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Andrés F. López-Lopera1, François Bachoc2, Nicolas Durrande1,3, and Olivier Roustant1
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Abstract

Introducing inequality constraints in Gaussian process (GP) models can lead to more realistic uncertainties
in learning a great variety of real-world problems. We consider the finite-dimensional Gaussian approach from
Maatouk and Bay (2017) which can satisfy inequality conditions everywhere (either boundedness, monotonicity
or convexity). Our contributions are threefold. First, we extend their approach in order to deal with general sets
of linear inequalities. Second, we explore several Markov Chain Monte Carlo (MCMC) techniques to approximate
the posterior distribution. Third, we investigate theoretical and numerical properties of the constrained likelihood
for covariance parameter estimation. According to experiments on both artificial and real data, our full framework
together with a Hamiltonian Monte Carlo-based sampler provides efficient results on both data fitting and
uncertainty quantification.

1 Introduction

Gaussian processes (GPs) are one of the most famous non-parametric Bayesian frameworks for modelling stochastic
processes. In principle, GP models place prior distributions over function spaces, and prior assumptions (e.g.
smoothness, stationarity, sparsity) are encoded in covariance functions (Paciorek and Schervish, 2004; Rasmussen
and Williams, 2005; Snelson and Ghahramani, 2006). Because GP provides a well-founded approach to learning, its
properties have been explored in many decision tasks in regression (Kriging) and classification problems (Nickisch
and Rasmussen, 2008; Rasmussen and Williams, 2005). Computer science, engineering, physics, biology, and
neuroscience are some fields where GP models have been applied successfully (Murphy, 2012; Rasmussen and
Williams, 2005).

Despite the reliable performance of GPs, they provide less realistic uncertainties when physical systems satisfy
inequality constraints (Da Veiga and Marrel, 2012; Golchi et al., 2015; Maatouk and Bay, 2017). Quantifying
properly the uncertainties is crucial for understanding real-world phenomena. For example, in nuclear safety
criticality assessment, experimental settings typically demand expensive and risky procedures to evaluate neutron
productions. Hence, emulators are required to infer these production rates and should assume a priori that the
output is positive and usually monotonic with respect to a given set of input parameters. In this sense, to obtain
more accurate predictions, both conditions have to be considered in the uncertainty quantification. Other test
cases where data exhibit specific inequality constraints are given in computer networking (monotonicity) (Golchi
et al., 2015), social system analysis (monotonicity) (Riihimäki and Vehtari, 2010), and econometrics (monotonicity
or positivity) (Cousin et al., 2016).

Several studies have shown that including inequality constraints in GP frameworks can lead to more realistic
uncertainty quantifications in learning from real data (Da Veiga and Marrel, 2012; Golchi et al., 2015; Riihimäki
and Vehtari, 2010). In most of the cases, it is assumed that the inequalities are satisfied on a finite set of input
locations. Then, the posterior distribution is approximated given those constrained inputs. To the best of our
knowledge, the framework from (Maatouk and Bay, 2017) is the only Gaussian approach proposed in the literature
which satisfies specific inequalities everywhere in the input space. There, the GP samples are approximated in the
finite-dimensional space of functions such as piecewise linear functions. It is shown in (Bay et al., 2016) that the
posterior mode converges to the one provided by thin plate splines. This approach has been applied on several
real-data (e.g. econometrics, geostatistics) (Cousin et al., 2016; Maatouk and Bay, 2017), resulting in more realistic
uncertainties than unconstrained Kriging.

The framework proposed in (Maatouk and Bay, 2017) still presents some limitations. First, the focus is on
either boundedness, monotonicity or convexity conditions. Second, the proposed rejection sampling method for
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estimating the posterior (Maatouk and Bay, 2016) results in costly computations when either the order of the finite
approximation increases or the inequality constraints become more complex. Third, the proposed leave-one-out
(LOO) technique for parameter estimation (Maatouk et al., 2015), restricts the optimal values to be on a finite grid
of possible values, and provides the same estimation of correlation parameters as for unconstrained GP parameters.
In order to address these limitations, our contributions are threefold. First, we extend the framework to deal with
general sets of linear inequality constraints. Second, we evaluate efficient Markov Chain Monte Carlo (MCMC)
algorithms that can be used to approximate the posterior distribution. Third, we investigate theoretical and
numerical properties of the conditional likelihood for covariance parameter estimation. According to experiments
on both artificial and real data, the resulting framework provides efficient results on both data fitting and uncertainty
quantification.

This paper is organised as follows. In Section 2, we briefly describe GP modelling with inequality constraints. In
Section 3, continuing with the finite-dimensional approach from (Maatouk and Bay, 2017), we propose a general
formulation to deal with sets of linear inequalities. In Section 4, we apply several MCMC techniques to approximate
the posterior distribution, and we compare their performances with respect to exact Monte Carlo (MC) algorithms.
In Section 5, we write the conditional likelihood for the covariance parameter estimation, providing theoretical and
empirical properties. In Section 6, we assess our framework in two-dimensional Kriging tasks. Finally, in Section 7,
we summarize the conclusions, as well as the potential future works.

2 Gaussian process modelling with inequality constraints

2.1 Finite-dimensional approximation

Let Y be a zero-mean Gaussian process (GP) on R with covariance function k. Consider x ∈ D with compact input
space D = [0, 1], and a set of knots t1, · · · , tm ∈ R. For simplicity, we will consider equally-spaced knots tj = j∆m

with ∆m = 1/(m− 1), but this assumption can be relaxed. Then, define a finite-dimensional GP, denoted by Ym,
as the piecewise linear interpolation of Y at knots t1, · · · , tm:

Ym(x) =

m∑
j=1

Y (tj)φj(x), (1)

where φ1 · · · , φm are hat basis functions given by

φj(x) :=

{
1−

∣∣∣x−tj∆m

∣∣∣ if
∣∣∣x−tj∆m

∣∣∣ ≤ 1,

0 otherwise.
(2)

We illustrate the finite-dimensional representation of Equation (1) in Figure 1 for a deterministic function that
satisfies two types of inequality constraints: boundedness and monotonicity (non-decreasing). Now, let ξj := Y (tj)
for j = 1, · · · ,m. We aim at computing the distribution of Ym conditionally on Ym ∈ E where E is a convex set of
functions defined by some inequality constraints. For instance, we may have

E = Eκ :=


{f ∈ C(D,R) s.t. ` ≤ f(x) ≤ u, ∀x ∈ D} if κ = 0,

{f ∈ C(D,R) s.t. f is non-decreasing} if κ = 1,

{f ∈ C(D,R) s.t. f is convex} if κ = 2,

(3)

which corresponds to boundedness, monotonicity, and convexity constraints. The benefit of using hat functions and
the finite-dimensional approximation Ym, is that satisfying the inequality conditions Ym(x) ∈ E , for all x ∈ D, is
equivalent to satisfying only a finite number of inequality constraints (Maatouk and Bay, 2017). More precisely, for
many natural choices of E , we have

Ym ∈ E ⇔ ξ ∈ C, (4)

where C is a convex set of Rm and ξ = [ ξ1, ···, ξm ]>. For instance, for the convex set Eκ of Equation (3), we have

C = Cκ :=


{c ∈ Rm; ∀ j = 1, · · · ,m : ` ≤ cj ≤ u} if κ = 0,

{c ∈ Rm; ∀ j = 2, · · · ,m : cj ≥ cj−1} if κ = 1,

{c ∈ Rm; ∀ j = 3, · · · ,m : cj − cj−1 ≥ cj−1 − cj−2} if κ = 2.

(5)
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Figure 1: Illustration of the finite-dimensional approximation of Equation (1). (Left) Hat functions φj for j =
1, · · · , 6. (Right) Approximation of the function y(x) = Φ(x−0.5

0.2 ), where Φ is the standard cumulative normal
distribution. Solid red and dashed black lines are the function y, and its finite approximation with six knots given
by black crosses, respectively. Horizontal black dashed lines denote the bounds.

