\varrho}||\!|\!|B_{\boldsymbol{\varrho}}\boldsymbol{\delta}^{\boldsymbol{\mathcal{D}}}|\!|\!|_{\mathcal{F}}^{2} \leq C\sum_{\boldsymbol{\varrho}\in\mathfrak{Q}_{\mathcal{D}}}|\boldsymbol{\varrho}||\!|\!|B_{\boldsymbol{\varrho}}\boldsymbol{\delta}^{\boldsymbol{\mathcal{D}}}+{}^{t}\boldsymbol{\delta}^{\boldsymbol{\mathcal{D}}t}B_{\boldsymbol{\varrho}}|\!|\!|_{\mathcal{F}}^{2},$$

• On utilise la définition de $\delta^{\mathcal{P}}$ pour obtenir

$$\sum_{\mathcal{Q}\in\mathfrak{Q}_{\mathcal{D}}} |\varrho| |\!|\!| B_{\mathcal{Q}} \boldsymbol{\delta}^{\boldsymbol{\mathcal{D}}} + {}^{t} \boldsymbol{\delta}^{\boldsymbol{\mathcal{D}}} {}^{t} B_{\mathcal{Q}} |\!|\!|_{\mathcal{F}}^{2} \leq C |\mathcal{D}| |\!|\!|\!| \mathbb{D}^{\mathcal{D}} \mathbf{u}^{\boldsymbol{\mathcal{T}}} |\!|_{\mathcal{F}}^{2}.$$

Il s'en suit

$$\sum_{\mathcal{Q}\in\mathfrak{Q}_{\mathcal{D}}}|\varrho||\!|\!|\!|\nabla^{\mathcal{N}}_{\mathcal{Q}}\mathbf{u}^{\boldsymbol{\tau}}|\!|\!|^{2}_{\mathcal{F}} \leq |\mathcal{D}||\!|\!|\!|\nabla^{\mathcal{D}}\mathbf{u}^{\boldsymbol{\tau}}|\!|^{2}_{\mathcal{F}} + C|\mathcal{D}||\!|\!|\!|\!|\mathrm{D}^{\mathcal{D}}\mathbf{u}^{\boldsymbol{\tau}}|\!|^{2}_{\mathcal{F}}$$

• Korn DDFV "standard" + comparaison entre $\mathbb{D}_{\mathfrak{Q}}^{\mathcal{N}}$ et $\mathbb{D}^{\mathfrak{D}}$ $\|\nabla_{\mathfrak{Q}}^{\mathcal{N}}\mathbf{u}^{\tau}\|_{2}^{2} \leq C \|\mathbb{D}^{\mathfrak{D}}\mathbf{u}^{\tau}\|_{2}^{2} \leq C' \|\mathbb{D}_{\mathfrak{Q}}^{\mathcal{N}}\mathbf{u}^{\tau}\|_{2}^{2}.$ (Retour

dans le cas d'un maillage DDFV

(Andreianov-Gutnic-Wittbold, '04)

• Rappel :

$$\forall \mathcal{D} \in \mathfrak{D} : |\mathcal{D}| = \frac{1}{2} (\sin \alpha_{\mathcal{D}}) |\sigma| d_{\mathcal{KL}} \Rightarrow |\sigma| d_{\mathcal{KL}} \leq C(\operatorname{reg}(\mathcal{T})) |\mathcal{D}|.$$

- On réutilise $\chi_{\sigma}(x, y)$, une direction ξ et y(x) la projection d'un point $x \in \Omega$ sur le bord selon ξ .
- Somme télescopique :

$$|u_{\kappa}|^{p} = |u_{\kappa_{1}}|^{p} = \sum_{i=1}^{m-1} (|u_{\kappa_{i}}|^{p} - |u_{\kappa_{i+1}}|^{p}) + |u_{\kappa_{m}}|^{p},$$

dans le cas d'un maillage DDFV

(Andreianov–Gutnic–Wittbold, '04)

• Rappel :

$$\forall \mathcal{D} \in \mathfrak{D} : |\mathcal{D}| = \frac{1}{2} (\sin \alpha_{\mathcal{D}}) |\sigma| d_{\mathcal{KL}} \Rightarrow |\sigma| d_{\mathcal{KL}} \leq C(\operatorname{reg}(\mathcal{T})) |\mathcal{D}|.$$

- On réutilise $\chi_{\sigma}(x, y)$, une direction ξ et y(x) la projection d'un point $x \in \Omega$ sur le bord selon ξ .
- Somme télescopique :

$$|u_{\kappa}|^{p} \leq C_{p} \left(\sum_{i=1}^{m-1} |u_{\kappa_{i}} - u_{\kappa_{i+1}}| (|u_{\kappa_{i}}|^{p-1} + |u_{\kappa_{i+1}}|^{p-1}) \right) + |u_{\kappa_{m}}|^{p}.$$

dans le cas d'un maillage DDFV

(Andreianov–Gutnic–Wittbold, '04)

• Rappel :

$$\forall \mathcal{D} \in \mathfrak{D} : |\mathcal{D}| = \frac{1}{2} (\sin \alpha_{\mathcal{D}}) |\sigma| d_{\mathcal{KL}} \Rightarrow |\sigma| d_{\mathcal{KL}} \leq C(\operatorname{reg}(\mathcal{T})) |\mathcal{D}|.$$

- On réutilise $\chi_{\sigma}(x, y)$, une direction ξ et y(x) la projection d'un point $x \in \Omega$ sur le bord selon ξ .
- Somme télescopique :

$$\sum_{\kappa \in \mathfrak{M}} |\kappa| |u_{\kappa}|^{p} \leq C_{p} \sum_{\sigma \in \mathcal{E}} |u_{\kappa} - u_{\mathcal{L}}| (|u_{\kappa}|^{p-1} + |u_{\mathcal{L}}|^{p-1}) \left(\int_{\Omega} \chi_{\sigma}(x, y(x)) \, dx \right).$$

dans le cas d'un maillage DDFV

(Andreianov-Gutnic-Wittbold, '04)

• Rappel :

$$\forall \mathcal{D} \in \mathfrak{D} : |\mathcal{D}| = \frac{1}{2} (\sin \alpha_{\mathcal{D}}) |\sigma| d_{\mathcal{KL}} \Rightarrow |\sigma| d_{\mathcal{KL}} \leq C(\operatorname{reg}(\mathcal{T})) |\mathcal{D}|.$$

- On réutilise $\chi_{\sigma}(x, y)$, une direction ξ et y(x) la projection d'un point $x \in \Omega$ sur le bord selon ξ .
- Somme télescopique :

$$\sum_{\kappa \in \mathfrak{M}} |\kappa| |u_{\kappa}|^{p} \leq C_{p}' \sum_{\sigma \in \mathcal{E}} |\sigma| d_{\kappa \mathcal{L}} \left| \frac{u_{\kappa} - u_{\mathcal{L}}}{d_{\kappa \mathcal{L}}} \right| (|u_{\kappa}|^{p-1} + |u_{\mathcal{L}}|^{p-1}).$$

dans le cas d'un maillage DDFV

(Andreianov–Gutnic–Wittbold, '04)

