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Abstract: We suggest general methods to construct asymptotically uni-
formly valid confidence intervals post-model-selection. The constructions
are based on principles recently proposed by Berk et al. (2013). In partic-
ular the candidate models used can be misspecified, the target of inference
is model-specific, and coverage is guaranteed for any data-driven model se-
lection procedure. After developing a general theory we apply our methods
to practically important situations where the candidate set of models, from
which a working model is selected, consists of fixed design homoskedastic or
heteroskedastic linear models, or of binary regression models with general
link functions.

1. Introduction

Fitting a statistical model to data is often preceded by a model selection step,
and practically always has to face the possibility that the candidate set of
models from which a model is selected does not contain the true distribu-
tion. The construction of valid statistical procedures in such situations is quite
challenging, even if the candidate set of models contains the true distribu-
tion (cf. Leeb and Pötscher (2005, 2006, 2008), Kabaila and Leeb (2006) and
Pötscher (2009), and the references given in that literature), and has recently
attained a considerable amount of attention. In a Gaussian homoskedastic lo-
cation model and fitting possibly misspecified linear candidate models to data,
Berk et al. (2013) have shown how one can obtain valid confidence intervals
post-model-selection for (non-standard) model-dependent targets of inference
in finite samples (cf. also the discussion in Leeb et al. (2015), and related re-
sults obtained for prediction post-model-selection in Bachoc et al. (2014)). In
this setup, their approach leads to valid confidence intervals post-model-selection
regardless of the specific model selection procedure applied. This aspect is of
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fundamental importance, because many model selection procedures used in prac-
tice are almost impossible to formalize: researchers typically use combinations
of graphical procedures and numerical algorithms, and sometimes they sim-
ply select models that let them reject many hypotheses, i.e., they are hunting
for significance. These often unreported and informal practices of model selec-
tion prior to conducting the actual analysis may also play a key role in the
current crisis of reproducibility. Thus, to establish and popularize statistical
methods that are in some sense robust to ‘bad practice’ is highly desirable. Of
course, protecting against the negative effects of any possible form of model
selection has the drawback that the obtained confidence sets might be conser-
vative for specific model selection procedures. In the context of fitting linear
regression models to Gaussian data, methods that provide valid confidence sets
post-model-selection, and are constructed for specific model selection proce-
dures and for targets of inference similar to those considered in the present
article, have been recently obtained by Tibshirani et al. (2014), Lee and Taylor
(2014), Fithian et al. (2015), Lee et al. (2016). Tibshirani et al. (2015) extended
the approach of Tibshirani et al. (2014) to non-Gaussian data by obtaining
uniform asymptotic results. Furthermore, valid inference post-model-selection
on conventional regression parameters under sparsity conditions was consid-
ered, among others, by Belloni et al. (2011, 2014); van de Geer et al. (2014)
and Zhang and Zhang (2014).

The methods discussed in Berk et al. (2013) are based on the assumption that
the true distribution is Gaussian and homoskedastic, and the authors consider
only situations where linear models are fit to data. It is of substantial interest
to generalize this approach, and to obtain generic methods for constructing
confidence intervals post-model-selection that are widely applicable beyond the
Gaussian homoskedastic model considered in Berk et al. (2013). We develop a
general asymptotic theory for the construction of uniformly valid confidence
sets post-model-selection. These results are applicable whenever the estimation
error can be expanded as the sum of independent centered random vectors and
a remainder term that is negligible relative to the variance of the leading term.
Such a representation typically follows from standard first order linearization
arguments, and can therefore be obtained in many situations.

Our confidence intervals can be based on either consistent estimators of the
variance of the previously mentioned sum, or, more importantly, if such estima-
tors are not available (which is usually the case when all working models are
misspecified), can be based on variance estimators that consistently overestimate
their targets. We also present results that allow one to obtain such estimators
in general and demonstrate their construction in specific applications, where
they often coincide with well known sandwich-type estimators. This overcomes
another limitation present in Berk et al. (2013), namely the assumption that
there exists an unbiased (and chi-square distributed) or uniformly consistent
estimator of the variance of the observations (cf. the discussion in Remark 2.1
of Leeb et al. (2015) and in Section 2.2 in Bachoc et al. (2014)). The usage of
variance estimators that overestimate their targets, while leading to more con-
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servative inference, renders the approach applicable to the fully misspecified
setting. Moreover, the suggested conservative estimators usually have the prop-
erty that their bias vanishes if the selected model is correct (cf. Remark 2.7
and Subsection 3.1.1). Another important aspect of the results obtained is that
they are valid uniformly over wide classes of potential underlying distributions,
which is particularly important as this guarantees that the results provide a
good description of finite sample properties (cf. Leeb and Pötscher (2003) and
Tibshirani et al. (2015) for a discussion of related issues in a model selection
context). Finally, our confidence intervals obtained in specific situations are par-
ticularly convenient for practitioners, because they are structurally very similar
to the confidence sets one would use in practice following the naive (and invalid
(see, e.g., Bachoc et al., 2014; Leeb et al., 2015)) approach that ignores that
the model has been selected using the same data set. The main difference of
our construction to the naive (and invalid) approach is the choice of a critical
value: Quantiles from a standard normal or Student distribution are replaced
by so-called POSI-constants.

The structure of the present article is as follows: We first develop a gen-
eral asymptotic theory for the construction of uniformly valid confidence sets
post-model-selection in Section 2. In Section 3, we apply our theoretical results
to a number of examples: In Subsection 3.1 we consider a classical situation
where homoskedastic linear models are fit to homoskedastic data, and in Sub-
section 3.2, we apply our methods to a situation where heteroskedastic linear
models are fit to heteroskedastic data, leading to confidence intervals based on
variance estimators in the spirit of Eicker (1967). Finally, in Subsection 3.3
we apply the general theory to the problem of fitting binary regression models
to binary data, allowing also for a data driven choice of the link function. Of
course, the selection of examples in Section 3 is by no means exhaustive. But
besides covering three very important modeling frameworks, Section 3 serves as
an illustration of how the general theory developed in Section 2 can be applied.
In Section 4 we conclude and discuss possible extensions of the results obtained
in this paper that are currently under investigation. The proofs are collected in
Appendices A, B and C.

2. Inference post-model-selection: A general asymptotic theory

2.1. Framework and problem description

Consider a situation where we observe n independent 1× ℓ-dimensional random
vectors y1,n, . . . , yn,n defined on a common probability space (Ω,A,P). We de-
note the distribution of yn = (y′1,n, . . . , y

′
n,n)

′ on the Borel sets of Rn×ℓ by Pn,
which, denoting the distribution of yi,n by Pi,n, then coincides with the product
measure

⊗n
i=1 Pi,n. Suppose further that we are given a set Mn consisting of d

models, i.e., d nonempty sets of distributions M1,n, . . . ,Md,n on the Borel sets of
Rn×ℓ, where d does not depend on n. We do not assume that the distribution of
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the data Pn is contained in one of those sets, i.e., the candidate set Mn might be
misspecified. Therefore, one has to define for each model M ∈ Mn a correspond-
ing target of inference θ∗M,n = θ∗M,n(Pn), say, which we take as given throughout
the present section. Furthermore we assume that for every Mj,n ∈ Mn the target
is an element of a Euclidean space of finite dimension m(Mj,n) which does not
depend on n. As an example, consider the situation where M ∈ Mn is parame-
terized by a finite dimensional Euclidean space. Then θ∗M,n would naturally be
the value of the parameter that corresponds to the projection of Pn onto M

w.r.t. some measure of closeness, e.g., the Kullback-Leibler divergence, or the
Hellinger-distance. Note that in general such a projection might not uniquely
exist, or might not exist at all, and that in each application additional conditions
– on Pn and/or the candidate set Mn of models – need to be imposed to obtain
well defined targets. Note also that the target is model-specific, i.e., it depends
on M. Lastly we emphasize that defining and working with (pseudo) targets
of inference in potentially misspecified models has a long-standing tradition in
statistics, dating back at least to Huber (1967), and we confer the reader to this
strand of literature for further discussion.

Statistical inference in such a setting typically has to solve two problems:
model selection, and statistical inference post-model-selection. We assume that
we are given for every M ∈ Mn an estimator θ̂M,n of the target θ∗M,n, i.e., a

measurable map from the sample space Rn×ℓ to Rm(M). Secondly, we assume
that there is available a model selection procedure, i.e., a measurable map M̂n :
Rn×ℓ → Mn. Given those ingredients, inference proceeds in two steps: Firstly,
the model selection procedure is applied to select a model M̂n. The target of
inference, which is data-dependent as well, then is θ∗

M̂n,n
and is estimated by

θ̂
M̂n,n

. Often, in practice, it is naively ignored that the estimation step was
preceded by a model selection step using the same data, which can then lead to
invalid conclusions. In this article we shall introduce generic methods to obtain
asymptotically valid confidence intervals in such a setup. More specifically, given

α ∈ (0, 1), we construct for every model M ∈ Mn confidence intervals CI
(j)
1−α,M

for j = 1, . . . ,m(M) for each coordinate θ
∗(j)
M,n of the model-specific target based

on the estimator θ̂M,n, and we show that these confidence intervals satisfy for

any (measurable) model selection procedure M̂n that

lim inf
n→∞

Pn

(

θ
∗(j)

M̂n,n
∈ CI

(j)

1−α,M̂n
for all j = 1, . . . ,m(M̂n)

)

≥ 1− α.

We work in a framework allowing for a triangular array of data, because
in applications this then allows us to obtain uniform asymptotic results in the
sense that for a suitable set Pn of feasible distributions for Pn we can verify
that the confidence intervals post-model-selection satisfy for any (measurable)

model selection procedure M̂n that

lim inf
n→∞

inf
Pn∈Pn

Pn

(

θ
∗(j)

M̂n,n
∈ CI

(j)

1−α,M̂n
for all j = 1, . . . ,m(M̂n)

)

≥ 1− α.
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2.1.1. Notation

Before we proceed to our general theory and the corresponding basic assump-
tion, we introduce some notation that is used throughout this article: A nor-
mal distribution with mean µ and (possibly singular) covariance matrix Σ is
denoted by N(µ,Σ). For α ∈ (0, 1) and a covariance matrix Γ we denote by
K1−α(Γ) the 1−α-quantile of the distribution of the supremum-norm ‖Z‖∞ of
Z ∼ N(0,Γ). The correlation matrix corresponding to a covariance matrix Σ is
denoted by corr(Σ) = diag(Σ)†/2Σdiag(Σ)†/2, where diag(Σ) denotes the diag-
onal matrix obtained from Σ by setting all off-diagonal elements equal to 0, A†

denotes the Moore-Penrose inverse of the quadratic matrix A, A1/2 denotes the
symmetric non-negative definite square root of the non-negative definite matrix
A, and where we abbreviate [A†]1/2 by A†/2. For a vector v with coordinates
v(1), . . . , v(l) we also use the symbol diag(v) to denote the diagonal matrix with
first diagonal entry v(1), second v(2), and so on. The operator norm of a matrix
A (w.r.t. the Euclidean norm) is denoted by ‖A‖, and the Euclidean norm of
a vector v is denoted by ‖v‖. Furthermore, Aii, the i-th diagonal element of
a quadratic matrix A, is occasionally abbreviated as Ai. We also identify the
indicator function 1B of a set B with the set B itself, whenever there is no risk
of confusion. Weak convergence of a sequence of probability measures Qn to Q

is denoted by Qn ⇒ Q. The image measure of a random variable (or vector) x
on a probability space (F,F ,Q) is denoted by Q ◦ x. If not stated otherwise,
limits are taken as n → ∞. The symbol dw shall denote a metric generating
the topology of weak convergence on the set of Borel probability measures on a
Euclidean space of dimension indicated by the respective arguments; for specific
examples see, e.g., the discussion in Dudley (2002) pp. 393. In the main part of
the article (everywhere apart from the notation used in Appendix A) the ex-
pectation operator, the variance operator, and the variance-covariance operator
w.r.t. Pn is denoted by En, Vn, and VCn, respectively; the expectation oper-
ator, the variance operator, and the variance-covariance operator w.r.t. Pi,n is
denoted by Ei,n, Vi,n, and VCi,n, respectively; and the expectation operator,
the variance operator, and the variance-covariance operator w.r.t. P is denoted
by E, V, and VC, respectively.

2.2. Assumptions

Our methods for constructing uniformly valid confidence intervals post-model-
selection are developed under a high-level assumption imposed on the stacked
vector of estimators θ̂n = (θ̂′M1,n

, . . . , θ̂′Md,n
)′ centered at the corresponding

stacked vector of targets θ∗n = (θ∗
′

M1,n
, . . . , θ∗

′

Md,n
)′. In this section we denote

the dimension of θ̂n by

k :=

d
∑

j=1

m(Mj,n),
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which does not depend on n. The assumption is as follows:

Condition 1. There exist Borel measurable functions gi,n : R1×ℓ → Rk for
i = 1, . . . , n, possibly depending on θ∗n, so that

θ̂n(yn)− θ∗n =

n
∑

i=1

gi,n(yi,n) + ∆n(yn), (2.1)

where, writing rn(yn) :=
∑n

i=1 gi,n(yi,n), it holds for every i ∈ {1, . . . , n} and
every j ∈ {1, . . . , k} that

Ei,n

(

g
(j)
i,n

)

= 0 and 0 < Vn

(

r(j)n

)

<∞,

and for every coordinate j ∈ {1, . . . , k} we have

V−1
n

(

r(j)n

)

n
∑

i=1

∫

R1×ℓ

[

g
(j)
i,n

]2 {

|g(j)i,n| ≥ εV
1
2
n (r

(j)
n )
}

dPi,n → 0 for every ε > 0,

(2.2)
and

Pn

(

∣

∣V−1/2
n

(

r(j)n

)

∆(j)
n

∣

∣ ≥ ε
)

→ 0 for every ε > 0.

Clearly, an expansion as in Equation (1) of Condition 1 is satisfied in many
applications, and can typically be obtained by a standard linearization argument
(cf. Subsection 3.3 for an example and further discussion). We emphasize that
the two last assumptions in Condition 1 are formulated in terms of rescaled
summands, which, in applications, can be exploited to circumvent restrictive
compactness assumptions on moments of the distribution generating the data
(e.g., in Subsections 3.1 and 3.2 we do not need to restrict variance parameters
to a compact set - as opposed to the conditions used by Eicker (1967)).

Before we proceed to our main results we briefly highlight the main conse-
quence of Condition 1 on which, besides the basic ideas in Berk et al. (2013),
our methods of constructing confidence sets are based. Introduce, under Condi-
tion 1,

Sn(yn) :=

n
∑

i=1

gi,n(yi,n)g
′
i,n(yi,n). (2.3)

Then we can obtain the following result, which is established using tightness
arguments, a result in Pollak (1972), and Raikov’s theorem (cf. the statement
in Gnedenko and Kolmogorov (1954) on p. 143, originally published in Raikov
(1938)). See Section B.1 for the proof.

Lemma 2.1. Under Condition 1, for ε > 0 we have

Pn

(

dw

(

Pn ◦
[

diag(Sn)
†/2
(

θ̂n − θ∗n

)]

, N(0, corr(Sn))
)

≥ ε
)

→ 0,

and the statement remains valid upon replacing Sn by VCn(rn).
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We emphasize that Sn is in general not an estimator of VCn(rn), since gi,n
might, and typically will, depend on θ∗n. In applications one therefore has to
construct a “suitable” estimator for Sn, which can then be used, together with
the results in Section 2.3, which are based on Lemma 2.1, to construct con-
fidence intervals post-model-selection. The extent to which finding a suitable
estimator is possible depends on the degree of misspecification of the candidate
set of models, as will be discussed in the following subsection. In particular, we
need to distinguish between the two cases where consistent estimators are avail-
able, and the more relevant case where estimators need to be used that, due to
the presence of a non-negligible bias component, consistently overestimate their
targets. An important part of the theory in Section 2.3 is that we show how such
estimators can be constructed. We emphasize that in applications the variance
estimators obtained will often coincide with Eicker-type ‘sandwich’ estimators
(cf. Subsection 3.2), which is an aspect that is convenient for practitioners.

In light of Lemma 2.1 above, a remarkable aspect of Condition 1 is perhaps
that we obtain a multivariate central limit theorem even though the condition
does not require a joint Lindeberg-type condition concerning the random vec-
tors gi,n, but instead requires k separate Lindeberg conditions concerning the
behavior of the marginals only. To verify that marginal Lindeberg conditions are
sufficient for our theory to go through, we exploit a result due to Pollak (1972),
showing that an infinitely-divisible distribution is normal if and only if each
of its marginals is normal. This aspect can be convenient when applying our
results given below, since in particular applications results on θ̂M,n as required
in Condition 1 are likely to be available in the literature concerning asymptotic
properties of estimators in misspecified models without a model selection proce-
dure being applied before conducting inference. Note, however, that additional
arguments might be needed to obtain asymptotic results that are uniform in
the true distribution, which is one of our main objectives. We also emphasize
the following alternative formulation of the Lindeberg condition appearing in
Condition 1 above.

Remark 2.2. Using, e.g., Gnedenko and Kolmogorov (1954) Theorem 3 in
Paragraph 21, one obtains that Equation (1) in Condition 1 can be equivalently
phrased as

Pn ◦
(

r
(j)
n

V
1/2
n (r

(j)
n )

)

⇒ N(0, 1) and

max
i=1,...,n

Pi,n

(

|g(j)i,n| ≥ V1/2
n (r(j)n )ε

)

→ 0 for every ε > 0.