2.2 Conditioning with interpolation and inequality constraints

Consider the finite dimensional representation of the GP as in Equation (1), given the interpolation and inequality
constraints

Ym(x) =

m∑
j=1

ξjφj(x), s.t.

{
Ym(xi) = yi (interpolation conditions),

Ym ∈ E (inequality conditions),
(6)

where xi ∈ D and yi ∈ R for i = 1, · · · , n. Given a design of experiment (DoE) x = [ x1, ···, xn ]>, we have matricially:

Ym =
[
Ym(x1), · · · , Ym(xn)

]>
= Φξ,

where Φ is the n×m matrix defined by Φi,j = φj(xi). Let y = [ y1, ···, yn ]> be a realization of Ym as in Equation (6).
From Equation (4), the conditional distribution of Ym, under the inequality constraints Ym ∈ E and interpolation
conditions Ym(xi) = yi for i = 1, · · · , n, can be obtained from the conditional distribution of ξ given ξ ∈ C and
Φξ = y (see Equation (4)).

Observe that the vector ξ of the values at the knots is a zero-mean Gaussian vector with covariance matrix
Γ = (k(ti, tj))1≤i,j≤m. Then, the distribution of ξ given both interpolation and inequality conditions is truncated
multinormal:

ξ ∼ N (0,Γ) s.t.

{
Φξ = y (interpolation conditions),

ξ ∈ C (inequality conditions),
(7)

with C as in Equation (4). For sampling purposes (see Algorithm 1), we need to compute the posterior mode which
is given by the maximum of the probability density function of the posterior, i.e. µ∗ξ = min{ξ>Γ−1ξ| Φξ = y, ξ ∈ C}
(maximum a posteriori, MAP). Notice that µ∗ξ converges uniformly to the solution provided by thin plate splines
when m→∞ (Bay et al., 2016). More details and theoretical properties are provided in (Bay et al., 2016; Maatouk
and Bay, 2017).

Figure 2 shows different Gaussian models for the example of Figure 1. We used a squared exponential (SE) covariance
function with parameters (σ2 = 1, θ = 0.2),1 and we fixed m = 100. The posterior distribution was approximated
via Hamiltonian Monte Carlo (HMC) (Pakman and Paninski, 2014). From Figures 2(b) and 2(c), we observe that
including the inequality constraints in the conditional distribution provides smaller confidence intervals compared
to the ones given by the unconstrained GP. However, they do not satisfy both the boundedness and monotonicity
conditions exhibited by the function y. On the other hand, from Figure 2(d), imposing both conditions leads to a
more accurate prediction and more realistic confidence intervals. Later in Section 3, we will detail how to obtain
the results of Figure 2(d).

1SE covariance function: kθ(x− x′) = σ2 exp
{
− (x−x′)2

2θ2

}
with θ = (σ2, θ).
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(a) Unconstrained.
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(b) Boundedness.
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(c) Monotonicity.
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(d) Boundedness and monotonicity.

Figure 2: Example of Gaussian models satisfying different types of inequality constraints for interpolating the
function x 7→ Φ(x−0.5

0.2 ). Each panel shows: training and test points (black dots and red crosses, respectively), the
conditional mean function (blue solid line), the 90% confidence interval (grey region), and conditional realizations
(dashed multi colour lines). For boundedness constraints, bounds are showed in black dashed lines.

3 Finite-dimensional Gaussian approximation with linear inequality
constraints

Now, we consider the case where C is composed by a set of q linear inequalities of the form

C =

{
c ∈ Rm; ∀ j = 1, . . . ,m, ∀ k = 1, . . . , q, λk,j ∈ R : `k ≤

m∑
j=1

λk,jcj ≤ uk
}
,

where the λk,j ’s encode the linear operations, the lk’s and uk’s represent the lower and upper bounds. Notice that
the convex sets Cκ of Equation (5) are particular cases of C. Denote Λ = (λk,j)1≤k≤q,1≤j≤m, l = (`k)1≤k≤q, and
u = (uk)1≤k≤q. Hence, Equation (7) is written

ξ ∼ N (0,Γ) s.t.

{
Φξ = y (interpolation conditions),

l ≤ Λξ ≤ u (inequality conditions).
(8)

We further assume that q ≥ m and that Λ has rank m. By the rank-nullity theorem (see e.g. (Meyer, 2000)), it
implies that Λ is injective. In particular a linear system of the form Λξ = η admits a unique solution ξ when η is
in the image space of Λ. This assumption is verified in many practical situations, up to adding inactive constraints.
For instance, the monotonicity condition ξ1 ≤ · · · ≤ ξm, which involves only q = m − 1 (linearly independent)
conditions, can be made compatible by adding the condition −∞ ≤ ξ1 (and/or ξm ≤ ∞).
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Algorithm 1 Sampling from the finite-dimensional GP with linear inequality constraints.

1: procedure Sampling from ξ|{Φξ = y, l ≤ Λξ ≤ u}, where ξ ∼ N (0,Γ)
2: Input: y, Γ ∈ Rm×m, Φ ∈ Rn×m, C.
3: Compute the conditional mean and covariance of ξ|{Φξ = y}
4: µ = ΓΦ>(ΦΓΦ>)−1y, and
5: Σ = Γ− ΓΦ>(ΦΓΦ>)−1ΦΓ.
6: Solve the quadratic problem in Rm: µ∗ξ = min ξ∈Rm{ξ>Γ−1ξ| Φξ = y, l ≤ Λξ ≤ u}.
7: Sample from the truncated multinormal distribution
8: Λξ|{Φξ = y, l ≤ Λξ ≤ u} ∼ T N

(
Λµ, ΛΣΛ>, l , u

)
.

9: Define η = Λξ, and solve the linear system to obtain the sample ξ.
10: Remark: use the posterior mode ν∗ξ = Λµ∗ξ as a starting state for an MCMC sampler (see Section 4).

We now explain how to sample ξ from Equation (8). First, we compute the conditional distribution given the
interpolation constraints ξ|{Φξ = y}. Since ξ ∼ N (0,Γ), then Φξ ∼ N

(
0,ΦΓΦ>

)
and the conditional distribution

ξ|{Φξ = y} is also Gaussian N (µ,Σ) (Rasmussen and Williams, 2005), with

µ = ΓΦ>[ΦΓΦ>]−1y, and Σ = Γ− ΓΦ>[ΦΓΦ>]−1ΦΓ. (9)

Therefore, we have Λξ|{Φξ = y} ∼ N
(
Λµ,ΛΣΛ>

)
. Let T N (m,C,a,b) be the truncated multinormal

distribution with mean vector m, covariance matrix C, and bound vectors (a,b) such that a ≤ b. Thus, the
posterior distribution of Equation (8) is obtained from

Λξ|{Φξ = y, l ≤ Λξ ≤ u} ∼ T N
(
Λµ, ΛΣΛ>, l , u

)
. (10)

Notice that the inequality conditions are encoded in the posterior mean Λµ, the posterior covariance ΛΣΛ>, and
bounds (l ,u). Finally, the posterior mode is given by ν∗ξ = Λµ∗ξ where µ∗ξ is the solution provided in Subsection 2.2.
The truncated multinormal of Equation (10) can be approximated using Markov Chain Monte Carlo (MCMC)
algorithms. Denoting η = Λξ, notice that the samples for ξ can be obtained by using the ones obtained for η if
the linear system is solved. Indeed, as mentioned above, we assumed that Λ has rank m, which implies that the
solution of Λξ = η exists and is unique.

The whole sampling scheme is summarized in Algorithm 1. Now, we illustrate some examples where the proposed
framework satisfies different types of inequality conditions. The posterior is approximated via HMC (more details
about HMC are given in Section 4).

