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Abstract. Motivated by the construction of confidence intervals in statistics,

we study optimal configurations of 2d − 1 lines in real projective space RPd−1.
For small d, we determine line sets that numerically minimize a wide variety of

potential functions among all configurations of 2d − 1 lines through the origin.

Numerical experiments verify that our findings enable to assess efficiently the
tightness of a bound arising from the statistical literature.

1. Introduction

Motivated by a question arising from statistics related to the construction of
uniformly valid post-selection confidence intervals [3, 5], whose details we present
below, we aim at computing 2d−1 evenly-spaced lines through the origin in Rd. The
terminology “evenly-spaced” is loose and, indeed, there are several mathematical
formulations that make sense but often lead to different types of line sets. Usually,
one considers a potential energy with a “repulsive” pairwise interaction kernel, and
a line set may be called evenly-spaced if it is optimal with respect to this energy.
However, note that optimal line sets may differ among different potential energies.
For very particular choices of the number of lines with respect to the ambient di-
mension d, see [8], optimal lines coincide for a large class of monotonic pairwise
interaction kernels considered in [7] and are therefore called universally optimal.
However, universal optimality is a rare event in the sense that only very few con-
figurations can exist and even fewer are actually proven to be universally optimal.
Indeed, in general it is extremely difficult to prove that a certain configuration is
universally optimal, cf. [7, 8, 9].

In the present paper, we consider configurations of 2d − 1 lines in Rd for d =
2, . . . , 6 that minimize (not necessarily simultaneously) three types of potential en-
ergies associated to the distance-, the Riesz-1-, and the log-kernels. Additionally,
we compare these minimizers to the corresponding best packings of lines found in
[10], which can be seen as limiting cases of potential energy minimizers. In dimen-
sion d = 2, 3, all the three minimizing configurations of 3 and 7 lines, respectively,
are known to coincide with the corresponding best packings of lines, by virtue of
their universal optimality [8]. Unfortunately, for d = 4, 5 our numerical experiments
suggest that there are no universally optimal line sets. Surprisingly, for d = 6 there
seems to exist a universally optimal configuration of 63 lines, which we identified as
the best packing configuration provided in [10]. However, this particular configura-
tion, which can be composed by the 36 lines going through the vertices and the 27
lines going through the centers of the 5-faces of the 122 polytope (also called the E6

polytope), cannot be proven to be universally optimal with the so-call sharpness
condition introduced in [7], so that we state its universal optimality as a conjecture.
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Let us now present the statistical application. In the context of the construc-
tion of valid post-model-selection confidence intervals, [3, 5] have proposed new
confidence intervals that are derived from evaluating a special statistical potential
function of at most 2d − 1 many lines in Rd. It is desirable to find the maximum
of this function, when the lines are subject to certain restrictions [3, 5]. Due to
the inherent complexity of these restrictions and of the statistical potential itself,
direct optimization approaches seem hopeless. However, a standard upper bound
is available for this maximum [5], derived by two consecutive inequalities, cf. (3)
and (4) in Section 2. It is known that the second inequality is an equality for
d = 2 [3, Lemma A.4] and that it is tight as d → ∞ [5]. In the present paper,
we shall complete this picture for other small values of d by simply evaluating the
statistical potential at sets of 2d−1 evenly-spaced lines. These evaluations are very
close to the upper bound, which demonstrate the tightness of the second inequality.
Moreover, for universally optimal line sets, the gap is significantly smaller, which
underlines that special property.

The outline is as follows. In Section 2, we fix notation and present the statistical
potential that motivates us to search for 2d − 1 evenly-spaced lines in Rd. The
potential energies in projective space are introduced in Section 3, where we also
provide the definitions of the distance-, the Riesz-s-, and the log-energy [17] as well
as the notion of universal optimal configurations of lines [7]. For each dimension
d = 2, . . . , 6 we provide in Section 4 one of the numerically found minimizers of the
distance-, the Riesz-1-, or the log-energy. Section 5 is dedicated to the statistical
application, in which we compare the performance of the evenly-spaced lines with
a naive Monte Carlo optimization of the statistical potential.

2. Notation and motivation

Let Sd−1 denote the unit sphere and RPd−1 the projective space (the set of lines
through the origin) of Rd. Any u ∈ Sd−1 defines a line ` ∈ RPd−1 by ` = uR, and its
antipodal counterpart −u yields the same line. Throughout the entire manuscript,
we shall fix N := N(d) := 2d − 1. The set of all sets of at most N lines is denoted
by D≤N := D≤N (d) := {L ⊂ RPd−1, #L ≤ N} and the set of all sets of exactly N
lines is denoted by DN := {L ⊂ RPd−1, #L = N}.

