Uniformly valid confidence intervals post-model-selection

François Bachoc, David Preinerstorfer and Lukas Steinberger

Institut de Mathématiques de Toulouse Aarhus University University of Freiburg

> Journées de Statistique Avignon, May 2017

Talk outline

- 2 General construction of the confidence intervals
- 3 Application to linear regression
- 4 Application to binary regression

< ロ > < 同 > < 回 > < 回 >

Data and models

Data :

- We consider a triangular array of independent $1 \times I$ random vectors $y_{1,n}, \dots, y_{n,n}$
- We let $\mathbb{P}_n = \bigotimes_{i=1}^n \mathbb{P}_{i,n}$ be the distribution of $y_n = (y'_{1,n}, \dots, y'_{n,n})'$, on the Borel sets of $\mathbb{R}^{n \times \ell}$, where $\mathbb{P}_{i,n}$ is the distribution of $y_{i,n}$

Models :

- We now consider a set $M_n = \{M_{1,n}, \dots, M_{d,n}\}$ composed of *d* models
- $\mathbb{M}_{i,n}$ is a set of distributions on the Borel sets of $\mathbb{R}^{n \times \ell}$
- *d* does not depend on *n* (fixed-dimensional asymptotics)

 \implies We do not assume that the observation distribution \mathbb{P}_n belongs to one of the $\{\mathbb{M}_{1,n}, \ldots, \mathbb{M}_{d,n}\}$. The set of models can be misspecified

くロン (雪) (ヨ) (ヨ)

Parameters and estimators

Parameters :

- We define for each model $\mathbb{M} \in M_n$ an optimal parameter $\theta^*_{\mathbb{M},n} = \theta^*_{\mathbb{M},n}(\mathbb{P}_n)$, that we assume to be non-random and of fixed dimension $m(\mathbb{M})$
- Typically, M ∈ M_n is a set of distributions parameterized by θ ∈ ℝ^{m(M)}, and θ^{*}_{M,n} corresponds to the projection of ℙ_n on M, for some distance

• The optimal parameter $\theta^*_{\mathbb{M},n}$ is specific to the model \mathbb{M}

Estimators :

- We consider, for each $\mathbb{M} \in M_n$, an estimator $\hat{\theta}_{\mathbb{M},n}$ of the optimal parameter $\theta^*_{\mathbb{M},n}$
- The estimator $\hat{\theta}_{\mathbb{M},n}$ is a measurable function from $\mathbb{R}^{n \times \ell}$ to $\mathbb{R}^{m(\mathbb{M})}$

Post-model selection inference

Model selection :

- We consider a model selection procedure : a measurable function $\hat{\mathbb{M}}_n : \mathbb{R}^{n \times \ell} \to M_n$
- We are hence interested in constructing confidence intervals for the random quantity of interest $\theta^*_{\hat{M}_{a,n}}$
- This is the post-model-selection inference framework

In the literature :

- Van der Geer et al. 2014, AoS address linear regression, with the lasso model selector. They assume a well-specified (sparse) model and construct confidence intervals for the regression coefficients
- Lee et al. 2016, AoS address Gaussian linear regression with the lasso model selector. They consider misspecified models and construct confidence intervals for the optimal coefficients
- Berk et al 2013, AoS address Gaussian linear regression with any model selector. They also consider misspecified models.
- Taylor and Tibschirani 2017, CJoS address misspecified generalized linear models with l¹ penalized likelihood

2 General construction of the confidence intervals

3 Application to linear regression

4 Application to binary regression

The case of homoscedastic linear model

Setting :

- I = 1 and $y_{1,1}, ..., y_{n,n}$ have identical variance
- A model M is given by a subset of {1, ..., p} and corresponds to extracting columns of a n × p design matrix X_n
- $\hat{\theta}_{\mathbb{M},n}$ is the restricted least square estimator in a linear model

Confidence intervals :