• Rappel :

$$\forall \mathcal{D} \in \mathfrak{D} : |\mathcal{D}| = \frac{1}{2} (\sin \alpha_{\mathcal{D}}) |\sigma| d_{\mathcal{KL}} \Rightarrow |\sigma| d_{\mathcal{KL}} \leq C(\operatorname{reg}(\mathcal{T})) |\mathcal{D}|.$$

- On réutilise $\chi_{\sigma}(x, y)$, une direction ξ et y(x) la projection d'un point $x \in \Omega$ sur le bord selon ξ .
- Somme télescopique :

$$\|u^{\mathfrak{M}}\|_{L^{p}}^{p} \leq C_{p}'\left(\sum_{\sigma \in \mathcal{E}} |\sigma| d_{\mathcal{KL}} \left| \frac{u_{\mathcal{K}} - u_{\mathcal{L}}}{d_{\mathcal{KL}}} \right|^{p} \right)^{\frac{1}{p}} \left(\sum_{\sigma \in \mathcal{E}} |\sigma| d_{\mathcal{KL}} (|u_{\mathcal{K}}|^{p} + |u_{\mathcal{L}}|^{p}) \right)^{\frac{p-1}{p}}$$

dans le cas d'un maillage DDFV

(Andreianov–Gutnic–Wittbold, '04)

• Rappel :

$$\forall \mathcal{D} \in \mathfrak{D} : |\mathcal{D}| = \frac{1}{2} (\sin \alpha_{\mathcal{D}}) |\sigma| d_{\mathcal{KL}} \Rightarrow |\sigma| d_{\mathcal{KL}} \leq C(\operatorname{reg}(\mathcal{T})) |\mathcal{D}|.$$

- On réutilise $\chi_{\sigma}(x, y)$, une direction ξ et y(x) la projection d'un point $x \in \Omega$ sur le bord selon ξ .
- Somme télescopique :

$$\|u^{\mathfrak{M}}\|_{L^{p}}^{p} \leq C_{p}'\left(\sum_{\sigma \in \mathcal{E}} |\sigma| d_{\mathcal{KL}} \left| \frac{u_{\mathcal{K}} - u_{\mathcal{L}}}{d_{\mathcal{KL}}} \right|^{p}\right)^{\frac{1}{p}} \left(\sum_{\sigma \in \mathcal{E}} |\sigma| d_{\mathcal{KL}}(|u_{\mathcal{K}}|^{p} + |u_{\mathcal{L}}|^{p})\right)^{\frac{p-1}{p}}$$

• On obtient le résultat si on montre maintenant que

$$\sum_{\sigma \in \mathcal{E}} |\sigma| d_{\mathcal{KL}}(|u_{\mathcal{K}}|^p + |u_{\mathcal{L}}|^p) \le C \|u^{\mathfrak{M}}\|_{L^p}^p + C \sum_{\sigma \in \mathcal{E}} |\sigma| d_{\mathcal{KL}} \left| \frac{u_{\mathcal{K}} - u_{\mathcal{L}}}{d_{\mathcal{KL}}} \right|^p$$

Franck BOYER VF pour les problèmes elliptiques - Partie 3

PREUVE DE L'INÉGALITÉ DE POINCARÉ

dans le cas d'un maillage DDFV

ON VEUT MONTRER

$$\sum_{\sigma \in \mathcal{E}} |\sigma| d_{\mathcal{K}\mathcal{L}}(|u_{\mathcal{K}}|^{p} + |u_{\mathcal{L}}|^{p}) \leq C ||u^{\mathfrak{M}}||_{L^{p}}^{p} + C \sum_{\sigma \in \mathcal{E}} |\sigma| d_{\mathcal{K}\mathcal{L}} \left| \frac{u_{\mathcal{K}} - u_{\mathcal{L}}}{d_{\mathcal{K}\mathcal{L}}} \right|^{p}$$

dans le cas d'un maillage DDFV

.

ON VEUT MONTRER

$$\sum_{\sigma \in \mathcal{E}} |\sigma| d_{\mathcal{K}\mathcal{L}}(|u_{\mathcal{K}}|^p + |u_{\mathcal{L}}|^p) \le C \|u^{\mathfrak{M}}\|_{L^p}^p + C \sum_{\sigma \in \mathcal{E}} |\sigma| d_{\mathcal{K}\mathcal{L}} \left| \frac{u_{\mathcal{K}} - u_{\mathcal{L}}}{d_{\mathcal{K}\mathcal{L}}} \right|^p$$

• On a tout d'abord

$$\sum_{\sigma \in \mathcal{E}} |\sigma| d_{\kappa \mathcal{L}} (|u_{\kappa}|^{p} + |u_{\mathcal{L}}|^{p}) = \sum_{\sigma \in \mathcal{E}} |\sigma| (d_{\kappa \sigma} + d_{\mathcal{L} \sigma}) (|u_{\kappa}|^{p} + |u_{\mathcal{L}}|^{p})$$
$$\leq C \sum_{\kappa \in \mathfrak{M}} |\kappa| |u_{\kappa}|^{p} + \sum_{\sigma \in \mathcal{E}} |\sigma| (d_{\mathcal{L} \sigma} |u_{\kappa}|^{p} + d_{\kappa \sigma} |u_{\mathcal{L}}|^{p}).$$
dans le cas d'un maillage DDFV

٠

ON VEUT MONTRER

$$\sum_{\sigma \in \mathcal{E}} |\sigma| d_{\mathcal{K}\mathcal{L}}(|u_{\mathcal{K}}|^p + |u_{\mathcal{L}}|^p) \le C \|u^{\mathfrak{M}}\|_{L^p}^p + C \sum_{\sigma \in \mathcal{E}} |\sigma| d_{\mathcal{K}\mathcal{L}} \left| \frac{u_{\mathcal{K}} - u_{\mathcal{L}}}{d_{\mathcal{K}\mathcal{L}}} \right|^p$$

• On a tout d'abord

$$\sum_{\sigma \in \mathcal{E}} |\sigma| d_{\mathcal{K}\mathcal{L}} (|u_{\mathcal{K}}|^{p} + |u_{\mathcal{L}}|^{p}) = \sum_{\sigma \in \mathcal{E}} |\sigma| (d_{\mathcal{K}\sigma} + d_{\mathcal{L}\sigma}) (|u_{\mathcal{K}}|^{p} + |u_{\mathcal{L}}|^{p})$$
$$\leq C \sum_{\kappa \in \mathfrak{M}} |\kappa| |u_{\mathcal{K}}|^{p} + \sum_{\sigma \in \mathcal{E}} |\sigma| (d_{\mathcal{L}\sigma} |u_{\mathcal{K}}|^{p} + d_{\mathcal{K}\sigma} |u_{\mathcal{L}}|^{p}).$$

• On remarque maintenant que

$$d_{\mathcal{L}\sigma}|u_{\mathcal{K}}|^{p} \leq \begin{cases} 2^{p}d_{\mathcal{L}\sigma}|u_{\mathcal{L}}|^{p}, & \text{si } |u_{\mathcal{K}}| \leq 2|u_{\mathcal{L}}|\\ 2^{p}d_{\mathcal{L}\sigma}|u_{\mathcal{L}}-u_{\mathcal{K}}|^{p}, & \text{si } |u_{\mathcal{K}}| > 2|u_{\mathcal{L}}| \end{cases}$$

