
Gaussian process optimization with failures: classification and

convergence proof

F. Bachoc1, C. Helbert2, V. Picheny3

1 Institut de Mathématiques de Toulouse, Université Paul Sabatier
2 Univ. de Lyon, Ecole Centrale de Lyon, CNRS UMR 5208,

Institut Camille Jordan, 36 av. G. de Collongue F-69134 Ecully cedex, FRANCE
3 PROWLER.io, Cambridge, UK

April 19, 2019

Abstract

We address the optimization of a computer model, where each simulation either fails or
returns a valid output performance. We suggest a joint Gaussian process model for classifi-
cation of the inputs (computation failure or success) and for regression of the performance
function. We discuss the maximum likelihood estimation of the covariance parameters,
with a stochastic approximation of the gradient. We then extend the celebrated expected
improvement criterion to our setting of joint classification and regression, thus obtaining
a global optimization algorithm. We prove the convergence of this algorithm. We also
study its practical performances, on simulated data, and on a real computer model in the
context of automotive fan design.

1 Introduction

Bayesian optimization (BO) is now well-established as an efficient tool to solve optimization
problems with non-linear expensive-to-evaluate objectives. A wide range of applications have
been tackled, from the hyperparameter tuning of machine learning algorithms [30] to wing
shape design [15]. In the simplest BO setting, the aim is to find the maximum of a fixed
unknown function f : D → R, where D is a box of dimension d. Under that configuration,
the celebrated Efficient Global Optimization (EGO) and its underlying acquisition function
Expected Improvement (EI) are still considered as state-of-the-art.

Several authors have adapted BO to the constrained optimization framework, i.e. when
the acceptable design space A ⊂ D is defined by a set of non-linear, expensive-to-compute
equations c:

A = {x ∈ D s.t. c(x) ≤ 0},

either by considering the EI function [29, 28, 5, 10, 24] or by proposing alternative acquisition
functions [23, 11].

We consider here the problem of crash constraints, where the objective f is typically
evaluated using a computer code that fails to provide simulation results f(x) for some input
conditions x. We write A of the form

A = {x ∈ D; s(x) = 1}

1

where s : D → {0, 1} is a fixed unknown function.
We assume that, for each x ∈ D, a single computation provides the pair (s(x),1s(x)=1f(x)).

Hence, it is as costly to see if a simulation at x fails as to observe the simulation result f(x)
when there is no failure. A first typical example of failure can be a computational fluid
dynamics (CFD) solver that does not converge. This convergence failure can be caused by
an overly large time step yielding an instability of the numerical scheme and a divergence,
or also by an inadapted mesh close to the boundary of the domain (see also for instance the
discussions in [27]). A second typical example of failure is when f(x) provides the numerical
performance (e.g. the empirical risk) of a complex machine learning model (e.g. a deep neural
network) depending on architecture parameters in x [14]. The computation of f(x) then relies
on a gradient or stochastic gradient descent, using for instance retro-propagation in the case
of deep learning. In this case, a failure occurs when the gradient descent does not converge,
so that there is no observable value of f(x) at convergence. In these two examples, we remark
that, indeed, it is no less costly to observe a failure of the form s(x1) = 0, than to successfully
observe f(x2) with s(x2) = 1.

This optimization problem with failures was considered first by [9], where a Gaussian
process classifier [GPC, 21] was used together with a spatialized EI. [16] also proposed the
use of a GPC with EI, modified using an asymmetric entropy to limit as much as possible
the computational resources spent on crashed simulations. However, both approaches rely on
expensive Monte-Carlo simulations, which make them impractical in some cases, and do not
provide any convergence guarantee.

The contribution of this paper is two-fold. First, a new GPC model is proposed, where a
latent GP is simply conditioned on the signs of the observations instead of their values. Its
likelihood function maximization is studied, as well as its use to predict the feasibility proba-
bility (i.e. crash likeliness) of a new design x. Second, leveraging recent results on sequential
strategies [2], we propose an algorithm in the form of EGO with guaranteed convergence.

The outline of this paper is as follows: First, we introduce our GPC model (Section 2) and
its use in a Bayesian optimization algorithm (Section 3). Section 4 states our main consistency
result. Finally, our algorithm is first illustrated on several simulated toy problems (Section
5), then applied to an industrial case study (Section 6). A conclusion is given in Section 7.
All the proofs are postponed to the appendix.

2 A Classification model for crash constraints

This section presents our classification model used to characterize the feasible space A. It
takes the classical form of a GPC with a latent GP, but conditioned solely on pointwise
observations of its sign.

2.1 Conditioning GPs on observation signs

Let Z be a Gaussian process on D, with constant mean function with value µZ ∈ R and
stationary covariance function kZ . Given a set of points x1, . . . , xn ∈ D and corresponding
observations Zn = (Z(x1), . . . , Z(xn))>, GP regression typically amounts to using the pos-
terior mean mZ

n (x, zn) = E(Z(x)|Zn = zn) and covariance kZn (x) = Var(Z(x)|Zn = zn), for
zn ∈ Rn.

Now, in the classification setting, Z is a latent process and zn is not available. We propose
here to predict 1Z(x)>0 given the sign of Zn, that is, we consider the conditional non-failure

2

probability
Pnf(x) = P (Z(x) > 0| sign(Zn) = sn) ,

where sn = (i1, . . . , in)> with i1, . . . , in ∈ {0, 1} and sign(v) = (1v1>0, . . . ,1vn>0)> for v =
(v1, . . . , vn) ∈ Rn.

To our knowledge, there is no exact integral-free expression of Pnf(x). The following
lemma provides an expression of Pnf(x) that is more amenable to numerical approximation.

Lemma 1. For sn ∈ {0, 1}n, let φZnsn be the conditional p.d.f. of Zn given sign(Zn) = sn. Let
us define, for a ∈ R, b ≥ 0,

Φ̄
(a
b

)
=

{
1− Φ

(
a
b

)
if b 6= 0

1−a>0 if b = 0
,

where Φ is the standard Gaussian c.d.f. Then we have

Pnf(x) =

∫
Rn
φZnsn (zn)Φ̄

(
−mZ

n (x, zn)√
kZn (x)

)
dzn.

Proof. The proof is deferred to Appendix A.

Because of Lemma 1, we suggest the following algorithm to approximate Pnf(x).

Algorithm 1.

1. Sample z
(1)
n , . . . , z

(N)
n ∈ Rn from the p.d.f. φZnsn .

2. For any x ∈ D, approximate Pnf(x) by

P̂nf(x) =
1

N

N∑
i=1

Φ̄

(
−mZ

n (x, z
(i)
n)√

kZn (x)

)
.

The benefit of Algorithm 1 is that Step 1, which is the most costly, has to be performed

only once (independently of x ∈ D). In this step, z
(1)
n , . . . , z

(N)
n can be sampled by a basic

rejection method (sampling Zn from its Gaussian p.d.f. φZn until the signs of Zn match
i1, . . . , in), by a more advanced rejection method called Rejection Sampling from the Mode
(RSM) [18], or by more involved Markov Chain Monte Carlo (MCMC) methods [3, 32, 22],
see also their presentations in [17]. Step 2 is not costly and can be repeated for many inputs
x.

2.2 Likelihood computation and optimization

Let {kZθ ; θ ∈ Θ} be a set of stationary covariance functions on D with Θ ⊂ Rp. Typically,
θ consists of an amplitude term and one or several lengthscale terms [25, 26]. We aim at
selecting a constant mean function for Z with value µ ∈ R and a covariance parameter θ. Let
us first consider two pairs (θ1, µ1), (θ2, µ2) ∈ Θ × R for which kZθ1/k

Z
θ1

(0) = kZθ2/k
Z
θ2

(0) and

µ1/(k
Z
θ1

(0))1/2 = µ2/(k
Z
θ2

(0))1/2. Then, one can check that the distribution of the sign process
{1Z(x)>0;x ∈ D} is the same when Z has mean and covariance function µ1 and kθ1 or µ2 and

3

kθ2 . Hence, it is sufficient to let {kZθ ; θ ∈ Θ} be a set of stationary correlation function and
to let µ ∈ R be unrestricted.

For sn ∈ {0, 1}n, let Pµ,θ(sign(Zn) = sn) be the probability that sign(Zn) = sn, calculated
when Z has mean function µ and covariance function kθ. Then, the maximum likelihood
estimators for µ and θ are

(µ̂, θ̂) ∈ argmax
(µ,θ)∈R×Θ

Pµ,θ(sign(Zn) = sn). (1)

The likelihood criterion to optimize is the probability of an orthant of Rn, evaluated under
a multidimensional Gaussian distribution. Several advanced Monte Carlo methods exist to
approximate this probability [3, 6, 1]. In addition, stochastic approximations of the gradient
of Pµ,θ(sign(Zn) = sn) with respect to (µ, θ) can be obtained from conditional realizations of
Zn given sign(Zn) = sn. Calculations are provided in Appendix B.

2.3 Comparison with classical GPC

The model in Sections 2.1 and 2.2 can be written as

Ii = 1Z(xi)>0 for i = 1, . . . , n and I = 1Z(x)>0, (2)

where I1, . . . , In ∈ {0, 1} are observed and I ∈ {0, 1} is to be predicted. In the model (2), the
parameters to estimate are the constant mean µ ∈ R and the correlation parameter θ for Z.