In some applications it might be easier to check these two conditions directly
(for every j), in particular in case one can use existing results in the literature
on misspecified models without model selection as indicated above.
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2.3. Confidence intervals post-model-selection

In this subsection we shall now present our general asymptotic results for the
construction of valid confidence intervals post-model-selection under Condition
1. We consider two different situations: (i) a situation where a consistent esti-
mator of VCn(rn) is available; (ii) a situation where a consistent estimator of
VCn(rn) is not available, but it is possible to construct estimators that “con-
sistently overestimate” the diagonal entries of VCn(rn). Concrete examples of
such consistent or “consistently overestimating” estimators are also provided,
based on approximating the summands gi,n(yi,n) appearing in Condition 1. The
main theoretical results in this section are Theorem 2.5 and Proposition 2.6.

Given M = Mi,n ∈ Mn and j ∈ {1, . . . ,m(M)} we abbreviate

j ⋆M :=

i−1
∑

l=1

m(Ml,n) + j,

where sums over an empty index set are to be interpreted as 0. For instance,
θ∗n

(j⋆M) = θ∗M,n
(j).

2.3.1. Confidence intervals based on consistent estimators of VCn(rn)

Our first result considers the construction of confidence intervals post-model-
selection under Condition 1, and under the additional assumption that it is
possible to construct a consistent estimator Ŝn of VCn(rn). The latter assump-
tion is certainly very restrictive, due to possible misspecification of the model,
and is relaxed substantially in the following subsection.

Theorem 2.3. Let α ∈ (0, 1), suppose Condition 1 holds, and let Ŝn : Rn×ℓ →
Rk×k be a sequence of Borel-measurable functions so that for every ε > 0

Pn

(

‖ corr(Ŝn)− corr (VCn(rn)) ‖+ ‖ diag(VCn(rn))
−1 diag(Ŝn)− Ik‖ ≥ ε

)

converges to 0, or equivalently that for every ε > 0

Pn

(

‖ corr(Ŝn)− corr (Sn) ‖+ ‖ diag(Sn)
† diag(Ŝn)− Ik‖ ≥ ε

)

→ 0. (2.4)

Define for every M ∈ Mn and every j = 1, . . . ,m(M) the confidence interval

CI
(j),est
1−α,M = θ̂

(j)
M,n ±

√

[Ŝn]j⋆M K1−α

(

corr(Ŝn)
)

.

Then, Pn

(

θ
∗(j)
M,n ∈ CI

(j),est
1−α,M for all M ∈ Mn and all j = 1, . . . ,m(M)

)

converges

to 1−α as n→ ∞. In particular, for every (measurable) model selection proce-

dure M̂n, we have

lim inf
n→∞

Pn

(

θ
∗(j)

M̂n,n
∈ CI

(j),est

1−α,M̂n
for all j = 1, . . . ,m(M̂n)

)

≥ 1− α.
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Theorem 2.3 is based on the assumption that an estimator Ŝn is avail-
able that consistently estimates VCn(rn). Coming back to the discussion at
the end of Subsection 2.2, the vectors gi,n(yi,n) appearing in the definition of
Sn are typically not observable, because they will depend on the unknown
target θ∗n, i.e., they are, more explicitly, of the form gi,n(yi,n, θ

∗
n). In such

cases Sn is not a feasible candidate for Ŝn in the previous theorem, and there-
fore one will, in most cases, naturally try to obtain predictors ĝi,n(yn) for

gi,n(yi,n) by replacing the unknown target by its estimator θ̂n, i.e., by setting

ĝi,n(yn) = gi,n(yi,n, θ̂n(yn)). The subsequent proposition now provides condi-
tions on predictors ĝi,n(yn), which, if satisfied, immediately allow the construc-

tion of a consistent estimator Ŝn of VCn(rn) by replacing each gi,n(yi,n) in
Equation (2.2) by its predictor ĝi,n(yn). In the result the predictor ĝi,n(yn)

might be of the form gi,n(yi,n, θ̂n(yn)) as discussed above, but the proposition
is not restricted to that particular case. Again, the conditions are assumptions
concerning the large sample behavior of the marginals only, which potentially
facilitates their verification in practice.

Proposition 2.4. Suppose Condition 1 is satisfied, and let ĝi,n : Rn×ℓ → Rk be
Borel measurable for i = 1, . . . , n for every n. Suppose that for every j = 1, . . . , k
and for every ε > 0 it holds that

P







∑n
i=1

(

g
(j)
i,n(yi,n)− ĝ

(j)
i,n(yn)

)2

∑n
i=1[g

(j)
i,n(yi,n)]

2
≥ ε






→ 0, (2.5)

or equivalently that

P







∑n
i=1

(

g
(j)
i,n(yi,n)− ĝ

(j)
i,n(yn)

)2

∑n
i=1 V

(

g
(j)
i,n(yi,n)

) ≥ ε






→ 0. (2.6)

Then the convergence in (2.3) is satisfied for

Ŝn(yn) =

n
∑

i=1

ĝi,n(yn)ĝ
′
i,n(yn).

2.3.2. Confidence intervals based on estimators that consistently overestimate
the diagonal entries of VCn(rn)

Due to an asymptotically non-negligible bias term arising from misspecifica-
tion of the model, it is typically difficult to obtain an estimator Ŝn satisfying
the condition in Theorem 2.3 (see Remark 2.7 and Section 3.1.1 for details).
Nevertheless, it is often still possible to construct estimators of the diagonal
entries of the matrix VCn(rn) that, while possibly inconsistent, asymptotically
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overestimate their targets; for a corresponding constructive result see Propo-
sition 2.6 below. Similarly, it is in general not difficult to find an estimator of
K1−α(corr(Sn)) that consistently overestimates that quantity, see the discussion
and the result following Proposition 2.6 below concerning upper bounds on the
functionK1−α(.) over the set of all correlation matrices (using this upper bound,
although leading to wider confidence intervals, also leads to substantial compu-
tational advantages). Based on such estimators it is then possible to construct
asymptotically valid confidence intervals post-model-selection, even though the
candidate set of models might be (severely) misspecified. This is the content of
the subsequent result, which, together with Proposition 2.6 below, is the main
theoretical result in this section.

Theorem 2.5. Let α ∈ (0, 1), and suppose Condition 1 is satisfied. For every n

and every j = 1, . . . , k let ν̂2j,n ≥ 0 be an estimator of Vn(r
(j)
n ), and let K̂n ≥ 0

be an estimator of K1−α(corr(VCn(rn))), so that the sequence

κn =
K1−α(corr(VCn(rn)))

K̂n

max
j=1,...,k

√

[VCn(rn)]j
ν̂2j,n

,

satisfies
Pn (κn ≥ 1 + ε) → 0 for every ε > 0, (2.7)

(implicitly including that Pn(κn is well defined) → 1) or, equivalently, that the
condition in (2.5) holds with κn replaced by

K1−α(corr(Sn))

K̂n

max
j=1,...,k

√

[Sn]j
ν̂2j,n

.

Define for every M ∈ Mn and every j = 1, . . . ,m(M) the confidence interval

CI
(j),oest
1−α,M = θ̂

(j)
M,n ±

√

ν̂2j⋆M,n K̂n.

Then, for every (measurable) model selection procedure M̂n, we have

lim inf
n→∞

Pn

(

θ
∗(j)

M̂n,n
∈ CI

(j),oest

1−α,M̂n
for all j = 1, . . . ,m(M̂n)

)

≥ 1− α.

In the important special case where K̂n ≥ K1−α(corr(VCn(rn))) holds eventu-
ally, the condition in Equation (2.5) is implied by the condition that for every
j = 1, . . . , k it holds that

Pn

(√

[Sn]j
ν̂2j,n

≥ 1 + ε

)

→ 0 for every ε > 0, (2.8)

or equivalently that for every j = 1, . . . , k it holds that

Pn

(√

[VCn(rn)]j
ν̂2j,n

≥ 1 + ε

)

→ 0 for every ε > 0. (2.9)



Bachoc, Preinerstorfer, Steinberger / Valid inference post-model-selection 11

The preceding theorem operates under the assumption that estimators are
available that consistently overestimate the diagonal entries of VCn(rn) and
K1−α(corr(VCn(rn))). The following result now shows how such estimators for
the diagonal entries of VCn(rn) can be obtained. To construct an estimator K̂n

that eventually satisfies K̂n ≥ K1−α(corr(VCn(rn))) (as required for the special
case of Theorem 2.5) one can numerically compute the upper bound in Lemma
2.8 below. The subsequent result considers the case where the vectors gi,n(yi,n)
from Condition 1 can be well approximated in the sense of the condition appear-
ing in Proposition 2.4 up to (unobservable) non-stochastic additive error terms.
These additive error terms typically are bias terms due to misspecification of
the model.

Proposition 2.6. Suppose Condition 1 is satisfied, and let g̃i,n : Rn×ℓ → Rk

and ĝi,n : Rn×ℓ → Rk be Borel measurable for i = 1, . . . , n for every n. Suppose
that for every j = 1, . . . , k and for every ε > 0 the condition (2.4), or equivalently

(2.4), is satisfied. Suppose further that there exist real numbers a
(j)
i,n so that

g̃
(j)
i,n(yn) = ĝ

(j)
i,n(yn) + a

(j)
i,n

holds for every n ∈ N, i ∈ {1, . . . , n} and j ∈ {1, . . . , k}. Then the statement in
(2.5) is satisfied for

ν̂2j,n(yn) =

n
∑

i=1

[

g̃
(j)
i,n(yn)

]2

for j = 1, . . . , k.

The previous proposition is based on the assumption that the vectors gi,n(yi,n)
from Condition 1 can be well approximated in the sense of the condition appear-
ing in Proposition 2.4 up to a non-stochastic additive component. The result is
particularly geared towards the case where these non-stochastic additive com-
ponents are non-negligible in the sense that

∑n
i=1[a

(j)
i,n]

2

Vn(r
(j)
n )

6→ 0 holds for some j ∈ {1, . . . , k},

because in case the non-stochastic additive components are negligible in this
sense, a consistent estimator of VCn(rn) in the sense of (2.3) can be constructed.

Remark 2.7. Using the simple bound (g
(j)
i,n− g̃

(j)
i,n)

2 ≤ 2(g
(j)
i,n− ĝ

(j)
i,n)

2+2a2i,n, it is
easy to verify that if the non-stochastic additive components ai,n are negligible in
the previously defined sense, then g̃i,n satisfies the assumptions of ĝi,n appearing
in Proposition 2.4. As a consequence the estimator

S̃n(yn) =

n
∑

i=1

g̃i,n(yn)g̃
′
i,n(yn)

satisfies (2.3), and one can construct confidence intervals based on this estimator
as discussed in Theorem 2.3. Note that ν̂2j,n(yn) = [S̃n(yn)]j.
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Let us finally consider an upper bound on K1−α(Γ) as required in the special
case of Theorem 2.5 above. The bound we shall discuss is based on the quantity
Bα(q,N), for q,N ∈ N, defined as the smallest t > 0 so that

EG

(

min
(

1, N
[

1− FBeta,1/2,(q−1)/2(t
2/G2)

]))

≤ α,

where FBeta,1/2,(q−1)/2 is the cumulative distribution function of the Beta(1/2,(q−
1)/2) distribution, and where G follows a chi-squared distribution with q de-
grees of freedom. The quantity Bα(q,N) corresponds to the quantity K4 of
Bachoc et al. (2014) in the known variance case (for a discussion of numerical
algorithms for obtaining Bα(q,N) in practice we confer the reader to that ref-
erence). We have (Bachoc et al., 2014; Berk et al., 2013) that Bα(q,N) is larger
than all the 1 − α quantiles of random variables of the form maxi=1,...,N |v′iǫ|,
where v1, ..., vN are column vectors of Rq with ||vi||2 ≤ 1 and where ǫ ∼ N(0, Iq);
also showing that for fixed α and N the function Bα(., N) is monotonically in-
creasing.

Asymptotic approximations of Bα(q,N) for large q and N are provided in
Bachoc et al. (2014), Berk et al. (2013) and Zhang (2015). In particular, as
q,N → ∞,

Bα(q,N)/
√

q
(

1−N−2/(q−1)
)

→ 1,

from Proposition 2.10 in Bachoc et al. (2014), itself building on results from
Berk et al. (2013) and Zhang (2015).

An often useful upper bound on K1−α(Γ) with Γ a k × k-dimensional corre-
lation matrix is provided in the following lemma:

Lemma 2.8. For every α ∈ (0, 1) and a k × k correlation matrix Γ we have

K1−α(Γ) ≤ Bα(rank(Γ), k).

In a particular application it might of course be possible to obtain better up-
per bounds by exploiting structural properties of the specific correlation matrix
Γ at hand, cf. Subsection 3.1. Using the upper bound of Lemma 2.8 can also be
very useful in situations where the computation of K1−α(Γ) is infeasible.

3. Applications

In this section we now apply the general results obtained above to some impor-
tant special cases that are frequently encountered in practice. In Subsection 3.1,
we consider the case where fixed design homoskedastic linear models are fit to
data, and we discuss the case where fixed design heteroskedastic linear models
are fit to data in Subsection 3.2. Finally, in Subsection 3.3, we consider fitting
binary regression models to binary data. In each of our applications we consider
an asymptotic framework, where for each n the distribution of the data Pn is an
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element of a set of distributions Pn on the sample space equipped with its Borel
σ-field, and construct confidence sets post-model-selection that are asymptot-
ically valid uniformly over the set Pn. To establish uniformity over the sets
considered, we crucially rely on the fact that our general theory was developed
for triangular arrays.

In this section we need some additional notation to define the feasible sets
Pn of Pn we consider, and to define our candidate sets Mn of models: For n a
natural number and T a Borel subset of R, we shall denote by M(T n) the set of
Borel probability measures supported on T n =×n

i=1
T ⊆ Rn. The mean vector

corresponding to an element Q of M(T n) is denoted by µ(Q). Given an element
Q ∈ M(T 1) and a real number 0 < q < ∞, we shall use the symbol mq(Q)
to denote the q-th absolute central moment of Q, assuming that µ(Q) exists.
We shall also denote the set of product measures in M(T n) by

⊗n
i=1M(T ).

Given Q ∈
⊗n

i=1M(T ) we shall denote the corresponding marginals by Qi, i.e.,
Q =

⊗n
i=1Qi.

3.1. Inference post-model-selection when fitting fixed design linear

models to homoskedastic data

One important application of our general theory is the homoskedastic linear
regression setting. The feasible sets for the true underlying distribution Pn we
consider here depend on two parameters δ > 0 and τ ≥ 1 and are defined as

P(lm)
n (δ, τ) :=

{

Q ∈
n
⊗

i=1

M(R) :
0 < m2(Q1) = . . . = m2(Qn) <∞
maxi=1,...,n m2+δ(Qi)

2
2+δ

m2(Q1)
≤ τ

}

.

Note that P
(lm)
n (δ, τ) is empty for δ > 0 and τ < 1. Furthermore, observe

that P
(lm)
n (δ, τ) contains the set of n-variate spherical normal distributions with

unrestricted mean vector if

Γ

(

3 + δ

2

)

≤ (τ/2)
1+δ/2 √

π.

For such a pair (δ, τ) the set P
(lm)
n (δ, τ) contains the Gaussian model considered

in Berk et al. (2013).

We are interested in a situation where one works with candidate sets consist-
ing of homoskedastic linear models, i.e., a situation where one is interested in
conducting inference on µ(Pn), and it is assumed by the practitioner that µ(Pn)
is an element of span(Xn), the column span of a design matrix Xn ∈ Rn×p

with p not depending on n, or that µ(Pn) is at least “well-approximated” by
an element of that linear space; and where it is known (and taken into account
in the construction of the confidence sets) that the observations have identical
variances (for a situation where the observations are heteroskedastic see Sub-
section 3.2). In such a situation one often tries to decide in a data-driven way
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which regressors to use, i.e., one needs to solve a subset-selection problem. We
assume that we are given a nonempty set I = {M1, . . . ,Md} of nonempty sub-
sets of {1, 2, . . . , p}. GivenM ∈ I we shall denote by Xn[M ] the matrix obtained
from Xn by striking all columns whose index is not an element of M . We then
consider for each j ∈ {1, . . . , d} the sets

Mj,n =

{

Q ∈
n
⊗

i=1

M(R) :
0 < m2(Q1) = . . . = m2(Qn) <∞
µ(Q) ∈ span(Xn[Mj])

}

,

and our candidate set of models is then given by

Mn = {Mj,n : j = 1, . . . , d} .

We assume that Xn satisfies the following condition, where we denote the i-th
row of Xn by Xi,n:

Condition X1. Eventually rank(Xn) = p, and for every M ∈ I,

max
i=1,...,n

Xi,n[M ] (Xn[M ]′Xn[M ])
−1
Xi,n[M ]′ → 0.

Remark 3.1. In a standard linear model framework, Condition X1 is necessary
for asymptotic normality of the ordinary-least-squares estimator (see Arnold,
1980; Huber, 1973). It particularly holds if rank(Xn) = p, eventually, and
maxi=1,...,nXi,n(X

′
nXn)

−1X ′
i,n → 0. Moreover, it also holds in case ‖Xi,n‖ is

bounded and λmin(
1
nX

′
nXn) is bounded away from 0, which is typically the case in

sufficiently balanced factorial designs, but Condition X1 is obviously much more
general. For example, it also covers the important cases of polynomial regressors,
trigonometric regressors, or mixed polynomial and trigonometric regressors (cf.
the discussion in Eicker (1967), pp. 64).

The model-specific target of inference is then (eventually) defined as follows:
Given M ∈ Mn with a corresponding index set M , we let

β∗
M,n = β∗

M,n(Pn) = (Xn[M ]′Xn[M ])
−1
Xn[M ]′µ(Pn), (3.1)

i.e., β∗
M,n is the coefficient vector corresponding to the orthogonal projection of

µ(Pn) onto span(Xn[M ]).