∢ Retour

Pour simplifier, on suppose que φ ne dépend pas de x. GRANDES ÉTAPES

• Estimation d'énergie :

$$\sup_{n} \|u^{\mathcal{T}_n}\|_{1,p,\mathcal{T}_n} \le C(\Omega, f).$$

Pour simplifier, on suppose que φ ne dépend pas de x. GRANDES ÉTAPES

• Estimation d'énergie :

$$\sup_{n} \|u^{\mathcal{T}_n}\|_{1,p,\mathcal{T}_n} \le C(\Omega, f).$$

• Théorème de compacité faible L^p (similaire à celui de VF4) : Il existe $u \in W_0^{1,p}(\Omega)$ tel que (modulo sous-suite!)

$$\begin{split} u^{\mathfrak{M}_n} &\xrightarrow[n \to \infty]{} u \text{ dans } L^p(\Omega), \\ u^{\mathfrak{M}_n^*} &\xrightarrow[n \to \infty]{} u \text{ dans } L^p(\Omega), \\ \nabla^{\mathcal{T}_n} u^{\mathcal{T}_n} &\xrightarrow[n \to \infty]{} \nabla u \text{ dans } (L^p(\Omega))^2. \end{split}$$

• Il faut montrer que *u* est bien la solution du problème et la convergence forte du gradient et du flux. Par unicité, on aura toutes les convergences souhaitées.

On peut supposer
$$\varphi(\nabla^{\tau_n} u^{\tau_n}) \xrightarrow[n \to \infty]{} \zeta$$
, dans $(L^{p'}(\Omega))^2$.

l'astuce de Minty

• Soit $\theta \in \mathcal{C}^{\infty}_{c}(\Omega)$. On prend $v^{\tau_{n}} = \mathbb{P}^{\tau_{n}}\theta$ dans le schéma

$$\int_{\Omega} f \mathbb{P}^{\mathfrak{M}_n} \theta \, dx + \int_{\Omega} f \mathbb{P}^{\mathfrak{M}_n^*} \theta \, dx = 2 \sum_{\mathcal{D} \in \mathfrak{D}} |\mathcal{D}| (\varphi(\nabla^{\mathcal{T}_n} u^{\mathcal{T}_n}), \nabla^{\mathcal{T}_n} \mathbb{P}^{\mathcal{T}_n} \theta).$$

On peut supposer
$$\varphi(\nabla^{\tau_n} u^{\tau_n}) \xrightarrow[n \to \infty]{} \zeta$$
, dans $(L^{p'}(\Omega))^2$.

l'astuce de Minty

• Soit $\theta \in \mathcal{C}^{\infty}_{c}(\Omega)$. On prend $v^{\tau_{n}} = \mathbb{P}^{\tau_{n}}\theta$ dans le schéma

$$\int_{\Omega} f\theta \, dx = \int_{\Omega} (\zeta, \nabla \theta) \, dx, \quad \forall \theta \in \mathcal{C}^{\infty}_{c}(\Omega).$$

On peut supposer
$$\varphi(\nabla^{\tau_n} u^{\tau_n}) \xrightarrow[n \to \infty]{} \zeta$$
, dans $(L^{p'}(\Omega))^2$.

l'astuce de Minty

• Soit $\theta \in \mathcal{C}^{\infty}_{c}(\Omega)$. On prend $v^{\tau_{n}} = \mathbb{P}^{\tau_{n}}\theta$ dans le schéma

$$\int_{\Omega} f v \, dx = \int_{\Omega} (\zeta, \nabla v) \, dx, \quad \forall v \in W_0^{1, p}(\Omega).$$

On peut supposer
$$\varphi(\nabla^{\tau_n} u^{\tau_n}) \xrightarrow[n \to \infty]{} \zeta$$
, dans $(L^{p'}(\Omega))^2$.

L'ASTUCE DE MINTY

• Soit $\theta \in \mathcal{C}^{\infty}_{c}(\Omega)$. On prend $v^{\tau_{n}} = \mathbb{P}^{\tau_{n}}\theta$ dans le schéma

$$\int_{\Omega} f v \, dx = \int_{\Omega} (\zeta, \nabla v) \, dx, \quad \forall v \in W_0^{1, p}(\Omega).$$

$$\sum_{\mathcal{D}\in\mathfrak{D}} |\mathcal{D}| \bigg(\varphi(\nabla^{\tau_n} u^{\tau_n}) - \varphi(\nabla^{\tau_n} \mathbb{P}^{\tau_n} \theta), \nabla^{\tau_n} u^{\tau_n} - \nabla^{\tau_n} \mathbb{P}^{\tau_n} \theta \bigg) \ge 0.$$

On peut supposer
$$\varphi(\nabla^{\tau_n} u^{\tau_n}) \xrightarrow[n \to \infty]{} \zeta$$
, dans $(L^{p'}(\Omega))^2$.

L'ASTUCE DE MINTY

• Soit $\theta \in \mathcal{C}^{\infty}_{c}(\Omega)$. On prend $v^{\tau_{n}} = \mathbb{P}^{\tau_{n}}\theta$ dans le schéma

$$\int_{\Omega} f v \, dx = \int_{\Omega} (\zeta, \nabla v) \, dx, \quad \forall v \in W_0^{1, p}(\Omega).$$

• On utilise la monotonie du schéma

$$\sum_{\mathcal{D}\in\mathbf{\mathfrak{D}}} |\mathcal{D}| \left(\varphi(\nabla^{\tau_n} u^{\tau_n}) - \varphi(\nabla^{\tau_n} \mathbb{P}^{\tau_n} \theta), \nabla^{\tau_n} u^{\tau_n} - \nabla^{\tau_n} \mathbb{P}^{\tau_n} \theta \right) \ge 0.$$

Comme u^{τ_n} est solution du schéma, on a

$$\sum_{\mathcal{D}\in\mathfrak{D}}|\mathcal{D}|\bigg(\varphi(\nabla^{\tau_n}u^{\tau_n}),\nabla^{\tau_n}u^{\tau_n}\bigg)=\frac{1}{2}\int_{\Omega}f(u^{\mathfrak{M}_n}+u^{\mathfrak{M}_n^*})\xrightarrow[n\to\infty]{}\int_{\Omega}fu\,dx.$$

On peut supposer
$$\varphi(\nabla^{\tau_n} u^{\tau_n}) \xrightarrow[n \to \infty]{} \zeta$$
, dans $(L^{p'}(\Omega))^2$.

L'ASTUCE DE MINTY

• Soit $\theta \in \mathcal{C}^{\infty}_{c}(\Omega)$. On prend $v^{\tau_{n}} = \mathbb{P}^{\tau_{n}}\theta$ dans le schéma

$$\int_{\Omega} f v \, dx = \int_{\Omega} (\zeta, \nabla v) \, dx, \quad \forall v \in W_0^{1, p}(\Omega).$$

$$\int_{\Omega} f u \, dx - \int_{\Omega} (\zeta, \nabla \theta) - \int_{\Omega} (\varphi(\nabla \theta), \nabla u - \nabla \theta) \, dx \ge 0.$$

On peut supposer
$$\varphi(\nabla^{\tau_n} u^{\tau_n}) \xrightarrow[n \to \infty]{} \zeta$$
, dans $(L^{p'}(\Omega))^2$.