In order to construct valid confidence intervals in statistical model selection, the
authors in [3, 5] consider a function

fd,r,α : D≤N → R+,

where α ∈ (0, 1) and r ∈ N∗ are fixed parameters. The value of fd,r,α(L), for
L ∈ D≤N , is defined as the unique K > 0 such that

(1) EV
(
Fd,r

( K2

d · max
uR=`∈L

〈u, V 〉2
))

= 1− α,

where Fd,r is the cumulative distribution function of the F-distribution with pa-
rameters d and r, and V is a uniformly distributed random vector on Sd−1. In the
statistical context, for fixed values of α and r, it is desirable to find the maximum
of fd,r,α on a certain subset D̃ ⊂ D≤N , cf. [3, 5], i.e., one aims to determine

(2) sup
L∈D̃

fd,r,α(L),
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where each set of lines in D̃ is derived from some statistical data set but where
D̃ depends only on d, cf. [5, Equations (5.2) and (5.3) and Section 4.10] and [3,

Equation (6)]. Note that [3] and [5] yield two different subsets D̃, but this difference
is of no consequence in the sequel. Considering the supremum (2) is beneficial
because this supremum is data-independent and can be tabulated, for fixed r and
α, once and for all.

Exactly determining (2) is difficult if not computationally infeasible since the set

D̃ is defined in [3] or [5] in an intricate manner, that has so far made it impossible
to determine (2) theoretically. Moreover, the values fd,r,α(L) can usually only be
approximated by Monte Carlo methods, as in Algorithm 1, which we write only for
the case of sets of N lines, for concision. Note, that Algorithm 1 is also used in [3].

In [3, 5], an upper bound K̄(d, r, α) has been proposed for (2) that can easily
be determined numerically, and we refer to Proposition 2.3 and Algorithm 4.3 in
[3] for its definition and computation. This bound satisfies the following sequential
inequalities:

sup
L∈D̃

fd,r,α(L) ≤ sup
L∈DN

fd,r,α(L)(3)

≤ K̄(d, r, α),(4)

where (3) is due to D̃ ⊂ D≤N and to the fact that K in (1) is increased if additional
lines are added, so that supL∈D≤N

fd,r,α(L) = supL∈DN
fd,r,α(L). The inequality

(4) is derived from a union bound, cf. Equation (A.17) in [5].
As noted in [5] and [3, Remark 2.10], the inequality (4) is tight for large values

of d, i.e.,

(5)
supL∈DN

fd,r,α(L)

K̄(d, r, α)
→ 1,

when d tends to infinity, cf. [5, proof of Theorem 6.3]. For d = 2, we even have
supL∈DN

fd,r,α(L) = K̄(d, r, α), see [3, Lemma A.4].

In the present paper, we shall assess whether the upper bound K̄(d, r, α) in (4)
for supL∈DN

fd,r,α(L) is also tight for small values of d.
To evaluate the quality of the inequality (4), we must approximate

(6) sup
L∈DN

fd,r,α(L)

to determine its difference to K̄(d, r, α). However, exactly computing (6) is also
difficult, if not numerically infeasible, and we shall rather aim to derive good lower
bounds. In fact, we shall verify that evaluating fd,r,α on one or few candidates
of evenly-spaced lines L = {`1, . . . , `N} ⊂ RPd−1 yields better lower bounds on
(6) than several Monte Carlo attempts. Our numerical results on this issue are
presented in Section 5.

Remark 2.1. The quantity K2 in [3] corresponds to (2) where the supremum holds
over a certain subset D̄ that depends on other quantities beside d (it is data de-
pendent). In the case of K2, there exists another upper-bound K3 in [3], which
is smaller than K̄(d, r, α), incomparable with supL∈DN

fd,r,α(L) and convenient to

compute. Nevertheless, the context of this paper, where the subset D̃ is data inde-
pendent, is unrelated to K3, so that K̄(d, r, α) is the only available upper-bound for
(2).
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3. Potential functions in real projective space

We shall now consider families of potential energies whose minimization can
provide us with rather evenly-spaced lines. We recall that the chordal distance dc
between two lines `i, `j ∈ RPd−1 is given by

(7) d2c(`i, `j) =
1

2
‖uiu>i − uju>j ‖2,

where `i = uiR and `j = ujR with ui, uj ∈ Sd−1. Let f : (0, 1]→ R be a decreasing
continuous function. For fixed N and d, we aim to minimize the potential energy

Pf : DN → R

{`1, . . . , `N} 7→
∑
i 6=j

f(d2c(`i, `j)),
(8)

i.e., we aim to find L̂ ∈ DN such that

Pf (L̂) ≤ Pf (L), for all L ∈ DN .