We shall now describe how asymptotically uniformly valid confidence sets
can be constructed post-model-selection for the target defined in Equation (3.1)
above: Given M ∈ Mn with index set M , we estimate the corresponding target
by the model-specific ordinary-least-squares estimator, i.e., by

β̂M,n(y) = (Xn[M ]′Xn[M ])
−1
Xn[M ]′y; (3.2)

let

σ̂2
M,n(y) =

1

n−m(M)

n
∑

i=1

(yi −Xi,n[M ]β̂M,n(y))
2,
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where m(M) here coincides with |M |, the cardinality of M , and define for α ∈
(0, 1) and j = 1, . . . ,m(M)

CI
(j),lm
1−α,M = β̂

(j)
M,n ±

√

σ̂2
M,n

[

(Xn[M ]′Xn[M ])
−1
]

j
K1−α(corr(Γn)), (3.3)

where the block-matrix Γn is defined via its s, t-th block of dimension |Ms|×|Mt|
given by

(Xn[Ms]
′Xn[Ms])

−1
Xn[Ms]

′Xn[Mt] (Xn[Mt]
′Xn[Mt])

−1
,

for s, t ∈ {1, . . . , d}. Essentially, the construction in (3.1) coincides with the
confidence intervals of Berk et al. (2013). However, there are two major differ-
ences. First of all, we here do not assume that the data are Gaussian, which is
why we resort to asymptotic results. This is also the reason why our constant
K1−α, the so called POSI constant, is the quantile of a maximum of Gaus-
sian rather than t-distributed random variables, as is the case in Berk et al.
(2013). Furthermore, we simply use the usual variance estimator σ̂2

M,n which,
in general, is not unbiased or uniformly consistent (due to potential misspec-
ification) as required in Berk et al. (2013), but we still obtain uniformly valid
inference asymptotically. This shows that the somewhat restrictive assumption
of Berk et al. (2013), that there exists an unbiased or a uniformly consistent es-
timator for σ2

n (cf. Lemma 3.4 below, as well as the discussion in Remark 2.1 of
Leeb et al. (2015) and in Section 2.2 of Bachoc et al. (2014)), is not needed for
uniform asymptotic validity. If the estimator σ̂2

M,n is used in the construction of
Berk et al. (2013), then their confidence intervals asymptotically coincide with
our procedure. We also point out that the classical variance estimator used here
adapts to misspecification in the sense that it is consistent for σ2

n if a first order
correct model is selected and it otherwise overestimates the target in the sense
of Section 2.3.2 (cf. Remark 2.7 and Subsection 3.1.1 for details).

It is also worth noting that up to the choice of the last multiplicative factor
K1−α(corr(Γn)) in the definition of the confidence intervals above, i.e., the POSI
constant, this is just the usual confidence interval for the j-th coordinate of the
coefficient vector one would typically use in practice working with homoskedastic
linear models, and by following the naive way of ignoring the data-driven model
selection step and the potential misspecification. The crucial difference, however,
is that the naive approach is invalid (see, e.g., Bachoc et al., 2014; Leeb et al.,
2015).

We now present the main result of this subsection, where we emphasize once
more that the (measurable) model selection procedure M̂n is data-driven and
unrestricted, and that some, or all of the candidate models in Mn may be mis-

specified, i.e., P
(lm)
n (δ, τ) 6⊆

⋃

Mn. Nevertheless it is possible to construct an
asymptotically uniformly valid confidence set for the model-specific target vector
β∗
M̂n,n

.

Theorem 3.2. Let α ∈ (0, 1), δ > 0 and τ ≥ 1, suppose Condition X1 holds,

and let M̂n be a (measurable) model selection procedure, i.e., a measurable map
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from the sample space Rn to Mn. Then

lim inf
n→∞

inf
Pn∈P

(lm)
n (δ,τ)

Pn

(

β
∗,(j)

M̂n,n
∈ CI

(j),lm

1−α,M̂n
for all j = 1, . . . ,m(M̂n)

)

≥ 1− α.

3.1.1. The POSI-intervals automatically adapt to misspecification

Let us for a moment forget about the model selection step and consider the
classical construction of confidence intervals for β∗

M,n based on the asymptotic

normality of β̂M,n for M ∈ Mn fixed. It is well known that the usual variance
estimator σ̂2

M,n in model M ∈ Mn with index setM ∈ I is consistent for the true

error variance σ2
n := m2(P1,n), if and only if, the model M is asymptotically first

order correct. More specifically, the estimator σ̂2
M,n is upward biased when M is

mean-misspecified and the bias is given by ‖(In − PXn[M ])µn/σn‖2/(n − |M |),
where P... denotes the projection matrix corresponding to the column span of the
matrix indicated in the subscript and where µn := µ(Pn). Consequently, using
σ̂2
M,n in the construction of confidence intervals for β∗

M,n leads only to more
‘conservative’ inference in case M is misspecified, but the resulting inference is
still valid. Moreover, if M is correct then the resulting inference on β∗

M,n is also
asymptotically efficient in the sense that the obtained intervals have minimal
asymptotic length (they coincide with the infeasible intervals calculated with
knowledge of σ2

n).

If the working model is now selected by a data dependent selection proce-
dure M̂n : Rn → Mn, the POSI-intervals suggested in (3.1) involve the post-
model-selection estimator σ̂2

M̂n,n
and we can again ask the question about its

consistency properties. Clearly, consistency now depends on the existence of a
correct model in the class Mn of candidate models as well as on the ability of
M̂n to identify one such correct model. The following proposition provides a
precise quantitative formulation of this claim (see Section C.1 for the proof).
A similar statement is also discussed in Bachoc et al. (2014, Theorem 3.6 and
Lemma B.2).

Proposition 3.3. Fix δ > 0 and τ ≥ 1 and suppose that eventually rank(Xn) =

p. For any sequence Pn ∈ P
(lm)
n (δ, τ), the variance estimator σ̂2

M,n(y) = (n −
|M |)−1y′(In − PXn[M ])y satisfies

Pn

(∣

∣

∣

∣

∣

σ̂2
M,n

σ2
n

(

1 +
‖(In − PXn[M ])µn/σn‖2

n− |M |

)−1

− 1

∣

∣

∣

∣

∣

> ε

)

→ 0,

for every ε > 0 and for every M ∈ I.

In particular, since the index set I is finite, not depending on n, Proposi-
tion 3.3 shows that the post-model-selection estimator σ̂2

M̂n,n
is consistent for
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σ2
n (on a relative scale) along sequences Pn ∈ P

(lm)
n (δ, τ) such that

‖(In − PXn[M̂n]
)µn/σn‖2

n− |M̂n|
−−−−→
n→∞

0, (3.4)

in Pn-probability. Of course, in general, this condition can not be verified in
practice. But it still tells us that if the model selection procedure M̂n finds an
approximately first order correct model in the sense of (3.1.1), then the POSI-
intervals in (3.1) have the same asymptotic length as the infeasible intervals
that use knowledge of σ2

n. One can now raise the question if it is possible to

construct a uniformly (over P
(lm)
n (δ, τ)) consistent estimator for σ2

n. However,
in the framework we consider, in order to obtain valid confidence intervals, it

is necessary to use an estimator that, for certain sequences Pn ∈ P
(lm)
n (δ, τ),

consistently overestimates the variance σ2
n. More precisely, in Lemma 3.4 below

(proved in Section C.3), we show that there does not exist a uniformly consistent
estimator of the variance σ2

n if τ > 1.

Lemma 3.4. Let δ > 0 and τ > 1. There does not exist a sequence of measurable
functions (σ̂2

n)n∈N with σ̂2
n : Rn → [0,∞), so that for every ε > 0

sup
Pn∈P

(lm)
n (δ,τ)

Pn

(∣

∣

∣

∣

σ̂2
n

σ2
n

− 1

∣

∣

∣

∣

> ε

)

→ 0. (3.5)

3.2. Inference post-model-selection when fitting fixed design linear

models to heteroskedastic data

The feasible sets for Pn we consider here again depend on two parameters δ > 0

and τ ≥ 1 but, compared to the set P
(lm)
n (δ, τ) defined above, we now drop the

requirement of homoskedasticity and let

P(het)
n (δ, τ) :=

{

Q ∈
n
⊗

i=1

M(R) :
0 < m2(Qi) <∞ for i = 1, . . . , n

maxi=1,...,n m2+δ(Qi)
2

2+δ

mini=1,...,n m2(Qi)
≤ τ

}

.

Here, we consider a situation where one works with candidate sets consisting
of heteroskedastic linear models, i.e., where similar as above one is interested
in conducting inference on µ(Pn), and it is assumed that µ(Pn) of the true

distribution Pn ∈ P
(het)
n (δ, τ) is an element of span(Xn), the column span of

a design matrices Xn ∈ Rn×p with p fixed, or that µ(Pn) is at least ‘well-
approximated’ by an element of that linear space; but where it is taken into
account that the observations might have different variances. We start with
a set I = {M1, . . . ,Md} as in Subsection 3.1, and we then define for each
j ∈ {1, . . . , d} the candidate sets

Mj,n =

{

Q ∈
n
⊗

i=1

M(R) :
0 < m2(Qi) <∞ for i = 1, . . . , n

µ(Q) ∈ span(Xn[Mj ])

}

,



18 Bachoc, Preinerstorfer, Steinberger / Valid inference post-model-selection

and hence our corresponding candidate set of models is then given by

Mn = {Mj,n : j = 1, . . . , d} .

As above we assume that Xn satisfies Condition X1, and define our model-
specific target of inference as in Equation (3.1). Again, we estimate the corre-
sponding target by the model-specific ordinary-least-squares estimator in (3.1).
For variance estimation we do no longer use the estimator as defined in Sub-
section 3.1, but now take into consideration, that the observations might be
heteroskedastic. Therefore, we consider an approach based on estimators sug-
gested by Eicker (1967). As in Subsection 3.1 the variance estimators used are
not uniformly consistent due to potential model misspecification, but overesti-
mate their targets in the sense of Subsection 2.3.2. Furthermore, in contrast to
the construction made in Subsection 3.1 the construction of the confidence sets
needs to incorporate an upper bound for the POSI constant K1−α(corr(Γn)),
because here corr(Γn) is unobserved and can not be estimated consistently due
to potential misspecification. Define for everyM ∈ Mn with corresponding index
set M the Eicker-estimator S̃M,n as

(Xn[M ]′Xn[M ])
−1
Xn[M ]′ diag

(

û21,M, . . . , û
2
n,M

)

Xn[M ] (Xn[M ]′Xn[M ])
−1
,

where we let ûM(y) = (û1,M(y), . . . , ûn,M(y))
′ = y −Xn[M ]β̂M,n(y), and denote

the j−th diagonal entry (j = 1, . . . ,m(M)) of S̃M,n by

σ̂2
j,M,n.

Finally, given α ∈ (0, 1), we define for each M ∈ Mn with corresponding index
set M and for every j = 1, . . . ,m(M) the confidence sets

CI
(j),hlm
1−α,M = β̂

(j)
M,n ±

√

σ̂2
j,M,nBα(min(k, p), k),

with k =
∑

M∈Mn
m(M).

Note, similarly as in Subsection 3.1 above, that up to the choice of the last
multiplicative factor Bα(min(k, n), k), an upper bound for the corresponding
POSI-constant, this is just the usual confidence interval for the j-th coordinate
of the coefficient vector one would typically use in practice working with het-
eroskedastic linear models by following the naive way of ignoring the data-driven
model selection step and that the model might be misspecified. Our construc-
tion delivers an adjustment to that approach, which turns it, regardless of the
(measurable) model selection procedure applied, into an asymptotically valid
statistical procedure. The main result of this subsection is as follows:

Theorem 3.5. Let α ∈ (0, 1), δ > 0 and τ ≥ 1, suppose Condition X1 holds,

and let M̂n be a (measurable) model selection procedure, i.e., a measurable map
from the sample space to Mn. Then

lim inf
n→∞

inf
Pn∈P

(het)
n (δ,τ)

Pn

(

β
∗,(j)

M̂n,n
∈ CI

(j),hlm

1−α,M̂n
for all j = 1, . . . ,m(M̂n)

)

≥ 1−α.
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3.3. Inference post-model-selection when fitting binary regression

models to binary data

The feasible sets for Pn we consider here depend on a parameter τ > 0 and are
defined as

P(bin)
n (τ) :=

{

Q ∈
n
⊗

i=1

M({0, 1}) : Qi({0})Qi({1}) ≥ τ ∀i = 1, . . . , n

}

.

We consider a situation where binary regression models are fit to binary data

generated under one of the elements Pn ∈ P
(bin)
n (τ). In binary regression the

maintained modeling assumption is that the probability of a success on the i-
th observation (yi,n = 1) is given by Qi({1}) = h(Xi,nβ), for some β ∈ Rp,
some response function h : R → (0, 1) and where Xi,n is the i-th row of a
design matrix Xn ∈ Rn×p. Usually, when h is invertible, h−1 is called the link
function. Thus, unlike the previous two examples, here we also have to make
a choice for the response function h, in addition to selecting variables from
Xn. Classical choices are the logit and the probit functions, but we allow also
for other choices of response functions h, as long as they belong to a finite
set H = {h1, . . . , hd1} of potential candidates. Together with the collection
I = {M1, . . . ,Md2} ⊆ 2{1,...,p} \ ∅ of candidate regressors, we can define a
candidate model by

M(j1,j2),n =

{

Q ∈
n
⊗

i=1

M({0, 1}) : ∃β ∈ R|Mj2 | : ∀i = 1, . . . , n :
Qi({1}) = hj1(Xi,n[Mj2 ]β)

}

,

for j1 ∈ {1, . . . , d1} and j2 ∈ {1, . . . , d2}. Thus, our candidate set of size d =
d1 · d2 is given by

Mn =
{

M(j1,j2),n : j1 ∈ {1, . . . , d1}, j2 ∈ {1, . . . , d2}
}

.

We need to impose some regularity conditions on the possible response func-
tions h ∈ H and the design Xn.

Condition X2. Let C > 0 be fixed. Eventually, we have

(i) rank(Xn) = p;

(ii) maxi=1,...,nXi,n[M ] (Xn[M ]′Xn[M ])
−1
Xi,n[M ]′ ≤ C/n, for every M ∈ I;

(iii) λmax(X
′
nXn)/λmin(X

′
nXn) ≤ C;

Condition H. The elements h ∈ H have the following properties:

(i) h : R → (0, 1) is a continuous cumulative distribution function;
(ii) The functions φ1(γ) := log(h(γ)) and φ2(γ) := log(1 − h(γ)) are strictly

concave on R;
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(iii) h is twice continuously differentiable and φ1 and φ2 have strictly negative
second derivatives on R;

(iv) The derivative ḣ of h is strictly positive on R;

Remark 3.6. Condition X2 is a strengthened version of Condition X1. It is
still satisfied if ‖Xi,n‖ is bounded and λmin(

1
nX

′
nXn) is bounded away from 0,

as is typically the case in factorial designs.

Remark 3.7. The Conditions H(i) and H(iv) are rather natural and essen-
tial for parameter identification. Condition H(iii) is also classical and used
to ensure continuity of the Hessian of the log-likelihood (cf. Fahrmeir, 1990;
Fahrmeir and Kaufmann, 1985). Finally, Condition H(ii), which is implied by
Condition H(iii), ensures strict concavity of the log-likelihood, which, in turn,
guarantees uniqueness of pseudo parameters and the MLE (see Lemma 3.8 and
Lemma 3.9 below). It is easy to see that Condition H is satisfied, e.g., for re-
sponse functions corresponding to the classical logit, probit, log-log and comple-
mentary log-log link functions discussed in McCullagh and Nelder (1989, p.108).

Note that since the design matrix Xn ∈ Rn×p is fixed, a candidate model
M ∈ Mn can be identified with a pair M , (h,M) ∈ H× I. Estimating the pa-
rameter β ∈ Rm(M) of a candidate model M ∈ Mn is usually done by numerically
maximizing the likelihood. The log-likelihood function for model M , (h,M)
can be expressed as

ℓM,n(y, β) =

n
∑

i=1

[yiφ1(Xi,n[M ]β) + (1− yi)φ2(Xi,n[M ]β)] ,

where φ1(γ) = log h(γ) and φ2(γ) = log(1 − h(γ)), and y = (y1, . . . , yn)
′ ∈ Rn,

β ∈ Rm(M). Whenever Condition H(iii) holds, we denote the matrix of negative
second derivatives of ℓM,n by

HM,n(y, β) = −∂
2ℓM,n(y, β)

∂β∂β′
= Xn[M ]′DM,n(y, β)Xn[M ],

where DM,n(y, β) is a diagonal matrix with i-th diagonal entry equal to

−yiφ̈1(Xi,n[M ]β)− (1− yi)φ̈2(Xi,n[M ]β).

Note that under Conditions X2(i) and H(ii), HM,n(y, β) is positive definite.

As our target of inference we take the model dependent vector β∗
M,n ∈ R|M|

that maximizes the expected log-likelihood β 7→ En[ℓM,n(·, β)] under the true

data generating distribution Pn ∈ P
(bin)
n (τ). If β∗

M exists, then it is easy to see
that it also minimizes the Kullback-Leibler divergence between the true data
generating distribution Pn and the class of distributions specified by the working
model M ∈ Mn. Focusing on the Kullback-Leibler minimizer has a longstanding
tradition in the misspecification literature dating back at least to Huber (1967)
(see also White (1982) and the references given therein). For references more
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specific to generalized linear models see Fahrmeir (1990) and Lv and Liu (2014).
That this target uniquely exists in the present context of binary regression is
the subject of the following lemma (see Section C.5 for the proof).

Lemma 3.8. Suppose that rank(Xn) = p and H(i,ii) hold. Then, for every

M ∈ Mn and for every P ∈ ⋃δ>0 P
(bin)
n (δ), there exists a unique vector β∗

M,n =

β∗
M,n(P) ∈ Rm(M), such that

∫

Rn

ℓM,n(y, β
∗
M,n(P)) dP(y) = sup

β∈Rm(M)

∫

Rn

ℓM,n(y, β) dP(y).