L'ASTUCE DE MINTY

• Soit $\theta \in \mathcal{C}^{\infty}_{c}(\Omega)$. On prend $v^{\tau_{n}} = \mathbb{P}^{\tau_{n}}\theta$ dans le schéma

$$\int_{\Omega} f v \, dx = \int_{\Omega} (\zeta, \nabla v) \, dx, \quad \forall v \in W_0^{1, p}(\Omega).$$

$$\int_{\Omega} (\zeta - \varphi(\nabla \theta), \nabla u - \nabla \theta) \, dx \ge 0, \quad \forall \theta \in \mathcal{C}^{\infty}_{c}(\Omega).$$

On peut supposer
$$\varphi(\nabla^{\tau_n} u^{\tau_n}) \xrightarrow[n \to \infty]{} \zeta$$
, dans $(L^{p'}(\Omega))^2$.

L'ASTUCE DE MINTY

• Soit $\theta \in \mathcal{C}^{\infty}_{c}(\Omega)$. On prend $v^{\tau_{n}} = \mathbb{P}^{\tau_{n}}\theta$ dans le schéma

$$\int_{\Omega} f v \, dx = \int_{\Omega} (\zeta, \nabla v) \, dx, \quad \forall v \in W_0^{1, p}(\Omega).$$

$$\int_{\Omega} (\zeta - \varphi(\nabla v), \nabla u - \nabla v) \, dx \ge 0, \quad \forall v \in W_0^{1,p}(\Omega).$$

On peut supposer
$$\varphi(\nabla^{\tau_n} u^{\tau_n}) \xrightarrow[n \to \infty]{} \zeta$$
, dans $(L^{p'}(\Omega))^2$.

L'ASTUCE DE MINTY

• Soit $\theta \in \mathcal{C}^{\infty}_{c}(\Omega)$. On prend $v^{\mathcal{T}_{n}} = \mathbb{P}^{\mathcal{T}_{n}}\theta$ dans le schéma

$$\int_{\Omega} f v \, dx = \int_{\Omega} (\zeta, \nabla v) \, dx, \quad \forall v \in W_0^{1, p}(\Omega).$$

• On utilise la monotonie du schéma

$$\int_{\Omega} (\zeta - \varphi(\nabla v), \nabla u - \nabla v) \, dx \ge 0, \quad \forall v \in W_0^{1,p}(\Omega).$$

• On prend $v = u + t\psi$ et on fait tendre t vers 0 pour obtenir $\operatorname{div}(\varphi(\nabla u)) = \operatorname{div}(\zeta) = -f.$

• Pour la convergence forte du gradient, il faut travailler un peu plus...

On suppose $u \in \mathcal{C}^{\infty}([-1,0]) \cap \mathcal{C}^{\infty}([0,1]) \cap \mathcal{C}^{0}([-1,1])$ et on estime $R = |\partial_x u^+(0) - \nabla^+_N \mathbb{P}^{\tau} u|,$

où $\mathbb{P}^{\tau} u = (u(x_{i+\frac{1}{2}}))_{0 \le i \le N+M-1}$ est la proj. de la solution u sur \mathcal{T} .

Franck BOYER

On suppose $u \in \mathcal{C}^{\infty}([-1,0]) \cap \mathcal{C}^{\infty}([0,1]) \cap \mathcal{C}^{0}([-1,1])$ et on estime

$$R = |\partial_x u^+(0) - \nabla^+_N \mathbb{P}^\tau u|,$$

où $\mathbb{P}^{\tau} u = (u(x_{i+\frac{1}{2}}))_{0 \le i \le N+M-1}$ est la proj. de la solution u sur \mathcal{T} . RAPPEL :

$$\nabla^+_N \mathbb{P}^\tau u = \frac{u(x_{N+\frac{1}{2}}) - \tilde{u}}{h_N^+}, \quad \nabla^-_N \mathbb{P}^\tau u = \frac{\tilde{u} - u(x_{N-\frac{1}{2}})}{h_N^-},$$

où \tilde{u} est tel que $\varphi_+(\nabla^+_N \mathbb{P}^\tau u) = \varphi_-(\nabla^-_N \mathbb{P}^\tau u).$

On suppose $u \in \mathcal{C}^{\infty}([-1,0]) \cap \mathcal{C}^{\infty}([0,1]) \cap \mathcal{C}^{0}([-1,1])$ et on estime

$$R = |\partial_x u^+(0) - \nabla^+_N \mathbb{P}^\tau u|,$$

où $\mathbb{P}^{\tau} u = (u(x_{i+\frac{1}{2}}))_{0 \le i \le N+M-1}$ est la proj. de la solution u sur \mathcal{T} . RAPPEL :

$$\nabla_{\scriptscriptstyle N}^+ \mathbb{P}^{\scriptscriptstyle T} u = \frac{u(x_{\scriptscriptstyle N+\frac{1}{2}}) - \tilde{u}}{h_{\scriptscriptstyle N}^+}, \quad \nabla_{\scriptscriptstyle N}^- \mathbb{P}^{\scriptscriptstyle T} u = \frac{\tilde{u} - u(x_{\scriptscriptstyle N-\frac{1}{2}})}{h_{\scriptscriptstyle N}^-},$$

où \tilde{u} est tel que $\varphi_+(\nabla^+_N \mathbb{P}^\tau u) = \varphi_-(\nabla^-_N \mathbb{P}^\tau u).$

On s'attend à ce que $\tilde{u}\approx u(x_{\scriptscriptstyle N})=u(0)$:

$$R \le C \underbrace{\left| \frac{\partial_x u^+(0) - \frac{u(x_{N+1/2}) - u(x_N)}{h_N^+}}_{\le Ch} \right|}_{\le Ch} + C \underbrace{\left| \frac{u(x_N) - \tilde{u}}{h_N^+} \right|}_{\text{à estimer}!}.$$

Franck BOYER VF pour les problèmes elliptiques - Partie 3

Formules de Taylor de part et d'autres de la singularité : $\frac{u(0) - u(-h_N^-)}{h_N^-} = \partial_x u^-(0) + T_1(h_N^-),$ $\frac{u(h_N^+) - u(0)}{h_N^+} = \partial_x u^+(0) + T_2(h_N^+),$ où $T_1(h_N^-), T_2(h_N^+) = O(h).$

Formules de Taylor de part et d'autres de la singularité :

$$\frac{u(0) - u(-h_N^-)}{h_N^-} = \partial_x u^-(0) + T_1(h_N^-),$$
$$\frac{u(h_N^+) - u(0)}{h_N^+} = \partial_x u^+(0) + T_2(h_N^+),$$

où $T_1(h_N^-), T_2(h_N^+) = O(h).$ Condition de transmission sur le pb continu :

$$\varphi_{-}(\partial_x u^{-}(0)) = \varphi_{+}(\partial_x u^{+}(0)).$$

Formules de Taylor de part et d'autres de la singularité :

$$\frac{u(0) - u(-h_N^-)}{h_N^-} = \partial_x u^-(0) + T_1(h_N^-),$$
$$\frac{u(h_N^+) - u(0)}{h_N^+} = \partial_x u^+(0) + T_2(h_N^+),$$

où $T_1(h_N^-), T_2(h_N^+) = O(h).$ Condition de transmission sur le pb continu :

$$\varphi_{-}\left(\frac{u(0)-u(-h_{N}^{-})}{h_{N}^{-}}-T_{1}(h_{N}^{-})\right)=\varphi_{+}\left(\frac{u(h_{N}^{+})-u(0)}{h_{N}^{+}}-T_{2}(h_{N}^{+})\right).$$