We shall explicitly consider three types of pairwise interaction kernels,

(A) the distance-energy,

f1(t) = −
√
t,

(B) the Riesz-s-energy,

f2(t) = t−s/2, for s > 0,

(C) the log-energy,

f3(t) = − log(t),

and we refer to [8, 9, 14, 15, 16, 17, 18] and references therein, for investigations on
their minimizers and asymptotic results when N tends to infinity.

We call a function f : (0, 1] → R completely monotonic if it is infinitely often
differentiable and (−1)kf (k) ≥ 0, for k = 1, 2, . . .. Note that the above f1, f2, f3
satisfy this property. The following definition is borrowed from [7].

Definition 3.1. We call L̂ ∈ DN universally optimal if it minimizes Pf among
DN , for all completely monotonic functions f .

Additionally, it seems natural to consider configurations solving the packing
problem of N lines in RPd−1, i.e., sets of lines which maximize the minimal chordal

distance, i.e., find {ˆ̀1, . . . , ˆ̀
N} ∈ DN such that

min
i 6=j

dc(ˆ̀
i, ˆ̀

j) ≥ min
i 6=j

dc(`i, `j), for all {`1, . . . , `N} ∈ DN ,

cf. [10]. Note that the packing problem corresponds to the limit case of the Riesz-

s-potential when s tends to infinity. In particular, if the set {ˆ̀1, . . . , ˆ̀
N} ∈ DN is

universally optimal, it also solves the packing problem.
For packings in Grassmannians beyond the projective space, we refer to [10, 6],

see also [2].
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4. 2d − 1 evenly-spaced lines in small dimensions

Recall that we are interested in minimizers of the distance-, Riesz-1-, and the log-
energy for N = 2d− 1 with d = 2, . . . , 6. Note, that for each potential energy there
exist lots of local minimizers and, unless all such minimizers have been determined,
there is no general statement that one has already found a global minimizer.

Here, we repeatedly apply a local optimization procedure initialized by randomly
chosen starting points (in our case the nonlinear CG method described in [12, 13]),
and we are convinced that the line configurations we present are actually minimizers
of the corresponding energies.

In general the minimizers of each of the three potential energies are different.
However, since the different configurations perform rather equally well for the sta-
tistical potential we will provide for each dimension only one selected minimizer
explicitly.

4.1. Universally optimal lines in R2. It is known that three equiangular lines
in R2 are universally optimal, cf. [7], hence all minimizers coincide with that best
packing configuration. For instance, such lines {`k}3k=1 are given by the vectors
uk = (cos( 2

3kπ), sin( 2
3kπ))>, with `k = ukR, for k = 1, 2, 3. Note that this config-

uration is highly symmetric and generated by a single orbit of its symmetry group
D3, which is the dihedral group of order |D3| = 6.

Remark 4.1. It is known that those {`1, `2, `3} maximize f2,r,α and, as mentioned
before, the maximum indeed coincides with K̄(d, r, α), cf. [3, Lemma A.4].

4.2. Universally optimal lines in R3. It has been proven recently that there
exist 7 lines that are universally optimal in RP2, see [9], hence all minimizers
coincide with that best packing configuration. In such a configuration, 4 lines are
going through the vertices and 3 through the centers of the faces of a cube centered
at the origin, see Figure 1. If the cube’s edges are aligned with the coordinate axis,
then the lines {`k = ukR}7k=1 are given by the vectors

u1 = (1, 1, 1)>, u2 = (1,−1, 1)>, u3 = (−1, 1, 1)>, u4 = (−1,−1, 1)>

u5 = (1, 0, 0)>, u6 = (0, 1, 0)>, u7 = (0, 0, 1)>.

Note that this configuration is also highly symmetric and is generated by only
2 orbits of its symmetry group Oh, which is the full octahedral group of order
|Oh| = 48.