Furthermore, it is well known that for some points in the sample space {0, 1}n
the MLE in the binary regression model does not exist (see, e.g., Wedderburn,
1976). But those samples have vanishing asymptotic probability. The following

lemma establishes this asymptotic existence of the MLE β̂M,n in the present
setting, along with uniform consistency. Its proof is deferred to Section C.7.

Lemma 3.9. Suppose that Conditions X2(i,ii) and H(i,ii,iii) hold and fix τ > 0.

Then, for every n ∈ N, every M ∈ Mn and every P ∈ P
(bin)
n (τ), there exists

a function β̂M,n : {0, 1}n → Rm(M) (depending only on n and M) and a set
EM,P,n ⊆ {0, 1}n, such that

ℓM,n

(

y, β̂M,n(y) + β
)

< ℓM,n

(

y, β̂M,n(y)
)

∀y ∈ EM,P,n, ∀β 6= 0

and
inf

M∈Mn

inf
P∈P

(bin)
n (τ)

P(EM,P,n) −−−−→
n→∞

1.

Moreover, for the pseudo parameter β∗
M,n ∈ Rm(M) of Lemma 3.8, we have

lim sup
n→∞

sup
M∈Mn

sup
P∈P

(bin)
n (τ)

P

(∥

∥

∥(Xn[M ]′Xn[M ])1/2(β̂M,n − β∗
M,n(P))

∥

∥

∥ > δ
)

→ 0,

as δ → ∞.

To construct asymptotically valid confidence intervals for the components of
β∗
M,n, we need an estimate of the asymptotic covariance matrix of β̂M,n. In the

misspecified setting it is usually not possible to obtain a consistent estimator. We
here follow the suggestion of Fahrmeir (1990, p. 491) who proposed a sandwich-
type estimator for misspecified generalized linear models. This estimator fits
with the general idea of Section 2.3.2. For M ∈ Mn, M , (h,M), define

S̃M,n = Ĥ−1
M,nXn[M ]′ diag

(

û21,M, . . . , û
2
n,M

)

Xn[M ]Ĥ−1
M,n,

where ĤM,n = HM,n(y, β̂M,n),

ûi,M(y) =
ḣ(γ̂i,n,M (y))

h(γ̂i,n,M (y))(1 − h(γ̂i,n,M (y)))
(yi − h(γ̂i,n,M (y)))
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and γ̂i,n,M (y) = Xi,n[M ]β̂M,n(y), and denote the j−th diagonal entry (j =

1, . . . ,m(M)) of S̃M,n by
σ̂2
j,M,n. (3.6)

Finally, given α ∈ (0, 1), we define for each M ∈ Mn and for every j =
1, . . . ,m(M) the confidence sets

CI
(j),bin
1−α,M = β̂

(j)
M,n ±

√

σ̂2
j,M,nBα(min(k, n), k),

with k =
∑

M∈Mn
m(M).

These confidence intervals have the same basic structure as in Section 3.2,
in the sense that they are centered at the MLE, use estimators σ̂2

j,M,n for
the asymptotic variances that consistently overestimate their respective target
quantities and replace the usual Gaussian quantile by the correction constant
Bα(min(k, n), k) that adjusts for the effect of model selection. This leads to
asymptotically conservatively valid inference post-model-selection, as stated in
the following theorem.

Theorem 3.10. Let α ∈ (0, 1) and τ > 0, suppose Conditions X2 and H hold,

and let M̂n be a model selection procedure, i.e., a map from the sample space
{0, 1}n to Mn. Then

lim inf
n→∞

inf
Pn∈P

(bin)
n (τ)

Pn

(

β
∗,(j)

M̂n,n
∈ CI

(j),bin

1−α,M̂n
∀j = 1, . . . ,m(M̂n)

)

≥ 1− α.

Remark 3.11. It is important to note that if one decides a priori to use only the
canonical link function, which, in the present case of binary regression, corre-
sponds to the logistic response function h(c)(γ) := eγ/(1+eγ), then Theorem 3.10
holds with Bα(min(k, n), k) decreased to Bα(min(k, p), k). See Corollary C.3 in
Section C.9.

Remark 3.12. We point out that similar principles used to derive Theorem 3.10
can also be employed to treat other quasi-maximum likelihood or general M-, and
Z-estimation problems (see, e.g., Fahrmeir, 1990, for a more general treatment
of generalized linear models). The general theory of M- and Z-estimation as pre-
sented, e.g., in van der Vaart and Wellner (1996, Sections 3.2 and 3.3), usually
also leads to expansions of the form required in Conditon 1 (cf. van der Vaart and Wellner,
1996, Theorem 3.2.16 and Theorem 3.3.1). These results are stated in a point-
wise fashion but can be made uniform over large classes of data generating pro-
cesses by using ideas from Section 2.8 of the same reference. However, in more
specific examples such as the present binary regression setting, conditions can
be directly imposed on the design and the link functions and can be optimized
for this setup.

Finally, the main difference compared to the previous two examples is that
here we fit non-linear regression models to binary observations. Therefore, a
data driven model selection procedure M̂n may not only select variables among
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the p candidate regressors in Xn, but may also result in a choice of a response
function h from some pre-specified class H. In practice, H often contains certain
classical candidates such as, e.g., the response functions corresponding to the
logit, probit or complementary log-log link function. A working model could
then be selected, for instance, by minimizing some penalized likelihood crite-
rion over all possible choices of (h,M) ∈ H × I. However, we emphasize once
more, that the specifics of the possibly data driven model selection procedure
M̂n are completely inconsequential for the validity of our proposed confidence
intervals and could also involve graphical inspection of the data and subjective
preferences.

4. Conclusion

We have presented a general theory for the construction of asymptotically valid
confidence sets post-model-selection. Our methods can be used in a wide number
of situations, because they are only based on a standard representation that can
often be obtained by simple linearization arguments. We have also applied our
theory to construct valid confidence sets after selecting and fitting fixed design
linear models to (possibly non-Gaussian) homoskedastic or heteroskedastic data.
Moreover, we have investigated the practically very important case when binary
regression models are fit to binary data. In this case, in addition to selecting
variables from a given design matrix, also the choice of an appropriate link
function can be made in a data driven way. The general theory and the proposed
methods are applicable irrespective of whether any of the candidate models
under consideration is correctly specified, leading to more or less conservative
inference depending on the severity of misspecification (see Remark 2.7). This
feature is also present in the applications of Section 3.1 (see Subsection 3.1.1),
3.2 and 3.3.

Open questions that go beyond the scope of this article, but are currently
under investigation, include the extension of the approach discussed here to
dependent data; the applicability and performance of bootstrap procedures;
and the development of procedures in the spirit of Berk et al. (2013) in the
challenging situation when the number of models fitted can grow with sample
size. In ongoing work we apply our methods to real data and investigate if they
can prevent spurious findings while detecting true reproducible effects.
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Appendix A: Auxiliary results

In this section, for every n ∈ N and for some k ∈ N, not depending on n, let
z1,n, . . . , zn,n be independent k-variate random vectors defined on a probability
space (Ωn,An,Pn). Denote

rn = (r(1)n , . . . , r(k)n )′ =
n
∑

i=1

(z
(1)
i,n , . . . , z

(k)
i,n )

′,

and let

Sn =

n
∑

i=1

zi,nz
′
i,n.

In this section, the expectation operator, the variance-covariance operator,
and the variance operator w.r.t. Pn is denoted by En, VCn, and Vn, respectively.

Condition 2. For every n ∈ N, every j ∈ {1, . . . , k} and every i ∈ {1, . . . , n}

En(z
(j)
i,n) = 0 and Vn(r

(j)
n ) = 1. (A.1)

Furthermore, for every j ∈ {1, . . . , k} we have

Pn ◦ r(j)n ⇒ N(0, 1), (A.2)

and for every ε > 0

max
1≤i≤n

Pn

(

|z(j)i,n| ≥ ε
)

→ 0. (A.3)

The first statement in the subsequent lemma is essentially Corollary 2 in
Pollak (1972) combined with a tightness argument. The second statement is ob-
tained via an application of Raikov’s theorem (Raikov (1938), cf. the statement
given in Gnedenko and Kolmogorov (1954) on p. 143).

Lemma A.1. Let Condition 2 hold. Then

dw
(

Pn ◦ rn, N(0,VCn(rn))
)

→ 0.

Furthermore, for every ε > 0 it holds that

Pn

(∥

∥Sn − VCn(rn)
∥

∥ ≥ ε
)

→ 0,

and hence that
Pn

(

dw
(

Pn ◦ rn, N(0, Sn)
)

≥ ε
)

→ 0. (A.4)

Proof. For the first claim, let n′ be an arbitrary subsequence. From Equation
(2) we see that En(rn) = 0 and that VCn(rn) is norm-bounded and, hence,
that Pn ◦ rn is tight. Therefore, there exists a subsequence n′′ of n′ along which
VCn(rn) converges to Σ, say, and along which Pn ◦rn converges weakly. We now
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need to show that dw(Pn′′ ◦ rn′′ , N(0,Σ)) → 0, which then proves the statement
in view of the triangle inequality, continuity of Γ 7→ N(0,Γ) w.r.t. dw, and the
fact that n′ was arbitrary. That the weak limit of Pn′′ ◦ rn′′ must be normal
follows from Equations (2) and (2), applying Corollary 2 in Pollak (1972). The
mean vector of the limiting distribution of Pn′′ ◦ rn′′ is 0 from (2). It remains
to verify that the covariance matrix of the limiting distribution is Σ. From
Equations (2) and (2) and, e.g., Theorem 5.4 in Billingsley (1968) it follows that

[r
(j)
n ]2 is uniformly integrable for j = 1, . . . , k. The inequality ab ≤ 1

2 (a
2 + b2),

together with the fact that the sum of two uniformly integrable sequences is

uniformly integrable, then shows uniform integrability of r
(s)
n r

(t)
n , and hence

(e.g., again Theorem 5.4 in Billingsley (1968) together with weak convergence
of Pn′′ ◦ rn′′ and the continuous mapping theorem) that the covariance matrix
of the limiting distribution of Pn′′ ◦ rn′′ coincides with Σ.

To prove the second claim, we start with the observation that it suffices to
verify that for every ε > 0 and every γ ∈ Rk it holds that

Pn (|γ′ (Sn − VCn(rn)) γ| ≥ ε) → 0.

To see this, it suffices to first take γ equal to the elements of the standard basis
in Rk in order to show that the diagonal entries converge to zero. Then, taking γ
equal to (1, 1, 0, . . . , 0)′, (0, 1, 1, 0, . . . , 0)′, etc., and using symmetry shows that
also the entries above and below the main diagonal converge. Continuing this
process with vectors containing exactly three, four, five, etc., consecutive ones,
establishes the claim. Next, to verify the statement in the previous display, let
γ ∈ Rk, ε > 0, and let n′ be an arbitrary subsequence. Choose n′′ a subsequence
of n′ along which Pn ◦ rn ⇒ N(0,Σ) - such a subsequence exists because of
the already established part of the lemma. We also already know from the
uniform integrability argument above, that then VCn′′(rn′′) → Σ, and hence
that σ2

n′′ := γ′VCn′′(rn′′)γ → γ′Σγ =: σ2. Now, if σ2 = 0, then eventually
σ2
n′′ < ε/2, and by Markov’s inequality

Pn′′

(∣

∣γ′ (Sn′′ − VCn′′(rn′′)) γ
∣

∣ ≥ ε
)

≤ Pn′′

(

γ′Sn′′γ ≥ ε

2

)

≤ 2σ2
n′′

ε
→ 0.

Suppose next that σ2 > 0. Then, we can assume without loss of generality that
0 < δ1 ≤ σ2

n′′ ≤ δ for some δ, δ1 ∈ R, and it remains to verify that

Pn′′

(∣

∣

∣

∣

γ′Sn′′γ

σ2
n′′

− 1

∣

∣

∣

∣

≥ ε

δ

)

→ 0. (A.5)

To that end, define

ξi,n′′ =
γ′zi,n′′

σn′′

where σn′′ denotes the positive square root of σ2
n′′ , and note that by Equation

(2) we have En′′(ξi,n′′ ) = 0, that by construction σ−2
n′′ γ′Sn′′γ =

∑n′′

i=1 ξ
2
i,n′′ , and
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that Vn′′(
∑n′′

i=1 ξi,n′′) = 1. Note also that it follows from Equation (2) that for
every δ̄ > 0 we have

max
1≤i≤n′′

Pn′′

(

|ξi,n′′ | ≥ δ̄
)

→ 0 as n′′ → ∞.

Furthermore, since Pn′′◦rn′′ ⇒ N(0,Σ), we see that
∑n′′

i=1 ξi,n′′ is asymptotically
normal with mean 0 and variance 1. But then Equation (A) follows from Raikov’s
theorem (Gnedenko and Kolmogorov (1954), p. 143, Theorem 4). Since n′ was
arbitrary, this proves the second statement.

The statement in Equation (A.1) is an immediate consequence of the triangle
inequality and the first two statements.

Condition 3. For every n ∈ N, every j ∈ {1, . . . , k} and every i ∈ {1, . . . , n}
we have

En(z
(j)
i,n) = 0 and 0 < Vn(r

(j)
n ) <∞.

Furthermore, setting r
(j)
n,∗ =

r(j)n√
Vn(r

(j)
n )

and z
(j)
i,n,∗ =

z
(j)
i,n√

Vn(r
(j)
n )

, for every j ∈
{1, . . . , k} we have

Pn ◦ r(j)n,∗ ⇒ N(0, 1),

and for every ε > 0

max
1≤i≤n

Pn

(

|z(j)i,n,∗| ≥ ε
)

→ 0 as n→ ∞.

Lemma A.2. Let Condition 3 hold. Then for every ε > 0 it holds that

Pn

(

‖ diag(VCn(rn))
−1 diag(Sn)− Ik‖ ≥ ε

)

→ 0 (A.6)

and
Pn (‖ corr (Sn)− corr (VCn(rn)) ‖ ≥ ε) → 0. (A.7)

Furthermore, for every ε > 0, r̂n,∗ = diag(Sn)
†/2 rn satisfies

Pn (dw (Pn ◦ r̂n,∗, N(0, corr(Sn))) ≥ ε) → 0.

Proof. For the statements in Equations (A.2) and (A.2) we first note that the

triangular array z
(j)
i,n,∗, and the corresponding quantities rn,∗ and r

(j)
n,∗, satisfy

Condition 2. Hence, Lemma A.1 is applicable, and shows, in particular, for every
ε > 0 and with the abbreviation Sn,∗ =

∑n
i=1 zi,n,∗z

′
i,n,∗, that

Pn (‖Sn,∗ − VCn(rn,∗)‖ ≥ ε) → 0 as n→ ∞.

Noting that the diagonal entries of VCn(rn,∗) are all equal to 1 (in fact VCn(rn,∗)
= corr(VCn(rn))) and that diag (Sn,∗) = diag(VCn(rn))

−1 diag(Sn) holds, es-
tablishes the claimed convergence in (A.2). But this together with the preceding
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display then establishes the convergence in (A.2), because, using the abbrevi-
ation An = diag(Sn)

†/2 diag(VCn(rn))
1/2, we have An → Ik in Pn-probability

and

corr(Sn)− corr(VCn(rn)) = diag(Sn)
†/2Sn diag(Sn)

†/2 − VCn(rn,∗)

= An(Sn,∗ − VCn(rn,∗))A
′
n

+ AnVCn(rn,∗)A
′
n − VCn(rn,∗),

which converges to zero in Pn-probability. The last part is an application of the
statements already established, together with

Pn (dw (Pn ◦ rn,∗, N(0, Sn,∗)) ≥ ε) → 0 for every ε > 0,

which we obtain (as above) from Lemma A.1.

Lemma A.3. For every α ∈ (0, 1) the map Γ 7→ K1−α(Γ) is continuous on the
subset of k × k-dimensional covariance matrices of Rk×k.

Proof. Let Γn be a sequence of covariance matrices converging to Γ. By def-
inition, K1−α(Γn) is the 1 − α-quantile of the distribution of ‖Zn‖∞, where
Zn is a Gaussian random vector with mean 0 and covariance matrix Γn. By
the continuous mapping theorem, ‖Zn‖∞ converges weakly to ‖Z‖∞, where Z
is a Gaussian random vector with mean 0 and covariance matrix Γ. In case
Γ 6= 0 it is easy to see that the distribution function of ‖Z‖∞ is everywhere con-
tinuous and strictly increasing on [0,∞), and the result then follows, because
weak convergence of distribution functions is equivalent to weak convergence of
the corresponding quantile functions. Consider now the case where Γ = 0. Fix
0 < ε < 1. Let z be a random variable taking values in [0,∞), with continuous
and strictly increasing (on [0,∞)) distribution function and 1−α-quantile equal
to ε. Clearly, ‖Zn‖∞+z converges weakly to z. Hence Kn, say, the 1−α quantile
of ‖Zn‖∞ + z converges to ε. From K1−α(Γn) ≤ Kn it then follows that

0 ≤ lim sup
n→∞

K1−α(Γn) ≤ ε.

Therefore, K1−α(Γn) → 0 = K1−α(0).

Lemma A.4. For n ∈ N, for every i = 1, . . . , n, and for j = 1, 2, let ai,n(j)
and bi,n(j) be random variables on a probability space (Ωn,An,Pn).

1. If Pn(
∑n

i=1 a
2
i,n(1) = 0) → 0 holds, and if

∑n
i=1(ai,n(1)−bi,n(1))

2

∑n
i=1 a2

i,n(1)
= oPn(1),

then

Pn

(

∣

∣

∣

∣

∑n
i=1 b

2
i,n(1)

∑n
i=1 a

2
i,n(1)

− 1

∣

∣

∣

∣

≥ ε

)

→ 0 for every ε > 0.
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2. If Pn(
∑n

i=1 a
2
i,n(j) = 0) → 0 and

∑n
i=1(ai,n(j)−bi,n(j))

2

∑
n
i=1 a2

i,n(j)
= oPn(1) holds for

j = 1, 2, then for every ε > 0

Pn

(∣

∣

∣

∣

∑n
i=1 ai,n(1)ai,n(2)

√

∑n
i=1 a

2
i,n(1)

√

∑n
i=1 a

2
i,n(2)

−
∑n

i=1 bi,n(1)bi,n(2)
√

∑n
i=1 b

2
i,n(1)

√

∑n
i=1 b

2
i,n(2)

∣

∣

∣

∣

≥ ε

)

→ 0.