- Berk et al 2013, AoS observe that the vector $\{\hat{\theta}_{\mathbb{M},n} \theta^*_{\mathbb{M},n}\}_{\mathbb{M}\in\mathsf{M}_n}$ is Gaussian
- They use a worst case approach (in terms of the selected model) and obtain a confidence interval CI^(j)_{1-α.ŵn}, for component j of θ^{*}_{mn,n} satisfying

$$\mathbb{P}_n\left(\theta_{\hat{\mathbb{M}}_n,n}^{*(j)}\in \operatorname{CI}_{1-\alpha,\hat{\mathbb{M}}_n}^{(j)} \text{ for all } j=1,\ldots,\textit{m}(\hat{\mathbb{M}}_n)\right)\geq 1-\alpha$$

Universality :

- The coverage guarantee holds for any model selector \hat{M}_n . Berk et al. hence speak of universally valid confidence intervals
- This universality is particularly beneficial when the statistician has limited control on the model selection procedure : informal, cost-driven...

Main idea and notation

Main idea :

- We aim at showing a joint asymptotic normality of $\{\hat{\theta}_{\mathbb{M},n} \theta^*_{\mathbb{M},n}\}_{\mathbb{M}\in\mathsf{M}_n}$
- We then use the same construction as in Berk et al for the confidence intervals
- Additional difficulty : we do not know the asymptotic covariance matrix

Notation :

$$\hat{\theta}_n = (\hat{\theta}'_{\mathbb{M}_1,n},\ldots,\hat{\theta}'_{\mathbb{M}_d,n})'$$

- $\bullet \theta_n^* = (\theta_{\mathbb{M}_1,n}^{*'}, \ldots, \theta_{\mathbb{M}_d,n}^{*'})'$
- Let $k = \sum_{j=1}^{d} m(\mathbb{M}_{j,n})$, be the dimension of $\hat{\theta}_n$
- Let \mathbb{E}_n , \mathbb{V}_n , and \mathbb{VC}_n , be the mean, the variance and the covariance matrix under \mathbb{P}_n
- Similarly, define $\mathbb{E}_{i,n}$, $\mathbb{V}_{i,n}$, and $\mathbb{VC}_{i,n}$ for $\mathbb{P}_{i,n}$ and \mathbb{E} , \mathbb{V} , and \mathbb{VC} for \mathbb{P}

General assumption

There exist Borel-measurable functions $g_{i,n} : \mathbb{R}^{1 \times \ell} \to \mathbb{R}^k$ for i = 1, ..., n, possibly depending on θ_n^* , so that

$$\hat{\theta}_n(y_n) - \theta_n^* = \sum_{i=1}^n g_{i,n}(y_{i,n}) + \Delta_n(y_n),$$

where, with $r_n(y_n) := \sum_{i=1}^n g_{i,n}(y_{i,n})$, we have for all $i \in \{1, \ldots, n\}$ and for all $j \in \{1, \ldots, k\}$ that

$$\mathbb{E}_{i,n}\left(g_{i,n}^{(j)}
ight)=0 \quad ext{ and } \quad 0<\mathbb{V}_n\left(r_n^{(j)}
ight)<\infty,$$

and for all $j \in \{1, ..., k\}$ we have, with $\{.\}$ the indicator function,

$$\mathbb{V}_n^{-1}\left(r_n^{(j)}\right)\sum_{i=1}^n\int_{\mathbb{R}^{1\times\ell}}\left[g_{i,n}^{(j)}\right]^2\left\{|g_{i,n}^{(j)}|\geq\varepsilon\mathbb{V}_n^{\frac{1}{2}}(r_n^{(j)})\right\}d\mathbb{P}_{i,n}\to0\text{ for all }\varepsilon>0,$$

and

$$\mathbb{P}_{n}\left(\left|\mathbb{V}_{n}^{-1/2}\left(r_{n}^{(j)}\right)\Delta_{n}^{(j)}\right|\geq\varepsilon\right)\to0\text{ for all }\varepsilon>0$$