Example 1 We continue with the example of Figure 1. As we can fix the structure of the linear inequalities
(Λ, l ,u), we can impose both boundedness and monotonicity conditions in the constrained GP. One way to do
this is to encode them individually. Let l1 ≤ Λ1ξ ≤ u1 and l2 ≤ Λ2ξ ≤ u2 be the sets of conditions to
satisfy boundedness and monotonicity constraints, respectively. Then, we can build an extended set of inequalities
l ≤ Λξ ≤ u by stacking the constraints (i.e. Λ = [ Λ1, Λ2 ]>, l = [ l1, l2 ]>,u = [ u1, u2 ]>), so that Algorithm 1
can be used. Notice that one can encode the same information in a reduced set of linear inequalities. Instead of
encoding independently the boundedness and monotonicity constraints, which requires q = 2m − 1 inequalities,
one can impose boundedness conditions only for the first and last knot, and monotonicity conditions for all the
knots except the first one. Due to monotonicity, the intermediate knots will also satisfy the boundaries. In this
way, we only need q = m + 1 conditions. In many other cases, the size of specific sets of linear constraints can be
reduced. However for general discussions, we will use the full extended set and we will apply efficient samplers to
approximate the posterior.

Example 2 Notice from the previous example that the extension for more than two sets of inequalities is
straightforward. Consider for instance Q different sets of conditions. We can build the posterior from Equation (10)
with Λ = [ Λ1, ···, ΛQ ]>, l = [ l1, ···, lQ ]>, and u = [ u1, ···, uQ ]>, and apply Algorithm 1. Figure 3 shows an example
with the target function y(x) = x2, satisfying three types of inequality constraints: boundedness, monotonicity and
convexity. We proposed different models satisfying one or more inequality constraints. We used a SE covariance
function with parameters (σ2 = 1.0, θ = 0.2). By imposing the three conditions, we obtain samples that also satisfy
the three types of constraints.
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(a) Adding boundedness constraint.
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(b) Adding monotonicity constraint.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x

y
(x
)

(c) Adding convexity constraint.

Figure 3: Examples of Gaussian models satisfying one or several types of inequality constraints for interpolating
the square function x 7→ x2. Panel description is the same as in Figure 2.
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(a) Unconstrained.
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(b) Multiple contraints.
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(c) Sequential constraints.

Figure 4: Examples of Gaussian models with different types of constraints for the example 3 from Section 3. (b)
Boundedness and monotonicity constraints are imposed. (c) The two non-overlapping intervals are divided by a
vertical dashed line at 0.4. In the first interval, boundedness and monotonicity constraints are taken into account.
In the second interval, only boundedness is imposed. Panel description is the same as in Figure 2.

Example 3 Since the bounds (l ,u) are not forced to be the same everywhere, it is possible to fix specific
constraints over non-overlapping intervals. For instance if the interval is partitioned in G subintervals, we consider
the corresponding partition ξ = [ ξ1, ···, ξG ]>. Then, we can impose different types of inequality conditions in each
group by considering the same structure used in Example 2. Figure 4 shows an example where the function y
satisfies different behaviours in two non-overlapping intervals. The output increases monotonically and peaks at
y(0.4) = 1.0. This kind of profile is met in different applications (e.g. step responses in control theory, protein profiles
in molecular biology) (Kocijan, 2016; Murphy, 2012). We trained three models satisfying different conditions. For
the case of multiple constraints, we imposed boundedness and monotonicity. For the case of sequential conditions,
we divided the profile in two non-overlapping intervals satisfying different types of constraints. We used a SE
covariance function with parameters (σ2 = 1.0, θ = 0.2). By imposing sequentially the constraints, we obtain less
restricted uncertainties and more accurate models for data fitting.

4 Simulating from the posterior distribution

As shown in Equation (10), the posterior distribution Λξ|{Φξ = y, l ≤ Λξ ≤ u} is truncated multinormal. It is
supported on Rm, where m is the number of basis functions. Notice that m should be chosen large enough for better
approximations. A Monte Carlo (MC) algorithm based on rejection sampling was proposed in (Maatouk and Bay,
2016) using the posterior mode. This method, called rejection sampling from the mode (RSM), is an exact sampler
that provides independent and identically distributed (iid) sample paths. However, the acceptance rate from RSM
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decreases when m gets larger, providing a poor performance for high dimensional spaces. Another MC-based exact
sampler was introduced by (Botev, 2017) to deal with truncated multinormals in higher dimensions. It can both
simulate multinormals under linear constraints, and estimate the probabilities that these constraints are satisfied,
via minimax exponential tilting (ET). As RSM and ET are exact methods, we will use them as gold standards to
evaluate the performance of the MCMC techniques that we describe now.

4.1 MCMC for truncated multinormal distributions

MCMC approaches assume that samples follow a Markov chain, providing correlated samples but with a higher
acceptance rate. Recently, efficient algorithms have been proposed for truncated multinormal distributions such
as Gibbs sampling (Taylor and Benjamini, 2017), Metropolis-Hastings (Murphy, 2012), and Hamiltonian Monte
Carlo (Pakman and Paninski, 2014). In this section, we apply them to simulate from the posterior distribution of
Equation (10).

Gibbs sampling Algorithms based on Gibbs sampling are widely used to sample from truncated multinormals
due to their easy implementation, and their reliable performances (Brooks et al., 2011; Murphy, 2012). They sample
each variable in turn conditionally on the values of the other ones (Murphy, 2012). Therefore, sampling from a
truncated multinormal is reduced to sampling sequentially from conditional truncated (univariate) normals. Unlike
RSM, there is no rejection step. However, the “single site updating” property may produce strong correlations,
requiring to discard intermediate samples (thinning effect). Several studies have proposed efficient algorithms to
obtain less correlated sample paths (e.g. collapsed Gibbs sampling, blocked Gibbs sampling) (Murphy, 2012). In
this paper, we will use the fast Gibbs sampler proposed in (Taylor and Benjamini, 2017).

Metropolis Hastings (MH) MH-based algorithms propose to move all the coordinates at a time in each step
to obtain less correlated simulations. Given a proposed state x′, we either accept or reject the new state according
to a given acceptance rule (Murphy, 2012). If the proposal is accepted, the new state is x′, otherwise the new state
remains at the previous state x. For multinormal distributions, a symmetric Gaussian proposal is commonly used,
i.e. q(x′|x) = N

(
x, ηΣx′|x

)
where η is a scale factor. This approach is known as random walk Metropolis algorithm

(Murphy, 2012). One can increase the acceptance rate by tuning properly the value of η.

Hamiltonian Monte Carlo (HMC) Nowadays, hybrid methods have been subject to great attention from
the statistical community due to the inclusion of physical interpretation that may provide useful intuition (Brooks
et al., 2011; Neal, 1996). In (Duane et al., 1987), an efficient hybrid approach was introduced using the properties
of Hamiltonian dynamics. Later in (Neal, 1996), the hybrid approach from (Duane et al., 1987) was extended
to statistical applications, and was introduced formally as Hamiltonian Monte Carlo (HMC). The Hamiltonian
dynamics provides distant proposal distributions producing less correlated sample paths without diminishing the
acceptance rate. In this paper, we use the HMC-based approach for truncated multinormals introduced in (Pakman
and Paninski, 2014).

4.2 Results

In Table 1, we evaluate the efficiency of the MC and MCMC approaches described in Subsection 4.1 on the examples
from Figure 2. In order to reduce the simulation cost, we used m = 30 hat basis functions. Hence, the problem
is to sample a vector of length 30 from a truncated multinormal distribution. We set the tuning hyperparameters
such that the effective sample size (ESS) is within the ranges produced by both RSM and ET (grey columns). The
ESS is a heuristic used commonly to evaluate the quality of correlated sample paths, and it gives an intuition on
how many samples from the path can be considered independent (Gong and Flegal, 2016). A standard ESS is given
by ESS = ns/(1 + 2

∑ns
k=1 ρk) where ns is the size of the sample path and ρk is the sample autocorrelation with lag

k. However, the drawback of this indicator is that it accepts negative correlations to evaluate the quality of mean
estimators (e.g. for variance reduction). Thus, we suggest an alternative ESS which penalizes both positive and
negative correlations: ESS = ns/(1 + 2|

∑ns
k=1 ρk|). Notice that it is equal to ns for iid sample paths, or smaller

otherwise. We compute the ESS indicator for each coordinate of ξ, i.e. ESSj = ESS(ξ1
j , · · · , ξ

ns
j ) for the j-th

component of ξ with j = 1, · · · ,m. We then compute quantiles (q10%, q50%, q90%) over the 30 resulting ESS values.
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Table 1: Efficiency of MC/MCMC samplers (by rows) in term of ESS-based indicators (by columns). Samplers:
Rejection Sampling from the Mode (RSM) (Maatouk and Bay, 2016), Exponential Tilting (ET) (Botev, 2017), Gibbs
Sampling (Gibbs) (Taylor and Benjamini, 2017), Metropolis-Hasting (MH) (Murphy, 2012), Hamiltonian Monte
Carlo (HMC) (Pakman and Paninski, 2014). Indicators: effective sample size (ESS): ESS = n/(1 + 2|

∑
∀k ρk|),

multivariate ESS (mvESS) (Vats et al., 2017), time normalised ESS (TN-ESS) (Lan and Shahbaba, 2016).