Formules de Taylor de part et d'autres de la singularité :

$$\frac{u(0) - u(-h_N^-)}{h_N^-} = \partial_x u^-(0) + T_1(h_N^-),$$
$$\frac{u(h_N^+) - u(0)}{h_N^+} = \partial_x u^+(0) + T_2(h_N^+),$$

où $T_1(h_N^-), T_2(h_N^+) = O(h).$ Condition de transmission sur le pb continu :

$$\varphi_{-}\left(\frac{u(0)-u(-h_{N}^{-})}{h_{N}^{-}}-T_{1}(h_{N}^{-})\right)=\varphi_{+}\left(\frac{u(h_{N}^{+})-u(0)}{h_{N}^{+}}-T_{2}(h_{N}^{+})\right).$$

Définition de \tilde{u}

$$\varphi_{-}\left(\frac{\tilde{\boldsymbol{u}}-\boldsymbol{u}(-h_{N}^{-})}{h_{N}^{-}}\right) = \varphi_{+}\left(\frac{\boldsymbol{u}(h_{N}^{+})-\tilde{\boldsymbol{u}}}{h_{N}^{+}}\right)$$

Formules de Taylor de part et d'autres de la singularité :

$$\frac{u(0) - u(-h_N^-)}{h_N^-} = \partial_x u^-(0) + T_1(h_N^-),$$
$$\frac{u(h_N^+) - u(0)}{h_N^+} = \partial_x u^+(0) + T_2(h_N^+),$$

où $T_1(h_N^-), T_2(h_N^+) = O(h).$ Condition de transmission sur le pb continu :

$$\varphi_{-}\left(\frac{u(0)-u(-h_{N}^{-})}{h_{N}^{-}}-T_{1}(h_{N}^{-})\right)=\varphi_{+}\left(\frac{u(h_{N}^{+})-u(0)}{h_{N}^{+}}-T_{2}(h_{N}^{+})\right).$$

Définition de \tilde{u}

$$\varphi_{-}\left(\frac{\tilde{\boldsymbol{u}}-\boldsymbol{u}(-h_{N}^{-})}{h_{N}^{-}}\right) = \varphi_{+}\left(\frac{\boldsymbol{u}(h_{N}^{+})-\tilde{\boldsymbol{u}}}{h_{N}^{+}}\right)$$

Il faut faire apparaitre des termes $(\varphi^{\pm}(\xi) - \varphi^{\pm}(\eta), \xi - \eta)$!

$$\begin{split} \left(\varphi_{-}\left(\frac{u(0)-u(-h_{N}^{-})}{h_{N}^{-}}-T_{1}(h_{N}^{-})\right)-\varphi_{-}\left(\frac{\bar{u}-u(-h_{N}^{-})}{h_{N}^{-}}\right)\right)\left(\frac{u(0)-\bar{u}}{h_{N}^{-}}\right)\\ &+\left(\varphi_{+}\left(\frac{u(h_{N}^{+})-\bar{u}}{h_{N}^{+}}\right)-\varphi_{+}\left(\frac{u(h_{N}^{+})-u(0)}{h_{N}^{+}}-T_{2}(h_{N}^{+})\right)\right)\left(\frac{u(0)-\bar{u}}{h_{N}^{+}}\right)\\ &=0. \end{split}$$

$$\begin{pmatrix} \varphi_{-} \left(\frac{u(0) - u(-h_{N}^{-})}{h_{N}^{-}} - T_{1}(h_{N}^{-}) \right) - \varphi_{-} \left(\frac{\bar{u} - u(-h_{N}^{-})}{h_{N}^{-}} \right) \end{pmatrix} \left(\frac{u(0) - \bar{u}}{h_{N}^{-}} - T_{1}(h_{N}^{-}) \right) \\ + \left(\varphi_{+} \left(\frac{u(h_{N}^{+}) - \bar{u}}{h_{N}^{+}} \right) - \varphi_{+} \left(\frac{u(h_{N}^{+}) - u(0)}{h_{N}^{+}} - T_{2}(h_{N}^{+}) \right) \right) \left(\frac{u(0) - \bar{u}}{h_{N}^{+}} \right)$$

$$- T_1(h_N^-) \left(\varphi_- \left(\frac{u(0) - u(-h_N^-)}{h_N^-} - T_1(h_N^-) \right) - \varphi_- \left(\frac{\bar{u} - u(-h_N^-)}{h_N^-} \right) \right)$$

=

$$\begin{pmatrix} \varphi_{-} \left(\frac{u(0) - u(-h_{N}^{-})}{h_{N}^{-}} - T_{1}(h_{N}^{-}) \right) - \varphi_{-} \left(\frac{\bar{u} - u(-h_{N}^{-})}{h_{N}^{-}} \right) \end{pmatrix} \left(\frac{u(0) - \bar{u}}{h_{N}^{-}} - T_{1}(h_{N}^{-}) \right) \\ + \left(\varphi_{+} \left(\frac{u(h_{N}^{+}) - \bar{u}}{h_{N}^{+}} \right) - \varphi_{+} \left(\frac{u(h_{N}^{+}) - u(0)}{h_{N}^{+}} - T_{2}(h_{N}^{+}) \right) \right) \left(\frac{u(0) - \bar{u}}{h_{N}^{+}} + T_{2}(h_{N}^{+}) \right)$$

=

$$- T_1(h_N^-) \left(\varphi_- \left(\frac{u(0) - u(-h_N^-)}{h_N^-} - T_1(h_N^-) \right) - \varphi_- \left(\frac{\bar{u} - u(-h_N^-)}{h_N^-} \right) \right) \\ + T_2(h_N^+) \left(\varphi_+ \left(\frac{u(h_N^+) - \bar{u}}{h_N^+} \right) - \varphi_+ \left(\frac{u(h_N^+) - u(0)}{h_N^+} - T_2(h_N^+) \right) \right)$$

$$\begin{pmatrix} \varphi_{-} \left(\frac{u(0) - u(-h_{N}^{-})}{h_{N}^{-}} - T_{1}(h_{N}^{-}) \right) - \varphi_{-} \left(\frac{\bar{u} - u(-h_{N}^{-})}{h_{N}^{-}} \right) \end{pmatrix} \left(\frac{u(0) - \bar{u}}{h_{N}^{-}} - T_{1}(h_{N}^{-}) \right) \\ + \left(\varphi_{+} \left(\frac{u(h_{N}^{+}) - \bar{u}}{h_{N}^{+}} \right) - \varphi_{+} \left(\frac{u(h_{N}^{+}) - u(0)}{h_{N}^{+}} - T_{2}(h_{N}^{+}) \right) \right) \left(\frac{u(0) - \bar{u}}{h_{N}^{+}} + T_{2}(h_{N}^{+}) \right)$$