3. Suppose that Vn(
∑n

i=1 ai,n(1)) > 0 holds eventually. Assume that for ev-
ery n the random variables ai,n(1) for i = 1, . . . , n have mean 0 and are
uncorrelated, and that it holds that

Pn

(

∣

∣

∣

∣

∑n
i=1 a

2
i,n(1)

Vn(
∑n

i=1 ai,n(1))
− 1

∣

∣

∣

∣

> ε

)

→ 0 for every ε > 0, (A.8)

that
maxi=1,...,n Vn(ai,n(1))

Vn(
∑n

i=1 ai,n(1))
→ 0, (A.9)

and that
∑n

i=1(ai,n(1)−bi,n(1))
2

∑n
i=1 a2

i,n(1)
= oPn(1). Then for every array of real num-

bers ci,n we have

Pn

(∑n
i=1(bi,n(1) + ci,n)

2

Vn(
∑n

i=1 ai,n(1))
≤ 1− ε

)

→ 0 for every ε > 0.

Proof. For the first part note that the quotient under consideration is well de-
fined with probability converging to one, that

∑n
i=1 b

2
i,n(1)

∑n
i=1 a

2
i,n(1)

− 1 = oPn(1) + 2

∑n
i=1 ai,n(1)[bi,n(1)− ai,n(1)]

∑n
i=1 a

2
i,n(1)

,

and that by the Cauchy-Schwarz inequality

∣

∣

∣

∣

∑n
i=1 ai,n(1)[bi,n(1)− ai,n(1)]

∑n
i=1 a

2
i,n(1)

∣

∣

∣

∣

≤
√

∑n
i=1(ai,n(1)− bi,n(1))2
∑n

i=1 a
2
i,n(1)

= oPn(1).

For the second part note that the quotients are well defined with probability
converging to 1 (by applying Part 1), and write

∑n
i=1 ai,n(1)ai,n(2)

√

∑n
i=1 a

2
i,n(1)

√

∑n
i=1 a

2
i,n(2)

−
∑n

i=1 bi,n(1)bi,n(2)
√

∑n
i=1 b

2
i,n(1)

√

∑n
i=1 b

2
i,n(2)
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as the sum of

An :=

∑n
i=1

(

ai,n(1)− bi,n(1)
)(

ai,n(2)− bi,n(2)
)

√

∑n
i=1 a

2
i,n(1)

√

∑n
i=1 a

2
i,n(2)

Bn :=

∑n
i=1 bi,n(2)

(

ai,n(1)− bi,n(1)
)

√

∑n
i=1 a

2
i,n(1)

√

∑n
i=1 a

2
i,n(2)

Cn :=

∑n
i=1 bi,n(1)

(

ai,n(2)− bi,n(2)
)

√

∑n
i=1 a

2
i,n(1)

√

∑n
i=1 a

2
i,n(2)

and

Dn : =

∑n
i=1 bi,n(1)bi,n(2)

√

∑n
i=1 a

2
i,n(1)

√

∑n
i=1 a

2
i,n(2)

−
∑n

i=1 bi,n(1)bi,n(2)
√

∑n
i=1 b

2
i,n(1)

√

∑n
i=1 b

2
i,n(2)

.

Using Cauchy-Schwarz inequality, the assumptions, and the first part of the
lemma, we now see that An, Bn, Cn, and Dn are oPn(1).

For the third part we abbreviate ai,n = ai,n(1) and bi,n = bi,n(1) throughout,
and note that (eventually)

∑n
i=1(bi,n + ci,n)

2

Vn(
∑n

i=1 ai,n)
− 1 = Fn +Gn +Hn,

where

Fn :=

∑n
i=1(bi,n − ai,n)

2

Vn(
∑n

i=1 ai,n)
= oPn(1)

Gn :=

∑n
i=1(ai,n + ci,n)

2

Vn(
∑n

i=1 ai,n)
− 1 =

∑n
i=1 ci,n(2ai,n + ci,n)

Vn(
∑n

i=1 ai,n)
+ oPn(1)

Hn := 2

∑n
i=1(bi,n − ai,n)(ai,n + ci,n)

Vn(
∑n

i=1 ai,n)

where the second equality for Fn follows from the last assumption appearing in
Part 3 together with (3), and the second equality for Gn follows from (3). By
the Cauchy-Schwarz inequality and the last assumption appearing in Part 3

|Hn| ≤ oPn(1)
√

Gn + 1. (A.10)

Now, define

κn =

∑n
i=1 ci,n(2ai,n + ci,n)

Vn(
∑n

i=1 ai,n)
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and note that, since by assumption En(ai,n) = 0, we have

En(κn) =

∑n
i=1 c

2
i,n

Vn(
∑n

i=1 ai,n)
=: dn ≥ 0,

and it holds, using uncorrelatedness of ai,n for i = 1, . . . , n, that

Vn(κn) = 4

∑n
i=1 c

2
i,nVn(ai,n)

V2
n(
∑n

i=1 ai,n)
≤ 4

maxi=1,...,n Vn(ai,n)

Vn(
∑n

i=1 ai,n)
dn. (A.11)

We need to verify that for every ε > 0 it holds that

Pn (Fn +Gn +Hn ≤ −ε) → 0.

We argue by contradiction: Suppose there exists an ε > 0 so that the con-
vergence in the previous display does not hold. Then, by compactness of the
Cartesian product of the extended real line with the unit interval, there exists
a subsequence n′ along which dn converges to a c ∈ [0,∞] and along which the
probability in the previous display converges to a γ ∈ (0, 1]. Suppose first that
0 ≤ c < ∞. Then, from Equation (A) and Assumption (3), we see that κn′ ,
and hence Gn′ , converges to c in Pn′-probability, and, by Equation (A), that
Hn′ converges to 0 in Pn′-probability, showing that Fn′ +Gn′ +Hn′ converges
to c ≥ 0 in Pn′-probability, and hence that the sequence in the previous dis-
play converges along n′ to 0 < γ, a contradiction. Assume next that c = ∞,
and assume then, without loss of generality, that dn′ > 0 holds. We show that
(Fn′ +Gn′ +Hn′)/dn′ converges to 1 in Pn′-probability, which then again con-
tradicts γ ∈ (0, 1]. Note that it suffices to verify that κn′/dn′ converges to 1 in
Pn′-probability. But this follows, because the expectation of κn′/dn′ is 1, and
because, by relation (A), its variance is bounded from above by

4d−1
n′

maxi=1,...,n′ Vn′(ai,n′)

Vn′(
∑n′

i=1 ai,n′)
→ 0,

where we used dn′ → ∞ and Assumption (3) to obtain the limit.

Appendix B: Proofs for Section 2

B.1. Proof of Lemma 2.1

We actually prove the following more detailed statement.

Lemma B.1. Under Condition 1, for ε > 0 we have

Pn

(

‖ diag(VCn(rn))
−1 diag(Sn)− Ik‖ ≥ ε

)

→ 0,

Pn (‖ corr (Sn)− corr (VCn(rn)) ‖ ≥ ε) → 0 and

Pn

(

dw

(

Pn ◦
[

diag(Sn)
†/2
(

θ̂n − θ∗n

)]

, N(0, corr(Sn))
)

≥ ε
)

→ 0.

The last statement remains valid upon replacing Sn by VCn(rn).
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Proof. Lemma A.2 applied to the array zi,n = gi,n ◦ πi,n defined on the space
(Rn×ℓ,B(Rn×ℓ),Pn), where πi,n : Rn×ℓ → R1×ℓ extracts the i − th row of an
n×ℓmatrix (to verify Condition 3 we use Condition 1 and replace the Lindeberg
condition as discussed in Remark 2.2), shows that for every ε > 0 we have

Pn

(

‖ diag(VCn(rn))
−1 diag(Sn)− Ik‖ ≥ ε

)

→ 0, (B.1)

Pn (‖ corr (Sn)− corr (VCn(rn)) ‖ ≥ ε) → 0

and
Pn (dw (Pn ◦ r̂n,∗, N(0, corr(Sn))) ≥ ε) → 0,

where r̂n,∗ = diag(Sn)
†/2rn. The last part of Condition 1 together with Equation

(B.1) now shows that diag(Sn)
†/2∆n → 0 w.r.t. Pn, so that

r̂n,∗ = diag(Sn)
†/2
(

θ̂n − θ∗n

)

+ oPn(1),

which then proves the claim.

B.2. Proof of Theorem 2.3

For any (measurable) model selection procedure M̂n we have

Pn

(

θ
∗(j)

M̂n,n
∈ CI

(j),est

1−α,M̂n
for all j = 1, . . . ,m(M̂n)

)

≥ Pn

(

θ
∗(j)
M,n ∈ CI

(j),est
1−α,M for all M ∈ Mn and j ∈ {1, . . . ,m(M)}

)

.

It hence suffices to verify that the lower bound converges to 1 − α. And for
that (cf. Equation (B.2) below, and Condition 1) it suffices to verify that the
following quantity converges to 1− α:

Pn

(

‖ diag(Ŝn)
†/2(θ̂n − θ∗n)‖∞ ≤ K1−α(corr(Ŝn))

)

.

Lemma B.1 shows that for every ε > 0 we have

Pn

(

‖ diag(VCn(rn))
−1 diag(Sn)− Ik‖ ≥ ε

)

→ 0

Pn (‖ corr (Sn)− corr (VCn(rn)) ‖ ≥ ε) → 0

Pn

(

dw

(

Pn ◦
[

diag(Sn)
†/2(θ̂n − θ∗n)

]

, N(0, corr(Sn))
)

≥ ε
)

→ 0.

This also shows that the two conditions imposed on Ŝn in the statement of the
theorem are indeed equivalent. Furthermore, we immediately see that from any
of these two assumptions, together with the previous display, it follows that for
every ε > 0 we have

Pn

(

‖ diag(VCn(rn))
−1 diag(Ŝn)− Ik‖ ≥ ε

)

→ 0 (B.2)

Pn

(

‖ corr
(

Ŝn

)

− corr (VCn(rn)) ‖ ≥ ε
)

→ 0 (B.3)

Pn

(

dw

(

Pn ◦ r̄n,∗, N(0, corr(Ŝn))
)

≥ ε
)

→ 0,



Bachoc, Preinerstorfer, Steinberger / Valid inference post-model-selection 35

where r̄n,∗ = diag(Ŝn)
†/2(θ̂n − θ∗n). Next, let n

′ be an arbitrary subsequence of
n, and let n′′ be a subsequence of n′ along which the norm-bounded sequence
corr(VCn(rn)) converges to Σ̄, say. By (B.2) it holds that corr(Ŝn′′) converges to
Σ̄ in Pn′′-probability, and from the previous display it follows that Pn′′ ◦ r̄n′′,∗ ⇒
N(0, Σ̄). Combining these two statements, it then follows that

Pn′′ ◦ (r̄n′′,∗, corr(Ŝn′′)) ⇒ QΣ̄ ⊗ δΣ̄,

where QΣ̄ := N(0, Σ̄), and where δΣ̄ denotes point mass at Σ̄ ∈ Rk×k. Now,
define the map F : Rk ×Rk×k

s,≥0 → R via (z,Σ) 7→ ‖z‖∞−K1−α(Σ), where R
k×k
s,≥0

denotes the set of real, symmetric and nonnegative definite k × k dimensional
matrices, and note that the map F is continuous everywhere (cf. Lemma A.3). It
follows from the continuous mapping theorem together with the previous display
that

Pn′′ ◦ F (r̄n′′,∗, corr(Ŝn′′ )) ⇒ QΣ̄ ◦
(

‖.‖∞ −K1−α(Σ̄)
)

.

Since the diagonal elements of Σ̄ are ones (by its definition together with Con-
dition 1), one can easily show that the QΣ̄-probability of ‖.‖∞−K1−α(Σ̄) being
equal to 0 is 0. It hence follows from the Portmanteau theorem, together with
the definition of K1−α(Σ̄) and the previous display, that

Pn′′

(

‖ diag(Ŝn′′)†/2(θ̂n′′ − θ∗n′′)‖∞ ≤ K1−α(corr(Ŝn′′))
)

= Pn′′ ◦ F (r̄n′′,∗, corr(Ŝn′′)) ((−∞, 0])

→ QΣ̄

(

y ∈ Rk : ‖y‖∞ ≤ K1−α(Σ̄)
)

= 1− α.

This finishes the proof.

B.3. Proof of Proposition 2.4

As in the proof of Lemma B.1, Lemma A.2 applied to the array zi,n := gi,n◦πi,n
defined on (Rn×ℓ,B(Rn×ℓ),Pn) shows (in particular) that for every ε > 0

Pn

(

‖ diag(VCn(rn))
−1 diag(Sn)− Ik‖ ≥ ε

)

→ 0.

This shows that the two conditions given in the statement of the proposition are
indeed equivalent, and, together with Condition 1, it also shows that for every

j = 1, . . . , k we have Pn(
∑n

i=1[z
(j)
i,n ]

2 = 0) → 0. Now, for j = 1, . . . , k, we apply

the first part of Lemma A.4 (with ai,n(1) = g
(j)
i,n ◦ πi,n and bi,n = ĝ

(j)
i,n ◦ πi,n) to

obtain for every ε > 0 that

Pn

(

‖ diag(Sn)
† diag(Ŝn)− Ik‖ ≥ ε

)

→ 0.

Next, we can, in a similar way, apply the second part of Lemma A.4 to obtain

Pn

(

‖ corr
(

Ŝn

)

− corr (Sn) ‖ ≥ ε
)

→ 0.

This finishes the proof.
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B.4. Proof of Theorem 2.5

Similarly as in the proof of Theorem 2.3 we now need to verify that

lim inf
n→∞

Pn

(

‖ diag(ν̂2n)†/2 [rn +∆n] ‖∞ ≤ K̂n

)

≥ 1− α. (B.4)

We make the following preparatory observation: Denote the event on which κn
is well defined by An (recall that Pn(An) → 1), and let ε > 0. Observe that the
limit inferior in Equation (B.4) is not smaller than

lim inf
n→∞

Pn

(

κn‖ diag(VCn(rn))
−1/2 [rn +∆n] ‖∞ ≤ K1−α(corr(VCn(rn))), An

)

,

which, in turn, is bounded from below (using that κn is positive on An, and
Equation (2.5)) by

lim inf
n→∞

Pn

(

‖ diag(VCn(rn))
−1/2 [rn +∆n] ‖∞ ≤ K1−α(corr(VCn(rn)))

1 + ε

)

.

(B.5)
Now, we argue by contradiction, and suppose that (B.4) is false: Then there
exists a δ > 0, that can be chosen independently of ε, so that the limit inferior
in (B.4) is an element of [0, 1 − α − δ). Next, let n′(ε) denote a subsequence
along which (B.4) is attained. Arguing as in the proof of Theorem 2.3 (borrowing
some of its notation) we can obtain a subsequence n′′(ε) of n′(ε) along which
the sequence of probabilities in the preceding display converges to

QΣ̄(ε)

(

y ∈ Rk : ‖y‖∞ ≤ K1−α(Σ̄(ε))

1 + ε

)

∈ [0, 1− α− δ).

Note that ε > 0 was arbitrary, and let εm > 0 converge to 0. Assume (oth-
erwise pass to a subsequence) that the sequence of correlation matrices Σ̄(εm)
(with diagonal entries equal to 1) converges to Σ̄, say. It is then not difficult to
obtain (by a weak convergence argument involving Portmanteau theorem) the
contradiction

QΣ̄(εm)

(

y ∈ Rk : ‖y‖∞ ≤ K1−α(Σ̄(εm))

1 + εm

)

−−−−→
m→∞

QΣ̄

(

y ∈ Rk : ‖y‖∞ ≤ K1−α(Σ̄)
)

= 1− α.

The remaining part follows immediately from what we have already established.

B.5. Proof of Proposition 2.6

Fix j and note that with the same notation and argumentation as in the begin-
ning of the proof of Proposition 2.4, for every ε > 0, it holds that

Pn

(∣

∣

∣

∣

∣

∑n
i=1[z

(j)
i,n]

2

∑n
i=1 Vn(z

(j)
i,n)

− 1

∣

∣

∣

∣

∣

≥ ε

)

→ 0. (B.6)
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Obviously, setting z̃i,n = g̃i,n ◦ πi,n we obtain

z̃
(j)
i,n =

(

ẑ
(j)
i,n − z

(j)
i,n

)

+ z
(j)
i,n + a

(j)
i,n.

Equation (2.4), or equivalently (equivalence being due to Equation (B.5) above)

Equation (2.4), together with Part 3 of Lemma A.4 (applied with: ai,n(1) = z
(j)
i,n,

bi,n(1) =
(

ẑ
(j)
i,n − z

(j)
i,n

)

+ z
(j)
i,n and ci,n = a

(j)
i,n) now shows that

Pn

(

∑n
i=1[z̃

(j)
i,n]

2

∑n
i=1 Vn(z

(j)
i,n)

≤ 1− ε

)

→ 0 for every ε > 0,

implying the claimed statement. Note that Equation (3) in Lemma A.4 is satis-
fied here because Condition 1 (in particular the Lindeberg condition in Equation
(1)) implies the corresponding Feller condition

maxi=1,...,nVn(z
(j)
i,n)

∑n
i=1 Vn(z

(j)
i,n)

→ 0.

All remaining assumptions in Part 3 of Lemma A.4 can be easily checked using
Condition 1, (2.4) and (B.5).