Joint Asymptotic normality

Let

$$S_n(y_n) := \sum_{i=1}^n g_{i,n}(y_{i,n})g'_{i,n}(y_{i,n})$$

Let A^{\dagger} be the Moore-Penrose inverse of a square matrix A

- Let $A^{\dagger/2} = [A^{\dagger}]^{1/2}$
- Let d_w be a distance generating the topology of weak convergence for distributions on an Euclidean space
- Let corr(Σ) = diag(Σ)^{†/2}Σ diag(Σ)^{†/2}, where diag(Σ) is obtained by setting the off-diagonal elements of Σ to 0.

Lemma

Under the previous condition, for $\varepsilon > 0$ we have, with $\mathbb{P}_n \circ f$ the push-forward measure of a function f under \mathbb{P}_n ,

$$\mathbb{P}_n\left(d_{w}\left(\mathbb{P}_n\circ\left[\mathsf{diag}(\mathcal{S}_n)^{\dagger/2}\left(\hat{\theta}_n-\theta_n^*\right)\right],\mathsf{N}(0,\mathsf{corr}(\mathcal{S}_n))\right)\geq\varepsilon\right)\to0,$$

and this continues to hold when replacing S_n by $\mathbb{VC}_n(r_n)$

Some notation

- For $\alpha \in (0, 1)$ and for a covariance matrix Γ , let $K_{1-\alpha}(\Gamma)$ be the 1α -quantile of $||Z||_{\infty}$ for $Z \sim N(0, \Gamma)$
- For $\mathbb{M} = \mathbb{M}_{i,n} \in \mathsf{M}_n$ and $j \in \{1, \ldots, m(\mathbb{M})\}$ let

$$j \star \mathbb{M} := \sum_{l=1}^{i-1} m(\mathbb{M}_{l,n}) + j,$$

イロト イポト イヨト イヨト

 $(j \star \mathbb{M} \text{ is the index of } (\theta^{*'}_{\mathbb{M}_j,n})_j \text{ in } (\theta^{*'}_{\mathbb{M}_1,n}, \dots, \theta^{*'}_{\mathbb{M}_d,n})')$

Confidence intervals based on a consistent estimator of the asymptotic covariance matrix

Theorem

Let $\alpha \in (0, 1)$. Let $\hat{S}_n : \mathbb{R}^{n \times \ell} \to \mathbb{R}^{k \times k}$ be so that for all $\varepsilon > 0$, with ||.|| the largest singular value of A,

$$\mathbb{P}_n\left(\|\operatorname{corr}(\hat{S}_n) - \operatorname{corr}\left(\mathbb{V}\mathbb{C}_n(r_n)\right)\| + \|\operatorname{diag}(\mathbb{V}\mathbb{C}_n(r_n))^{-1}\operatorname{diag}(\hat{S}_n) - I_k\| \geq \varepsilon\right)$$

goes to 0. Consider, for $\mathbb{M}\in M_n$ and $j=1,\ldots,m(\mathbb{M})$ the confidence interval

$$\operatorname{CI}_{1-\alpha,\mathbb{M}}^{(j),\operatorname{est}} \quad = \quad \widehat{\theta}_{\mathbb{M},n}^{(j)} \pm \sqrt{[\widehat{S}_n]_{j\star\mathbb{M}}} \; \mathcal{K}_{1-\alpha}\left(\operatorname{corr}(\widehat{S}_n)\right)$$

Then, $\mathbb{P}_n\left(\theta_{\mathbb{M},n}^{*(j)} \in \operatorname{CI}_{1-\alpha,\mathbb{M}}^{(j),\text{est}} \text{ for all } \mathbb{M} \in \mathsf{M}_n \text{ and } j = 1, \ldots, m(\mathbb{M})\right)$ goes to $1 - \alpha$ as $n \to \infty$. In particular, for any model selection procedure $\hat{\mathbb{M}}_n$, we have

$$\liminf_{n\to\infty}\mathbb{P}_n\left(\theta_{\hat{\mathbb{M}}_n,n}^{*(j)}\in\mathrm{CI}_{1-\alpha,\hat{\mathbb{M}}_n}^{(j),\mathrm{est}}\text{ for all }j=1,\ldots,m(\hat{\mathbb{M}}_n)\right)\geq 1-\alpha$$