Toy Example Method
CPU Time ESS [×104] mvESS TN-ESS

Hyperparameter
[s] (q10%, q50%, q90%) [×104] [×104s−1]

RSM 99.06 (0.81, 0.89, 0.96) 1.22 0.01 -
Toy ET 0.44 (0.83, 0.90, 0.99) 1.17 1.88 -

Figure 2(b) Gibbs 3.54 (0.81, 0.91, 0.93) 1.16 0.23 thinning = 200
(Boundedness) MH 52.21 (0.77, 0.87, 0.95) 1.21 0.01 η = 1

HMC 0.44 (0.72, 0.76, 0.91) 1.26 1.64 -

RSM 190.62 (0.86, 0.90, 0.93) 1.21 0.00 -
Toy ET 0.77 (0.84, 0.91, 0.97) 1.18 1.09 -

Figure 2(c) Gibbs 3.04 (0.80, 0.93, 0.99) 1.15 0.26 thinning = 200
(Monotonicity) MH 96.64 (0.81, 0.91, 0.99) 1.23 0.01 η = 1

HMC 0.33 (0.73, 0.79, 0.88) 1.28 2.22 -

RSM - - - - -
Toy ET 41.16 (0.80, 0.88, 0.95) 1.23 0.02 -

Figure 2(d) Gibbs 40.28 (0.28, 0.44, 0.77) 1.09 0.01 thinning = 1000
(Bounded Monotonicity) MH - - - - -

HMC 12.92 (0.72, 0.85, 0.99) 1.26 0.06 -

To take into account cross-correlations from multivariate MCMC, we also compute the multivariate ESS (mvESS)
proposed in (Vats et al., 2017). For mvESS, values higher than ns indicate the presence of negative correlations.
In our case, we are interested in being around ns. The size ns = 104 is chosen to be larger than the minimum ESS
required to obtain a proper estimation of the vector ξ ∈ R30: minESS(30) = 8563 (Gong and Flegal, 2016; Vats
et al., 2017). Finally, using the procedure proposed in (Lan and Shahbaba, 2016), we test the efficiency of each
method by computing the time normalised ESS (TN-ESS) at q10% (worst case) using the CPU time in seconds, i.e.
TN-ESS = q10%(ESS)/(CPU Time).

Table 1 shows the efficiency of MC/MCMC algorithms in terms of ESS indicators. Notice that for the two examples
of Figures 2(b) and 2(c), the MC/MCMC techniques tend to produce similar ESS intervals, but RSM and MH are
the most expensive procedures due to their high rejection rates. Although the Gibbs sampler requires to discard a
large amount of simulations in order to be within reasonable ESS ranges, it also presents accurate results in both
efficiency and CPU time. In general, both ET and HMC methods present more efficient results than the other
samplers in the first two examples. For more complex constraints as in the example of Figure 2(d), the efficiency
is reduced dramatically for all the methods. For example, the acceptance rates of both RSM and MH are so small
that sampling was not feasible in a reasonable time. For the other methods, the TN-ESS rates are smaller but HMC
still gives a reasonable value (almost three times larger than for ET), concluding that HMC is an efficient sampler
for the proposed framework.

5 Covariance parameter estimation with inequality constraints

5.1 Conditional maximum likelihood

Let {kθ;θ ∈ Θ}, with Θ ⊂ Rp, be a parametric family of covariance functions. We assume in this section that the
zero-mean GP Y has covariance function kθ∗ for an unknown θ∗ ∈ Θ. We consider the problem of estimating θ∗.
Commonly, θ∗ is estimated by maximising the unconstrained Gaussian likelihood pθ(Ym) with respect to θ ∈ Θ
(maximum likelihood, ML), with Ym = [ Ym(x1), ···, Ym(xn) ]>. Let Lm(θ) be the log likelihood of θ

Lm(θ) = log pθ(Ym) = −1

2
log(det(Kθ))− 1

2
Y>mK−1

θ Ym −
n

2
log 2π, (11)

with Kθ = ΦΓθΦ> and Γθ = (kθ(ti, tj))1≤i,j≤m. Then, the ML estimation (MLE) is

θ̂MLE = arg maxθ∈Θ Lm(θ). (12)
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When we maximise the likelihood of Equation (12), we are looking for a parameter θ that improves the ability of
our model to explain the data (Rasmussen and Williams, 2005). However, because the unconstrained ML itself

does not take into account the constraints ξ ∈ C, the estimated θ̂MLE may produce less realistic models. Here,
we suggest to use the constrained likelihood. Let pθ(Ym|ξ ∈ C) be the conditional probability density function
of Ym given ξ ∈ C, when Y has covariance function kθ. By using Bayes’ theorem, the constrained log likelihood
LC,m(θ) = log pθ(Ym|ξ ∈ C) is

LC,m(θ) = log pθ(Ym) + logPθ(ξ ∈ C|Φξ = Ym)− logPθ(ξ ∈ C), (13)

where the first term is the unconstrained log-likelihood, and the last two terms depend on the inequality constraints.
Then, the constrained ML (CML) estimator is given by

θ̂CMLE = arg maxθ∈Θ LC,m(θ). (14)

Notice that Pθ(ξ ∈ C|Φξ = Ym) and Pθ(ξ ∈ C) are Gaussian orthant probabilities. As they have no explicit
expressions, numerical procedures have been investigated (Botev, 2017; Genz, 1992). Hence, the likelihood
evaluation and optimisation of Equations (13) and (14) have to be done numerically.

5.2 Simulation study

To assess the performance of the estimator of Equation (14), we simulated sample paths from a zero-mean
constrained GP Y using a Matérn 5/2 covariance function with θ∗ = (1, 0.2).2 We sampled 100 realizations of Y on
D = [0, 1] such that Y ∈ [−1, 1]. Then, for each realization, we trained a constrained model assuming boundedness
conditions with bounds [−1, 1]. We used 10 training points regularly spaced in D and m = 50 hat basis functions.
For ML and CML optimisations, we used multistart with ten initial vectors of covariance parameters located on
a maximin Latin hypercube DoE with σ2 ∈ [0, 2] and θ ∈ [0.04, 0.40]. As the parameters of the Matérn 5/2
covariance function are non-microergodic for one-dimensional input spaces, they cannot be estimated consistently
(Zhang, 2004). Therefore, we evaluated the quality of the likelihood estimators using the consistently estimable
ratio ρ = σ2/θ5. In Figure 5(a), we show the boxplots of the estimated ratios obtained with the 100 simulations
drawn from the GP. Notice that the estimated logged ratios log ρ̂MLE and log ρ̂CMLE are reasonably close to the
true value log ρ∗ = log(12/0.25), but the one using CMLE is slightly better in terms of variance and bias.