Another widely used Gaussian process-based classification model is the one given in [25,
21]. In this model, there is again a Gaussian process Z and, conditionally on Z(x1), . . . , Z(xn), Z(x),
the variables I1, . . . , In, I are independent and take values 0 or 1. Furthermore, with again
Zn = (Z(x1), . . . , Z(xn))>,

P (Ii = 1|Zn, Z(x)) = sig(σfZ(xi)) for i = 1, . . . , n and P (I = 1|Zn, Z(x)) = sig(σfZ(x)),
(3)

where sig : R → (0, 1) is a continuous strictly increasing function satisfying sig(t) → 0 as
t → −∞ and sig(t) → 1 as t → +∞ and with σf > 0. For instance, a classical choice in
[25, 21] is the logit function defined by sig(x) = ex/(1 + ex).

In the model (3), it is assumed in [25, 21] that the mean function of Z is zero1. The
parameter to estimate for the covariance function of Z is θ, from the set of stationary co-
variance functions {kθ; θ ∈ Θ}. The parameter σf also has to be estimated. Since the mean
function of Z is assumed to be zero, one can see that pairs (θ1, σf,1) and (θ2, σf,2) for which
σ2
f,1kθ1 = σ2

f,2kθ2 give the same distribution of I1, . . . , In, I in (3). Thus, for the model (3),
we let {kθ; θ ∈ Θ} be a set of correlation functions, and σf ≥ 0 has to be estimated as well.

We now compare our introduced model (2) with (3). The framework (2) corresponds to
the limit of the model in (3), as σf → +∞. Indeed, let sgn(t) = 0 if t < 0, sgn(t) = 1/2
if t = 0 and sgn(t) = 1 if t > 0. Then, as observed in [21], when σf = +∞, we have
P (I = 1|Zn, Z(x)) = sgn(Z(x)) and P (Ii = 1|Zn, Z(x)) = sgn(Z(xi)), for i = 1, . . . , n. Since
the components of Zn take values 0 with zero probability, (2) and (3) indeed give identical
distributions of (I1, . . . , In, I) when σf = +∞.

In the framework described in Section 1, repeated calls to the code function, for the
same input x, either all crash or all successfully return an output value. Furthermore, in

1A constant mean function could be incorporated and estimated with no additional complexity.

4

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 1: GPC model (3) based on EP and the logit function (left) and our GPC model (2)
(right).

the setting of the industrial case study in Section 6, the set of inputs x for which the code
function crashes (or returns an output value) has regularity properties. Hence, the model
(2) is more appropriate than the model (3) (especially with small values of σf). Thus, it
is beneficial to use the model (2) directly, rather than using the model (3), which entails
additional cost and error risk with the estimation of σf . Figure 1 shows the two models built
on a 50-point design of experiments on a 2D toy problem. While the model (3), based on
expectation-propagation (EP) [21], returns a function with smooth transitions, our model (2)
returns a much sharper function, which is more appropriate for our framework of deterministic
failures. In addition, the model (1) returns conditional crash probabilities that are not equal
to exactly zero or one for input points points with observed binary outputs. In contrasts, the
conditional probabilities returned by our model are exactly zero or one for these input points
with observed outputs. Again this is more appropriate for deterministic failures.

In terms or inference, we have discussed in Section 2.1 that, for a fixed θ, the only costly
step for the model (2) is to sample realizations of the p.d.f. φZnsn . This p.d.f. is that of
a truncated Gaussian vector (restricted to an orthant of Rn). Instead, the distribution to
sample with the model (3) (the conditional distribution of Zn given I1 = i1, . . . , In = in) has
a density on Rn, which value at z1, . . . , zn is proportional to n∏

j=1

sig(σfzj)
ij [1− sig(σfzj)]

1−ij

φZn(z1, . . . , zn), (4)

where φZn is the Gaussian density function of Zn. The density in (4) is, arguably, more com-
plicated than a truncated Gaussian density function, for which many implemented algorithms
are available, as discussed above when introducing the references [3, 32, 22, 17].

In [25, 21], several approximations of the distribution in (4) by multidimensional Gaussian
distributions are presented (in particular, the Laplace and EP approximations, the variational
method and the Kullback-Leibler method). These approximations are usually relatively fast
to obtain, from local optimization methods. Yet, they are approximations of a non-Gaussian

5

distribution, and do not come (to our knowledge) with theoretical guarantees. Similarly, for
parameter estimation, the likelihood function of I1, . . . , In is approximated, and the approx-
imation is maximized with respect to θ and σf . This yields a relatively fast procedure for
estimating θ and σf , for which, again, no theoretical guarantees are available.

In contrast, with the model (2), the simulation from the truncated conditional distribution
φZnsn , with sn = (i1, . . . , in) (Section 2.1) and the maximum likelihood estimation of θ and µ
(Section 2.2) do not rely on approximations, and are based on Monte Carlo techniques rather
than optimization. Hence, compared to the model (3), the inference in the model (2) may
come with computational cost, but has more accuracy guarantees. For instance, there exists
a large body of literature guaranteeing the convergence of Monte Carlo algorithms, for long
runs [19].

We remark that, with the model (3) and the above discussed Gaussian approximation, once
the conditional distribution of (Z(x1), . . . , Z(xn)) given I1 = i1, . . . , In = in is approximated,
it is not costly to obain the conditional distribution of I given (I1, . . . , In) (see [25, 21]). This
is similar to Algorithm 1 for the model (2).

Finally, the constrained optimization problems addressed in the present article are of the
form maxx∈A f(x), where A is a fixed unknown subset. It is hence very natural to use the
Bayesian prior {x ∈ D;Z(x) > 0} on A, which is obtained from our classification model (2).
In contrasts, the classification model (3) does not provide a fixed set of admissible inputs,
since any x in D has non-zero probabilities to yield both categories of the binary output. As
a consequence, our suggested acquisition function in (9) below, and particularly the definition
of the current admissible maximum Mq there, rely on the classification model (2). Hence,
also the proof of convergence in Section 4 relies on the classification model (2).

3 Bayesian optimization with crash constraints

Let us now address the case of optimization in the presence of computational failures, that is
introduced in Section 1. This problem requires a model for the objective function in addition
to the one for the constraint. In this section, we first consider the problem of joint modeling,
then its use in a Bayesian optimization algorithm.

3.1 Joint modeling of the objective and constraint

Let us consider two independent continuous Gaussian processes Y and Z from D to R. In
our framework, for an input point x, we can observe the pair

(sign[Z(x)], sign[Z(x)]Y (x)]). (5)

That is, we observe whether the computation fails (Z(x) ≤ 0) or not, and in case of compu-
tation success, we observe the computation output Y (x).

For Z, as in Section 2, we select a constant mean µZ ∈ R and a correlation parameter
θZ ∈ ΘZ , where {kZθZ ; θZ ∈ ΘZ} is a set of correlation functions with ΘZ ⊂ RpZ . For Y , we

select a constant mean µY ∈ R and a covariance parameter θY ∈ ΘY , where {kYθY ; θY ∈ ΘY }
is a set of covariance functions with ΘY ⊂ RpY .

Let the pair (5) be observed for the input points x1, . . . , xn ∈ D. For j = 1, . . . , n we let
Ij = sign(Z(xj)) and consider the observation (i1, . . . , in, i1y1, . . . , inyn) of

(I1, . . . , In, I1Y (x1), . . . , InY (xn)) . (6)

6

In the next lemma, we show that a likelihood can be defined for these 2n observations.
Since the distribution of IiY (xi) is a mixture of continuous and discrete distributions, we
add a random continuous noise in case Ii = 0. This random noise does not add or remove
information, and is just a technicality in order to write the following lemma in terms of
likelihood with respect to a simple fixed measure on R2n.

Let us introduce some notation before stating the lemma. For sn = (i1, . . . , in)> ∈
{0, 1}n, let Yn,sn be the vector extracted from (Y (x1), . . . , Y (xn)) by keeping only the indices
j ∈ {1, . . . , n} for which ij = 1. Let φY

µY ,θY ,sn
be the p.d.f. of Yn,sn , calculated under

the assumption that Y has a constant mean function µY and covariance function kYθY . For

v = (v1, . . . , vn)> ∈ Rn, let vsn be the vector extracted from v by keeping only the indices
j ∈ {1, . . . , n} for which ij = 1.

Lemma 2. For j = 1, . . . , n, let Vj = IjY (xj) + (1 − Ij)Wj where W1, . . . ,Wn are in-
dependent and follow the standard Gaussian distribution. Let fµZ ,θZ ,µY ,θY be the p.d.f. of
(I1, . . . , In, V1, . . . , Vn), defined with respect to the measure (⊗ni=1µ)⊗ (⊗ni=1λ) where µ is the
counting measure on {0, 1} and λ is the Lebesgue measure on R. Then we have

fµZ ,θZ ,µY ,θY (i1, . . . , in, v1, . . . , vn)

=PµZ ,θZ (I1 = i1, . . . , In = in)φYµY ,θY ,sn (vsn)

 ∏
j=1,...,n
ij=0

φ(vj)

 ,

where φ is the standard Gaussian p.d.f. and PµZ ,θZ (·) is the probability of an event, calculated

under the assumption that Z has mean and covariance functions µZ and kZθZ .

