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ABSTRACT ARTICLE HISTORY
We prove global Strichartz estimates without loss for the wave equa- Received 29 November 2018
tion outside two strictly convex obstacles, following the road-map Accepted 11 December 2019
previously introduced by the author for the Schrodinger equation.
Moreover, we show a first step towards the large data scattering for
the critical non-linear equation associated to this geometrical setting, ) AP

N % estimates; Strichartz
and prove the scattering for a class of non-trapping obstacles close estimates: scattering;
to the two convex framework. Trapping; Wave equation
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1. Introduction

Let (M, g) be a Riemannian manifold of dimension d. We are interested in the linear
wave equation on M

Ofu—Agu=0

(u(0), 0u(0)) = (f.8)-
where A, designs the Laplace-Beltrami operator. In order to study the perturbative the-
ory and the nonlinear problems associated with this equation, it is crucial to estimate

the size and the decay of the solutions. Such estimates are the so called Strichartz esti-
mates

(1.1)

el o0, 1y19(0) < Cr (Iuol [z + [u ] 1) (1.2)
where (p, q) has to follow the admissibility condition given by the scaling of the equation
1 N d d (L3)
— e ’))’ .
P g 2
and
1 —-1/1 1
<Gy (1.4
P 2 \2 ¢

We say that the estimates hold with a loss of order 4 > 0 if they hold for (p, q) satisty-
ing the scaling condition (1.3), and

1 (d—l ><1 1>
—< =) (==2).
P\ 2 2 q
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Strichartz estimates were first introduced and established in Strichartz [1] for the p =g case
in R¥, then extended to all exponents in [2,3], and [4]. As usual, the variable coefficient case
is more difficult. In the case of a manifold without boundary, the finite speed of propagation
shows that it suffices to obtain the estimates in local coordinates to obtain local Strichartz
estimates. Such estimates were obtained by [5-7], and [8]. The estimates outside one convex
obstacle were obtained by Smith and Sogge [9], following the parametrix construction of
Melrose and Taylor. Local estimates on a general domain were first proved by Nicolas Burg,
Gilles Lebeau and Fabrice Planchon [10] for certain ranges of (p, q), using spectral estimates
of Smith and Sogge [11]. The range of indices was then extended by Matthew D. Blair, Hart
F. Smith, and Christopher D. Sogge [12]. This range cannot recover all indices satisfying
(1.4): [13] showed indeed that a loss have to occur if some concavity is met. Recently, Oana
Ivanovici, Richard Lascar, Gilles Lebeau, and Fabrice Planchon [14] proved in a model case
local Strichartz estimates inside a convex domain with a loss close to the sharpest one. Their
result is extended in Oana Ivanovici, Gilles Lebeau, and Fabrice Planchon [15] to the wave
equation inside a general strictly convex domain.

Phenomenons such as closed geodesics can be obstacles to the establishment of global
estimates. Under a non-trapping assumption, Smith [16] proved in the odd dimensional
case that local estimates can be extended to global ones. This result was extended to the
even dimensions independently by Burq [17] and Metcalfe [18].

However, Nicolas Burq, Colin Guillarmou, and Andrew Hassell [19] showed that
Strichartz estimates without loss for the Schrodinger equation hold for an asymptotically
Euclidian manifold without boundary for which the trapped set is sufficiently small and
exhibit an hyperbolic dynamic.

Going in the same direction for the problem with boundaries, we recently showed in
[20] global Strichartz estimates without loss for the Schrodinger equation outside two
convex obstacles. The aim of this paper is to extend this result to the wave equation.
More precisely, we prove

Theorem 1. Let ®, and @, be two compact, strictly convex subsets of RY, u be a solution

of (1.1) in Q = R\ (O, U ®,) and (p,q,y) verifying (1.3) and (1.4). Then
letllp g,y < C(IF N + gl (1.5)

The crucial remark of Smith and Sogge [16] is that local Strichartz estimates combined
with the exponential decay of the energy permits to obtain global Strichartz estimates.
For the exterior of one convex obstacle in odd dimension, this decay holds and global
Strichartz estimates without loss are obtained. In even dimension, such an exponential
decay does not hold anymore. However, Burq [17] remarked that it can be replaced by
weaker estimates of L?— integrability of the local energy

I Cctts xOei)| |2, 121y = w7+ w1 (1.6)

where y is any compactly supported function, and such an estimate for the complemen-
tary of a convex obstacle is a direct consequence of well-known resolvent estimates.