=

$$- T_1(h_N^-) \left(\varphi_- \left(\frac{u(0) - u(-h_N^-)}{h_N^-} - T_1(h_N^-) \right) - \varphi_- \left(\frac{\bar{u} - u(-h_N^-)}{h_N^-} \right) \right) + T_2(h_N^+) \left(\varphi_+ \left(\frac{u(h_N^+) - \bar{u}}{h_N^+} \right) - \varphi_+ \left(\frac{u(h_N^+) - u(0)}{h_N^+} - T_2(h_N^+) \right) \right)$$

$$\left| \frac{u(0) - \bar{u}}{h_N^-} - T_1(h_N^-) \right|^p + \left| \frac{u(0) - \bar{u}}{h_N^+} + T_2(h_N^+) \right|^p \\ \leq Ch \left(1 + \left| \frac{u(0) - \bar{u}}{h} \right|^{p-2} \right) \left(Ch + \left| \frac{u(0) - \bar{u}}{h} \right| \right),$$

93/76

Franck BOYER VF pour les problèmes elliptiques - Partie 3

$$\begin{pmatrix} \varphi_{-} \left(\frac{u(0) - u(-h_{N}^{-})}{h_{N}^{-}} - T_{1}(h_{N}^{-}) \right) - \varphi_{-} \left(\frac{\bar{u} - u(-h_{N}^{-})}{h_{N}^{-}} \right) \end{pmatrix} \left(\frac{u(0) - \bar{u}}{h_{N}^{-}} - T_{1}(h_{N}^{-}) \right) \\ + \left(\varphi_{+} \left(\frac{u(h_{N}^{+}) - \bar{u}}{h_{N}^{+}} \right) - \varphi_{+} \left(\frac{u(h_{N}^{+}) - u(0)}{h_{N}^{+}} - T_{2}(h_{N}^{+}) \right) \right) \left(\frac{u(0) - \bar{u}}{h_{N}^{+}} + T_{2}(h_{N}^{+}) \right)$$

=

$$- T_1(h_N^-) \left(\varphi_- \left(\frac{u(0) - u(-h_N^-)}{h_N^-} - T_1(h_N^-) \right) - \varphi_- \left(\frac{\bar{u} - u(-h_N^-)}{h_N^-} \right) \right) + T_2(h_N^+) \left(\varphi_+ \left(\frac{u(h_N^+) - \bar{u}}{h_N^+} \right) - \varphi_+ \left(\frac{u(h_N^+) - u(0)}{h_N^+} - T_2(h_N^+) \right) \right)$$

$$\left|\frac{u(0) - \bar{u}}{h}\right| \le Ch^{\frac{1}{p-1}}$$

$$\rightsquigarrow R = \left|\partial_x u^+(0) - \nabla_y^+ \mathbb{P}^T u\right| \le Ch + Ch^{\frac{1}{p-1}}.$$

CONSISTANCE DU FLUX

$$\left|\partial_{x}u^{+}(0) - \nabla_{N}^{+}\mathbb{P}^{\tau}u\right| \leq Ch + Ch^{\frac{1}{p-1}}$$

CONSISTANCE DU FLUX

$$\left|\partial_{x}u^{+}(0) - \nabla_{N}^{+}\mathbb{P}^{\tau}u\right| \le Ch + Ch^{\frac{1}{p-1}}$$

Flux numérique calculé sur \boldsymbol{u} :

$$F_N = \varphi_+ (\nabla_N^+ \mathbb{P}^\tau u)$$

FLUX EXACT :

 $\varphi_+(\partial_x u^+(0))$

CONSISTANCE DU FLUX

$$\left|\partial_{x}u^{+}(0) - \nabla_{N}^{+}\mathbb{P}^{\tau}u\right| \le Ch + Ch^{\frac{1}{p-1}}$$

Flux numérique calculé sur \boldsymbol{u} :

$$F_N = \varphi_+ (\nabla_N^+ \mathbb{P}^\tau u)$$

FLUX EXACT :

$$\varphi_+(\partial_x u^+(0))$$

ESTIMATION DE CONSISTANCE

$$\begin{aligned} |\varphi_{+}(\partial_{x}u^{+}(0)) - F_{N}| &= |\varphi_{+}(\partial_{x}u^{+}(0)) - \varphi_{+}(\nabla_{N}^{+}\mathbb{P}^{\tau}u)| \\ &\leq C|\partial_{x}u^{+}(0) - \nabla_{N}^{+}\mathbb{P}^{\tau}u| \left(|\partial_{x}u^{+}(0)| + |\nabla_{N}^{+}\mathbb{P}^{\tau}u| \right)^{p-1} \\ &\leq Ch^{\frac{1}{p-1}}. \end{aligned}$$

Retout

Franck BOYER VF pour les problèmes elliptiques - Partie 3

Eléments de la preuve - Estimations

$$\begin{split} \nabla^{\mathcal{N}}_{\mathcal{Q}} u^{\mathcal{T}} &= \nabla^{\mathcal{T}}_{\mathcal{D}} u^{\mathcal{T}} + B_{\mathcal{Q}} \delta^{\mathcal{D}} (\nabla^{\mathcal{T}}_{\mathcal{D}} u^{\mathcal{T}}), \, \forall \mathcal{Q} \subset \mathcal{D}, \\ \nabla^{\mathcal{N}}_{\mathcal{D}} u^{\mathcal{T}} &= \sum_{\mathcal{Q} \in \mathfrak{Q}_{\mathcal{D}}} \mathbf{1}_{\mathcal{Q}} \nabla^{\mathcal{N}}_{\mathcal{Q}} u^{\mathcal{T}}, \\ |\mathcal{D}| \nabla^{\mathcal{T}}_{\mathcal{D}} u^{\mathcal{T}} &= \sum_{\mathcal{Q} \in \mathfrak{Q}_{\mathcal{D}}} |\mathcal{Q}| \nabla^{\mathcal{N}}_{\mathcal{Q}} u^{\mathcal{T}}. \end{split}$$

Comparaison des gradients

ESTIMATION D'ÉNERGIE

•
$$\|\nabla^{\mathcal{N}} u^{\tau}\|_{L^p} \leq C\left(1 + \|f\|_{L^{p'}}^{\frac{1}{p-1}}\right).$$

Toutes les constantes dépendent de $\operatorname{reg}(\mathcal{T})$.

LA CONSISTANCE DU NOUVEAU GRADIENT

PROPOSITION

$$\int_{\mathcal{D}} |\nabla u(x) - \nabla^{\mathcal{N}} \mathbb{P}^{\tau} u(x)|^{p} dx$$

$$\leq C \text{size}(\mathcal{T})^{\frac{p}{p-1}} \sum_{\varrho \in \mathfrak{Q}_{\mathcal{D}}} \int_{\varrho} \left(1 + |\nabla u|^{p} + |\nabla^{2} u|^{p}\right) dx, \ \forall \mathcal{D} \in \mathfrak{D}.$$

Démonstration : On introduit $\mathbb{P}^{\mathfrak{Q}}u$ une projection affine de u sur les quarts de diamants $\mathcal{Q} = \mathcal{Q}_{\kappa,\kappa^*}$:

 Le gradient de $\mathbb{P}^{\mathfrak{g}}_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^*}}u$ est donné par

$$\nabla \mathbb{P}^{\mathfrak{Q}}_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^*}} u = \frac{2}{\sin \alpha_{\mathcal{D}}} \left(\frac{u(x_{\sigma_{\mathcal{K}^*}}) - \frac{u(x_{\mathcal{K}}) + u(x_{\mathcal{K}^*})}{2}}{|\sigma_{\mathcal{K}}|} \nu + \frac{u(x_{\sigma_{\mathcal{K}}}) - \frac{u(x_{\mathcal{K}}) + u(x_{\mathcal{K}^*})}{2}}{|\sigma_{\mathcal{K}^*}|} \nu^* \right)$$