4.3. Optimal lines in R4. Our numerical computations provide us with strong
evidence that there are no universally optimal configurations of 15 lines in RP4.
We found a very symmetric configuration L = {`k}15k=1, which seems to minimize
the log-energy and the Riesz-1-energy simultaneously. It is more symmetric than
our numerical minimizer of the distance-energy in the sense that it is composed by
fewer group orbits. Moreover one can simply check that it is a stationary point of
any Riesz-s-energy, s > 0. However, it does not solve the best packing problem
(the limiting case s → ∞), as it has a slightly smaller minimal distance than the
configuration found in [10].

The symmetry group G of L as a subgroup of the orthogonal matrices O(4) ⊂
R4×4 acts naturally by left multiplication on RP3. The group has order |G| = 144
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Figure 1. 7 universally optimal lines in R3.

and is generated by the following matrices

G1 = −


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , G2 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , G3 =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

G4 =
1

2


−1 −

√
3 0 0√

3 −1 0 0
0 0 1 0
0 0 0 1

 , G5 =
1

2


−1 −

√
3 0 0√

3 −1 0 0

0 0 −1 −
√

3

0 0
√

3 −1

 .

The 15 lines L = L1 ∪ L2 are composed by the two orbits

L1 = {uR | u = G · (1, 0, 0, 0)>, G ∈ G},

L2 = {uR | u = G · (0, 1, 1, 0)>, G ∈ G}

of cardinality 6 and 9, respectively. See Figure 2, for a visualization.

4.4. Optimal lines in R5. We numerically derived different minimizers for each
of the three potential energies. They all have a nontrivial symmetry group, and we
want to provide the most symmetric configuration of lines, which is found for the
Riesz-1-energy. In that case the 31 lines L = {`k}31k=1 are composed by 8 orbits of
its symmetry group. More precisely, the symmetry group G has order |G| = 12 and
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Figure 2. 15 lines in R4 visualized in the unit ball in R3. Blue
points correspond to orbit L1, yellow correspond to L2. For visu-
alization, we consider the intersection of lines in R4 with the upper
hemisphere of the unit sphere. Hence, lines become points. Now,
we apply the stereographic projection to map the upper hemisphere
in R4 into the full ball in R3, which we can plot. In general, a line
in R4 reduces to a single point in the ball but lines that intersect
the equator have two intersection points and we plot both.

is generated by the following three matrices

G1 = −


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , G2 =


1 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 1

 ,

G3 =
1

2


2 0 0 0 0

0 −1 −
√

3 0 0

0
√

3 −1 0 0

0 0 0 −1 −
√

3

0 0 0
√

3 −1

 .
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The 31 lines L =
⋃8
i=1 Li are then given by the eight orbits

L1 = {uR | u = G · (1, 0, 0, 0, 0)>, G ∈ G},

L2 = {uR | u = G · (0, 1, 0, 0, 0)>, G ∈ G},

L3 = {uR | u = G · (0, a1, 0,−
√

1− a21, 0)>, G ∈ G},

L4 = {uR | u = G · (b1, 0, b2, 0,
√

1− b21 − b22)>, G ∈ G},

L5 = {uR | u = G · (c1, 0,−c2, 0,−
√

1− c21 − c22)>, G ∈ G},

L6 = {uR | u = G · (d1, d2,−d3, d4,
√

1− d21 − d22 − d23 − d24)>, G ∈ G},

L7 = {uR | u = G · (e1, e2, e3,−e4,−
√

1− e21 − e22 − e23 − e24)>, G ∈ G},

L8 = {uR | u = G · (f1,−f2, f3, f4,
√

1− f21 − f22 − f23 − f24 )>, G ∈ G},

of size 1, 3, 3, 3, 3, 6, 6 and 6, respectively, where the constants can be computed
to arbitrary precision by numerical minimization

a1 = 0.1386569...,

b1 = 0.6107676..., b2 = 0.2652528...,

c1 = 0.6319241..., c2 = 0.6489064...,

d1 = 0.0959289..., d2 = 0.6048195..., d3 = 0.3121361..., d4 = 0.6715440...,

e1 = 0.3556342..., e2 = 0.0311526..., e3 = 0.7210732..., e4 = 0.4584122...,

f1 = 0.5842996..., f2 = 0.4841533..., f3 = 0.3040229..., f4 = 0.5287425... .