B.6. Proof of Lemma 2.8

Let ω := rank(Γ) and let Z ∼ N(0,Γ). Since Γ is a correlation matrix of rank
ω, by the spectral decomposition, we can find a k × ω-dimensional matrix V
so that V V ′ = Γ. In particular if ε ∼ N(0, Iω) it holds that V ε ∼ N(0,Γ),
and hence the 1 − α-quantiles of the distributions of ‖Z‖∞ and of ‖V ε‖∞ =
maxi=1,...,k |viε| coincide, vi denoting the i-th row of V . Since Γ is a correlation
matrix it furthermore holds that each row vi of V has Euclidean norm less than
or equal to 1. From the discussion after the definition of Bα it then follows that
K1−α(Γ), the 1 − α-quantile of the distributions of ‖Z‖∞, is not greater than
Bα(ω, k).

Appendix C: Proofs for Section 3

C.1. Proof of Proposition 3.3

Fix δ > 0, τ ≥ 1, n ∈ N, Pn ∈ P
(lm)
n (δ, τ) and M ∈ Mn with corresponding index

set M ∈ I. Abbreviate µn = µ(Pn), σ
2
n = m2(P1,n), m = |M |, un = un(y) =

y − µn and HM = In − PXn[M ]. The mean of σ̂2
M,n(y) = (n − m)−1y′HMy is
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easily seen to be En[σ̂
2
M,n] = µ′

nHMµn/(n−m) + σ2
n, eventually. Now consider

∣

∣

∣

∣

∣

σ̂2
M,n

En[σ̂2
M,n]

− 1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

2µnHMun/(n−m) + u′nHMun/(n−m)− σ2
n

µ′
nHMµn/(n−m) + σ2

n

∣

∣

∣

∣

=

∣

∣

∣

∣

2(µn/σn)HM (un/σn)/(n−m) + (un/σn)
′HM (un/σn)/(n−m)− 1

(µn/σn)′HM (µn/σn)/(n−m) + 1

∣

∣

∣

∣

≤ 2

∣

∣

∣

∣

(µn/σn)HM (un/σn)

(µn/σn)′HM (µn/σn) + (n−m)

∣

∣

∣

∣

+

∣

∣

∣

∣

(un/σn)
′HM (un/σn)

n−m
− 1

∣

∣

∣

∣

.

The first fraction on the last line of the previous display converges to zero in
Pn-probability, because its mean is 0 and its variance is upper bounded by
‖HMµn/σn‖2/(‖HMµn/σn‖4 + (n −m)2), which converges to 0, as is seen by
maximizing it with respect to ‖HMµn/σn‖2. To show that the second fraction
converges to one, abbreviate the random n-vector vn = un/σn, and note that
vn has independent standardized components under Pn. Now decompose the
quadratic form as

v′nHMvn
n−m

=
1

n−m

n
∑

i=1

(HM )iiv
2
i,n +

1

n−m

∑

i6=j

(HM )ijvi,nvj,n,

and note that (n−m)−1
∑

i6=j(HM )ijvi,nvj,n has mean zero and variance equal

to (n−m)−2
∑

i6=j [(HM )ij ]
2 ≤ (n−m)−2 trace(H2

M ) = (n−m)−1 → 0. To show

that (n−m)−1
∑n

i=1(HM )iiv
2
i,n converges to one, we use a standard truncation

argument. ForK > 0 define ṽi,n = vi,n{|vi,n| ≤ K}, Sn = 1
n−m

∑n
i=1(HM )iiv

2
i,n,

S̃n = 1
n−m

∑n
i=1(HM )iiṽ

2
i,n and

Dn := Sn − S̃n =
1

n−m

n
∑

i=1

(HM )iiv
2
i,n{|vi,n| > K} ≥ 0.

Using Hölder’s inequality and Markov’s inequality, the mean of Dn can be
bounded by

En[Dn] ≤
1

n−m

n
∑

i=1

(HM )ii
(

En[|vi,n|2+δ]
)2/(2+δ)

Pn(|vi,n| > K)δ/(2+δ)

≤ τK− 2δ
2+δ .

Now for ε > 0,

Pn(|Sn − 1| > ε)

≤ Pn(|Sn − S̃n| > ε/2) + Pn(|S̃n − En[S̃n] + En[S̃n]− 1| > ε/2)

≤ 2τK− 2δ
2+δ /ε+ 16Vn[S̃n]/ε

2 + Pn(τK
− 2δ

2+δ > ε/4).

Since the variance of S̃n clearly converges to zero as n → ∞, for every K > 0,
the limit superior of Pn(|Sn − 1| > ε) is bounded by a quantity that approaches
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zero as K → ∞. Thus, we have established the convergence σ̂2
M,n/En[σ̂

2
M,n] → 1,

in Pn-probability. Therefore, we can write

σ̂2
M,n

σ2
n

=
σ̂2
M,n

En[σ̂2
M,n]

En[σ̂
2
M,n]

σ2
n

= (1 + oPn(1))

(

(µn/σn)
′HM (µn/σn)

n−m
+ 1

)

,

which finishes the proof.

C.2. Proof of Theorem 3.2

Let Pn ∈ P
(lm)
n (δ, τ) for every n ∈ N. Let (Ω,A,P) be a probability space that

carries a triangular array of random variables y1,n, . . . , yn,n for n ∈ N so that
y1,n, . . . , yn,n are independent for every n ∈ N, and so that the distribution of
yn = (y1,n, . . . , yn,n)

′ on the Borel sets of Rn coincides with Pn. The expectation,
variance and variance-covariance matrix operators w.r.t. P are denoted by E, V
and VC, respectively. The expectation, variance and variance-covariance matrix
operators w.r.t. Pn are denoted by En and Vn and VCn, respectively, and the ex-

pectation operator w.r.t. Pi,n is denoted by Ei,n. Now, from Pn ∈ P
(lm)
n (δ, τ) we

conclude that: E (yi,n) =: µi,n exists, furthermore we let µn = (µ1,n, . . . , µn,n)
′;

V(yi,n) exists, is positive, does not depend on i, and will be denoted by σ2
n; we

also let ui,n(yi,n) := yi,n − µi,n, set un(yn) = (u1,n(y1,n), . . . , un,n(yn,n))
′, and

note that
maxi=1,...,n Ei,n(|ui,n|2+δ)

2
2+δ

σ2
n

≤ τ. (C.1)

We now verify Condition 1 (with ∆n ≡ 0): LetMl be the index set corresponding
to model Ml,n ∈ Mn, l = 1, . . . , d. Define the stacked vector of estimators

θ̂n = (β̂′
M1,n

, . . . , β̂′
Md,n

)′ and define the corresponding stacked vector of targets

θ∗n = (β∗′

M1,n
, . . . , β∗′

Md,n
)′, where we recall that for every l = 1, . . . , d

β∗
Ml,n = (Xn[Ml]

′Xn[Ml])
−1
Xn[Ml]

′µn = U(l, n)−1Xn[Ml]
′µn,

for U(l, n) := (Xn[Ml]
′Xn[Ml]). Let j ∈ {1, . . . , k} be arbitrary. The j-th coor-

dinate of the vector
rn(yn) := θ̂n(yn)− θ∗n

can be written as

n
∑

i=1

e′|Ml|
(h)U(l, n)−1Xi,n[Ml]

′ui,n =:
n
∑

i=1

wl,h,i,nui,n.

for an obvious choice of l = l(j) ∈ {1, . . . , d} and h = h(j) ∈ {1, . . . , |Ml(j)|},
where em(h) denotes the h-th element of the canonical basis of Rm. Next, define
the function gi,n : R1×1 → Rk via

g
(j)
i,n(y) = wl(j),h(j),i,n(y − µi,n), j = 1, . . . , k.



40 Bachoc, Preinerstorfer, Steinberger / Valid inference post-model-selection

By definition Ei,n

(

g
(j)
i,n

)

= 0 and 0 < Vn

(

r
(j)
n

)

< ∞ holds (eventually), the

latter following from

Vn

(

r(j)n

)

= σ2
ne

′
|Ml(j)|

(h(j))U(l(j), n)−1e|Ml(j)|(h(j)) (C.2)

together with Condition X1. We now verify that for every ε > 0 it holds that

V−1
n

(

r(j)n

)

n
∑

i=1

∫

R

[

g
(j)
i,n

]2 {

|g(j)i,n| ≥ εV
1
2
n

(

r(j)n

)}

dPi,n → 0. (C.3)

An application of Hölder’s inequality (with p = 2+δ
2 and q = 2+δ

δ ) shows that
the quantity to the left in the previous display is bounded from above by

maxi=1,...,n Ei,n(|ui,n|2+δ)
2

2+δ

σ2
n

(

max
i=1,...,n

Pi,n

(

|g(j)i,n| ≥ εV
1
2
n

(

r(j)n

))

)
δ

2+δ

,

which, using the bound (C.2) above and Markov’s inequality, does not exceed

τ

(

maxi=1,...,n w
2
l(j),h(j),i,n

∑n
i=1 w

2
l(j),h(j),i,n

)
δ

2+δ

ε−
2δ

2+δ . (C.4)

Finally, since the term within brackets coincides with

max
i=1,...,n

(

Xi,n[Ml(j)]U(l(j), n)−
1
2
Wj,n

‖Wj,n‖
U(l(j), n)−

1
2Xi,n[Ml(j)]

′

)

,

for

Wj,n = U(l(j), n)−
1
2 e|Ml(j)|(h(j))e

′
|Ml(j) |

(h(j))U(l(j), n)−
1
2 ,

and since this quantity is not greater than

max
i=1,...,n

Xi,n[Ml(j)]U(l(j), n)−1Xi,n[Ml(j)]
′ → 0,

where convergence holds by Condition X1, the statement in (C.2) follows. Since
j was arbitrary, we have verified Condition 1.

Now, for j ∈ {1, . . . , k}, set ν̂2j,n = σ̂2
Ml(j),n

[(Xn[Ml(j)]
′Xn[Ml(j)])

−1]h(j) =

σ̂2
Ml(j),n

e′|Ml(j)|
(h(j))U(l(j), n)−1e|Ml(j)|(h(j)). Thus, using (C.2) and Proposi-

tion 3.3, we see that

Pn

(√

[VCn(rn)]j
ν̂2j,n

≥ 1 + ε

)

= Pn

(
√

σ2
n

σ̂2
Ml(j),n

≥ 1 + ε

)

→ 0.

Finally, note that
VCn(rn) = σ2

nΓn,
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and thatK1−α(corr(Γn)) = K1−α(corr(VCn(rn))) > 0. It now follows from The-
orem 2.5 (the special case with K̂n = K1−α(corr(Γn)), that for any (measurable)

model selection procedure M̂n it holds that

lim inf
n→∞

Pn

(

β
∗,(j)

M̂n,n
∈ CI

(j),lm

1−α,M̂n
for all j = 1, . . . ,m(M̂n)

)

≥ 1− α.

The theorem now follows because the selection Pn we started with was arbitrary.

C.3. Proof of Lemma 3.4

We argue by contradiction, and assume existence of a sequence of measurable
functions (σ̂2

n)n∈N with σ̂2
n : Rn → [0,∞) and so that for every ε > 0 Equation

(3.4) holds. First, we define for every x ∈ Rn and every ρ > 0 the measure

Qn(x, ρ) =

n
⊗

i=1

(

Q(xi) ∗N(0, ρ)

)

,

where Q(xi) puts mass 1/2 to xi + 1 and to xi − 1, respectively, and Q(xi) ∗
N(0, ρ) denotes the convolution of Q(xi) andN(0, ρ), where we interpretN(0, 0)
as point mass at 0, i.e., Q(xi) ∗ N(0, 0) = Q(xi). We note that Qn(x, 0) ∈
P

(lm)
n (δ, τ), because m2+h(Q(xi))

2
2+h = 1 for every h ≥ 0, and since τ > 1 holds

by assumption. It is easy to verify that for every h ≥ 0 we have m2+h(Q(xi) ∗
N(0, ρ))

2
2+h → 1 as ρ → 0. Hence there exists a ρ∗ > 0 so that for every

0 ≤ ρ ≤ ρ∗ and every x ∈ Rn we have Qn(x, ρ) ∈ P
(lm)
n (δ, τ). Therefore, by our

assumption, it holds for every ε > 0 that

sup
x∈Rn

sup
0≤ρ≤ρ∗

Qn(x, ρ)

(∣

∣

∣

∣

σ̂2
n

1 + ρ
− 1

∣

∣

∣

∣

> ε

)

→ 0. (C.5)

Next, let (F,F ,Q) be a probability space on which, for every n, there are defined

two independent random n-vectors X
(1)
n and X

(2)
n , so that Q ◦X(1)

n ∼ Qn(0, 0)

and Q ◦ X(2)
n ∼ N(0, ρ∗In), and hence the distribution of Yn := X

(1)
n + X

(2)
n

is Qn(0, ρ
∗). Let ε > 0 be fixed. From the previous display it follows that

Q(|σ̂2
n(Yn)− (1 + ρ∗)| > ε) converges to 0. Since the conditoinal distribution of

Yn given X
(2)
n is Qn(X

(2)
n , 0), it furthermore holds that

Q(|σ̂2
n(Yn)− (1 + ρ∗)| > ε) = EQ

(

Qn(X
(2)
n , 0)(|σ̂2

n − (1 + ρ∗)| > ε)
)

→ 0,

from which it now follows that In(ω) = Qn(X
(2)
n (ω), 0)(|σ̂2

n − (1 + ρ∗)| > ε) →
0 in Q-probability as n → ∞. Thus, there exists a subsequence n′ so that
In′ → 0, Q-almost surely. As a consequence, there exists ω̄ ∈ Ω for which

In′(ω̄) → 0 as n′ → ∞. But this now means that for xn′ = X
(2)
n′ (ω̄) it holds that

Qn′(xn′ , 0)(|σ̂2
n′ − (1 + ρ∗)| > ε) → 0. Since ρ∗ > 0, this contradicts Equation

(C.3) which implies Qn′(xn′ , 0)(|σ̂2
n′ − 1| > ε) → 0.
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C.4. Proof of Theorem 3.5

We proceed as in the proof of Theorem 3.2, noting that now V(yi,n) exists and
is positive, but might depend on i and is hence denoted by σ2

i,n. The bound
(C.2) in the proof of Theorem 3.2 is now replaced by

maxi=1,...,n Ei,n(|ui,n|2+δ)
2

2+δ

mini=1,...,n σ2
i,n

≤ τ. (C.6)

To verify Condition 1 we replace (C.2) in the proof of Theorem 3.2 by

Vn

(

r(j)n

)

= e′|Ml(j)|
(h(j))U(l(j), n)−1

n
∑

i=1

σ2
i,nXi,n[Ml(j)]

′Xi,n[Ml(j)]

× U(l(j), n)−1e|Ml(j)|(h(j))

which, replacing each σ2
i,n by mini=1,...,n σ

2
i,n > 0, is seen to be eventually posi-

tive by Condition X1. For the verification of the Lindeberg condition (C.2) we
use essentially the same argument as in the proof of Theorem 3.2, now using
(C.4) above. Hence, Condition 1 holds and we then obtain from Lemma B.1,

Pn

(

‖ diag(VCn(rn))
−1 diag(Sn)− Ik‖ ≥ ε

)

→ 0 for every ε > 0,

where

[Sn]s,t =

n
∑

i=1

wl(s),h(s),i,nwl(t),h(t),i,nu
2
i,n.

Now, for l ∈ {1, . . . , d} we define ûi,l,n = yi,n−Xi,n[Ml]β̂Ml,n(yn), and note that
for every h ∈ {1, . . . , |Ml|} we have

∑n
i=1 w

2
l,h,i,n

(

Xi,n[Ml]U
−1(l, n)Xn[Ml]

′un
)2

Vn (
∑n

i=1 wl,h,i,nui,n)
(C.7)

≤
maxi=1,...,n w

2
l,h,i,n

∑n
i=1 w

2
l,h,i,n

× u′nXn[Ml]U
−1(l, n)Xn[Ml]

′un
mini=1,...,n σ2

i,n

,

that the first ratio in the upper bound converges to 0 by an argument as in the
proof of Theorem 3.2 based on Condition X1 (cf. (C.2)), and that the second
ratio is non-negative, with (using Equation (C.4)) an expectation bounded from
above by

|Ml|maxi=1,...,n σ
2
i,n

mini=1,...,n σ2
i,n

≤ |Ml|τ.

Therefore, the quantity in the first line of Display (C.4) converges to 0 in Pn-
probability, and we can apply Part 3 of Lemma A.4 (with ai,n(1) = wl,h,i,nui,n,
bi,n(1) = wl,h,i,n

(

ui,n −Xi,n[Ml]U
−1(l, n)Xn[Ml]

′un
)

, and ci,n = wl,h,i,n(µi,n−
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Xi,n[Ml]β
∗
Ml,n

))) to obtain that for every l ∈ {1, . . . , d}, every h ∈ {1, . . . , |Ml|},
and every ε > 0 we have

Pn

(√

Vn(
∑n

i=1 wl,h,i,nui,n)
∑n

i=1 w
2
l,h,i,nû

2
i,l,n

≥ 1 + ε

)

→ 0.

Note that Vn(
∑n

i=1 wl(j),h(j),i,nui,n) = [VCn(rn)]j and
∑n

i=1 w
2
l,h,i,nû

2
i,l,n =

σ̂2
h,Ml,n

. By Lemma 2.8 we have thatBα(min(k, p), k) ≥ K1−α(corr(VCn(rn))) >
0 (it is easy to see that the rank of the k × k-dimensional matrix VCn(rn) can
not exceed p), so we can now apply the special case discussed in Theorem 2.5
to conclude that

lim inf
n→∞

Pn

(

β
∗,(j)

M̂n,n
∈ CI

(j),hlm

1−α,M̂n
for all j = 1, . . . ,m(M̂n)

)

≥ 1− α,

which proves the claim as the family Pn ∈ P
(het)
n (δ, τ) was arbitrary.