< ロ > < 同 > < 回 > < 回 >

Confidence intervals based on a conservative estimator of the asymptotic covariance matrix

- When the models are misspecified it may not be possible to estimate $\mathbb{VC}_n(r_n)$ consistently
- We show how to overestimate the diagonal components of $\mathbb{VC}_n(r_n)$
- This is based on overestimating $\mathbb{V}(y_{i,n})$ based on

$$\mathbb{V}(\mathbf{y}_{i,n}) \leq \mathbb{E}((\mathbf{y}_{i,n} - \hat{\mathbf{y}}_{i,n})^2)$$

where $\hat{y}_{i,n}$ is obtained from a misspecified model \mathbb{M}

■ Also there exist upper-bounds of $K_{1-\alpha}\left(\operatorname{corr}(\hat{S}_n)\right)$ (see Berk et al 2013, Bachoc Leeb Pötscher 2017+)

2 General construction of the confidence intervals

3 Application to linear regression

4 Application to binary regression

Notation

Uniform asymptotic :

- We now provide asymptotic results that are uniform over sets **P**_n of possible distributions **P**_n for the observations
- $\Rightarrow\,$ This is why we worked with generic triangular arrays before

Notation :

- For a Borel set T of ℝ, we let M(Tⁿ) be the set of probability measures on Tⁿ = ×ⁿ_{i=1} T ⊆ ℝⁿ
- The mean vector of Q in $M(T^n)$ is written $\mu(Q)$
- For $Q \in M(T^1)$ and for $0 < q < \infty$, we write $m_q(Q)$ for the *q*-th absolute centered moment of Q

くロン (雪) (ヨ) (ヨ)

- We let $\bigotimes_{i=1}^{n} M(T)$ be the set of product measures on $M(T^{n})$.
- For $Q \in \bigotimes_{i=1}^{n} M(T)$ we let $Q = \bigotimes_{i=1}^{n} Q_i$.

Homoscedastic linear models

Set of possible distributions :

$$\mathbf{P}_n^{(\mathrm{Im})}(\delta,\tau) := \left\{ \begin{array}{ll} Q \in \bigotimes_{i=1}^n M(\mathbb{R}) : & 0 < m_2(Q_1) = \ldots = m_2(Q_n) < \infty \\ & \sum_{i=1}^{\max_{i=1,\ldots,n} m_{2+\delta}(Q_i)^{\frac{2}{2+\delta}}} \\ & \frac{\max_{i=1,\ldots,n} m_{2+\delta}(Q_i)^{\frac{2}{2+\delta}}}{m_2(Q_1)} \le \tau \end{array} \right\},$$

for fixed $\delta >$ 0 and $\tau >$ 1

Models :

- We consider a fixed observed $n \times p$ design matrix X_n (p fixed)
- It is known that the observations have the same variance
- Each model $\mathbb{M}_{i,n}$ is defined by a subset M_i of $\{1, \ldots, p\}$
- We let $X_n[M]$ be the matrix obtained by deleting the columns of X_n which indices are not in $M \subset \{1, ..., p\}$
- We let, for $j \in \{1, \ldots, d\}$,

$$\mathbb{M}_{j,n} = \left\{ Q \in \bigotimes_{i=1}^{n} M(\mathbb{R}) : \begin{array}{l} 0 < m_2(Q_1) = \ldots = m_2(Q_n) < \infty \\ \mu(Q) \in \operatorname{span}(X_n[M_j]) \end{array} \right\}$$