4.5. Optimal lines in R6. Our numerical investigations provide us with evidence
that there exists an arrangement of 63 lines which is universally optimal in RP5 and
thus coincides with the best packing solution presented in [10]. This configuration
L = {`k}63k=1 is given by the 36 lines going through the vertices and the 27 lines
going through the centers of the 5-faces of the 122 polytope, cf. [11], also known as
the E6 polytope. The symmetry group G of that polytope has order |G| = 103680,
which contains the Coxeter group E6 as an index 2 subgroup. The high order of
the symmetry group G shows the remarkably high symmetry of this configuration
of lines. Note that the group G can be generated by 2 matrices

G1 =


− 1

2 −
1
2

1
2

1
2 0 0

− 1
2

1
2 0 0 1√

8

√
3
8

1
2 0 1

2 0 1√
2

0

1
2 0 0 1

2 − 1√
8

√
3
8

0 1√
8

1√
2
− 1√

8
− 1

2 0

0
√

3
8 0

√
3
8 0 − 1

2

 , G2 =



1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0

0 0 0 0 1
2 −

√
3
2

0 0 0 0
√
3
2

1
2

 ,

so that the 63 lines L = L1 ∪ L2 are explicitly constructed by the two orbits

L1 = {uR | u = G · (1, 0, 0, 0, 0, 0)>, G ∈ E6},

L2 = {uR | u = G · (0, 0, 0, 0,
√

3, 1)>, G ∈ E6}
of cardinality 36 and 27, respectively. Alternatively, the 63 lines can be derived
from the minimal vectors of the E6 lattice and its dual lattice E∗6 , see, for instance,
G. Nebe’s and N. Sloane’s website [1].
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Note that L1 itself satisfies the sharpness condition in the sense of [7] and hence
is universally optimal in RP5. The 63 lines are not sharp, but we conjecture that
they are universally optimal in RP5. Moreover, the corresponding configurations
of 126 points on the sphere is stationary for any completely monotonic potential
function of the squared distance of 126 points on S5, cf. [4].

5. Applications to the statistical potential

5.1. Two approaches. Now that we have some configurations of N = 2d − 1
evenly-spaced lines in projective space in hand, we can apply them to derive lower
bounds on

(9) sup
{`1,...,`N}∈DN

fd,r,α({`1, . . . , `N})

as was our aim stated in Section 2. We shall compare evaluating fd,r,α at our
evenly-spaced lines with a standard Monte Carlo optimization method. Note that
fd,r,α cannot be evaluated directly, and we apply Algorithm 1 to do so, which is
the same algorithm as [3, Algorithm 4.1], and which is also used by the authors of
[5]. To summarize, we shall compare the following two methods:

(i) evenly-spaced lines:

This method simply consists in applying Algorithm 1 with {ˆ̀1, ..., ˆ̀
N} being

one of the optimal line sets derived in Section 4.

(ii) naive Monte Carlo:
One aims to maximize fd,r,α by Monte Carlo optimization, given in Algo-
rithm 4, which first calls the random line generator in Algorithm 2 and then
applies Algorithm 3, which itself repeatedly calls Algorithm 1. This type
of Monte Carlo optimization has already been used in [3, Section 5] (in a
context unrelated to this paper and the evenly-spaced line method (i)).

Our intention is to check that (i) indeed outperforms (ii). From a computational
point of view, (i) has a clear advantage: the set of evenly-spaced lines is obtained
numerically once and for all, and can be used for any value of r and α. In contrast,
one needs to repeat the naive Monte Carlo optimization for each values of r and α
under consideration.

Algorithm 1 Evaluation of fd,r,α at {`1, . . . , `N}
Input: lines {`1, ..., `N} ∈ DN and some parameter I ∈ N
Output: K approximating fd,r,α({`1, ..., `N}).

1: generate independent uniformly distributed random vectors {Vi}Ii=1 ⊂ Sd−1.
2: for each i = 1, . . . , I, calculate ci = maxj=1,...,N 〈uj , Vi〉2, where `j = ujR.
3: determine K that solves

(10)
1

I

I∑
i=1

Fd,r
(K2

dc2i

)
= 1− α.

4: return K
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Algorithm 2 random line generator

Input: N1 and a set of probability distributions {νj}Nj=1 on Sd−1.
Output: D1 ⊂ DN with #D1 = N1.

1: initialize D1 = ∅
2: for i = 1, . . . , N1 do
3: for j = 1, . . . , N , generate a νj-distributed random vector uj ∈ Sd−1.
4: insert the corresponding line set {u1R, . . . , uNR} into D1.
5: end for
6: return D1

Algorithm 3 find max

Input: D1, parameters N2, I1, I2, I3 ∈ N with N2 ≤ #D1.
Output: approximation of maxD1 fd,r,α(`1, . . . , `N ).