But in the case of the exterior of two convex obstacles, (1.6) does not hold anymore:
a logarithmic loss occurs due to the trapped geodesic and we only have

(e, 1Oi)| 2, 121y = og B ([ uol g7 + (] 1) - (1.7)
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for data supported in frequencies ~ h~!. The L*-integrability of the local energy is the
waves-analogue of the smoothing effect for the Schrodinger equation, for which a loss
occurs in the same way. Nicolas Burq, Colin Guillarmou, and Andrew Hassell [19]
remarked that such a loss can be compensated if we show Strichartz estimates in loga-
rithmic times and we followed this idea in [20]. We follow here the same road-map and
show that this logarithmic loss can be compensated if we show Strichartz estimates in
logarithmic times in the neighbourhood of the trapped ray

24l 10, 10g npyra = [Hol 12 + [ |-

Then, we reduce again the problem, to data which micro-locally contains only points of
the tangent space which do not escape a given neighbourhood of the periodic ray after
logarithmic times. Finally, we construct an approximate solution for such data, inspired
by [21-23], and we show that this approximation gives the desired estimate.

Note that a large part of the construction we are doing here is similar to the one we
did in [20] for the Schrodinger equation, and we will extensively use results of this pre-
vious paper. On the one hand, the wave equation enjoys an exact speed of propagation
whereas the Schodinger flow propagates at a speed proportional to the frequency, hence
the proofs of the results based on this phenomenon for the Schrodinger flow will hold
for the wave flow with simpler proofs. On the other hand, the phases of the approxi-
mate solution we are building stationate now in whole lines, instead of points, and it is
a little more subtle to close the final argument.

1.1. Application

As an application, we consider a critical defocusing non-linear wave equation in

R*\(©; U ©,)

{QZM—ADu—FuS—O (1.8)

(u(0), 91u(0)) = (f.8)-

Note that the global existence for such an equation in a domain was obtained in
Nicolas Burq, Gilles Lebeau and Fabrice Planchon [10]. By the finite speed of propaga-
tion, their result apply in particular to the exterior of obstacles. Therefore, it is legitim-
ate to wonder what solutions look like in large time, and in particular if the non-
linearity still plays a role. If it is not the case, we say that the solution scatters. More
precisely, we say that a solution scatters if there exists a solution of the linear equation
v such that

lu(t) = v(Dl 1,0y — O

as t goes to infinity. The scattering in R*> was shown by Bahouri and Shatah [24].
Provided a good set of Strichartz estimates exists for the linear equation, their proof
adapts to the case of a finite-border domain if one is able to deal with the arising
boundary term. This term can be controlled in particular if one obtain the decay of the
local energy near the obstacle (see Section 5):
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1 T
—J J V(O + |ux, 0)[° dudt — 0 (1.9)
T Jo Jans,4)

as T goes to infinity. In the case of the exterior of two balls, where Theorem 1 gives us
the good set of Strichartz estimates, we show that we can obtain this control everywhere
except in the neighbourhood of the trapped ray: more precisely

Theorem 2. Let ®; and ®, be two disjoint balls of R>. Then, there exists a family
(S(T))rs, of open neighbourhoods of the trapped ray R verifying
S(T) - Ras T — +o0
such that any global solution of (1.8) in Q := R?\(®, U ®,) verifies, as T goes to infinity
1

T
—J J |Vu(x, £ + |u(x, t)|° dxdt — 0.
T Jo Ji@no,4))\s(T)

This is a first step to show the scattering for any data in this exterior problem. We are
precisely following this path in the work in progress [25], where this step is extended to
the exterior of two arbitrary convex obstacles and used to show the scattering in
this framework.

We now deal with a geometrical situation which is close to the exterior of two convex
obstacles, but does not have a trapped ray: the exterior of dog bones. We are actually
able to show the scattering outside a class of non-star-shaped obstacles containing dog
bones with arbitrary thin necks. In order to state this result, let us recall the definition
of an illuminated subset - which is a generalisation of star-shaped ones - first intro-
duced by Bloom and Kazarinoff [26]:

Definition 1. A subset K of R is said to be illuminated by a convex subset C C RY if

minVp-v >0
K

where p is the gauge of C and v the outward-pointing normal derivative to K.
We are now able to state our result:
Theorem 3. Let C C R® be the ellipsoid of equation
Py +e=1,0<e<1 (1.10)

resp.

1++/3
L ettt =1, +4\[§e<1 (1.11)

and K be a compact subset of R’ illuminated by C. Then, any solution of (1.8) in Q =
R\ K scatters in HI(Q).