We also evaluate the efficiency of the two estimators in terms of prediction accuracy. For each realization, we
estimated the covariance parameters θ∗ by MLE and CMLE. We then simulated the posterior at 50 new regularly
spaced locations using the estimated covariance parameter θ̂. The conditional sample paths were simulated via
HMC. We used the Q2 and predictive variance adequation (PVA) criteria to assess the quality of predictions over
the 50 new values. Denoting by nt the number of test points, z1, · · · , znt and ẑ1, · · · , ẑnt the sets of test and predicted
observations (respectively), then Q2 = 1 −

∑nt
i=1(ẑi − zi)2/

∑nt
i=1(z − zi)2, where z is the mean of the test data.

Notice that for noise-free observations, the Q2 indicator is equal to one if the predictors ẑ1, · · · , ẑnt are exactly equal
to the test data (ideal case), zero if they are equal to the constant prediction z, and negative if they perform worse
than z. On the other hand, PVA assesses the quality of predictive variances σ̂2

i , for all i = 1, · · · , nt, using the
prediction errors: PVA = | log ( 1

nt

∑nt
i=1(zi − ẑi)2/σ̂2

i )| (Bachoc, 2013). Notice that, if the standardized residuals
(zi − ẑi)/σ̂i were an iid sample, then the PVA value would be close to 0 by the law of large numbers. Departure
from 0 may indicate either a lack of independence, or a biased estimation of the prediction uncertainty σi. In that
sense, smaller PVA values may correspond to more reliable confidence intervals.

Figure 5 shows the inferred sample paths for one realization using 5(d) θ̂MLE, 5(e) θ̂CMLE, and 5(f) θ∗. We
observe that, in the three cases, the models tend to fit properly the test data with accurate confidence intervals.
According to Figures 5(b) and 5(c), we see they provide Q2 and PVA median values close to the ones obtained
when the true θ∗ is used. Although the predictive accuracies obtained using CMLE are slightly better than for
MLE in terms of bias, we observe larger variances in the PVA criterion. Since the orthant Gaussian terms from
the conditional likelihood of Equation (13) have to be approximated, we believe that this affects the effectiveness
of CMLE. Furthermore, existing estimators of orthant Gaussian probabilities present some numerical instabilities

2Matérn 5/2 kernel function: kθ(x− x′) = σ2
(

1 +
√
5|x−x′|
θ

+ 5
3

(x−x′)2
θ2

)
exp

{
−
√

5|x−x′|
θ

}
with θ = (σ2, θ).
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Figure 5: Assessment of the likelihood (ML) and conditional likelihood (CML) estimators for 100 samples drawn
from a GP with true parameters θ∗ = (1, 0.2), and satisfying the bounds [−1, 1]. (a) Estimated values of the
log-ratio log ρ∗ = log(12/0.25) (dashed green line) using MLE and CMLE. Predictive accuracies are evaluated using

the (b) Q2 and (c) PVA criteria. Predictions are showed for one sample using (d) θ̂MLE, (e) θ̂CMLE, and (f) θ∗.
For the predictions, panel description is the same as Figure 2.

limiting the CML optimisation routine and providing suboptimal results. Finally, notice that MLE also provides
reliable predictions. This suggests that, if we properly take into account the inequality constraints in the posterior
distribution, the unconstrained ML optimisation can be used for practical implementation.

5.3 Asymptotic properties

Now, we study the asymptotic properties of likelihood-based estimators for constrained GPs. We consider the
fixed-domain asymptotic setting (Stein, 1999), with a dense sequence of observation points in a bounded domain.
It should be noted that, when the GP is not constrained, significant contributions have been provided to study the
consistency or asymptotic normality of the ML estimator (Du et al., 2009; Loh, 2005; Loh and Lam, 2000; Ying, 1993;
Zhang, 2004). In this paper, we show that, loosely speaking, any consistency result for ML with unconstrained GPs,
is preserved when adding either boundedness, monotonicity or convexity constraint. Furthermore, this consistency
occurs for both the unconditional and conditional likelihood functions.

For κ ∈ {0, 1, 2}, let Y be a GP with Cκ trajectories on a bounded set X ⊂ Rd. Let Eκ be one of the following
convex set of functions

Eκ =


f : X→ R, f is C0 and ∀x ∈ X, ` ≤ f(x) ≤ u if κ = 0,

f : X→ R, f is C1 and ∀x ∈ X, ∀i = 1, · · · , d, ∂
∂xi

f(x) ≥ 0 if κ = 1,

f : X→ R, f is C2 and ∀x ∈ X, ∂2

∂x2 f(x) is a non-negative definite matrix if κ = 2.

(15)

For the purpose of asymptotic analysis, we do not consider the hat basis functions anymore, and we focus on the
GP Y and the observation vector Yn = [ Y (x1), ···, Y (xn) ]>. We study the (unconstrained) likelihood function based
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on pθ(Yn) and the constrained likelihood function based on pθ(Yn|Y ∈ Eκ). Notice that these quantities are more
challenging to evaluate in practice than for Subsections 5.1 and 5.2, but the purpose is a theoretical analysis.

In Proposition 5.1, we prove that if ML is consistent, when considering the (unconditional) distribution of Y , then it
remains consistent when conditioning to Y ∈ Eκ. In Proposition 5.2, we prove that, under mild conditions, implying
the consistency of the ML estimator with the (unconditional) distribution of Y , the CML remains consistent when
adding the constraint Y ∈ Eκ. The proofs of Propositions 5.1 and 5.2 require supplementary conditions and lemmas,
which are given in Appendix A.

Proposition 5.1. Let Y be a zero-mean GP on a bounded set X ⊂ Rd with covariance function k satisfying
Condition A.1. Let Θ be a compact set on (0,∞)d+1. Let kθ be the covariance function of x→ σY (θ1x1, · · · , θdxd)
for θ = (σ2, θ1, · · · , θd) ∈ Θ. Let θ∗ = (1, · · · , 1). Remark that k = kθ∗ and assume that θ∗ ∈ Θ. Let (xi)i∈N be a
dense sequence in X. Let Yn = [ Y (x1), ···, Y (xn) ]>. Let

Ln(θ) = −1

2
log(det(Rθ))− 1

2
Y>nR

−1
θ Yn −

n

2
log 2π,

with Rθ = (kθ(xi, xj))1≤i,j≤n. Let θ̂ ∈ arg maxθ∈Θ Ln(θ). Assume that ∀ε > 0,

P (‖θ̂ − θ∗‖≥ ε) −−−−→
n→∞

0.

Let κ ∈ {0, 1, 2}. Let Eκ be as in Equation (15). Then, we have P (Y ∈ Eκ) > 0 from Lemmas A.3 to A.5, and thus

P (‖θ̂ − θ∗‖≥ ε | Y ∈ Eκ) −−−−→
n→∞

0.

Proof. We have

P (‖θ̂ − θ∗‖≥ ε| Y ∈ Eκ) =
P (‖θ̂ − θ∗‖≥ ε, Y ∈ Eκ)

P (Y ∈ Eκ)
≤ P (‖θ̂ − θ∗‖≥ ε)

P (Y ∈ Eκ)
.

Since P (Y ∈ Eκ) > 0 is fixed, and P (‖θ̂ − θ∗‖≥ ε) −−−−→
n→∞

0, the result follows.

Proposition 5.2. We use the same notations and assumptions as in Proposition 5.1. Let κ ∈ {0, 1, 2} be fixed.
Let Pθ be the distribution of Y with covariance function kθ. Let

LC,n(θ) = Ln(θ) + logPθ(Y ∈ Eκ|Yn)− logPθ(Y ∈ Eκ).

Assume that ∀ε > 0 and ∀M <∞,

P

(
sup

‖θ−θ∗‖≥ε
(Ln(θ)− Ln(θ∗)) ≥ −M

)
−−−−→
n→∞

0.

Then,

P

(
sup

‖θ−θ∗‖≥ε
(LC,n(θ)− LC,n(θ∗)) ≥ −M

∣∣∣∣ Y ∈ Eκ) −−−−→n→∞
0.

Consequently

argmaxθ∈Θ Ln(θ)
P−−−−→

n→∞
θ∗, and argmaxθ∈Θ LC,n(θ)

P |Y ∈Eκ−−−−−→
n→∞

θ∗,

where
P−−−−→

n→∞
denotes the convergence in probability under the distribution of Y , and

P |Y ∈Eκ−−−−−→
n→∞

denotes the convergence

in probability under the distribution of Y given Y ∈ Eκ.

