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Data and models

Data :

We consider a triangular array of independent 1× l random vectors
y1,n, ..., yn,n

We let Pn =
⊗n

i=1 Pi,n be the distribution of yn = (y ′1,n, . . . , y
′
n,n)′, on the

Borel sets of Rn×`, where Pi,n is the distribution of yi,n

Models :

We now consider a set Mn = {M1,n, . . . ,Md,n} composed of d models

Mi,n is a set of distributions on the Borel sets of Rn×`

d does not depend on n (fixed-dimensional asymptotics)

=⇒We do not assume that the observation distribution Pn belongs to one of
the {M1,n, . . . ,Md,n}. The set of models can be misspecified
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Parameters and estimators

Parameters :

We define for each model M ∈ Mn an optimal parameter θ∗M,n = θ∗M,n(Pn),
that we assume to be non-random and of fixed dimension m(M)

Typically, M ∈ Mn is a set of distributions parameterized by θ ∈ Rm(M),
and θ∗M,n corresponds to the projection of Pn on M, for some distance

The optimal parameter θ∗M,n is specific to the model M

Estimators :

We consider, for each M ∈ Mn, an estimator θ̂M,n of the optimal
parameter θ∗M,n
The estimator θ̂M,n is a measurable function from Rn×` to Rm(M)
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Post-model selection inference

Model selection :
We consider a model selection procedure : a measurable function
M̂n : Rn×` → Mn

We are hence interested in constructing confidence intervals for the
random quantity of interest θ∗M̂n,n

This is the post-model-selection inference framework

In the literature :
Van der Geer et al. 2014, AoS address linear regression, with the lasso
model selector. They assume a well-specified (sparse) model and
construct confidence intervals for the regression coefficients
Lee et al. 2016, AoS address Gaussian linear regression with the lasso
model selector. They consider misspecified models and construct
confidence intervals for the optimal coefficients
Berk et al 2013, AoS address Gaussian linear regression with any model
selector. They also consider misspecified models.
Taylor and Tibschirani 2017, CJoS address misspecified generalized
linear models with l1 penalized likelihood
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The case of homoscedastic linear model

Setting :
l = 1 and y1,1, ..., yn,n have identical variance
A model M is given by a subset of {1, ..., p} and corresponds to
extracting columns of a n × p design matrix Xn

θ̂M,n is the restricted least square estimator in a linear model

Confidence intervals :
Berk et al 2013, AoS observe that the vector {θ̂M,n − θ∗M,n}M∈Mn is
Gaussian
They use a worst case approach (in terms of the selected model) and
obtain a confidence interval CI(j)

1−α,M̂n
, for component j of θ∗M̂n,n

satisfying

Pn

(
θ
∗(j)
M̂n,n
∈ CI(j)

1−α,M̂n
for all j = 1, . . . ,m(M̂n)

)
≥ 1− α

Universality :
The coverage guarantee holds for any model selector M̂n. Berk et al.
hence speak of universally valid confidence intervals
This universality is particularly beneficial when the statistician has limited
control on the model selection procedure : informal , cost-driven...
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Main idea and notation

Main idea :

We aim at showing a joint asymptotic normality of {θ̂M,n − θ∗M,n}M∈Mn

We then use the same construction as in Berk et al for the confidence
intervals

Additional difficulty : we do not know the asymptotic covariance matrix

Notation :

θ̂n = (θ̂′M1,n, . . . , θ̂
′
Md ,n)′

θ∗n = (θ∗
′

M1,n, . . . , θ
∗′
Md ,n)′

Let k =
∑d

j=1 m(Mj,n), be the dimension of θ̂n

Let En, Vn, and VCn, be the mean, the variance and the covariance
matrix under Pn

Similarly, defineEi,n, Vi,n, and VCi,n for Pi,n and E, V, and VC for P
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General assumption

There exist Borel-measurable functions gi,n : R1×` → Rk for i = 1, . . . , n,
possibly depending on θ∗n , so that