Notice that Abou-Shakra obtained in [27] the scattering for obstacles illuminated by a
deformation of a sphere using a slightly different method, but her result does not permit
to handle dog bones with arbitrary thin necks. Our key tool to obtain Theorem 2 and
Theorem 3 is an identity due to Morawetz [28] in the case of the linear equation, and used
here in the spirit of Ginibre and Velo [29]. Such an identity rely on the choice of a good
weight function y which has to be adapted to the geometry and verify a very rigid and
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poorly understood constraint: A%y < 0. In the case of Theorem 3, the natural weight is
given by the gauge of the ellipsoid we are dealing with, and does not verify this constraint
for arbitrary thin ellipsoids. In order to deal with it, we present a method which permits to
bypass this obstruction: noticing that corresponding four dimensional ellipsoids verify the
constraint, we extend the solution as the solution of a four dimensional non-linear wave
equation, show the estimate for such a solution, and then go back to the original, three
dimensional solution. We believe that such an argument may be useful in other situations.

2. Reduction of the problem
2.1. Estimates of L*-integrability of the local energy

We first show the following two estimates of the L?— integrability of the local energy,
that we will need in the sequel. There are the analogs of the smoothing estimates for
the Schrodinger flow, and were introduced by Burq [17] in the non-trapping case. The
first one is an estimate without loss away of the trapped ray. The second one holds in
the whole exterior domain, but with a logarithmic loss.

Proposition 1 (Global L*-integrability with no loss away of the trapped ray). Let y €
Co° be supported outside a small enough neighbourhood of the trapped ray. Then, if u is
the solution of (1.1) with data (f, g):

| Cetts 2001 2 g gy ey S + 118l o (2.1)

Proof. By [17, Section 2], it suffices to show the following resolvent estimate in order to
obtain (2.1):

1
12(=Ap — (2%i€)) Allpp= =
P e V1
In the spirit of [20], let K be a non-trapping obstacle such that K and ®; U ®, coincide in the
support of y. In particular, Ag = Apa\ - on the support of z. As, moreover, the resolvent esti-
mate is well-known in the non-trapping case (see Vasy and Zworski [30] and Melrose and
Sjostrand [31,32] for the high frequencies part, Burq [33] for the low frequencies), we have

1
VL

and the Proposition is shown. 0

1(~Aq — (A%ie)) gl =

H(—Agag — (Axie) gl =

Proposition 2 (Global L*-integrability with logarithmic loss). Let y € C3° be supported
near the trapped ray. Then, if f, g verifies Y(—h*A)f =f, y(—h*A)g =g and u is the
solution of (1.1) with data (f, g):

18, 200 g+, = Hog 2 (1 L+ gl 22)
Proof. Denote

H"" = D((~Ap)"* log (21 — A) /%),
H»~ = D((I — Ap)"*log (21 — A)~'/?),
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by H 7% and H" their dual, and

W =H < EH T H =
Finally, let us denote
{ 0 —I
A= l(—A 0 >
We will show the estimate
18, 200 i =Wl + gl 23)

By a classical TT* argument (see, for example, Burq [17] and [34]), (2.3) is a direct con-
sequence of the following Proposition

Proposition 3. The resolvent y(A — (x — ie) ")y is uniformly bounded in
Hfs,Jr — Hs,f

forx e Rand 0 <e< 1.
Which, in turn, we will obtain as a consequence of the following resolvent estimate
obtained by Burq [34]:

_2log(2+4])

“Ap — Axie) Yyl st TR 2.4
l[x(—=Ap — (A%i€)) x|l L+ /1 (2.4)

vt (AT A+
(4-2) (iAZ(A+.zZz)1 —Z(A+Zzz)l>’

we have to show that the following norms are uniformly bounded, for all s € R
121+ 12D (A +22) " 2l g
||X(A + Z2)71X| |H*$,+4,Hs+1,7)
XA + 22" ol lgss g,

With the same arguments as Burq [17], theses bounds are all consequences of the first
one for s=0, that is of

[12(1 +l2l)(A +2%) "

HO O - (25)
To show (2.5), we follow [34], Section 4. Let
u=(1+z))(A+2)""yf.

For W € C;°(—1/2,2) equal to one close to 1, we decompose

(2o (e )
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1(1-w(=4) )= (1w (-5) )i

On the other hand, as

w(-A)u=aribas ) e(- Ay

On the one hand,

we have from (2.4)

A A
(-2 )ulo=tog 2+ 211 (- 2) 1

and thus

A A
Jullo=tog @+ 211 (- 5) 1l

log (2 + 22) /2| ¥ <—?