Proof. The proof is deferred to Appendix A.

In view of Lemma 2, the maximum likelihood estimators of µZ , θZ , µ
Y , θY are

(µ̂Z , θ̂Z) ∈ argmax
(µZ ,θZ)∈R×ΘZ

PµZ ,θZ (I1 = i1, . . . , In = in) (7)

and
(µ̂Y , θ̂Y) ∈ argmax

(µY ,θY)∈R×ΘY

φYµY ,θY ,sn (Yq) , (8)

with Yq the realization of Yn,sn .
The likelihood maximization in (7) can be tackled as in Section 2. The likelihood maxi-

mization in (8) corresponds to the standard maximum likelihood in Gaussian process regres-
sion.

Once the likelihood has been optimized, it is common practice to take the optimal mean
and variance as face value and neglect the uncertainty associated with their estimation (“plu-
gin” approach). Under this assumption, we provide in the next lemma the conditional distri-
butions of Z and Y , given the observations in (6).

Lemma 3. Conditionally on

I1 = i1, I1Y (x1) = i1y1, . . . , In = in, InY (xn) = inyn,

7

the stochastic processes Y and Z are independent. The stochastic process Z follows the con-
ditional distribution of Z given I1 = i1, . . . , In = in and the stochastic process Y follows the
conditional distribution of Y given Yn,sn = Yq with Yn,sn as in Lemma 2 and with Yq defined
as after (8).

Proof. The proof is deferred to Appendix A.

In other words, conditionally on the observations, Z is conditioned on its signs at x1, ..., xn,
and Y is conditioned on its values at the xi’s for which Z(xi) > 0. Hence, conditional inference
on Z can be carried out as described in Section 2, and Y follows the standard Gaussian
conditional distribution in Gaussian process regression.

3.2 Acquisition function and sequential design

Given the observations in (6), we now suggest an acquisition function to be optimized to
select a new observation point xn+1 ∈ D given a set of existing n observations. We follow
the celebrated expected improvement principle [20, 12], adapted to the partial observation
setting. Thus, we choose:

xn+1 ∈ argmax
x∈D

E
(
1Z(x)>0 [Y (x)−Mq]

+
∣∣Fn) , (9)

where, with σ(·) the sigma-algebra generated by a set of random variables,

Fn = σ (I1, I1Y (x1), . . . , In, InY (xn)) (10)

denotes our observation event and

Mq = max
i=1,...,n;Z(xi)>0

Y (xi)

with the conventionMq = −∞ if Z(x1) ≤ 0, . . . , Z(xn) ≤ 0. We call E
(
1Z(x)>0 [Y (x)−Mq]

+
∣∣Fn)

the expected improvement with failure (EIF).
As in Lemma 3, for sn = (i1, . . . , in) ∈ {−1, 1}n, we let Yn,sn be the vector extracted from

(Y (x1), . . . , Y (xn) by keeping only the indices j ∈ {1, . . . , n} for which ij = 1. Thanks to this
lemma we have

E
(
1Z(x)>0 [Y (x)−Mq]

+
∣∣Fn) =P (Z(x) > 0| I1 = i1, . . . , In = in)E

(
[Y (x)−Mq]

+
∣∣Yn,sn)

=Pnf(x)× EI(x),

say. Hence, the EIF is equal to the product of the conditional probability of non-failure
Pnf(x) (conditionally on the signs of Z) and of the standard expected improvement EI(x)
(conditionally on the observed values of Y). This criterion is similar to the one proposed
in [29] and later [5] for quantifiable constraints. The criterion in [16] is slightly different in
order to favor the exploration of the boundary, but at the loss of a consistent definition of
improvement :

EI(x)α1 ×
[

2Pnf(x) (1− Pnf(x))

Pnf(x)− 2wPnf(x) + w2

]α2

,

with α1, α1 and w positive parameters.

8

The conditional probability of non-failure Pnf(x) can be approximated by P̂nf(x) from
Algorithm 1. In this algorithm, the first step is costly but needs to be performed only once
independently of x, hence outside the optimization loop (9). Then, P̂nf(x) is a smooth function
of x that is not costly to evaluate.

Turning to the expected improvement EI(x), let q be the length of Yn,sn . For a realization
(y1, . . . , yn) of Y (x1), . . . , Y (xn), let Yq be the vector extracted from (y1, . . . , yn) by keeping
only the indices j ∈ {1, . . . , n} for which ij = 1. Hence, Yq is a realization of Yn,sn .

Let x→ mY
q (x, Yq) and (x, y)→ kYq (x, y) be the conditional mean and covariance functions

of Y given Yn,sn = Yq. Let also kYq (x) = kYq (x, x). It is well-known (see e.g.[12]) that

EI(x) =
(
mY
q (x, Yq)−Mq

)
Φ

mY
q (x, Yq)−Mq√

kYq (x)

+
√
kYq (x)φ

mY
q (x, Yq)−Mq√

kYq (x)

 , (11)

with Φ and φ the c.d.f. and p.d.f., respectively, of the standard Gaussian distribution.
Solving the optimization problem in (9) is greatly facilitated by analytical gradients, which

are available in our case. Calculations are provided in Appendix C.

4 Convergence

In this section, we prove the convergence of the sequential choice of observation points given
by (9), with the slight difference that (9) is replaced by

xn+1 ∈ argmax
x∈D

E

 max
u∈D

P(Z(u)>0|Fn,x)=1
var(Y (u)|Fn,x)=0

Y (u)− M̃q

∣∣∣∣∣∣∣∣∣Fn
 , (12)

with
M̃q = max

x∈D
P(Z(x)>0|Fn)=1

kYq (x)=0

Y (x) (13)

and where Fn,x is the sigma algebra generated by the random variables

I1, I1Y (x1), . . . , In, InY (xn),1Z(x)>0,1Z(x)>0Y (x).

We remark that Mq corresponds to the maximum over the q observed values of Y , while
M̃q is the maximum of Y over the input points x for which it is known (after the n first
observations) that Z(x) > 0 and that Y (x) = mY

q (x, Yq).
The algorithms given by (9) and (12) coincide when Z and Y are non-degenerate, that is

(ξ(vi))i=1,...,r has a non-degenerate distribution for any two-by-two distinct points v1, . . . , vr ∈
D, with ξ = Z and ξ = Y . These two algorithms can be different when Y or Z are degenerate
(which can happen, for instance, when their trajectories are known to satisfy symmetry
properties, see e.g. [8]).

Hence, using (12) in the case of degenerate processes enables us to take into account that
there are cases where some input points can be known to yield higher values of Y than maxYq
and to be valid. Furthermore, (12) takes into account the fact that, for u 6∈ {x1, . . . , xn, x},

9

the values 1Z(u)>0 and Y (u) can have zero uncertainty when 1Z(x)>0 and 1Z(x)>0Y (x) are
observed.

Following [33], we say that a Gaussian process ξ with continuous trajectories has the
no-empty ball property (NEB) if, for any x0 ∈ D, for any ε > 0,

inf
n∈N

x1,...,xn∈D
||xi−x0||≥ε, ∀i

var(ξ(x0)|ξ(x1), . . . , ξ(xn)) > 0.

Many standard covariance kernels provide Gaussian processes having the NEB. Indeed, a
sufficient condition for the NEB is that the covariance kernel is stationary with a spectral
density decreasing no faster than an inverse polynomial at infinity [33]. The most notable
covariance function that does not have the NEB property is the squared exponential covariance
function [34].

We are now in position to state the convergence result.

Theorem 1. Let D be a compact hypercube of Rd. Let (Xi)i∈N be such that X1 = x1 is fixed
in D and, for n ≥ 1, Xn+1 is selected by (12).

1. Assume that Y and Z are Gaussian processes with continuous trajectories. Then, a.s.
as n → ∞, supx∈D P(Z(x) > 0|Fn)(mY

q (x, Yn,sn) − M̃q)
+ → 0 and supx∈D P(Z(x) >

0|Fn)kYq (x)→ 0.

2. If furthermore Y and Z have the NEB property, then (Xi)i∈N is a.s. dense in D. As a
consequence maxi=1,...,n;Z(Xi)>0 Y (Xi)→ maxu∈D;Z(u)>0 Y (u) a.s. as n→∞.

Proof. Theorem 1 is proved by combining and extending the techniques from [33, 2]. The
proof is deferred to Appendix A.

The first part of Theorem 1 states that, as n → ∞, all the input points x provide an
asymptotically negligible expected improvement (similarly, a negligible information). Indeed,
they have a crash probability that are almost equal to one, or they have a conditional variance
that goes to zero and a conditional mean that is no larger than the current maximum M̃q.

The second part of the theorem shows that, as a consequence, the sequence of observation
points is dense as n→∞ and that the observed maximum converges to the global maximum.
The nature of this convergence result is similar to those given in the unconstrained case
in [33, 2]. This convergence result guarantees that our suggested algorithm will not leave
unexplored regions. Another formulation of Theorem 1 is that our suggested algorithm will
not be trapped in local maxima of Y .

5 Simulations on 2D-gaussian processes

In this section the behavior of our optimization algorithm with crash constraints, that we now
call Expected Feasible Improvement with Gaussian Process Classification with signs (EFI
GPC sign), is studied on simulated 2D-gaussian processes. We compare this algorithm with
the optimization procedure defined as in Section 3.2, but where the probabilities of satisfying
the constraints are obtained from the classical Gaussian process classifier of [25, 21], based
on Expectation Propagation, see Section 2.3. This second algorithm is called EFI GPC EP.