Proof. We have from Lemmas A.1 and A.2 that ∀ε > 0

P{log(Pθ∗(Y ∈ Eκ | Yn)) ≥ log(1− ε) | Y ∈ Eκ} −−−−→
n→∞

1.

Hence ∀δ > 0

P

{
sup

‖θ−θ∗‖≥ε
log(Pθ(Y ∈ Eκ | Yn))− log(Pθ∗(Y ∈ Eκ | Yn)) ≥ δ

∣∣∣∣ Y ∈ Eκ} −−−−→n→∞
0.
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Figure 6: Examples of 2D Gaussian models with different types of constraints for interpolating the toy examples
from Subsection 6.1. Each panel shows: training points (black dots), the conditional function (solid surface), and
some conditional realizations (light surfaces).

Also, from Lemma A.6, there exists ∆ > 0 so that we have

inf
‖θ−θ∗‖≥ε

Pθ(Y ∈ Eκ) ≥ ∆ > 0,

so that
sup

‖θ−θ∗‖≥ε
− log(Pθ(Y ∈ Eκ)) + log(Pθ∗(Y ∈ Eκ)) ≤ − log(∆) <∞.

Hence, the proposition follows.

6 Extension to multidimensional input spaces

6.1 2D dimensional case

The finite-dimensional Gaussian representation of Section 3 can be extended to d dimensional input spaces by
tensorisation. For readability, we focus on the case d = 2 with D = [0, 1]2 and m1 ×m2 knots located on a regular
grid. Then, the finite approximation is given by

Ym1,m2
(x1, x2) :=

m1∑
j1=1

m2∑
j2=1

ξj2,j1φ
1
j1(x1)φ2

j2(x2), s.t.

{
Ym1,m2

(
xi1, x

i
2

)
= yi, (i = 1, · · · , n)

ξj2,j1 ∈ C,
(16)

where ξj2,j1 = Y (tj1 , tj2) and (x1
1, x

2
1), · · · , (xn1 , xn1 ) constitute a DoE. If we follow a similar procedure as in Section 3,

we observe that ξ = [ ξ1,1, ···, ξ1,m1,···,ξm2,1,···ξm2,m1 ]> is a zero-mean Gaussian vector with covariance matrix Γ as in
Equation (8). Notice that each row of the new matrix Φ is given by

Φi,: =
[
φ1

1(xi1)φ2
1(xi2) · · · φ1

m1
(xi1)φ2

1(xi2) · · · φ1
1(xi1)φ2

m2
(xi2) · · · φ1

m1
(xi1)φ2

m2
(xi2)

]
,

for all i = 1, · · · , n. Finally, the posterior distribution of Equation (10) can be computed, and the routine follows
Algorithm 1. The module from Equation (16) was also used in (Maatouk and Bay, 2017) for monotonicity constraints
in multidimensional cases.
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Figure 7: Nuclear criticality safety assessments: Godiva’s dataset. (Left) 2D visualization of the keff values measured
over a regular grid. (Right) 3D visualization of the keff data.

Figure 6 shows two examples where boundedness or monotonicity are exhibited. We used a 2D SE covariance
function with parameters (σ2 = 1.0, θ1 = 0.2, θ2 = 0.2).3 The training points were generated with a maximin
Latin hypercube DoE over [0, 1]2. The functions are: 6(a) y(x1, x2) = − 1

2 [sin(9x1)− cos(9x2)], and 6(b) y(x1, x2) =
arctan(5x1) + arctan(x2).

6.2 2D application: nuclear criticality safety

For assessing the stability of neutron production in nuclear reactors, safety criteria based on the effective neutron
multiplication factor keff are commonly used (IAE, 2014; Fernex et al., 2005). This factor is defined as the ratio of
the total number of neutrons produced by a fission chain reaction to the total number of neutrons lost by absorption
and leakage. Besides the geometry and composition of fissile materials (e.g. mass, density), keff is sensitive to other
types of parameters like the structure materials characteristics (e.g. concrete), and the presence of specific materials
(e.g. moderators). Since the optimal control of an individual parameter or a combination of them can lead to safe
conditions, the understanding of their influence in criticality safety assessment is crucial.

In this section, we applied the proposed framework to a dataset provided by the “Institut de Radioprotection et de
Sûreté Nucléaire” (IRSN), France. The keff factor was obtained from a nuclear reactor called “Lady Godiva device”
originally situated at Los Alamos National Laboratory (LANL), New Mexico, U.S., where uranium materials were
managed. Two input parameters of the uranium sphere are considered: its radius r and its density d. The dataset
contains 121 observations in a regular grid of 11×11 locations (see Figure 7). Notice that, on the domain considered
for the input variables, keff increases as the geometry and density of the uranium sphere increase.

We trained different Gaussian models whether the inequality constraints are considered or not. For all the models,
we normalised the input space to be in [0, 1]2. We used the same 2D SE covariance functions as for the example
from Figure 6. For the unconstrained model, we used multistart for the ML optimisation with six initial vectors of
covariance parameters Θ = (σ2, θ1, θ2) with σ2 ∈ [0.2, 1] and θ1, θ2 ∈ [0.1, 0.9]. For the constrained models, since
the keff factor indicates the production rate of neutron population, the output of the constrained processes has to be
positive. Taking also into account the non-decreasing behaviour, we also consider the monotonicity constraints. We
estimated the covariance parameters by MLE or CMLE. We trained both unconstrained and constrained models
with a fixed maximin Latin hypercube DoE at eight locations extracted from the normalised grid. We used the
remaining data to asses the quality of prediction tasks.

32D SE covariance function: kθ(x− x′) = σ2 exp

{
− (x1−x′1)

2

2θ21
− (x2−x′2)

2

2θ22

}
with θ = (σ2, θ1, θ2).
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Figure 8: 2D Gaussian models for interpolating the Godiva’s dataset. Unconstrained GP models are trained using
MLE (left column) and using (a) four, or (d) eight training points from the proposed maximin Latin hypercube
DoE. Constrained GP models are trained either using MLE (middle column) and CMLE (right column). Each
panel shows: training and test points (black dots and red crosses), the conditional mean function (solid surface),
and the Q2 criterion (subcaptions).

Figure 8 shows the performance of the proposed models using four or eight points from the proposed fixed DoE.
For the unconstrained models, we observe that the quality of the predictions depends strongly on both the amount
of training data and their distribution in the input space. Notice from Figure 8(a) that if only few training points
are available, predictions are poor and they do not satisfy positive and non-decreasing behaviours. In Figure 8(d),
we observe that if the training data are large enough and cover the input space, the unconstrained model behaves
well and provides reliable predictions. On the other hand, we observe that the constrained models produce accurate
prediction results also when the training set is small.

Because the prediction accuracy depends on the training set, we repeated the procedure with twenty different
random Latin hypercube DoEs using several values of n. We used the Q2 and PVA criteria to evaluate the
quality of the predictions (see Subsection 5.2). Figure 9 shows that the constrained models often outperform the
unconstrained ones. Notice that although the Q2 results obtained by the unconstrained model are comparable
with the constrained ones when the number of training points is large enough, we observe, according to the PVA
criterion, that the constrained models provide more reliable confidence intervals. This means that, if we consider
both positivity and monotonicity conditions to take into account the physics of the keff factor, we can obtain more
informative and robust models. Furthermore, we observe that the unconstrained MLE achieves a good tradeoff
between prediction accuracy/reliability and computational cost.
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Figure 9: Assessment of the Gaussian models for interpolating the dataset from Figure 7 using different number
of training points n and using twenty different random Latin hypercube designs. Predictive accuracy is evaluated
using the (left) Q2 and (right) PVA criteria. Results are showed for the unconstrained model (UM) using MLE
(red), and the constrained models (CM) using either MLE (blue) or CMLE (green).