C.5. Proof of Lemma 3.8

Fix M ∈ Mn and P ∈ ⋃δ>0 P
(bin)
n (δ) and recall that M , (h,M) ∈ H × I. For

i = 1, . . . , n, we abbreviate πi = Pi({1}) and for γ ∈ R, φ1(γ) = log(h(γ)),
φ2(γ) = log(1 − h(γ)), and we note that πi ∈ (0, 1). Thus, the expected log-
likelihood function can be expressed as

β 7→
∫

Rn

ℓM,n(y, β) dP(y) =

n
∑

i=1

[πiφ1(Xi,n[M ]β) + (1− πi)φ2(Xi,n[M ]β)] .

(C.8)
The function in the previous display is continuous on its domain R|M|, by Con-
dition H(i). To see that it also has a maximizer on R|M|, consider an arbitrary
sequence βk ∈ R|M| such that ‖βk‖ → ∞ as k → ∞. Then ‖Xn[M ]βk‖2 ≥
‖βk‖2λmin(Xn[M ]′Xn[M ]) → ∞ as k → ∞, by Condition X2(i), so that at least
for a sequence ik ∈ {1, . . . , n}, we must have |Xik,n[M ]βk| → ∞ as k → ∞.
Therefore, using the fact that πi ∈ (0, 1) for i = 1, . . . , n, it is easy to see that
the sequence of summands in (C.5) corresponding to the indices ik, k ∈ N, with
β replaced by βk, converges to −∞ as k → ∞. Since for each k the remaining
summands in (C.5) are non-positive, we see that the expected likelihood di-
verges to −∞ along (βk), and thus, by continuity, attains its maximum at some
β∗
M,n(P, Xn[M ]) ∈ R|M|.

For uniqueness, we show that the function in (C.5) is strictly concave. Take
β1, β2 ∈ R|M|, β1 6= β2 and α ∈ (0, 1), and note that because Xn[M ] is of full
rank |M |, we must have Xn[M ]β1 6= Xn[M ]β2. Thus, there is at least one i0 ∈
{1, . . . , n} such that Xi0,n[M ]′β1 6= Xi0,n[M ]′β2, and, by strict concavity (Con-
dition H(ii)), φj(αXi0,n[M ]′β1+(1−α)Xi0,n[M ]′β2) > αφj(Xi0,n[M ]′β1)+(1−
α)φj(Xi0,n[M ]′β2), for j = 1, 2. For the remaining indices i 6= i0, the same in-
equalities hold, but are possibly not strict. Therefore, the expected log-likelihood
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in (C.5) is strictly concave and has a unique maximizer β∗
M,n(P, Xn[M ]) ∈ R|M|.

C.6. Auxiliary results for Section 3.3

Lemma C.1. Suppose that Conditions X2(i,ii) and H(i,ii) hold and fix τ > 0.
There exists a finite positive constant K∗(τ, C), depending only on τ and the
constant C from Condition X2(ii), such that eventually

max
i=1,...,n

|Xi,n[M ]β∗
M,n(P)| ≤ K∗(τ, C)

for all P ∈ P
(bin)
n (τ) and all M ∈ Mn. Here, β

∗
M,n(P) is the pseudo parameter

from Lemma 3.8.

Proof. We begin by establishing the following preliminary result. For every pair
(h,M) ∈ H × I, there exists a bounded set Bh,M (τ, C) ⊆ R|M|, such that

eventually U
1/2
M,nβ

∗
M,n(P) ∈ Bh,M (τ, C), for all P ∈ P

(bin)
n (τ), where UM,n =

Xn[M ]′Xn[M ]/n. Here, C > 0 is the constant from Condition X2. Fix (h,M) ∈
H × I and t > 0, and define gh(t) = sup|γ|>tmin{φ1(γ), φ2(γ)} and the set
Bh,M (τ, C) by

Bh,M (τ, C) = {v ∈ R|M| : gh(‖v‖/
√
2) ≥ 2C[φ1(0) + φ2(0)]/τ},

where φ1 and φ2 are as in Condition H(ii). Note that, indeed, Bh,M (τ, C) is
bounded, because gh(t) → −∞ as t → ∞, in view of Condition H(i). Next, fix
n large enough, such that Conditions X2(i,ii) hold. Then the pseudo parameter
β∗
M,n of Lemma 3.8 uniquely exists. For β ∈ R|M| and ξ > 0, define Rβ,n(ξ) =

{i ≤ n : |Xi,n[M ]β| ≥ ξ‖U1/2
M,nβ‖}. Now fix ξ > 0 and β ∈ R|M| such that

‖U1/2
M,nβ‖ = 1, and observe that

1 = β′Xn[M ]′Xn[M ]β/n =
1

n

n
∑

i=1

(Xi,n[M ]U
−1/2
M,n U

1/2
M,nβ)

2

≤ ξ2 +
1

n

∑

i∈Rβ,n(ξ)

‖U−1/2
M,n Xi,n[M ]′‖2 ≤ 1

n
|Rβ,n(ξ)|C + ξ2,

which implies that infβ∈R|M| |Rβ,n(ξ)| = inf
β:‖U

1/2
M,nβ‖=1

|Rβ,n(ξ)| ≥ n(1−ξ2)/C.
Since φ1 and φ2 are negative, we get for every P ∈ P

(bin)
n (τ), every β ∈ R|M|

and for ξ = 1/
√
2, that

EP[ℓM,n(·, β)] ≤
∑

i∈Rβ,n(ξ)

Pi({1})Pi({0})
(

φ1(Xi,n[M ]β) + φ2(Xi,n[M ]β)
)

≤ τ |Rβ,n(ξ)| gh(ξ‖U1/2
M,nβ‖) ≤ n

τ

2C
gh(‖U1/2

M,nβ‖/
√
2),
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where M , (h,M). Therefore, we have n[φ1(0) + φ2(0)] ≤ EP[ℓM,n(·, 0)] ≤
EP[ℓM,n(·, β∗

M,n(P)] ≤ nτgh(‖U1/2
M,nβ

∗
M,n‖/

√
2)/(2C), which yields

gh(‖U1/2
M,nβ

∗
M,n‖/

√
2) ≥ [φ1(0) + φ2(0)]2C

τ
,

i.e., U
1/2
M,nβ

∗
M,n(P) ∈ Bh,M (τ, C). So we have established the preliminary result.

Since the bounded set Bh,M (τ, C) depends only on the indicated quantities,
there exists a finite positive constant K∗

h,M (τ, C), depending on the same quan-

tities, such that for all large n, for all P ∈ P
(bin)
n (τ) and for all M ∈ Mn,

max
i

|Xi,n[M ]β∗
M,n(P)| ≤ max

i
‖U−1/2

M,n Xi,n[M ]′‖‖U1/2
M,nβ

∗
M,n(P)‖

≤
√
CK∗

h,M (τ, C) ≤ max
(h,M)∈H×I

√
CK∗

h,M (τ, C) =: K∗(τ, C).

This finishes the proof.

Lemma C.2. Suppose that Conditions X2(i,ii) and H(i,ii,iii) hold and fix τ >
0.

(i) There exist positive constants K(τ, C) and K(τ, C), depending only on τ and
the constant C from Condition X2(ii), such that for all sufficiently large n ∈ N,

for all M ∈ Mn, all P ∈ P
(bin)
n (τ) and all y ∈ {0, 1}n,

K(τ, C) ≥ λmax

(

(Xn[M ]′Xn[M ])−1/2H∗
M,n(y)(Xn[M ]′Xn[M ])−1/2

)

≥ λmin

(

(Xn[M ]′Xn[M ])−1/2H∗
M,n(y)(Xn[M ]′Xn[M ])−1/2

)

≥ K(τ, C),

where H∗
M,n(y) := HM,n(y, β

∗
M,n(P)), HM,n(y, β) = −∂2ℓM,n(y,β)

∂β∂β′ with β ∈ Rm(M)

and β∗
M,n(P) is the pseudo parameter of Lemma 3.8.

(ii) For δ > 0 and n sufficiently large, such that the pseudo parameter β∗
M,n of

Lemma 3.8 exists, define

NM,P,n(δ) =
{

β ∈ Rm(M) :
∥

∥

∥(Xn[M ]′Xn[M ])1/2(β − β∗
M,n(P))

∥

∥

∥ ≤ δ
}

.

Then, for every δ > 0,

sup
M∈Mn

P∈P
(bin)
n (τ)

sup
y∈{0,1}n

sup
β∈NM,P,n(δ)

∥

∥

∥H∗
M,n(y)

−1/2HM,n(y, β)H
∗
M,n(y)

−1/2 − Im(M)

∥

∥

∥

converges to zero as n→ ∞.
(iii) Suppose that, in addition, also Condition X2(iii) holds. Then there exists a
positive finite constant K(τ, C), depending only on τ and the constant C from
Condition X2, such that eventually

sup
M∈Mn

sup
P∈P

(bin)
n (τ)

λmax(EP[H
∗
M,n])

λmin(EP[H∗
M,n])

≤ K(τ, C).
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Proof. First, fix n large enough, such that the bound of Condition X2(ii) holds,
the pseudo parameter of Lemma 3.8 exists and the bound of Lemma C.1 applies.

Fix M ∈ Mn and P ∈ P
(bin)
n (τ). Since HM,n(y, β) = Xn[M ]′DM,n(y, β)Xn[M ],

for a diagonal matrix DM,n(y, β) whose i-th diagonal entry is given by

−yiφ̈1(Xi,n[M ]β)− (1 − yi)φ̈2(Xi,n[M ]β) > 0,

in view of Conditions H(i,ii,iii), we see that H∗
M,n(y) is positive definite. More-

over, from continuity and positivity of −φ̈j , j = 1, 2, Lemma C.1 and finiteness
of H, we conclude that the diagonal entries of DM,n(y, β

∗
M,n(P)) are lower and

upper bounded by positive constants that depend only on τ and C. This finishes
the claim in (i). Consider now

sup
β∈NM,P,n(δ)

‖H∗
M,n(y)

−1/2HM,n(y, β)H
∗
M,n(y)

−1/2 − Im(M)‖

≤ ‖Xn[M ]H∗
M,n(y)

−1/2‖2 sup
β∈NM,P,n(δ)

‖DM,n(y, β)−DM,n(y, β
∗
M,n(P)‖

≤ ‖Xn[M ](Xn[M ]′Xn[M ])−1Xn[M ]′‖
mini=1,...,n(−yiφ̈1(Xi,n[M ]β∗

M,n)− (1− yi)φ̈2(Xi,n[M ]β∗
M,n))

×

sup
β∈NM,P,n(δ)

max
i=1,...,n
j=1,2

|φ̈j(Xi,n[M ]β)− φ̈j(Xi,n[M ]β∗
M,n)|. (C.9)

We have just seen that the minimum on the far right side of the previous display
is lower bounded by a positive constant that depends only on τ and C. To finish
the proof, note that for β ∈ NM,P,n(δ), we have

|Xi,n[M ]β −Xi,n[M ]β∗
M,n|

≤ ‖Xi,n[M ](Xn[M ]′Xn[M ])−1/2‖‖(Xn[M ]′Xn[M ])1/2(β − β∗
M,n)‖ ≤ δ

√

C/n

and that |Xi,n[M ]β∗
M,n| ≤ K∗(τ, C), by Lemma C.1. Therefore, by uniform

continuity of φ̈j on the compact interval [−K∗(τ, C)− δ
√
C,K∗(τ, C) + δ

√
C],

for every η > 0, there exists n0 = n0(η, τ, δ, C, h), such that the supremum in
(C.6) is bounded by η, for all n ≥ n0. Since H is finite, the proof of (ii) is
finished. For part (iii), simply combine part (i) and Condition X2(iii).

C.7. Proof of Lemma 3.9

The proof is a variation of the consistency part of the proof of Theorem 4 in
Fahrmeir (1990). Fix n large enough, such that the bound of Condition X2(ii)
holds, the pseudo parameter of Lemma 3.8 exists and the bound of Lemma C.1

applies. Fix M ∈ Mn and P ∈ P
(bin)
n (τ), write β∗

M,n = β∗
M,n(P) and note that by

Condition H(iii), the function β 7→ ℓM,n(y, β) is twice continuously differentiable
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on Rm(M) and thus, for every y ∈ {0, 1}n, admits the expansion

ℓM,n(y, β) = ℓM,n(y, β
∗
M,n) + (β − β∗

M,n)
′U

1/2
M,nU

−1/2
M,n s∗M,n(y)

− 1

2
(β − β∗

M,n)
′U

1/2
M,nU

−1/2
M,n HM,n(y, β̃n)U

−1/2
M,n U

1/2
M,n(β − β∗

M,n),

for some β̃ ∈ {aβ+(1−a)β∗
M,n : a ∈ [0, 1]}, and where s∗M,n(y) =

∂ℓM,n(y,β)
∂β

∣

∣

∣

β=β∗
M,n

,

HM,n(y, β) = −∂ℓM,n(y,β)
∂β∂β′ , and UM,n = Xn[M ]′Xn[M ]/n. For δ > 0, define

λn =
√
nU

1/2
M,n(β − β∗

M.n)/δ to rewrite the previous equation as

ℓM,n(y, β) − ℓM,n(y, β
∗
M,n) = δλ′nU

−1/2
M,n s∗M,n(y)/

√
n

− 1

2
δ2λ′nU

−1/2
M,n (HM,n(y, β̃n)/n)U

−1/2
M,n λn,

for all β ∈ Rm(M) and all y ∈ {0, 1}n. ForNn(δ) := NM,P,n(δ) as in Lemma C.2(ii),

define Ln(y, δ) := infβ∈Nn(δ) λmin

(

U
−1/2
M,n (HM,n(y, β)/n)U

−1/2
M,n

)

, take β ∈ ∂Nn(δ) =

{β ∈ Rm(M) : ‖√nU1/2
M,n(β − β∗

M,n)‖ = δ} and observe that now ‖λn‖ = 1,

δλ′nU
−1/2
M,n s∗M,n(y)/

√
n ≤ δ‖U−1/2

M,n s∗M,n(y)/
√
n‖ and

1

2
δ2Ln(y, δ) ≤ 1

2
δ2λmin

(

U
−1/2
M,n (HM,n(y, β̃)/n)U

−1/2
M,n

)

≤ 1

2
δ2λ′nU

−1/2
M,n (HM,n(y, β̃)/n)U

−1/2
M,n λn,

for all y ∈ {0, 1}n. Therefore, we have the inclusion

EM,P,n(δ) := {y ∈ {0, 1}n : δ‖U−1/2
M,n s∗M,n(y)/

√
n‖ < δ2Ln(y, δ)/2}

⊆ {y ∈ {0, 1}n : ∀β ∈ ∂Nn(δ) : ℓM,n(y, β) < ℓM,n(y, β
∗
M,n)} =: Fn(δ).

As a consequence, for every y ∈ EM,P,n(δ), the function β 7→ ℓM,n(y, β) has a

local maximum β̂M,n(y) on the interior of Nn(δ). By strict concavity (Condi-
tions H(ii) and X2(i)), this is a unique global maximum. Moreover, we have

Fn(δ) ⊆ {y : β̂M,n(y) ∈ Nn(δ)} = {y : ‖√nU1/2
M,n(β̂M,n(y)− β∗

M,n)‖ ≤ δ}. Hence,

P(‖
√
nU

1/2
M,n(β̂M,n(y)− β∗

M,n)‖ > δ) ≤ P(EM,P,n(δ)
c).

It remains to verify that P(EM,P,n(δ)
c) is small for large n, uniformly in M and

P. Take ε > 0 and note that

P(EM,P,n(δ)
c) ≤ P(4‖U−1/2

M,n s∗M,n(·)/
√
n‖2 ≥ δ2L2

n(·, δ), L2
n(·, δ) ≥ ε2)

+ P(L2
n(·, δ) < ε2) (C.10)

≤ P(4‖U−1/2
M,n s∗M,n(·)/

√
n‖2 ≥ δ2ε2) + P(L2

n(·, δ) < ε2)

≤ 4
trace(U

−1/2
M,n VCP(s

∗
M,n/

√
n)U

−1/2
M,n )

δ2ε2
+ P(Ln(·, δ) < ε),
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in view of Markov’s inequality and since EP[s
∗
M,n] = 0. Note that VCP(s

∗
M,n) =

Xn[M ]′V ∗
M,P,nXn[M ], for a diagonal matrix V ∗

M,P,n whose diagonal entries satisfy

[V ∗
M,P,n]ii = Pi({1})Pi({0})(φ̇1(Xi,nβ

∗
M,n)− φ̇2(Xi,nβ

∗
M,n))

2

≤ sup
|γ|≤K∗(τ,C)

(φ̇1(γ)− φ̇2(γ))
2,

for the constant K∗(τ, C) of Lemma C.1. Thus, the trace on the last line of dis-
play (C.7) is bounded by pmaxh∈H sup|γ|≤K∗(τ,C)(φ̇1(γ)− φ̇2(γ))

2, which does
not depend on n, M or P. Finally, to bound the remaining probability, note

that Ln(y, δ) is lower bounded by the product of λmin(U
−1/2
M,n H∗

M,n(y)U
−1/2
M,n )/n

and infβ∈Nn(δ) λmin(H
∗
M,n(y)

−1/2HM,n(y, β)H
∗
M,n(y)

−1/2). The first factor is it-
self lower bounded by the positive constant K(τ, C) from Lemma C.2(i). Thus,
P(Ln(·, δ) < ε) is upper bounded by

P

(

sup
β∈Nn(δ)

∥

∥

∥
H∗

M,n(y)
−1/2HM,n(y, β)H

∗
M,n(y)

−1/2 − Im(M)

∥

∥

∥
> 1− ε

K(τ, C)

)

.