10

θZ = 0.1 θZ = 0.3

θY = 0.1 case 1 case 3
θY = 0.3 case 2 case 4

Table 1: Studied ranges for the simulations.

5.1 Simulations setting

The two algorithms are run on a function f : [0, 1]2 → R taken as a realization of a 2D
Gaussian process Y . The correlation kernel is a tensorized Matern5 2 kernel with the same
correlation length parameter θY in each direction [26]. Observation of f is conditioned by a
function s : [0, 1]2 → {0, 1} such that s is a realization of 1Z>0 where Z is a 2D Gaussian
process independent of Y . Z is also chosen with a tensorized Matern5 2 kernel with the same
parameter θZ in each direction.

Two levels of ranges for θY and θZ are considered to represent different behaviours of the
functions f and s. Four cases are studied and summarized in Table 1. In our simulations,
the processes Y et Z have mean µY = µZ = 0 and variance σ2

Y = σ2
Z = 1.

The initial Design of Experiments (DoE) is a maximin Latin hypercube design of 9 points.
Then, 41 points are sequentially added according to (14) :

xn+1 ∈ argmaxx∈DPnf(x)× EI(x). (14)

Note that, as discussed above, Pnf(x) is calculated either through our algorithm GPC sign
or by a classical GPC, noted GPC EP.

5.2 Results of our method EFI GPC sign

In the following we define the regret at step n

Rn = max
x∈[0,1]2,Z(x)>0

Y (x)− max
1≤i≤n,Z(xi)>0

Y (xi).

It represents the gap between the global maximum and the current maximum value of the
output on the current design of experiments {x1, . . . , xn}. We consider 20 different realizations
of Y and Z. On Figure 2 the mean ofRn is plotted along the iteration steps in the four different
cases described in Table 1. It can be noticed that in each case the algorithm converges to the
global maximum. The convergence speed depends on the range level. When the correlation
length of the process Y is high, i.e. θY = 0.3, the problem appears to be much easier,
independently on the correlation length of θZ . To a lesser extent, a high range of the process
Z also helps to accelerate the convergence.
The evolution of the Number of Successes (NoS) with iteration is plotted on Figure 3. In
case 2 and case 4 (θY = 0.3), the best point is rapidly found, exploration steps are then more
numerous and the increase of NoS slows down.

Range parameter estimations for the processes Y and Z are given in the top table of Table
2. The bottom table gives the estimation of trend and variance parameters for both processes.
It can be observed that parameter estimation for the process Z is difficult since only signs
are available. For instance, µZ is overestimated. This reflects under-sampling of crash areas

11

0 10 20 30 40

0
.0

0
.5

1
.0

1
.5

2
.0

iteration

R
n

case1

case2

case3

case4

Figure 2: Evolution of Rn (in mean) along the iteration steps. Four cases of range values are
considered (see Table 1). Parameters are estimated by maximum likelihood.

that provide no information on the process Y . The situation is different for the process Y .
Despite failure events, available information and estimation accuracy increase with iterations.

5.3 Comparison between EFI GPC sign and EFI GPC EP

The performances of both methods (EFI GPC sign and EFI GPC EP) are compared on the
same simulations as previously. It can be seen on Figure 4 that the regret of EFI GPC sign
converges more rapidly to 0. This can be explained by the fact that the number of sucesses
is more important with EFI GPC sign than with EFI GPC EP, since EFI GPC sign avoids
crash areas more often (see Figure 5). Parameters estimations of EFI GPC EP are given in
Table 3. It can be observed that Z-parameter estimation can hardly be compared between
methods since the classification models are different. Concerning the process Y , the estimated
correlation parameters tend towards the real values with more iterations. We remark that
the estimated values of σ2

f are large so that the EP classification model is close to the sign
classification model.
An example of the progression of the algorithms in case 1 (θZ = θY = 0.1) is given on Figure
6 for EFI GPC sign and 7 for EFI GPC EP . The evolution is quite similar but EFI GPC
sign reaches the maximum a bit earlier than EFI GPC EP. Moreover the number of crashes
is lower with EFI GPC sign than with EFI GPC EP. Two other simulations are compared
in Section D of the Appendix. Figures 12 and 13 show an example where neither method
found the global maximum. Figures 14 and 15 show a situation where the global maximum
is reached at the beginning of the algorithm faster for EFI GPC sign.

12

0 10 20 30 40 50

0
1

0
2

0
3
0

4
0

5
0

Number of simulations

N
o
S

case1

case2

case3

case4

Figure 3: Evolution of NoS, Number of Succeses, (in mean) along the number of simulations.
Four cases of range values are considered (see Table 1).

6 Industrial case study

The aim of this section is to find the shape of the turbomachinery of an automotive fan system
such that its efficiency is the highest as possible. The geometry of the turbomachinery, more
precisely the geometry of the rotor blades, is described by 15 geometric parameters: 5 chords
lengths, 5 stagger angles and 5 heights of max camber (see Figure 8). A turbomachinery code
has been developed by researchers of the LMFA (Laboratory of acoustics and fluid dynamics)
in Ecole Centrale Lyon. It is a multi-physics 1D model based on iterative resolution of isen-
tropic efficiency at medium radius, resolution of radial equilibrium, and deduction of blade
angles through empirical correlations.

In this context we aim at selecting the geometric parameters that maximize the efficiency
of the turbomachinery for a fixed input flow rate and for a fixed pressure rise. The ranges of
the 15 geometric parameters are given in Table 4 (Section E of the Appendix).

The problem is that for some parameter configurations the simulation does not converge
and a NA is returned. These simulation failures can be related to the empirical rules injected
in the implementation of the code, that limit its validity domain. It can occur that the
calculation comes out of the admissible domain, in which case the empirical correlations
become inaccurate and the simulation is not valid anymore.

The issue is to find the optimal geometry considering these failures. A set of initial simula-
tions has been run to explore failure events. We made each geometric parameter successively
vary from its minimum to its maximum in Table 4 around three particular points on the
diagonal of the hypercube in dimension 15: Point1 is close to the minimal corner of the hy-
percube, Point2 is at the center and Point3 is close to the maximal corner of the hypercube.

13

(a) Range parameters

θZ θ̂Z θ̂Z θY θ̂Y θ̂Y

true value iteration 10 iteration 41 true value iteration 10 iteration 41

Case 1 0.1 0.44 (0.33) 0.37 (0.30) 0.1 0.17 (0.23) 0.10 (0.02)
Case 2 0.1 0.32 (0.29) 0.24 (0.25) 0.3 0.36 (0.23) 0.32 (0.16)
Case 3 0.3 0.52 (0.35) 0.41 (0.30) 0.1 0.11 (0.08) 0.09 (0.02)
Case 4 0.3 0.49 (0.34) 0.51 (0.39) 0.3 0.34 (0.18) 0.28 (0.12)

(b) Trend and variance parameters

µ̂Z µ̂Z µ̂Y µ̂Y σ̂2
Y σ̂2

Y

iteration 10 iteration 41 iteration 10 iteration 41 iteration 10 iteration 41

Case 1 0.30 (0.26) 0.64 (0.85) -0.03 (0.57) -0.09 (0.31) 0.68 (0.49) 0.82 (0.32)
Case 2 0.27 (0.33) 0.41 (0.39) 0.03 (0.70) 0.00 (0.53) 0.79 (0.51) 0.89 (0.70)
Case 3 0.41 (0.33) 0.51 (0.41) -0.13 (0.36) -0.06 (0.30) 0.66 (0.30) 0.83 (0.21)
Case 4 0.26 (0.20) 0.48 (0.41) -0.16 (0.56) -0.07 (0.49) 0.74 (0.58) 0.75 (0.51)

Table 2: Method EFI GPC sign at step 10 and 41: (a) Estimation of θZ and θY , (b) Esti-
mation of µZ (true value is 0), µY (true value is 0) and σ2

Y (true value is 1). Mean (standard
deviation) over 20 simulations.

Coordinates are given in Table 5 (Section E of the Appendix). The results of these simula-
tions in terms of NA values are represented in Figure 9. Yellow areas are failures. It is more
frequent to observe a NA at the edges of the hypercube and near Point1. It can be observed
on Figure 10 that highest efficiencies are obtained around the center of the hypercube.

Remark : To simplify the reading on all the figures of this section the points are repre-
sented in a normalized domain [−1, 1]15.

Both methods EFI GPC sign and EFI GPC EP are applied from an initial maximin LHS
composed of 75 points. Among them 18 simulations failed. The output range of converged
simulations is roughly [0.3, 0.7] and the highest observed efficiency is 0.70. 100 simulations
are then successively chosen accordingly to (14). As it can be seen on Figure 11 the objective
of improving efficiency is reached: a max value of 0.75 is observed at iteration 22 (resp. 25)
for algorithm EFI GPC sign (resp. EFI GPC EP).
Several types of behavior of the algorithms can be observed along the iterations. At the
beginning of the algorithms the simulations are added to locally improve efficiency : only one
crash is met over the 20 first points. Then and especially above iteration 50 the algorithms
explore other uncertainty areas and more failures occur. It can be noticed on Figure 11 that
our algorithm EFI GCP sign better avoids crash areas than EFI GCP EP does. Only 23
failures are met over 100 iterations with EFI GCP sign whereas 34 crashes occur with EFI
GCP EP.