• Le gradient de $\mathbb{P}_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^*}}^{\mathfrak{Q}} u$ est donné par

$$\nabla \mathbb{P}^{\mathbf{Q}}_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^*}} u = \frac{2}{\sin \alpha_{\mathcal{D}}} \left(\frac{u(x_{\sigma_{\mathcal{K}^*}}) - \frac{u(x_{\mathcal{K}}) + u(x_{\mathcal{K}^*})}{2}}{|\sigma_{\mathcal{K}}|} \nu + \frac{u(x_{\sigma_{\mathcal{K}}}) - \frac{u(x_{\mathcal{K}}) + u(x_{\mathcal{K}^*})}{2}}{|\sigma_{\mathcal{K}^*}|} \nu^* \right).$$

• L'erreur de consistance de cette projection

 $T_{\overline{\mathcal{Q}}}(z) = \nabla u(z) - \nabla \mathbb{P}_{\mathcal{Q}}^{\mathfrak{Q}} u, \quad \forall z \in \mathcal{Q}, \quad \forall \mathcal{Q} \in \mathfrak{Q}.$

est classiquement controlée par

$$\int_{\mathcal{Q}} |T_{\overline{\mathcal{Q}}}(z)|^p \, dx \le C \text{size}(\mathcal{T})^p \int_{\mathcal{Q}} |\nabla^2 u(z)|^p \, dx, \quad \forall \mathcal{Q} \in \mathfrak{Q}.$$

• Le gradient de $\mathbb{P}_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^*}}^{\mathfrak{Q}} u$ est donné par

$$\nabla \mathbb{P}^{\mathfrak{Q}}_{\mathcal{Q}_{\mathcal{K}},\mathcal{K}^{*}} u = \frac{2}{\sin \alpha_{\mathcal{D}}} \left(\frac{u(x_{\sigma_{\mathcal{K}^{*}}}) - \frac{u(x_{\mathcal{K}}) + u(x_{\mathcal{K}^{*}})}{2}}{|\sigma_{\mathcal{K}}|} \nu + \frac{u(x_{\sigma_{\mathcal{K}}}) - \frac{u(x_{\mathcal{K}}) + u(x_{\mathcal{K}^{*}})}{2}}{|\sigma_{\mathcal{K}^{*}}|} \nu^{*} \right).$$

• L'erreur de consistance de cette projection

$$T_{\overline{\mathcal{Q}}}(z) = \nabla u(z) - \nabla \mathbb{P}_{\mathcal{Q}}^{\mathfrak{Q}} u, \quad \forall z \in \mathcal{Q}, \quad \forall \mathcal{Q} \in \mathfrak{Q}.$$

est classiquement controlée par

$$\int_{\mathcal{Q}} |T_{\overline{\mathcal{Q}}}(z)|^p \, dx \le C \text{size}(\mathcal{T})^p \int_{\mathcal{Q}} |\nabla^2 u(z)|^p \, dx, \quad \forall \mathcal{Q} \in \mathfrak{Q}.$$

• On a alors

$$\nabla u(z) - \nabla_{\mathcal{Q}}^{\mathcal{N}} \mathbb{P}^{\tau} u(z) = T_{\overline{\mathcal{Q}}}(z) + B_{\mathcal{Q}} \bar{\delta}$$

avec par exemple :

$$\bar{\delta}_{\mathcal{K}^*} = u(x_{\sigma_{\mathcal{K}^*}}) - \frac{1}{2} \left(u(x_{\mathcal{K}^*}) + \frac{|\sigma_{\mathcal{L}}|u(x_{\mathcal{K}}) + |\sigma_{\mathcal{K}}|u(x_{\mathcal{L}})}{|\sigma_{\mathcal{K}}| + |\sigma_{\mathcal{L}}|} \right) = O(\operatorname{size}(\mathcal{T})),$$

alors que $B_{\mathcal{Q}} = O(\operatorname{size}(\mathcal{T})^{-1}).$

En utilisant la définition de $\nabla^{\mathcal{N}}_{\mathcal{Q}}$ et la continuité des flux sur chaque arête du diamant on obtient

$$\left(\left(\frac{1}{|\varphi_{\mathcal{K},\mathcal{K}^*}|} \int_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^*}} \varphi(x, \nabla u(x)) - \frac{1}{|\varphi_{\mathcal{K},\mathcal{K}^*}|} \int_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^*}} \varphi(x, \nabla_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^*}} \mathbb{P}^{\tau} u) \right), \boldsymbol{\nu}^* \right) - \left(\left(\frac{1}{|\varphi_{\mathcal{K},\mathcal{L}^*}|} \int_{\mathcal{Q}_{\mathcal{K},\mathcal{L}^*}} \varphi(x, \nabla u(x)) - \frac{1}{|\varphi_{\mathcal{K},\mathcal{L}^*}|} \int_{\mathcal{Q}_{\mathcal{K},\mathcal{L}^*}} \varphi(x, \nabla_{\mathcal{Q}_{\mathcal{K},\mathcal{L}^*}} \mathbb{P}^{\tau} u) \right), \boldsymbol{\nu}^* \right) \\ = R_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^*},\sigma_{\mathcal{K}}}^{\varphi} - R_{\mathcal{Q}_{\mathcal{K},\mathcal{L}^*},\sigma_{\mathcal{K}}}^{\varphi}.$$

 $x_{\mathcal{D}}$

 $x_{\mathcal{K}^*}$

Franck BOYER VF pour les problèmes elliptiques - Partie 3

En utilisant la définition de $\nabla^{\mathcal{N}}_{\mathcal{Q}}$ et la continuité des flux sur chaque arête du diamant on obtient

$$\begin{split} \left(\left(\frac{1}{|\varphi_{\mathcal{K},\mathcal{K}^*}|} \int_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^*}} \varphi(x, \nabla u(x)) - \frac{1}{|\varphi_{\mathcal{K},\mathcal{K}^*}|} \int_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^*}} \varphi(x, \nabla_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^*}} \mathbb{P}^T u) \right), \boldsymbol{\nu}^* \right) \\ - \left(\left(\frac{1}{|\varphi_{\mathcal{K},\mathcal{L}^*}|} \int_{\mathcal{Q}_{\mathcal{K},\mathcal{L}^*}} \varphi(x, \nabla u(x)) - \frac{1}{|\varphi_{\mathcal{K},\mathcal{L}^*}|} \int_{\mathcal{Q}_{\mathcal{K},\mathcal{L}^*}} \varphi(x, \nabla_{\mathcal{Q}_{\mathcal{K},\mathcal{L}^*}} \mathbb{P}^T u) \right), \boldsymbol{\nu}^* \right) \\ = R_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^*},\sigma_{\mathcal{K}}}^{\varphi} - R_{\mathcal{Q}_{\mathcal{K},\mathcal{L}^*},\sigma_{\mathcal{K}}}^{\varphi} \cdot \left| \sigma_{\mathcal{K}} \right|_{\overline{\delta_{\mathcal{K}}}}^{\overline{\delta_{\mathcal{K}}}} \times \left| \sigma_{\mathcal{K}} \right|_{\overline{\delta_{\mathcal{K}}}}^{\overline{\delta_{\mathcal{K}}}} \cdot \overline{\delta_{\mathcal{K}}}} \end{split}$$