Choosing ε = K(τ, C)/2 and using Lemma C.2(ii), we conclude that for every
δ > 0,

sup
M∈Mn

sup
P∈P

(bin)
n (τ)

P

(∥

∥

∥(Xn[M ]′Xn[M ])1/2(β̂M,n − β∗
M,n(P))

∥

∥

∥ > δ
)

(C.11)

≤ sup
M∈Mn

sup
P∈P

(bin)
n (τ)

P(EM,P,n(δ)
c)

≤ 16
pmaxh∈H sup|γ|≤K∗(τ,C)(φ̇1(γ)− φ̇2(γ))

2

δ2K(τ, C)2
+ o(1),

where the o(1) term refers to convergence as n → ∞. Now, to establish the
asymptotic existence of the MLE, we simply take EM,P,n := EM,P,n(δn), for
δn → ∞ sufficiently slowly as n → ∞. For the uniform consistency part, note
that the limit superior as n → ∞ of the expression in (C.7) is bounded by a
quantity that converges to zero as δ → ∞.

C.8. Proof of Theorem 3.10

Fix n ∈ N, a candidate model M ∈ Mn and Pn ∈ P
(bin)
n (τ), and let En and Vn

denote the expectation and variance operators with respect to Pn on {0, 1}n. De-
fine sM,n(y, β) := ∂ℓM,n(y, β)/∂β and note that by assumption β 7→ sM,n(y, β)
is continuously differentiable on Rm(M), for all y ∈ {0, 1}n. Therefore, we can
expand sM,n around β0 ∈ Rm(M) as follows,

sM,n(y, β)− sM,n(y, β0) =

1
∫

0

HM,n(y, tβ + (1− t)β0)dt · (β0 − β).
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For n sufficiently large, such that β∗
M,n = β∗

M,n(Pn) of Lemma 3.8 exists, define

H̃M,n(y) :=
∫ 1

0
HM,n(y, tβ

∗
M,n + (1 − t)β̂M,n(y)) dt and note that with this we

have

s∗M,n(y) := sM,n(y, β
∗
M,n) = H̃M,n(y) · (β̂M,n(y)− β∗

M,n), (C.12)

for y ∈ EM,n := EM,Pn,n, the set defined in Lemma 3.9. Moreover, sinceHM,n(y, β)

is positive definite under Conditions H(iii) and X2(i), so are H̃M,n(y) andH
∗
M,n(y) :=

HM,n(y, β
∗
M,n). Thus, if we set

ψ∗
i,n,M(yi) := yiφ̇1(Xi,n[M ]β∗

M,n) + (1− yi)φ̇2(Xi,n[M ]β∗
M,n),

gi,n,M(yi) := En[H
∗
M,n]

−1Xi,n[M ]′
(

ψ∗
i,n,M(yi)− En[ψ

∗
i,n,M]

)

,

and

∆n,M(y) := β̂M,n(y)− β∗
M,n −

n
∑

i=1

gi,n,M(yi),

we see that (1) is satisfied, that En[gi,n,M] = 0, rn,M(y) :=
∑n

i=1 gi,n,M(yi) =

En[H
∗
M,n]

−1s∗M,n(y), because En[s
∗
M,n] = 0, and that Vn[r

(j)
n,M] is given by

n
∑

i=1

(

em(M)(j)
′En[H

∗
M,n]

−1Xi,n[M ]′
)2

Vn[ψ
∗
i,n,M],

where em(j) is the j-th element of the canonical basis in Rm and j ∈ {1, . . . ,m(M)}.
Note that by Lemma C.1, Conditions H(i,iii,iv) and the finiteness of H, there
exists a positive constant K ′(τ, C), depending only on τ > 0 and C from Con-
dition X2, such that for all large n,

∞ > Vn[ψ
∗
i,n,M] ≥ τ

(

ḣ(Xi,n[M ]β∗
M,n)

h(Xi,n[M ]β∗
M,n)

+
ḣ(Xi,n[M ]β∗

M,n)

1− h(Xi,n[M ]β∗
M,n)

)2

≥ K ′(τ, C) > 0.

In particular, for such n, we have 0 < Vn[r
(j)
n,M] <∞. Furthermore, by a similar

argument, we obtain the upper bound |ψ∗
i,n,M(yi)|2 ≤ K ′(τ, C) and, in turn,

|g(j)i,n,M(yi)|2

Vn[r
(j)
n,M]

≤ 2
K ′(τ, C)

K ′(τ, C)

(

em(M)(j)
′En[H

∗
M,n]

−1Xi,n[M ]′
)2

∑n
i=1

(

em(M)(j)′En[H∗
M,n]

−1Xi,n[M ]′
)2 .(C.13)

But the numerator of the second fraction on the right of the previous display
can be bounded by

‖(Xn[M ]′Xn[M ])1/2En[H
∗
M,n]

−1em(M)(j)‖2‖(Xn[M ]′Xn[M ])−1/2Xi,n[M ]′‖2

≤ ‖Xn[M ]En[H
∗
M,n]

−1em(M)(j)‖2 · C/n,

in view of Condition X2(ii), whereas the denominator of that same fraction
coincides with ‖Xn[M ]En[H

∗
M,n]

−1em(M)(j)‖2. Thus, we conclude that also (1)
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is satisfied. Finally, for asymptotic negligibility of Vn[r
(j)
n,M]−1/2∆

(j)
n,M(y), first

note that using (C.8), for y ∈ EM,n, we have

∆n,M(y) = H̃M,n(y)
−1H̃M,n(y)(β̂M,n(y)− β∗

M,n)− En[H
∗
M,n]

−1s∗M,n(y)

=
(

H̃M,n(y)
−1En[H

∗
M,n]− Im(M)

)

En[H
∗
M,n]

−1s∗M,n(y)

= En[H
∗
M,n]

−1/2
(

En[H
∗
M,n]

1/2H̃M,n(y)
−1En[H

∗
M,n]

1/2 − Im(M)

)

En[H
∗
M,n]

1/2

×R
1/2
n,MR

−1/2
n,M rn,M(y),

where Rn,M = diag(Vn[r
(1)
n,M], . . . ,Vn[r

(m(M))
n,M ]). Therefore,

‖R−1/2
n,M ∆n,M(y)‖

≤ ‖En[H
∗
M,n]

1/2H̃M,n(y)
−1En[H

∗
M,n]

1/2 − Im(M)‖
λmax(En[H

∗
M,n]

1/2)

λmin(En[H∗
M,n]

1/2)

×
maxj V

1/2
n [r

(j)
n,M]

minj V
1/2
n [r

(j)
n,M]

‖R−1/2
n,M rn,M(y)‖.

Here, R
−1/2
n,M rn,M(y) has mean zero and covariance matrix with ones on the

main diagonal, and consequently its norm is bounded in probability. The ra-
tio of the largest and smallest variance component of rn,M is bounded by the
condition number of the matrix En[H

∗
M,n]

−1Xn[M ]′Xn[M ]En[H
∗
M,n]

−1 times a
constant that depends only on τ and C, because of the previously derived upper
and lower bounds on |ψ∗

i,n,M(yi)|2 and Vn[ψ
∗
i,n,M], respectively. But this con-

dition number is eventually bounded by a finite constant that depends only
on τ and C from Condition X2, in view of Lemma C.2(iii). In particular,
this lemma shows that the condition number of En[H

∗
M,n] is bounded, even-

tually. Therefore, since Pn(EM,n) → 1, as n → ∞, it remains to show that

En[H
∗
M,n]

1/2H̃M,n(y)
−1En[H

∗
M,n]

1/2 → Im(M), in Pn-probability. The result fol-

lows if we can show that the eigenvalues ofH∗
M,n(y)

−1/2H̃M,n(y)H
∗
M,n(y)

−1/2 and

of En[H
∗
M,n]

−1/2H∗
M,n(y)En[H

∗
M,n]

−1/2 converge to 1, in Pn-probability, because

for A = En[H
∗
M,n], B = H̃M,n(y) and C = H∗

M,n(y), we have

‖A1/2B−1A1/2 − Im(M)‖
= ‖A1/2C−1/2C1/2B−1C1/2C−1/2A1/2 − Im(M)‖
≤ ‖A1/2C−1A1/2‖‖C1/2B−1C1/2 − Im(M)‖+ ‖A1/2C−1A1/2 − Im(M)‖.



Bachoc, Preinerstorfer, Steinberger / Valid inference post-model-selection 51

For the first of these two, let NM,n(δ) := NM,Pn,n(δ) be as in Lemma C.2(ii),
which is a convex set, and note that for every ε > 0 and every δ > 0,

Pn

(

‖H∗
M,n(y)

−1/2H̃M,n(y)H
∗
M,n(y)

−1/2 − Im(M)‖ > ε
)

≤ Pn

(

sup
β∈NM,n(δ)

‖H∗
M,n(y)

−1/2HM,n(y, β)H
∗
M,n(y)

−1/2 − Im(M)‖ > ε,

β̂M,n ∈ NM,n(δ)
)

+ Pn

(

β̂M,n /∈ NM,n(δ)
)

= o(1) + Pn

(√
n‖U1/2

M,n(β̂M,n − β∗
M,n)‖ > δ

)

,

where UM,n = Xn[M ]′Xn[M ]/n. Since δ > 0 was arbitrary Lemma 3.9 shows
that the probability on the far left-hand-side of the previous display converges
to zero as n→ ∞. Finally, for v1, v2 ∈ Rm(M) with ‖v1‖ = ‖v2‖ = 1, write

v′1(En[H
∗
M,n]

−1/2H∗
M,n(y)En[H

∗
M,n]

−1/2 − Im(M))v2

=

n
∑

i=1

v′1En[H
∗
M,n]

−1/2Xi,n[M ]′Xi,n[M ]En[H
∗
M,n]

−1/2v2
(

D∗
i,M,n(yi)− En[D

∗
i,M,n]

)

,

whereD∗
i,M,n(yi) = −yiφ̈1(Xi,n[M ]β∗

M,n)−(1−yi)φ̈2(Xi,n[M ]β∗
M,n) andVn[D

∗
i,M,n]

is bounded by a constant that depends only on τ and C. The mean of the expres-
sion in the previous display is clearly equal to zero, while its variance is bounded
by
∑n

i=1(Xi,n[M ]En[H
∗
M,n]

−1Xi,n[M ]′)2 times a constant that depends only on
τ and C. In view of Lemma C.2(i) and Condition X2(ii), the latter sum is itself
bounded by

∑n
i=1(Xi,n[M ](Xn[M ]′Xn[M ])−1Xi,n[M ]′)2 ≤ nC2/n2 → 0, where

we have omitted another constant that depends only on τ and C. We have thus
verified Condition 1.

To show that the proposed estimators σ̂2
j,M,n of (3.3) consistently overesti-

mate the asymptotic variances of the MLE, we verify the assumptions of Propo-
sition 2.6 with

g̃i,n,M(y) = ĤM,n(y)
−1Xi,n[M ]′ψ̂i,n,M(y),

and ai,n,M = En[H
∗
M,n]

−1Xi,n[M ]′En[ψ
∗
i,n,M], where ĤM,n(y) = HM,n(y, β̂M,n(y))

and ψ̂i,n,M(y) = yiφ̇1(Xi,n[M ]β̂M,n(y)) + (1− yi)φ̇2(Xi,n[M ]β̂M,n(y)). In partic-
ular, ĝi,n,M(y) = g̃i,n,M(y)− ai,n,M. First note that for any γ ∈ R,

yiφ̇1(γ) + (1− yi)φ̇2(γ) =
ḣ(γ)

h(γ)(1 − h(γ))
(yi − h(γ)),

so that ψ̂i,n,M(y) = ûi,M(y) and the diagonal entries of S̃M,n can, indeed, be
represented as

σ̂2
j,M,n(y) =

n
∑

i=1

[

g̃
(j)
i,n,M(y)

]2

,
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for j = 1, . . . ,m(M), as required for the application of Proposition 2.6. Next,
consider

|g(j)i,n,M(yi)−ĝ
(j)
i,n,M(y)|2 = |em(M)(j)

′
(

En[H
∗
M,n]

−1Xi,n[M ]′ψ∗
i,n,M(yi)

− ĤM,n(y)
−1Xi,n[M ]′ψ̂i,n,M(y)

)

|2

≤ 2|em(M)(j)
′(En[H

∗
M,n]

−1 − ĤM,n(y)
−1)Xi,n[M ]′ψ∗

i,n,M(yi)|2

+ 2|em(M)(j)
′ĤM,n(y)

−1Xi,n[M ]′(ψ∗
i,n,M(yi)− ψ̂i,n,M(y))|2

≤ 2|em(M)(j)
′(En[H

∗
M,n]

−1 − ĤM,n(y)
−1)Xi,n[M ]′|2K ′(τ, C)

+ 2|em(M)(j)
′ĤM,n(y)

−1Xi,n[M ]′(ψ∗
i,n,M(yi)− ψ̂i,n,M(y))|2.

We want to show that
∑n

i=1

[

g
(j)
i,n,M(yi)− ĝ

(j)
i,n,M(y)

]2

Vn[r
(j)
n,M]

≤
∑n

i=1

[

g
(j)
i,n,M(yi)− ĝ

(j)
i,n,M(y)

]2

K ′(τ, C)‖Xn[M ]En[H∗
M,n]

−1em(M)(j)‖2
,

converges to zero in Pn-probability, as in (2.4), where the inequality follows by
the same argument as in (C.8). Hence, it suffices to show that

‖Xn[M ](En[H
∗
M,n]

−1 − ĤM,n(y)
−1)em(M)(j)‖2

‖Xn[M ]En[H∗
M,n]

−1em(M)(j)‖2
(C.14)

and

‖Xn[M ]ĤM,n(y)
−1em(M)(j)‖2

‖Xn[M ]En[H∗
M,n]

−1em(M)(j)‖2
max

i=1,...,n
(ψ∗

i,n,M(yi)− ψ̂i,n,M(y))
2, (C.15)

both converge to zero in Pn-probability. For (C.8), simply note that this expres-
sion is bounded by

‖Im(M) − En[H
∗
M,n]ĤM,n(y)

−1‖2

times the condition number of the matrix En[H
∗
M,n]

−1Xn[M ]′Xn[M ]En[H
∗
M,n]

−1.
We have already seen above that the latter is bounded by a constant that de-
pends only on τ and C. To see that En[H

∗
M,n]ĤM,n(y)

−1 converges to Im(M) in
Pn-probability, note that

‖Im(M) − En[H
∗
M,n]ĤM,n(y)

−1‖2

≤ ‖Im(M) − En[H
∗
M,n]

1/2ĤM,n(y)
−1En[H

∗
M,n]

1/2‖2
λmax(En[H

∗
M,n])

λmin(En[H∗
M,n])

≤ ‖Im(M) − En[H
∗
M,n]

1/2ĤM,n(y)
−1En[H

∗
M,n]

1/2‖2K(τ, C),

by Lemma C.2(iii). Furthermore, for every ε > 0 and δ > 0,

Pn

(

‖En[H
∗
M,n]

−1/2ĤM,n(y)En[H
∗
M,n]

−1/2 − Im(M)‖ > ε
)

≤ Pn

(

sup
β∈NM,n(δ)

‖En[H
∗
M,n]

−1/2HM,n(y, β)En[H
∗
M,n]

−1/2 − Im(M)‖ > ε
)

+ Pn

(

β̂M,n /∈ NM,n(δ)
)

,
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and we have already seen before that this entails convergence to zero of the
probability on the left-hand-side of the previous display. We conclude that (C.8)
does converge to zero in Pn-probability. To establish the same convergence also
for (C.8), first note that it follows from the previous arguments that the fraction
in that display is bounded in Pn-probability. Finally, we have to establish the
desired convergence for the maximum in that display. But this follows from the
continuity of φ̇1 and φ̇2 on R, the bound on |Xi,n[M ]β∗

M,n| from Lemma C.1
and the consistency of Lemma 3.9. Therefore, Proposition 2.6 shows that (2.5)
is satisfied. Note that VCn(rn) has rank no larger than min(k, n), where rn =
(rn,M)M∈Mn . Hence, Theorem 2.5, together with Lemma 2.8, finishes the proof.

C.9. Canonical link function

Corollary C.3. In the setting of Theorem 3.10, if H contains only the canonical
link function h(c)(γ) = eγ/(1 + eγ), then the confidence intervals

CI
(j),binC
1−α,M = β̂

(j)
M,n ±

√

σ̂2
j,M,nBα(min(k, p), k),

satisfy

lim inf
n→∞

inf
Pn∈P

(bin)
n (τ)

Pn

(

β
∗,(j)

M̂n,n
∈ CI

(j),binC

1−α,M̂n
∀j = 1, . . . ,m(M̂n)

)

≥ 1− α.

Proof. From the first few lines of the proof of Theorem 3.10, we see that the
m(M)-dimensional sub-vector rn,M(y) of rn(y) that corresponds to the model

M , (h,M) ∈ {h(c)} × I, is given by

rn,M(y) = En[H
∗
M,n]

−1s∗M,n(y),

where H∗
M,n(y) := HM,n(y, β

∗
M,n), s

∗
M,n(y) := sM,n(y, β

∗
M,n) and sM,n(y, β) :=

∂ℓM,n(y, β)/∂β = Xn[M ]′CM,n(y, β), where CM,n(y, β) is an n × 1 vector with

i-th entry given by yiφ̇1(Xi,n[M ]β)+ (1− yi)φ̇2(Xi,n[M ]β). But it is easy to see

that for h = h(c), φ1(γ)−φ2(γ) = γ and thus φ̇1(γ)− φ̇2(γ) = 1, so that in this
case the matrix VCn(rn) reduces to

VCn(rn) =
(

En[H
∗
Ms,n]

−1Xn[Ms]
′VC(yn)Xn[Mt]En[H

∗
Mt,n]

−1
)d

s,t=1
.

The rank of this matrix is not larger than min(k, p), so by Lemma 2.8 we obtain
the smaller bound K1−α(corr(VCn(rn))) ≤ Bα(min(k, p), k).
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