14

case3 case4

case1 case2

0 10 20 30 40 0 10 20 30 40

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

iteration

R
n

method

EP

sign

Figure 4: Evolution of Rn (in mean) along the iteration steps : EFI GPC sign in green and
EFI GPC EP in red. Four cases of range values are considered (see Table 1). Parameters are
estimated by maximum likelihood.

7 Conclusion

In this work, we addressed the problem of global optimization of a black-box function under
“crash” constraints. To do so, we revisited Gaussian process classification with a model
based on observation signs. This model exhibited sharp classification boundaries, which were
appropriate in our framework, and allowed us to propose the first algorithm with guaranteed
convergence for this problem. Numerical experiments showed promising results, in particular
as the algorithm leads to many less simulation failures (in a sense, wasted computational
resources) that the current state-of-the-art.

For simplicity, we considered in this paper the case where simulations were run one-at-
a-time. A possible extension of this work is to treat the case of batch-sequential strategies,
in the spirit of [7, 35]. We believe that both theoretical and practical aspects could be
addressed without major difficulty. Another extension with practical importance would be
to tackle problems for which either the objective function and / or the failure events are
stochastic; however, a large portion of the proofs proposed here would not apply directly.
Finally, convergence rates have not been considered here. Following [4, 31], future work may
address this problem.

15

case3 case4

case1 case2

0 10 20 30 40 50 0 10 20 30 40 50

0

10

20

30

40

0

10

20

30

40

iteration

N
o
S

method

EP

sign

Figure 5: Evolution of NoS (Number of Successes), in mean, with the number of iterations :
EFI GPC sign in green and EFI GPC EP in red. Four cases of range values are considered
(see Table 1).

Acknowledgments

This work was partly funded by the ANR project PEPITO. We are grateful to Jean-Marc
Azäıs and David Ginsbourger for discussions on the topic of this paper.

16

(a) Range parameters

θZ θ̂Z θ̂Z θY θ̂Y θ̂Y

true value iteration 10 iteration 41 true value iteration 10 iteration 41

Case 1 0.1 0.30 (0.35) 0.13 (0.10) 0.1 0.26 (0.48) 0.10 (0.03)
Case 2 0.1 0.23 (0.28) 0.18 (0.19) 0.3 0.98 (1.54) 0.36 (0.16)
Case 3 0.3 0.47 (0.37) 0.34 (0.23) 0.1 0.21 (0.45) 0.12 (0.16)
Case 4 0.3 0.44 (0.35) 0.35 (0.29) 0.3 0.48 (0.73) 0.43 (0.73)

(b) Trend and variance parameters

σ̂2
f σ̂2

f µ̂Y µ̂Y σ̂2
Y σ̂2

Y

iteration 10 iteration 41 iteration 10 iteration 41 iteration 10 iteration 41

Case 1 8.91 (2.77) 10.00 (0.00) -0.10 (0.55) -0.12 (0.33) 0.70 (0.54) 0.77 (0.29)
Case 2 9.79 (0.84) 10.00 (0.00) 0.04 (0.73) 0.14 (0.53) 1.03 (0.77) 0.94 (0.73)
Case 3 9.44 (2.07) 10.00 (0.00) -0.11 (0.37) -0.06 (0.35) 0.62 (0.33) 0.81 (0.26)
Case 4 8.37 (3.28) 9.47 (2.29) -0.21 (0.55) -0.09 (0.56) 1.11 (1.81) 0.92 (0.84)

Table 3: Method EFI GPC EP at step 10 and 41: (a) Estimation of θZ and θY , (b) Estimation
of σ2

f , µY (true value is 0) and σ2
Y (true value is 1). Mean (standard deviation) over 20

simulations.

17

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

GPC sign

(a) sign - initial step

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

GPC sign

(b) sign - step 10

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

GPC sign

(c) sign - step 20

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

GPC sign

(d) sign - final step

Figure 6: Evolution of EFI GCP sign with iteration. The non admissible area is in blue. The
best point is in green. NA points are plotted with triangles. Four situations are plotted : (a)
initial step composed of 9 points, (b) after 10 added points, (c) after 20 added points, (d)
final situation composed of 50 points.

18

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

GPC EP

(a) EP - initial step

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

GPC EP

(b) EP - step 10

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

GPC EP

(c) EP - step 20

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

GPC EP

(d) EP - final step

Figure 7: Evolution of EFI GCP EP with iteration. The non admissible area is in blue. The
best point is in green. NA points are plotted with triangles. Four situations are plotted : (a)
initial step composed of 9 points, (b) after 10 added points, (c) after 20 added points, (d)
final situation composed of 50 points.

19

Figure 8: Section of a rotor blade for the turbomachinery of a fan system.

2 4 6 8 10 12 14

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

a) Point 1

2 4 6 8 10 12 14

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

b) Point 2

2 4 6 8 10 12 14

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

c) Point 3

Figure 9: NA values around Point1, Point2 and Point3 (see Table 5). NA values are
represented by yellow areas. The x-axis provides the index of the input variable to be changed.
In the y-axis, −1 corresponds to the minimum for the corresponding input variable and 1
corresponds to the maximum.

20

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

a) Point 1

E
ffi

ci
en

cy

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

b) Point 2

E
ffi

ci
en

cy

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

c) Point 3

E
ffi

ci
en

cy

Figure 10: Evolution of the efficiency (output of the code) from min to max in each direction
around Point1, Point2 and Point3. The colors indicate the different curves when varying
the different input variables. A crash at a given value of x is indicated by the absence of the
curve value. The bullets are used to highlight the beginning of the crash ranges for the input
variables.

0 50 100 150

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

y

(a) EFI PGC sign

0 50 100 150

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

y

(b) EFI GPC EP

Figure 11: Efficiency values for 175 geometric configurations. The first 75 points come from
the initial DoE and are plotted in black. The 100 other points have been added by our
optimization algorithms with failures (a) EFI PGC sign and (b) EFI PGC EP. Crashes are
represented by vertical lines. On Figure (a) (resp. (b)), for EFI PGC sign (resp. EFI PGC
EP), the best point is represented by a magenta diamond (resp. blue square) and is found at
simulation number 97 (resp. 100).

21

A Proofs

Proof of Lemma 1. With φZn the p.d.f. of Zn and with sn = (i1, . . . , in)>, we have

Pnf(x) = P (Z(x) > 0| sign(Zn) = sn)

=
E
(
1Z(x)>0

∏n
j=1 1sign(Z(xj))=ij

)
P (sign(Zn) = sn)

=

∫
Rn φ

Zn(z1, . . . , zn)
(∏n

j=1 1sign(zj)=ij

)
P (Z(x) > 0|Z(x1) = z1, . . . , Z(xn) = zn) dz1 . . . dzn

P (sign(Zn) = sn)

=

∫
Rn
φZnsn (zn)Φ̄

(
−mZ

n (x, zn)√
kZn (x)

)
dzn. (15)

The equation (15) is obtained by observing that

φZn(z1, . . . , zn)
(∏n

j=1 1sign(zj)=ij

)
P (sign(Zn) = sn)

=
φZn(z1, . . . , zn)1sign(Zn)=sn

P (sign(Zn) = sn)
= φZnsn (zn)

by definition of φZnsn (zn), and that

P (Z(x) > 0|Z(x1) = z1, . . . , Z(xn) = zn) = Φ̄

(
−mZ

n (x, zn)√
kZn (x)

)

by Gaussian conditioning.

Proof of Lemma 2. For any measurable function f , by the law of total expectation and
using the independence of Y , (W1, . . . ,Wn) and Z, we have

E [f (I1, . . . , In, V1, . . . , Vn)]

=
∑

i1,...,in∈{−1,1}

PµZ ,θZ (I1 = i1, . . . , In = in)

E [f (i1, . . . , in, i1Y (x1) + (1− i1)W1, . . . , inY (xn) + (1− in)Wn)]

=
∑

i1,...,in∈{−1,1}

PµZ ,θZ (I1 = i1, . . . , In = in)

∫
Rn
dvφYµY ,θY ,sn (vsn)

 ∏
j=1,...,n
ij=0

φ(vj)

 f (i1, . . . , in, v1, . . . , vn) .

This concludes the proof by definition of a p.d.f.

Proof of Lemma 3. Consider measurable functions f(Y), g(Z), h(I1, . . . , In) and ψ(I1Y (x1), . . . ,

22

InY (xn)). We have, by independence of Y and Z,

E [f(Y)g(Z)h(I1, . . . , In)ψ(I1Y (x1), . . . , InY (xn))]

=
∑

i1,...,in∈{0,1}

P (I1 = i1, . . . , In = in)

E [f(Y)g(Z)h(i1, . . . , in)ψ(i1Y (x1), . . . , inY (xn))| I1 = i1, . . . , In = in]

=
∑

i1,...,in∈{0,1}

P (I1 = i1, . . . , In = in)h(i1, . . . , in)

E [f(Y)ψ(i1Y (x1), . . . , inY (xn))]E [g(Z)| I1 = i1, . . . , In = in]

=
∑

i1,...,in∈{0,1}

P (I1 = i1, . . . , In = in)h(i1, . . . , in)

E [ψ(i1Y (x1), . . . , inY (xn))E [f(Y)|Yn,sn]]E [g(Z)| I1 = i1, . . . , In = in] .