θ̂n(yn)− θ∗n =
n∑

i=1

gi,n(yi,n) + ∆n(yn),

where, with rn(yn) :=
∑n

i=1 gi,n(yi,n), we have for all i ∈ {1, . . . , n} and for all
j ∈ {1, . . . , k} that

Ei,n

(
g(j)

i,n

)
= 0 and 0 < Vn

(
r (j)n

)
<∞,

and for all j ∈ {1, . . . , k} we have, with {.} the indicator function,

V−1
n

(
r (j)n

) n∑
i=1

∫
R1×`

[
g(j)

i,n

]2
{
|g(j)

i,n| ≥ εV
1
2
n (r (j)n )

}
dPi,n → 0 for all ε > 0,

and
Pn

(∣∣V−1/2
n

(
r (j)n

)
∆

(j)
n
∣∣ ≥ ε)→ 0 for all ε > 0
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Joint Asymptotic normality

Let

Sn(yn) :=
n∑

i=1

gi,n(yi,n)g′i,n(yi,n)

Let A† be the Moore-Penrose inverse of a square matrix A
Let A†/2 = [A†]1/2

Let dw be a distance generating the topology of weak convergence for
distributions on an Euclidean space
Let corr(Σ) = diag(Σ)†/2Σ diag(Σ)†/2, where diag(Σ) is obtained by
setting the off-diagonal elements of Σ to 0.

Lemma

Under the previous condition, for ε > 0 we have, with Pn ◦ f the push-forward
measure of a function f under Pn,

Pn

(
dw

(
Pn ◦

[
diag(Sn)†/2

(
θ̂n − θ∗n

)]
,N(0, corr(Sn))

)
≥ ε
)
→ 0,

and this continues to hold when replacing Sn by VCn(rn)
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Some notation

For α ∈ (0, 1) and for a covariance matrix Γ, let K1−α(Γ) be the
1− α-quantile of ‖Z‖∞ for Z ∼ N(0, Γ)

For M = Mi,n ∈ Mn and j ∈ {1, . . . ,m(M)} let

j ?M :=
i−1∑
l=1

m(Ml,n) + j,

(j ?M is the index of (θ∗
′

Mi ,n)j in (θ∗
′

M1,n, . . . , θ
∗′
Md ,n)′ )
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Confidence intervals based on a consistent estimator of the asymptotic
covariance matrix

Theorem

Let α ∈ (0, 1). Let Ŝn : Rn×` → Rk×k be so that for all ε > 0, with ||.|| the
largest singular value of A,

Pn

(
‖ corr(Ŝn)− corr (VCn(rn)) ‖+ ‖ diag(VCn(rn))−1 diag(Ŝn)− Ik‖ ≥ ε

)
goes to 0. Consider, for M ∈ Mn and j = 1, . . . ,m(M) the confidence interval

CI(j),est
1−α,M = θ̂

(j)
M,n ±

√
[Ŝn]j?M K1−α

(
corr(Ŝn)

)
Then, Pn

(
θ
∗(j)
M,n ∈ CI(j),est

1−α,M for all M ∈ Mn and j = 1, . . . ,m(M)
)

goes to 1− α
as n→∞. In particular, for any model selection procedure M̂n, we have

lim inf
n→∞

Pn

(
θ
∗(j)
M̂n,n
∈ CI(j),est

1−α,M̂n
for all j = 1, . . . ,m(M̂n)

)
≥ 1− α
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Confidence intervals based on a conservative estimator of the
asymptotic covariance matrix

When the models are misspecified it may not be possible to estimate
VCn(rn) consistently

We show how to overestimate the diagonal components of VCn(rn)

This is based on overestimating V(yi,n) based on

V(yi,n) ≤ E((yi,n − ŷi,n)2)

where ŷi,n is obtained from a misspecified model M

Also there exist upper-bounds of K1−α

(
corr(Ŝn)

)
(see Berk et al 2013,

Bachoc Leeb Pötscher 2017+)
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Notation

Uniform asymptotic :

We now provide asymptotic results that are uniform over sets Pn of
possible distributions Pn for the observations

⇒ This is why we worked with generic triangular arrays before

Notation :

For a Borel set T of R, we let M(T n) be the set of probability measures
on T n =×n

i=1 T ⊆ Rn

The mean vector of Q in M(T n) is written µ(Q)

For Q ∈ M(T 1) and for 0 < q <∞, we write mq(Q) for the q-th absolute
centered moment of Q

We let
⊗n

i=1 M(T ) be the set of product measures on M(T n).