7 Conclusions

Continuing the approach proposed in (Maatouk and Bay, 2017), we have introduced a full Gaussian-based framework
to satisfy linear sets of inequality constraints. The proposed finite-dimensional approach takes into account the
inequalities for both data interpolation and covariance parameter estimation. Because the posterior distribution is
expressed as a truncated multinormal distribution, we compared different MCMC methods as well as exact sampling
methods. According to experiments, we concluded that the Hamiltonian Monte Carlo-based sampler adapts to our
needs. For parameter estimation, we suggested the constrained likelihood which takes into account the inequalities
constraints. We showed that, loosely speaking, any consistency result for ML with unconstrained GPs, is preserved
when adding boundedness, monotonicity and convexity constraints. Furthermore, this consistency occurs for both
the unconditional and conditional likelihood functions.

We tested our model in both synthetic and real-world data in 1D or 2D. According to the experimental results
under different types of inequalities, the proposed framework fits properly the observations and provides realistic
confidence intervals. Our approach is also flexible enough to satisfy multiple inequality conditions and to deal
with specific types of constraints which are sequentially activated. Finally, as we showed in the 2D nuclear
criticality safety assessment, the proposed framework provides reliable predictions on both data prediction and
uncertainty quantification satisfying the inequality constraints exhibited by the neutron population (positivity and
monotonicity conditions). We also observe that the unconstrained MLE achieves a good tradeoff between prediction
accuracy/reliability and computational cost.

The framework presented in this paper can be improved in different ways. First, the precision of the results depends
on the number of knots m used in the finite approximation. For higher values of m, the interpolation is better but
more expensive. In this sense, we could consider the optimal location of the knots over the input space instead
of using regular grids. This potentially allows to reduce the computational cost of the full framework. Second, as
we discussed for 2D input spaces, the model can be generalized to d dimensional problems. However, due to its
tensor structure, its practical application could be time-consuming. Hence, there is a need to find an extension of
the model to higher dimensions that can be applied in real-word problems. Finally, the estimation of the orthant
Gaussian probabilities can be improved in order to exploit the advantages of the constrained likelihood.
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A Conditional maximum likelihood: asymptotic properties

We detail in this appendix section the conditions and lemmas we used in Propositions 5.1 and 5.2 from Subsection 5.3.
We use the same notations and assumptions as in this subsection.

Condition A.1. Let x,x′ ∈ X. For a fixed κ ∈ {0, 1, 2}, assume one of the following conditions:

- If κ = 0. Assume that Y has continuous trajectories. Let k be the covariance function of Y . Let

dk(x,x′) =
√
k(x,x) + k(x′,x′)− 2k(x,x′).

Let N(X, dk, ρ) be the minimum number of balls with radius ρ (w.r.t. the distance dk), required to cover X. Assume
that ∫ ∞

0

√
log(N(X, dk, ρ)) dρ <∞.

Assume also that the Fourier transform k̂ of k satisfies

∃ P <∞ so that as ‖w‖→ ∞, k̂(w)‖w‖P→∞.

- If κ = 1. Assume that Y has C1 trajectories. Let k
[1]
i be the covariance function of ∂

∂xi
Y . Let d

k
[1]
i

and

N(X, d
k
[1]
i
, ρ) be defined as dk and N(X, dk, ρ) for κ = 0. Assume that∫ ∞

0

√
log(N(X, d

k
[1]
i
, ρ)) dρ <∞, ∀i = 1, · · · , d.

Assume also that the Fourier transform k̂
[1]
i of k

[1]
i satisfies the same conditions as for κ = 0, for i = 1, · · · , d.

- If κ = 2. Assume that Y has C2 trajectories. Let k
[2]
i,j be the covariance function of ∂2

∂xi∂xj
Y . Let d

k
[2]
i,j

and

N(X, d
k
[2]
i,j
, ρ) be defined as dk and N(X, dk, ρ) for κ = 0. Assume that

∫ ∞
0

√
log(N(X, d

k
[2]
i,j
, ρ)) dρ <∞, ∀i, j = 1, · · · , d.

Assume also that the Fourier transform k̂
[2]
i,j of k

[2]
i,j satisfies the same conditions as for κ = 0, for i, j = 1, · · · , d.

Lemma A.1. Let 0 ≤ ` < u ≤ ∞. Let

Pn,`,u(Yn) = Pθ∗(Y ∈ E0| Yn).

Then, ∀ε ≥ 0, we have
P (Pn,`,u(Yn) ≤ 1− ε | Y ∈ E0) −−−−→

n→∞
0.

Proof. From Lemma A.3 we have P (Y ∈ E0) > 0. Hence, it is sufficient to show

P (Pn,`,u(Yn) ≤ 1− ε, Y ∈ E0) −−−−→
n→∞

0.

The term Pn,`,u(Yn), being a conditional expectation, is a martingale with respect to the σ-algebra generated by
Y (x1), · · · , Y (xn). Furthermore, 0 ≤ Pn,`,u(Yn) ≤ 1. Hence

Pn,`,u(Yn)
a.s.−−−−→
n→∞

P (Y ∈ E0 | F∞),

where F∞ is the σ-algebra generated by [Y (xi)]i∈N using Theorem 6.2.3 from (Kallenberg, 2002). Let µn and kn be
the mean and the covariance function (respectively) of Y given Yn. From proposition 2.8 in (Bect et al., 2016), the
conditional distribution of Y given F∞ is the distribution of a GP with mean function µ∞ and covariance function
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k∞. Furthermore, a.s., µn and kn converge uniformly to µ∞ and k∞, respectively. Hence we can show simply that,
because (xi)i∈N is dense in X, we have a.s. µ∞ = Y and k∞ is the zero function. Hence a.s. if Y ∈ E0 holds, then

P (Y ∈ E0 | F∞) = 1, so that Pn,`,u(Yn) −−−−→
n→∞

1.

Hence by the dominated convergence theorem

P (Pn,`,u(Yn) ≤ 1− ε, Y ∈ E0) −−−−→
n→∞

0.

Lemma A.2. Let κ = {1, 2}. Let
Pn(Yn) = Pθ∗(Y ∈ Eκ| Yn).

Then, ∀ε > 0, we have
P (Pn(Yn) ≤ 1− ε | Y ∈ Eκ) −−−−→

n→∞
0.

Proof. The proof is the same as that of Lemma A.1. In particular, we remark that 1Y ∈Eκ is a measurable random
variable, as Y has Cκ trajectories.

Lemma A.3. Let κ = 0. Assume that Condition A.1 is satisfied. Then

P (Y ∈ E0) > 0, for −∞ ≤ ` < u ≤ ∞.

Proof. We first prove that for all δ > 0

P (∀x ∈ X : |Y (x)|≤ δ) > 0.

This result is true and appears implicitly in the literature about small ball estimates for GP (Li and Linde,
1999). We nevertheless provide a proof of it for self-consistency. Let (vi)i∈N be a dense sequence in X. Let
Yv = [ Y (v1), ···, Y (vn) ]>. Let µn and kn be the mean and the covariance function of Y given Yv. Then we let

d2
kn(x,x′) = var {(Y (x)− Y (x′))|Fn} ,

where Fn = σ(Y (v1), · · · , Y (vn)). Thus

d2
kn(x,x′) = E {var {(Y (x)− Y (x′))|Fn}} ≤ var {(Y (x)− Y (x′))} = d2

k(x,x′),

from the law of total variance. Hence N(X, dkn , ρ) ≤ N(X, dk, ρ) ∀ρ. Also, from Theorem 2.10 in (Azäıs and
Wschebor, 2009) (together with an union bound and using that maxx∈X Y (x) and maxx∈X [−Y (x)] have the same
law) we have, with C an universal constant,

E

{
max
x∈X

|Y (x)− µn(x)|
}
≤ C

∫ ∞
0

√
log(N(X, dkn , ρ)) dρ

= C

∫ 2
√

sup
x∈X

kn(x,x)

0

√
log(N(X, dkn , ρ)) dρ

≤ C
∫ 2

√
sup
x∈X

kn(x,x)

0

√
log(N(X, dk, ρ)) dρ.