The last display can be written as, with Ln the distribution of

I1, . . . , In, I1Y (x1), . . . , InY (xn),

∫
R2n

dLn(i1, . . . , in, i1y1, . . . , inyn)h(i1, . . . , in)ψ(i1y1, . . . , inyn)

E [f(Y)|Yn,sn = Yq]E [g(Z)| I1 = i1, . . . , In = in] ,

where Yq is as defined in the statement of the lemma. This concludes the proof.

We now address the proof of Theorem 1. We let (Xi)i∈N be the random observation points,
such that Xi is obtained from (9) and (13) for i ∈ N. The next lemma shows that conditioning
on the random observation points and observed values works “as if” the observation points
X1, . . . , Xn were non-random.

Lemma 4. For any x1, . . . , xk ∈ D, i1, ..., ik ∈ {0, 1}k and i1y1, ..., ikyk ∈ Rk, the conditional
distribution of (Y,Z) given

X1 = x1, sign(Z(X1)) = i1, sign(Z(X1))Y (X1) = i1y1, . . . ,

Xk = xk, sign(Z(Xk)) = ik, sign(Z(Xk))Y (Xk) = ikyk

is the same as the conditional distribution of (Y,Z) given

sign(Z(x1)) = i1, sign(Z(x1))Y (x1) = i1y1, . . . , sign(Z(xk)) = ik, sign(Z(xk))Y (xk) = ikyk.

Proof. This lemma can be shown similarly as Proposition 2.6 in [2].

Proof of Theorem 1. For k ∈ N, we remark that Fk is the sigma-algebra generated by

X1, sign(Z(X1)), sign(Z(X1))Y (X1), . . . , Xk, sign(Z(Xk)), sign(Z(Xk))Y (Xk).

We let Ek, Pk and vark denote the expectation, probability and variance conditionally on
Fk. For x ∈ D, we let Ek,x, Pk,x and vark,x denote the expectation, probability and variance
conditionally on

X1, sign(Z(X1)), sign(Z(X1))Y (x1), . . . , Xk, sign(Z(Xk)), sign(Z(Xk))Y (Xk), x, sign(Z(x)), sign(Z(x))Y (x).

23

We let σ2
k(u) = vark(Y (u)), mk(u) = Ek[Y (u)] and Pk(u) = Pk(Z(u) > 0). We also let

σ2
k,x(u) = vark,x(Y (u)), mk,x(u) = Ek,x[Y (u)] and Pk,x(u) = Pk,x(Z(u) > 0).

With these notations, the observation points satisfy, for k ∈ N,

Xk+1 ∈ argmaxx∈DEk,x

 max
u:Pk,x(u)=1
σk,x(u)=0

Y (u)−Mk

 , (16)

where
Mk = max

u:Pk(u)=1
σk(u)=0

Y (u).

We first show that (16) can be defined as a stepwise uncertainty reduction (SUR) sequential
design [2]. We have

Xk+1 ∈argmaxx∈DEk

 max
Pk,x(u)=1
σk,x(u)=0

Y (u)− max
Pk(u)=1
σk(u)=0

Y (u)

 (17)

∈argminx∈DEk

Ek,x
(

max
Z(u)>0

Y (u)

)
− max
Pk,x(u)=1
σk,x(u)=0

Y (u)

since the second term in (17) does not depend on x and from the law of total expectation.
We let

Hk = Ek

 max
Z(u)>0

Y (u)− max
Pk(u)=1
σk(u)=0

Y (u)

and

Hk,x = Ek,x

 max
Z(u)>0

Y (u)− max
Pk,x(u)=1
σk,x(u)=0

Y (u)

 .

Then we have for k ≥ 1
Xk+1 ∈ argminx∈DEk (Hk,x) .

We have, using the law of total expectation, and since Ek,x
[
maxPk,x(u)=1,σk,x(u)=0 Y (u)

]
=

maxPk,x(u)=1,σk,x(u)=0 Y (u),

Hk − Ek(Hk+1) =Ek

 max
Pk,Xk+1

(u)=1

σk,Xk+1
(u)=0

Y (u)− max
Pk(u)=1
σk(u)=0

Y (u)

≥ 0

since, for all u, x ∈ D, σk,x(u) ≤ σk(u) and Pk(u) = 1 implies Pk,x(u) = 1. Hence (Hk)k∈N is a
supermartingale and of course Hk ≥ 0 for all k ∈ N. Also |H1| ≤ 2E1 [maxu∈D |Y (u)|] so that
H1 is bounded in L1, since the mean value of the maximum of a continuous Gaussian process

24

on a compact set is finite. Hence, from Theorem 6.23 in [13], Hk converges a.s. as k →∞ to a
finite random variable. Hence, as in the proof of Theorem 3.10 in [2], we have Hk−Ek(Hk+1)
goes to 0 a.s. as k →∞. Hence, by definition of Xk+1 we obtain supx∈D(Hk−Ek(Hk,x))→ 0
a.s. as k →∞. This yields, from the law of total expectation,

0←−a.s.n→∞ sup
x∈D

Ek

 max
Pk,x(u)=1
σk,x(u)=0

Y (u)− max
Pk(u)=1
σk(u)=0

Y (u)

 (18)

≥ sup
x∈D

Ek
[
1Z(x)>0 (Y (x)−Mk)

+]
≥ sup
x∈D

Pk(x)γ(mk(x)−Mk, σk(x)),

from Lemma 3 and (11), where

γ(a, b) = aΦ
(a
b

)
+ bφ

(a
b

)
.

Recall from Section 3 in [33] that γ is continuous and satisfies γ(a, b) > 0 if b > 0 and
γ(a, b) ≥ a if a > 0. We have for k ∈ N, 0 ≤ σk(u) ≤ maxv∈D

√
var(Y (v)) < ∞. Also, with

the same proof as that of Proposition 2.9 in [2], we can show that the sequence of random
functions (mk)k∈N converges a.s. uniformly on D to a continuous random function m∞ on D.
Thus, from (18), by compacity, we have, a.s. as k → ∞, supx∈D Pk(x)(mk(x) −Mk)

+ → 0
and supx∈D Pk(x)σk(x)→ 0. Hence, Part 1. is proved.

Let us address Part 2. For all τ ∈ N, consider fixed v1, . . . , vNτ ∈ D for which maxu∈D
mini=1,...,Nτ ||u − vi|| ≤ 1/τ . Consider the event Eτ = {∃u ∈ D; mini∈N ||Xi − u|| ≥ 2/τ}.
Then, Eτ implies the event Ev,τ = ∪Nτj=1Ev,τ,j where Ev,τ,j = {mini∈N ||Xi − vj || ≥ 1/τ}. Let
us now show that P(Ev,τ,j) = 0 for j = 1, . . . , Nτ . Assume that Ev,τ,j ∩ C holds, where C is
the event in Part 1. of the theorem, with P(C) = 1. Since Y has the NEB property, we have
lim infk→∞ σk(vj) > 0. Hence, Pk(vj)→ 0 as k →∞ since C is assumed. We then have

var(1Z(vj)>0|1Z(X1)>0, . . . ,1Z(Xk)>0) = Pk(vj)(1− Pk(vj))→ 0 (19)

a.s. as k →∞. But we have

var(1Z(vj)>0|1Z(X1)>0, . . . ,1Z(Xk)>0)

=E
[(

1Z(vj)>0 − Pk(vj)
)2
∣∣∣∣1Z(X1)>0, . . . ,1Z(Xk)>0

]
=E

[
E
[(

1Z(vj)>0 − Pk(vj)
)2
∣∣∣∣Z(x1), . . . , Z(xk)

]∣∣∣∣1Z(X1)>0, . . . ,1Z(Xk)>0

]
.

Since Pk(vj) is a function of Z(x1), . . . , Z(xn), we obtain

var(1Z(vj)>0|1Z(X1)>0, . . . ,1Z(Xk)>0)

≥E
[

var
(
1Z(vj)>0|Z(x1), . . . , Z(xk)

)∣∣∣1Z(X1)>0, . . . ,1Z(Xk)>0

]
=E

[
g

(
Φ̄

(
−mk(vj)

σk(vj)

))∣∣∣∣1Z(X1)>0, . . . ,1Z(Xk)>0

]
,

25

with g(t) = t(1 − t) and with Φ̄ as in Lemma 1. We let S = supk∈N |mk(vj)| and s =
infk∈N σk(vj). Then, from the uniform convergence of mk discussed below and from the NEB
property of Z, we have P(ES,s) = 1 where ES,s = {S < +∞, s > 0}. Then, if Ev,τ,j ∩C ∩ES,s
holds, we have

var(1Z(vj)>0|1Z(X1)>0, . . . ,1Z(Xk)>0)

≥E
[
g

(
Φ̄

(
S

s

))∣∣∣∣1Z(X1)>0, . . . ,1Z(Xk)>0

]
→a.s.
k→∞ E

[
g

(
Φ̄

(
S

s

))∣∣∣∣FZ,∞] ,
where FZ,∞ = σ(

{
1Z(Xi)>0)

}
i∈N) from Theorem 6.23 in [13]. Almost surely, conditionally on

FZ,∞ we have a.s. S < ∞ and s > 0. Hence we obtain that, on the event Ev,τ,j ∩ A with
P(A) = 1, var(1Z(vj)>0|1Z(X1)>0, . . . ,1Z(Xk)>0) does not go to zero. Hence, from (19), we
have P(Ev,τ,j) = 0. This yields that (Xi)i∈N is a.s. dense in D. Hence, since {u;Z(u) > 0} is
an open set, we have maxi;Z(Xi)>0 Y (Xi)→ maxZ(u)>0 Y (u) a.s. as n→∞.