For Q ∈
⊗n

i=1 M(T ) we let Q =
⊗n

i=1 Qi .
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Homoscedastic linear models

Set of possible distributions :

P(lm)
n (δ, τ) :=

Q ∈
n⊗

i=1

M(R) :
0 < m2(Q1) = . . . = m2(Qn) <∞
maxi=1,...,n m2+δ(Qi )

2
2+δ

m2(Q1)
≤ τ

 ,

for fixed δ > 0 and τ > 1

Models :
We consider a fixed observed n × p design matrix Xn (p fixed)
It is known that the observations have the same variance
Each model Mi,n is defined by a subset Mi of {1, . . . , p}
We let Xn[M] be the matrix obtained by deleting the columns of Xn which
indices are not in M ⊂ {1, ..., p}
We let, for j ∈ {1, . . . , d},

Mj,n =

{
Q ∈

n⊗
i=1

M(R) :
0 < m2(Q1) = . . . = m2(Qn) <∞

µ(Q) ∈ span(Xn[Mj ])

}
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Confidence intervals

For a model M ∈ Mn with set of variables M ⊂ {1, ..., p}, the optimal
parameter is

β∗M,n = β∗M,n(Pn) =
(
Xn[M]′Xn[M]

)−1 Xn[M]′µ(Pn)

It satisfies, for all β ∈ Rm(M),

||µ(Pn)− Xn[M]β∗M,n|| ≤ ||µ(Pn)− Xn[M]β||

=⇒We obtain the same asymptotic coverage guarantees as in the general
case
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Heteroscedastic linear models

The principle is the same. The set of possible observation distributions is

P(het)
n (δ, τ) :=

Q ∈
n⊗

i=1

M(R) :
0 < m2(Qi ) <∞ for i = 1, . . . , n
maxi=1,...,n m2+δ(Qi )

2
2+δ

mini=1,...,n m2(Qi )
≤ τ


and the set of models Mn = {Mj,n : j = 1, . . . , d} is given by

Mj,n =

{
Q ∈

n⊗
i=1

M(R) :
0 < m2(Qi ) <∞ for i = 1, . . . , n

µ(Q) ∈ span(Xn[Mj ])

}

The optimal parameters are the same as before
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Binary regression

In binary regression, the set of observation distributions depends on
τ > 0 and is given by

P(bin)
n (τ) :=

{
Q ∈

n⊗
i=1

M({0, 1}) : Qi ({0})Qi ({1}) ≥ τ ∀i = 1, . . . , n

}
We consider the set of models
Mn =

{
M(j1,j2),n : j1 ∈ {1, . . . , d1}, j2 ∈ {1, . . . , d2}

}
, given by

response functions h1, ..., hd1 : R → [0, 1]
subsets M1, ...,Md2 of {1, ..., p}

Let Xi,n be line i of Xn

Then the submodels are defined by

M(j1,j2),n =

{
Q ∈

n⊗
i=1

M({0, 1}) :
∃β ∈ R|Mj2

| : ∀i = 1, . . . , n :
Qi ({1}) = hj1 (Xi,n[Mj2 ]β)

}
We obtain the same asymptotic coverage guarantees as in the general
case
In the case of canonical response function (logistic regression), the
confidence intervals become shorter
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Conclusion

We provide general asymptotic post-model selection confidence
intervals

. in non-Gaussian cases

. for misspecified models
Prospects :

. Numerical comparison with other post-model-selection confidence intervals
(ongoing)

. What can be done in the high-dimensional asymptotic case ?

The paper :

0 F. Bachoc, D. Preinerstorfer, L. Steinberger. Uniformly valid
confidence intervals post-model-selection,
https://arxiv.org/abs/1611.01043

Thank you for your attention !
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