This last integral goes to 0 as n→∞ because supx∈X kn(x,x)→ 0 (see the proof of Lemma A.1), and because of
Condition A.1. Hence maxx∈X |Y (x)−µn(x)| goes to 0 in probability. Furthermore, P = P (∀x ∈ X, −δ ≤ Y (x) ≤
δ) satisfies

P ≥ P
(
∀x ∈ X, −δ

2
≤ µn(x) ≤ δ

2
, −δ

2
≤ Y (x)− µn(x) ≤ δ

2

)
= P

(
∀x ∈ X, −δ

2
≤ µn(x) ≤ δ

2

)
P

(
∀x ∈ X, −δ

2
≤ Y (x)− µn(x) ≤ δ

2

)
,
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since the distribution of Y − µn does not depend on Yv. We now fix n ∈ N for which the second probability is
non-zero (the existence is guaranteed from above). Then, the first probability is non-zero by continuity since, when
Yv = 0, then µn is the zero function. Hence we have

P (∀x ∈ X : |Y (x)|≤ δ) > 0.

Let f be a C∞ function on Rd, square integrable, satisfying

∀x ∈ X, `+ δ ≤ f(x) ≤ u− δ,

for δ > 0. (f exists for δ > 0 small enough, and can be taken for instance as f(x) = exp{−τ‖x− x0‖2}
[
u+`

2

]
with

τ > 0 small enough, and for any x0 ∈ X). Let Z be a GP with covariance function k and mean function f . Then,
from what we have shown before, we have

P (∀x ∈ X : |Z(x)− f(x)|≤ δ) > 0,

so that
P (∀x ∈ X : ` ≤ Z(x) ≤ u) > 0.

From (Yadrenko, 1983) (p.138), as discussed by (Stein, 1999) (p.121), the Gaussian measures of Y and Z are
equivalent. Thus

P (Y ∈ E0) = P (∀x ∈ X : ` ≤ Y (x) ≤ u) > 0.

Lemma A.4. Let κ = 1. Assume that Condition A.1 is satisfied. Then

P (Y ∈ E1) > 0.

Proof. We first prove that for all δ > 0

P

(
∀i = 1, · · · , d, ∀x ∈ X :

∣∣∣∣ ∂∂xiY (x)

∣∣∣∣ ≤ δ) > 0.

We let (vi)i∈N and Yv be defined as in the proof of Lemma A.3. Then, as in this proof we can show that for all
i = 1, · · · , d

max
x∈X

∣∣∣∣ ∂∂xiY (x)− E
{

∂

∂xi
Y (x)

∣∣∣∣Yv

}∣∣∣∣ P−−−−→
n→∞

0.

Furthermore, P = P
(
∀i = 1, · · · , d, ∀x ∈ X :

∣∣∣ ∂∂xiY (x)
∣∣∣ ≤ δ) satisfies

P ≥ P
(
∀i = 1, · · · , d, ∀x ∈ X, −δ

2
≤ E

{
∂

∂xi
Y (x)

∣∣∣∣Yv

}
≤ δ

2
,

∀i = 1, · · · , d, ∀x ∈ X, −δ
2
≤ ∂

∂xi
Y (x)− E

{
∂

∂xi
Y (x)

∣∣∣∣Yv

}
≤ δ

2

)
= P

(
∀i = 1, · · · , d, ∀x ∈ X, −δ

2
≤ E

{
∂

∂xi
Y (x)

∣∣∣∣Yv

}
≤ δ

2

)
× P

(
∀i = 1, · · · , d, ∀x ∈ X, −δ

2
≤ ∂

∂xi
Y (x)− E

{
∂

∂xi
Y (x)

∣∣∣∣Yv

}
≤ δ

2

)
.

Notice that the last equality holds because the distribution of the process x → ∂
∂xi

Y (x) − E
{

∂
∂xi

Y (x)|Yv

}
does

not depend on Yv. We now fix n ∈ N so that the second probability is non-zero (the existence is guaranteed
from above). Then, the first probability is non-zero by continuity since, when Yv = 0, then for all i = 1, · · · , d,

E
{

∂
∂xi

Y |Yv

}
is the zero function. Hence, we have obtained

P

(
∀i = 1, · · · , d, ∀x ∈ X :

∣∣∣∣ ∂∂xiY (x)

∣∣∣∣ ≤ δ) .
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We now conclude the proof in the same way as for Lemma A.3. We consider the mean function

f(x) =

[
d∑
i=1

xi

]
exp{−τ‖x− x0‖2},

with x0 ∈ X and τ > 0. For τ small enough, f is C∞, square integrable, and satisfies

∀i = 1, · · · , d, ∀x ∈ X,
∂

∂xi
f(x) ≥ 1

2
.

Then, we conclude the proof as in the proof of Lemma A.3.

Lemma A.5. Let κ = 2. Assume that Condition A.1 is satisfied. Then,

P (Y ∈ E2) > 0.

Proof. We first prove that for all δ > 0

P

(
∀i, j = 1, · · · , d, ∀x ∈ X :

∣∣∣∣ ∂2

∂xi∂xj
Y (x)

∣∣∣∣ ≤ δ) > 0.

This is done in a similar way as for showing P
(
∀i = 1, · · · , d, ∀x ∈ X :

∣∣∣ ∂∂xiY (x)
∣∣∣ ≤ δ) > 0 in the proof of

Lemma A.4. We then conclude similarly as the rest of the proof this Lemma. In particular, we consider the
mean function

f(x) =

[
d∑
i=1

x2
i

]
exp{−τ‖x− x0‖2},

with x0 ∈ X and τ > 0. Let λinf(M) be the smallest eigenvalue of a symmetric matrix M . Then, for τ small
enough, f is C∞, square integrable, and satisfies

∀x ∈ X, λinf

(
∂2

∂x2
f(x)

)
≥ 1.

Lemma A.6. Let κ ∈ {0, 1, 2}. Assume that Condition A.1 holds. Let Yθ be the GP defined by

Yθ(t) = σY (θ1t1, · · · , θdtd).

Let Pκθ = P (Yθ ∈ Eκ) (see Equation (15)). Then,

inf
θ∈Θ

Pκθ > 0.

Proof. We do the proof for κ = 2. The proof for κ = 0, 1 is similar. Let ε > 0 and let

Pκθ,ε = E

{
1I(Yθ)≥ε +

I(Yθ)

ε
10≤I(Yθ)≤ε

}
,

with I(Yθ) = infx∈X λinf

(
∂2

∂x2Yθ(x)
)

. We have Pκθ,ε ≤ Pκθ for all ε > 0. With the proof of Lemma A.5, we also

obtain for ε > 0 small enough
∀θ ∈ Θ Pκθ,ε > 0.

Hence, the proof is concluded, by compacity, if we show that θ → Pκθ,ε is a continuous function on Θ. Let us show

this. Let θ = (σ2
1 , θ1, · · · , θd) ∈ (0,∞)d+1 and θn = (σ2

n, θn1, · · · , θnd)→ θ. We have

∂2

∂xixj
Yθn(x) = σn

(
(θn)i(θn)j

∂2

∂xixj
Y (θn1x1, · · · , θndxd)

)
.
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Hence, because Y is C2, we have a.s.

sup
x∈X

∣∣∣∣∣∣∣∣ ∂2

∂x2
Yθn(x)− ∂2

∂x2
Yθ(x)

∣∣∣∣∣∣∣∣ −−−−→n→∞
0,

for any matrix norm ‖·‖. Hence also since Y is C2, we can show, a.s.(
inf
x∈X

λinf

(
∂2

∂x2
Yθn(x)

)
− inf

x∈X
λinf

(
∂2

∂x2
Yθ(x)

))
−−−−→
n→∞

0.

Hence, we conclude by dominated convergence observing that t → (1t≥ε + t
ε10≤t≤ε) is a continuous function on

R.
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des sciences de Toulouse Mathématiques, 21(3):529–555.
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