1: evaluate fd,r,α at all {`1, ..., `N} ∈ D1 with I = I1 in Algorithm 1.
2: keep the N2 sets D2 ⊂ D1 that yield the largest evaluations in step 1.
3: reevaluate fd,r,α at all {`1, ..., `N} ∈ D2 with I = I2 in Algorithm 1.
4: keep the sets {`∗1, ..., `∗N} ∈ D2 that yields the largest evaluation in step 3.
5: return K derived from the reevaluation of fd,r,α({`∗1, ..., `∗N}) by Algorithm 1

with I = I3.

Algorithm 4 naive Monte Carlo

Input: parameters N1, N2, I1, I2, I3 ∈ N with N2 ≤ N1.
Output: naive approximation of supDN

fd,r,α({`1, . . . , `N}).
1: generate D1 ⊂ DN by calling Algorithm 2 with N1 and the uniform distribution

on Sd−1.
2: return K derived from calling Algorithm 3 with D1, N2, I1, I2, I3.

5.2. Numerical experiments. We compare the two methods presented in Section
5.1, for d = 3, 4, 5, 6. Two values of r = 20, 60 are chosen as representative of
practical statistical situations, and α = 0.05 is chosen since this yields the classical
95% confidence.

In order to further investigate on the approach (i), we shall also consider local
searches in proximity to the evenly-spaced lines:

(a) local evenly-spaced lines:

We search for the maximum of fd,r,α locally around {ˆ̀1, . . . , ˆ̀
N} given as in

(i). Indeed, we call Algorithm 2 using N projected Gaussian distributions
with isotropic variance σ2 = 0.12 and mean vectors {u∗j}Nj=1, respectively.
With the resulting set D1, we apply Algorithm 3.

(b) very local evenly-spaced lines:
As in (a) but we search even more locally by choosing σ2 = 0.012.

In the numerical experiments, the parameters for (i), (ii), (a), and (b) are chosen
by I = 20 000 000, N1 = 200 000, N2 = 20 000, I1 = 10 000, I2 = 200 000, and
I3 = 20 000 000. In Figure 3, we report, for each of the configurations of d, r (8
configurations in total), the ratios K/K̄(d, r, α), where K takes four values obtained
by the methods (i), (ii), (a), and (b), and where K̄(d, r, α) is the upper bound in
(4). For the methods (i), (a), and (b), for d = 3, 6, a unique set of 2d − 1 lines
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is under consideration, which minimizes all the potential functions of Section 3.
For d = 4, 5 different sets minimize different potentials, but give approximately the
same values for fd,r,α (the lines corresponding to the packing problem slightly lag
behind the others). Hence, in Figure 3 below, we only report the results for the
minimizer of the Riesz-1-potential, for concision. The ratios K/K̄(d, r, α) enable
us to compare the two methods, (i) and (ii), while those obtained from (a) and (b)
address the local optimality of approach (i).

In Figure 3, for the configurations of d and r under consideration, the method
(i) using evenly-spaced lines provides a better maximization of fd,r,α over DN than
(ii). Hence, it is beneficial both from a computational and performance point of
view.

We also observe in Figure 3 that the values of K obtained from (a) are below
those obtained from (b). Furthermore, although not perceptible in the figure, we
always have that either K is smaller in (b) than in (i), or the two values cannot
be distinguished, because of the very small but positive variance of Algorithm 1.
This is numerical indication that the sets of evenly-spaced lines are local maximiz-
ers for fd,r,α over DN . At least in the cases d = 3, 6, since we are then dealing
with universally optimal lines, it seems plausible that we even obtained the global
maximizers.

Note that, in light of Figure 3, K̄(d, r, α) is a tight upper bound in (4) for
d = 3, ..., 6, with a difference of less than 0.5%. This result is of complementary
nature with the tightness for large d, see (5), derived in [5, proof of Theorem 6.3].

We can conclude that it would not be very beneficial to aim at improving the
union bound (4). Instead, one may want to study the inequality (3) more closely.

Given the complexity of the sets D̃ considered in [3] or [5], however, this may require
other tools and may turn out to be an extremely challenging task going beyond the
scope of the present paper.

We have a smaller window of possible values for (9) in dimensions in which
universally optimal lines exist, or are conjectured to exist, with the predefined
cardinality N = 2d − 1, see Figure 3 where d = 3, 6 yield higher ratios for (i) than
d = 4, 5. In this sense, our statistical application indicates that the concept or
property of universal optimality is indeed beneficial.
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