Franck BOYER VF pour les problèmes elliptiques - Partie 3
Eléments de la preuve - le point délicat

En utilisant la définition de $\nabla^{\mathcal{N}}_{\mathcal{Q}}$ et la continuité des flux sur chaque arête du diamant on obtient

$$\begin{split} \sum_{\mathcal{Q}\in\mathfrak{Q}_{\mathcal{D}}} \int_{\mathcal{Q}} \left(\varphi(x, \nabla u(x)) - \varphi(x, \nabla_{\mathcal{Q}}^{\mathcal{N}} \mathbb{P}^{\tau} u), B_{\mathcal{Q}} \bar{\delta} \right) \, dx \\ \leq \sum_{\mathcal{Q}\in\mathfrak{Q}_{\mathcal{D}}} |\varrho| |B_{\mathcal{Q}} \bar{\delta}| \sum_{\sigma \in \mathcal{E}_{\mathcal{Q}}} |R_{\mathcal{Q},\sigma}^{\varphi}| \end{split}$$

Eléments de la preuve - le point délicat

En utilisant la définition de $\nabla^{\mathcal{N}}_{\mathcal{Q}}$ et la continuité des flux sur chaque arête du diamant on obtient

$$\sum_{\mathcal{Q}\in\mathfrak{Q}_{\mathcal{D}}} \int_{\mathcal{Q}} \left(\varphi(x,\nabla u(x)) - \varphi(x,\nabla_{\mathcal{Q}}^{\mathcal{N}}\mathbb{P}^{\tau}u), \nabla u(x) - \nabla_{\mathcal{Q}}^{\mathcal{N}}\mathbb{P}^{\tau}u + T_{\overline{\mathcal{Q}}}(x)\right) dx$$
$$\leq \sum_{\mathcal{Q}\in\mathfrak{Q}_{\mathcal{D}}} |\mathcal{Q}| |B_{\mathcal{Q}}\bar{\delta}| \sum_{\sigma\in\mathcal{E}_{\mathcal{Q}}} |R_{\mathcal{Q},\sigma}^{\varphi}|$$

Eléments de la preuve - le point délicat

En utilisant la définition de $\nabla^{\mathcal{N}}_{\mathcal{Q}}$ et la continuité des flux sur chaque arête du diamant on obtient

$$\begin{split} \sum_{\mathcal{Q}\in\mathfrak{Q}_{\mathcal{D}}} &\int_{\mathcal{Q}} \left(\varphi(x,\nabla u(x)) - \varphi(x,\nabla_{\mathcal{Q}}^{\mathcal{N}}\mathbb{P}^{\tau}u), \nabla u(x) - \nabla_{\mathcal{Q}}^{\mathcal{N}}\mathbb{P}^{\tau}u\right) \, dx \\ \leq & \sum_{\mathcal{Q}\in\mathfrak{Q}_{\mathcal{D}}} \left(\int_{\mathcal{Q}} |\nabla u(x) - \nabla_{\mathcal{Q}}^{\mathcal{N}}\mathbb{P}^{\tau}u(x)| \, dx + \int_{\mathcal{Q}} |T_{\overline{\mathcal{Q}}}(x)| \, dx \right) \\ & \times & \sum_{\sigma\in\mathcal{E}_{\mathcal{Q}}} \left(|R_{\mathcal{Q},\sigma}^{\varphi}| + |R_{\mathcal{Q},\sigma}^{x}| \right) \\ & + & \sum_{\mathcal{Q}\in\mathfrak{Q}_{\mathcal{D}}} \int_{\mathcal{Q}} \left(\varphi(x,\nabla u(x)) - \varphi(x,\nabla_{\mathcal{Q}}^{\mathcal{N}}\mathbb{P}^{\tau}u), T_{\overline{\mathcal{Q}}}(x)\right) \, dx, \end{split}$$

◀ Retour

PREUVE DE CONVERGENCE DE L'ALGORITHME

DÉFINITIONS

$$v^{\tau,n} = u^{\tau,n} - u^{\tau}, \, h^n_{\mathcal{Q}} = g^n_{\mathcal{Q}} - g_{\mathcal{Q}}, \, \mu^n_{\mathcal{Q}} = \lambda^n_{\mathcal{Q}} - \lambda_{\mathcal{Q}}, \, \beta^n_{\mathcal{D}} = \delta^n_{\mathcal{D}} - \delta^{\mathcal{D}}$$

$$(f,g)_{\alpha,\mathcal{A}} \stackrel{\text{def}}{=} \sum_{\varrho \in \mathfrak{Q}} |\varrho| (A_{\varrho}^{\alpha} f_{\varrho}, g_{\varrho}), \quad \|f\|_{\alpha,\mathcal{A}} \stackrel{\text{def}}{=} (f,f)_{\alpha,\mathcal{A}}^{\frac{1}{2}}.$$

Equations pour les erreurs

$$(\nabla^{\tau} v^{\tau,n} + \mathcal{B}\beta^n - h^n, \nabla^{\tau} w^{\tau})_{1,\mathcal{A}} + (h^n - h^{n-1}, \nabla^{\tau} w^{\tau})_{1,\mathcal{A}}$$
$$= (\mu^{n-1}, \nabla^{\tau} w^{\tau})_{0,\mathcal{A}}, \quad \forall w^{\tau} \in \mathbb{R}^{\mathcal{T}}.$$
(1)

$$\sum_{\varrho \in \mathfrak{Q}_{\mathcal{D}}} |\varrho|^{t} B_{\varrho} A_{\varrho} (B_{\varrho} \beta_{\mathcal{D}}^{n} + \nabla_{\mathcal{D}}^{\tau} v^{\tau, n} - h_{\varrho}^{n}) + \sum_{\varrho \in \mathfrak{Q}_{\mathcal{D}}} |\varrho|^{t} B_{\varrho} A_{\varrho} (h_{\varrho}^{n} - h_{\varrho}^{n-1})$$

$$-\sum_{\varrho\in\mathfrak{Q}_{\mathcal{D}}}|\varrho|^{t}B_{\varrho}\mu_{\varrho}^{n-1}=0, \quad \forall \mathcal{D}\in\mathfrak{D}. \quad (2)$$

$$\varphi_{\mathcal{Q}}(g_{\mathcal{Q}}^{n}) - \varphi_{\mathcal{Q}}(g_{\mathcal{Q}}) + \mu_{\mathcal{Q}}^{n-1} + A_{\mathcal{Q}}(h_{\mathcal{Q}}^{n} - \nabla_{\mathcal{D}}^{\tau} v^{\tau,n} - B_{\mathcal{Q}} \beta_{\mathcal{D}}^{n}) = 0, \quad \forall \mathcal{Q} \in \mathfrak{Q}. \quad (3)$$
$$\mu_{\mathcal{Q}}^{n} = \mu_{\mathcal{Q}}^{n-1} + A_{\mathcal{Q}}(h_{\mathcal{Q}}^{n} - \nabla_{\mathcal{D}}^{\tau} v^{\tau,n} - B_{\mathcal{Q}} \beta_{\mathcal{D}}^{n}), \quad \forall \mathcal{Q} \in \mathfrak{Q}. \quad (4)$$