Confidence intervals

For a model $\mathbb{M} \in M_n$ with set of variables $M \subset \{1, ..., p\}$, the optimal parameter is

$$\beta_{\mathbb{M},n}^* = \beta_{\mathbb{M},n}^*(\mathbb{P}_n) = \left(X_n[M]'X_n[M]\right)^{-1}X_n[M]'\mu(\mathbb{P}_n)$$

It satisfies, for all $\beta \in \mathbb{R}^{m(\mathbb{M})}$,

$$||\mu(\mathbb{P}_n) - X_n[M]\beta^*_{\mathbb{M},n}|| \leq ||\mu(\mathbb{P}_n) - X_n[M]\beta||$$

 \Longrightarrow We obtain the same asymptotic coverage guarantees as in the general case

Heteroscedastic linear models

The principle is the same. The set of possible observation distributions is

$$\mathbf{P}_{n}^{(\text{het})}\left(\delta,\tau\right) := \left\{ \begin{array}{ll} Q \in \bigotimes_{i=1}^{n} M(\mathbb{R}) : & \begin{array}{l} 0 < m_{2}(Q_{i}) < \infty \text{ for } i = 1, \dots, n \\ \\ \frac{\max_{i=1}, \dots, n}{\min_{i=1, \dots, n} m_{2}(Q_{i})} \leq \tau \end{array} \right\}$$

and the set of models $M_n = \{\mathbb{M}_{j,n} : j = 1, \dots, d\}$ is given by

$$\mathbb{M}_{j,n} = \left\{ Q \in \bigotimes_{i=1}^{n} M(\mathbb{R}) : \begin{array}{l} 0 < m_2(Q_i) < \infty \text{ for } i = 1, \dots, n \\ \mu(Q) \in \operatorname{span}(X_n[M_j]) \end{array} \right\}$$

イロト イポト イヨト イヨト

The optimal parameters are the same as before

2 General construction of the confidence intervals

3 Application to linear regression

4 Application to binary regression

Binary regression

In binary regression, the set of observation distributions depends on $\tau > {\rm 0}$ and is given by

$$\mathbf{P}_{n}^{(\text{bin})}(\tau) := \left\{ Q \in \bigotimes_{i=1}^{n} M(\{0,1\}) : Q_{i}(\{0\})Q_{i}(\{1\}) \geq \tau \ \forall i = 1, \dots, n \right\}$$

- We consider the set of models $M_n = \{ \mathbb{M}_{(j_1, j_2), n} : j_1 \in \{1, \dots, d_1\}, j_2 \in \{1, \dots, d_2\} \}, \text{ given by}$ ■ response functions $h_1, \dots, h_{d_1} : \mathbb{R} \to [0, 1]$ ■ subsets M_1, \dots, M_{d_2} of $\{1, \dots, p\}$
- Let $X_{i,n}$ be line *i* of X_n

Then the submodels are defined by

$$\mathbb{M}_{(j_1, j_2), n} = \left\{ Q \in \bigotimes_{i=1}^n M(\{0, 1\}) : \begin{array}{l} \exists \beta \in \mathbb{R}^{|M_{j_2}|} : \forall i = 1, \dots, n: \\ Q_i(\{1\}) = h_{j_1}(X_{i, n}[M_{j_2}]\beta) \end{array} \right\}$$

- We obtain the same asymptotic coverage guarantees as in the general case
- In the case of canonical response function (logistic regression), the confidence intervals become shorter

Conclusion

- We provide general asymptotic post-model selection confidence intervals
 - in non-Gaussian cases
 - for misspecified models
- Prospects :
 - Numerical comparison with other post-model-selection confidence intervals (ongoing)
 - What can be done in the high-dimensional asymptotic case?

The paper :

F. Bachoc, D. Preinerstorfer, L. Steinberger. Uniformly valid confidence intervals post-model-selection, https://arxiv.org/abs/1611.01043

Thank you for your attention !