B Stochastic approximation of the likelihood gradient for Gaus-
sian process based classification

In Appendixes B and C, for two matrices A and B of sizes a× d and b× d, and for a function
h : Rd ×Rd → R, let h(A,B) be the a× b matrix [h(ai, bj)]i=1,...,a,j=1,...,b, where ai and bj are
the lines i and j of A and B.

Let sn = (i1, . . . , in) ∈ {0, 1}n be fixed. Assume that the likelihood Pµ,θ(sign(Zn) = sn)

has been evaluated by P̂µ,θ(sign(Zn) = sn). Assume also that realizations z
(1)
n , . . . , z

(N)
n ,

approximately following the conditional distribution of Zn given sign(Zn) = sn, are available.
Let Z = {zn ∈ Rn : sign(zn) = sn}. Treating x1, . . . , xn as d-dimensional line vectors, let

x be the matrix (x>1 , . . . , x
>
n)>. Then we have

Pµ,θ(sign(Zn) = sn) =

∫
Z

1

(2π)n/2
1√

|kZθ (x,x)|
e
−1
2

(zn−µ1n)>kZθ (x,x)−1(zn−µ1n)dzn,

where 1n = (1, . . . , 1)> ∈ Rn and |.| denotes the determinant.
Derivating with respect to µ yields

∂

∂µ
Pµ,θ(sign(Zn) = sn) =

∫
Z

1

(2π)n/2
1√

|kZθ (x,x)|
e
−1
2

(zn−µ1n)>kZθ (x,x)−1(zn−µ1n)

(1>n k
Z
θ (x,x)−1(zn − µ1n))dzn

=Pµ,θ(sign(Zn) = sn)Eµ,θ
(

1>n k
Z
θ (x,x)−1(Zn − µ1n)

∣∣∣ sign(Zn) = sn)
)
,

where Eµ,θ means that the conditional expectation is calculated under the assumption that
Z has constant mean function µ and covariance function kθ. Hence we have the stochastic
approximation ∇̂µ for ∂/∂µPµ,θ(sign(Zn) = sn) given by

∇̂µ = P̂µ,θ(sign(Zn) = sn)
1

N

N∑
i=1

1>n k
Z
θ (x,x)−1(z(i)

n − µ1n).

26

Derivating with respect to θi for i = 1, . . . , p yields, with adj(M) the adjugate of a matrix M ,

∂

∂θi
Pµ,θ(sign(Zn) = sn) =∫

Z

(
−1

2
|kZθ (x,x)|−1Tr

(
adj(kZθ (x,x))

∂kZθ (x,x)

∂θi

)
+

1

2
(zn − µ1n)>

∂kZθ (x,x)

∂θi
kZθ (x,x)−1∂k

Z
θ (x,x)

∂θi
(zn − µ1n)

)
1

(2π)n/2
1√

|kZθ (x,x)|
e
−1
2

(zn−µ1n)>kZθ (x,x)−1(zn−µ1n)dzn

= Pµ,θ(sign(Zn) = sn)

Eµ,θ
(
−1

2
|kZθ (x,x)|−1Tr

(
adj(kZθ (x,x))

∂kZθ (x,x)

∂θi

)
+

1

2
(Zn − µ1n)>

∂kZθ (x,x)

∂θi
kZθ (x,x)−1∂k

Z
θ (x,x)

∂θi
(Zn − µ1n)

∣∣∣∣ sign(Zn) = sn)

)
.

Hence we have the stochastic approximation ∇̂θi for ∂/∂θiPµ,θ(sign(Zn) = sn) given by

∇̂θi = P̂µ,θ(sign(Zn) = sn)
1

N

N∑
i=1

(
−1

2
|kZθ (x,x)|−1Tr

(
adj(kZθ (x,x))

∂kZθ (x,x)

∂θi

)
+

1

2
(z(i)
n − µ1n)>

∂kZθ (x,x)

∂θi
kZθ (x,x)−1∂k

Z
θ (x,x)

∂θi
(z(i)
n − µ1n)

)
.

Remark 1. Several implementations of algorithms are available to obtain the realizations

z
(1)
n , . . . , z

(N)
n , as discussed after Algorithm 1. It may also be the case that some implementa-

tions provide both the estimate P̂µ,θ(sign(Zn) = sn) and the realizations z
(1)
n , . . . , z

(N)
n .

C Expressions of conditional GP mean and covariance and
acquisition function gradient

Let µY and kY be the mean and covariance functions of Y . Treating x1, . . . , xq as d-
dimensional line vectors, let xq be the matrix extracted from (x>1 , . . . , x

>
n)> by keeping only

the lines which indices j satisfy ij = 1.
We first recall the classical expressions of GP conditioning:

mY
q (x, Yq) = µY + kY (x,xq)

(
kY (xq,xq)

)−1 (
Yq − µY

)
kYq (x, x′) = kY (x, x′)− kY (x,xq)

(
kY (xq,xq)

)−1
kY (xq, x

′).

∇xmY
q (x, Yq) and ∇xkYq (x, x) are straightforward provided that ∇xkY (x, y) is available:

∇xmY
q (x, Yq) = [∇xkY (x,xq)]

(
kY (xq,xq)

)−1 (
Yq − µY

)
∇xkYq (x, x) = ∇xkY (x, x)− 2kY (x,xq)

(
kY (xq,xq)

)−1∇xkY (xq, x).

27

Then:

∇xEIq(x) = Φ

mY
q (x, Yq)−Mq√

kYq (x, x)

∇xmY
q (x, Yq)+φ

Mq −mY
q (x, Yq)√

kYq (x, x)

 1

2
√
kYq (x, x)

∇xkYq (x, x).

For Pnf(x), using the approximation of Algorithm 1, we have:

P̂nf(x) =
1

N

N∑
i=1

Φ̄

(
−mZ

n (x, z
(i)
n)√

kZn (x, x)

)
,

with kZn (x, x) as kYn (x, x) and

mZ
n (x, z(i)

n) = µZ + kZ(x,x)
(
kZ(x,x)

)−1
(
z(i)
n − µZ

)
.

Applying the standard differentiation rules delivers:

∇xP̂nf(x) =
1

N

N∑
i=1

φ

(
mZ
n (x, z

(i)
n)√

kZn (x, x)

)[
1√

kZn (x, x)
∇mZ

n (x, z(i)
n)− mZ

n (x, z
(i)
n)

2[kZn (x, x)]3/2
∇kZn (x, x)

]
.

The acquisition function gradient can then be obtained using the product rule.

D 2D simulations - additional figures

28

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

GPC sign

(a) sign - initial step

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

GPC sign

(b) sign - step 10

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

GPC sign

(c) sign - step 20

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

GPC sign

(d) sign - final step

Figure 12: Evolution of EFI GCP sign with iteration. The non admissible area is in blue.
The best point is in green. NA points are plotted with triangles. Four situations are plotted
: (a) initial step composed of 9 points, (b) after 10 added points, (c) after 20 added points,
(d) final situation composed of 50 points.

29

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

GPC EP

(a) EP - initial step

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

GPC EP

(b) EP - step 10

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

GPC EP

(c) EP - step 20

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

GPC EP

(d) EP - final step

Figure 13: Evolution of EFI GCP EP with iteration. The non admissible area is in blue.
The best point is in green. NA points are plotted with triangles. Four situations are plotted
: (a) initial step composed of 9 points, (b) after 10 added points, (c) after 20 added points,
(d) final situation composed of 50 points.

30

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

GPC sign

(a) sign - initial step

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

GPC sign

(b) sign - step 10

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

GPC sign

(c) sign - step 20

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

GPC sign

(d) sign - final step

Figure 14: Evolution of EFI GCP sign with iteration. The non admissible area is in blue.
The best point is in green. NA points are plotted with triangles. Four situations are plotted
: (a) initial step composed of 9 points, (b) after 10 added points, (c) after 20 added points,
(d) final situation composed of 50 points.

31

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

GPC EP

(a) EP - initial step

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

GPC EP

(b) EP - step 10

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

GPC EP

(c) EP - step 20

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

GPC EP

(d) EP - final step

Figure 15: Evolution of EFI GCP EP with iteration. The non admissible area is in blue.
The best point is in green. NA points are plotted with triangles. Four situations are plotted
: (a) initial step composed of 9 points, (b) after 10 added points, (c) after 20 added points,
(d) final situation composed of 50 points.

32

E Industrial case study - additional tables

33

min max

chord (m) 1 0.04138525 0.06752330
chord (m) 2 0.05650678 0.09219527
chord (m) 3 0.07162831 0.11686725
chord (m) 4 0.08674985 0.14153922
chord (m) 5 0.10187138 0.16621120

stagger (deg) 1 -53.35443064 -43.43365215
stagger (deg) 2 -62.79903182 -51.12211434
stagger (deg) 3 -69.27937009 -56.39749175
stagger (deg) 4 -73.91186646 -60.16861691
stagger (deg) 5 -77.35418265 -62.97086524

Hmax (% chord) 1 3.61896038 5.90461956
Hmax (% chord) 2 3.61896038 5.90461956
Hmax (% chord) 3 3.61896038 5.90461956
Hmax (% chord) 4 2.71422028 4.42846467
Hmax (% chord) 5 1.80948019 2.95230978

Table 4: Ranges for the 15 studied parameters

Point 1 Point 2 Point 3

chord (m) 1 0.04661286 0.05445427 0.06229569
chord (m) 2 0.06364448 0.07435103 0.08505757
chord (m) 3 0.08067610 0.09424778 0.10781946
chord (m) 4 0.09770772 0.11414453 0.13058135
chord (m) 5 0.11473934 0.13404129 0.15334323

stagger (deg) 1 -51.37027494 -48.39404140 -45.41780785
stagger (deg) 2 -60.46364832 -56.96057308 -53.45749783
stagger (deg) 3 -66.70299442 -62.83843092 -58.97386742
stagger (deg) 4 -71.16321655 -67.04024168 -62.91726682
stagger (deg) 5 -74.47751917 -70.16252394 -65.84752872

Hmax (% chord) 1 4.07609221 4.76178997 5.44748772
Hmax (% chord) 2 4.07609221 4.76178997 5.44748772
Hmax (% chord) 3 4.07609221 4.76178997 5.44748772
Hmax (% chord) 4 3.05706916 3.57134248 4.08561579
Hmax (% chord) 5 2.03804611 2.38089498 2.72374386

Table 5: Coordinates of three reference points inside the hypercube.

34

References

[1] D. Azzimonti and D. Ginsbourger. Estimating orthant probabilities of high-dimensional
Gaussian vectors with an application to set estimation. Journal of Computational and
Graphical Statistics, 27(2):255–267, 2018.

[2] J. Bect, F. Bachoc, and D. Ginsbourger. A supermartingale approach to Gaussian process
based sequential design of experiments. Bernoulli, forthcoming, 2016.

[3] Z. I. Botev. The normal law under linear restrictions: simulation and estimation via min-
imax tilting. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
79(1):125–148, 2017.

[4] A. D. Bull. Convergence rates of efficient global optimization algorithms. Journal of
Machine Learning Research, 12(Oct):2879–2904, 2011.

[5] M. A. Gelbart, J. Snoek, and R. P. Adams. Bayesian optimization with unknown con-
straints. In UAI, 2014.

[6] A. Genz. Numerical computation of multivariate normal probabilities. Journal of com-
putational and graphical statistics, 1(2):141–149, 1992.

[7] D. Ginsbourger, R. Le Riche, and L. Carraro. Kriging is well-suited to parallelize opti-
mization. In Computational intelligence in expensive optimization problems, pages 131–
162. Springer, 2010.

[8] D. Ginsbourger, O. Roustant, and N. Durrande. On degeneracy and invariances of ran-
dom fields paths with applications in Gaussian process modelling. Journal of statistical
planning and inference, 170:117–128, 2016.

[9] R. Gramacy and H. Lee. Optimization under unknown constraints. Bayesian Statistics,
9, 2011.

[10] R. B. Gramacy, G. A. Gray, S. Le Digabel, H. K. Lee, P. Ranjan, G. Wells, and S. M.
Wild. Modeling an augmented Lagrangian for blackbox constrained optimization. Tech-
nometrics, 58(1):1–11, 2016.

[11] J. M. Hernandez-Lobato, M. Gelbart, M. Hoffman, R. Adams, and Z. Ghahramani.
Predictive entropy search for Bayesian optimization with unknown constraints. In Inter-
national Conference on Machine Learning, pages 1699–1707, 2015.

[12] D. Jones, M. Schonlau, and W. Welch. Efficient global optimization of expensive black
box functions. Journal of Global Optimization, 13:455–492, 1998.

[13] O. Kallenberg. Foundations of Modern Probability. Second edition. Springer-Verlag,
2002.

[14] K. Kandasamy, W. Neiswanger, J. Schneider, B. Poczos, and E. P. Xing. Neural archi-
tecture search with Bayesian optimisation and optimal transport. In Advances in Neural
Information Processing Systems, pages 2016–2025, 2018.

35

[15] A. Keane and P. Nair. Computational approaches for aerospace design: the pursuit of
excellence. John Wiley & Sons, 2005.

[16] D. V. Lindberg and H. K. Lee. Optimization under constraints by applying an asymmetric
entropy measure. Journal of Computational and Graphical Statistics, 24(2):379–393,
2015.

[17] A. F. López-Lopera, F. Bachoc, N. Durrande, and O. Roustant. Finite-dimensional
Gaussian approximation with linear inequality constraints. SIAM/ASA Journal on Un-
certainty Quantification, 6(3):1224–1255, 2018.

[18] H. Maatouk and X. Bay. A New Rejection Sampling Method for Truncated Multivari-
ate Gaussian Random Variables Restricted to Convex Sets, pages 521–530. Springer
International Publishing, Cham, 2016.

[19] S. P. Meyn and R. L. Tweedie. Markov chains and stochastic stability. Springer Science
& Business Media, 2012.

[20] J. B. Mockus, V. Tiesis, and A. Žilinskas. The application of Bayesian methods for
seeking the extremum. In L. C. W. Dixon and G. P. Szegö, editors, Towards Global
Optimization, volume 2, pages 117–129, North Holland, New York, 1978.

[21] H. Nickisch and C. E. Rasmussen. Approximations for binary Gaussian process classifi-
cation. Journal of Machine Learning Research, 9(Oct):2035–2078, 2008.

[22] A. Pakman and L. Paninski. Exact Hamiltonian Monte Carlo for truncated multivariate
Gaussians. Journal of Computational and Graphical Statistics, 23(2):518–542, 2014.

[23] V. Picheny. A stepwise uncertainty reduction approach to constrained global optimiza-
tion. In Artificial Intelligence and Statistics, pages 787–795, 2014.

[24] V. Picheny, R. B. Gramacy, S. Wild, and S. Le Digabel. Bayesian optimization under
mixed constraints with a slack-variable augmented Lagrangian. In Advances in Neural
Information Processing Systems, pages 1435–1443, 2016.

[25] C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. The MIT
Press, Cambridge, 2006.

[26] O. Roustant, D. Ginsbourger, and Y. Deville. DiceKriging, DiceOptim: Two Rpackages
for the analysis of computer experiments by Kriging-based metamodeling and optimiza-
tion. Journal of statistical software, 51(1):1–55, 2012.

[27] M. Sacher, R. Duvigneau, O. Le Maitre, M. Durand, E. Berrini, F. Hauville, and J.-A.
Astolfi. A classification approach to efficient global optimization in presence of non-
computable domains. Structural and Multidisciplinary Optimization, 58(4):1537–1557,
2018.

[28] M. J. Sasena, P. Papalambros, and P. Goovaerts. Exploration of metamodeling sampling
criteria for constrained global optimization. Engineering optimization, 34(3):263–278,
2002.

36

[29] M. Schonlau, W. J. Welch, and D. R. Jones. Global versus local search in constrained
optimization of computer models. Lecture Notes-Monograph Series, pages 11–25, 1998.

[30] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of machine
learning algorithms. In Advances in neural information processing systems, pages 2951–
2959, 2012.

[31] N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process optimization in the
bandit setting: no regret and experimental design. In Proceedings of the 27th Interna-
tional Conference on Machine Learning, pages 1015–1022, 2010.

[32] J. Taylor and Y. Benjamini. RestrictedMVN: multivariate normal restricted by affine con-
straints. https://cran.r-project.org/web/packages/restrictedMVN/index.html,
2017. [Online; 02-Feb-2017].

[33] E. Vazquez and J. Bect. Convergence properties of the expected improvement algorithm
with fixed mean and covariance functions. Journal of Statistical Planning and inference,
140(11):3088–3095, 2010.

[34] E. Vazquez and J. Bect. Pointwise consistency of the kriging predictor with known mean
and covariance functions. In mODa 9–Advances in Model-Oriented Design and Analysis,
pages 221–228. Springer, 2010.

[35] J. Wu and P. Frazier. The parallel knowledge gradient method for batch Bayesian op-
timization. In Advances in Neural Information Processing Systems, pages 3126–3134,
2016.

37

https://cran.r-project.org/web/packages/restrictedMVN/index.html

	Introduction
	A Classification model for crash constraints
	Conditioning GPs on observation signs
	Likelihood computation and optimization
	Comparison with classical GPC

	Bayesian optimization with crash constraints
	Joint modeling of the objective and constraint
	Acquisition function and sequential design

	Convergence
	Simulations on 2D-gaussian processes
	Simulations setting
	Results of our method EFI GPC sign
	Comparison between EFI GPC sign and EFI GPC EP

	Industrial case study
	Conclusion
	Proofs
	Stochastic approximation of the likelihood gradient for Gaussian process based classification
	Expressions of conditional GP mean and covariance and acquisition function gradient
	2D simulations - additional figures
	Industrial case study - additional tables