Finally, like in Burq [34], the localisation in frequencies allows us to replace the weights
in z by the H>* norms, and we get (2.5). 0

2.2. Reduction to logarithmic times near the trapped ray
The aim of this section is to show that the following Proposition implies Theorem 1

Proposition 4. There exists € > 0 and a small neighbourhood D of the trapped ray, such
that, for all y € C° supported in D, if f, g are such that y(—h*A)f =f, Y(-h*A)g=g¢g
and u is the solution of (1.1) with data (f, g):

[all o, crog s =z + gl

Thus, we will assume the previous Proposition and show Theorem 1. As the value of
€ > 0 does not play any role, we assume here that e=1.

In the spirit of [20], let Jobsp Xy € Cg° be such that y,,q =1 in a neighbourhood of
01U, UR, and y,, € Ci° such that y,, =1 in a neighbourhood of R. We decom-
pose u as the sum

u= (1 - Xobst)u + Xobst(l - Xray)u + ZobstXray¥ (2.6)

2.2.1. The first term: away from the trapped ray and the obstacles
Let v = (1 — jopst)4- Then v verifies

(07 = Ap)v = —~[Ap, Yopst )t
(V(O)’ afv(())) = ((1 - Xobst)f’ <1 - Xobst)g)'

As v is supported away from the obstacle, it solves a problem in the full space and we
can replace the Laplacian in (0} — Ap) by Ag«. Therefore, by the Duhamel formula
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sinty/—Apa
() = <08 {13/~ (1 = ol + =551~ g
R

tsin ((t—s)y/—Apa

— J (« ) ) [Ap, x]u(s)ds.
0 /A

The first two terms are handled thanks to the Strichartz estimates for the waves in R¢ :

sinty/—Apa
|| cos <t\/ _A]Rd) (1 = Zobst)f + —7\/T51R (1 = Zobst)&ll1o(r, 1)
R

(2.7)

(2.8)
=[fllg + llgll -

And by Christ-Kiselev lemma, cutting the sinus in half wave operators and the
Strichartz estimates in the full space again

Lsin ((t —s)y/—Aga) )
], R o )l

_q [ sin((£—$)/—Aga)
SIS SR o st

(2.9)
e_it‘/_A]Kd . —
=|l—== J €V 755 [Ap, Y| 1(5) S| 1
—Age Jr

=<| JReis\/——A;; [ADs ZobstU(5)ds] | 1.

Now, thanks to the dual version of the L? estimate (2.1) in R? (Proposition 2 replacing
Q by R? which enjoys no trapped geodesic) we get

|J &V B [ Ap, 7ope u(5)d5 ]|
R (2.10)
- ||jRe“vAwAD,xobst]uc)dsnﬁ-/1smAD,xobst]u<s>ds||m-,-f1,

where 7 =1 on the support of Vy, . But, using the L® estimate away from the
trapped ray (2.1), because Vy is supported away from the trapped ray:
D> Labse ()ds | g1 Sl g + gl g2 + IVl + V82
=11l + gl
Collecting (2.7), (2.8), (2.9), (2.10) and (2.11) we conclude that
1L = Yobst)ul o= [l + (1111 (2.12)

(2.11)

2.2.2. The second term: away from the trapped ray and near the obstacles
Let us now deal with

wi= Xobst(l - Xray)u'
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We denote here y := (1l — %ray) and consider ¢ € C5°((—1,1)) satisfying ¢ >0,
®(0) =1and }_,c; (s — j) = 1. We decompose

=Y ot —ju= u.

JEZ JEZ

Because y is supported away from the trapped ray, using the L* estimate away from the
trapped ray (2.1) combined with the local Strichartz estimates in time 1 for each u;
allows us to recover the estimate in the full space, with the exact same proof as Burq
[17], the only difference been using (2.1) instead of his the L* estimate for non-trapping
geometries and we get:

||Xobst(1 - Xray)uHLP(R,L‘I)SHfHHr + ||g||H71 (213)

2.2.3. The third term: near the trapped ray

We will denote here y = yopgXray- We will cut u in time intervals of length [logh].
Consider ¢ € C3°((—1,1)) satisfying ¢ >0, ¢(0) =1 and >,y p(s—j)=1. We
decompose

a Z"’(Ilofg,hl _J)X” =2

JEZ JEZ
The u; satisfy the equation
(&2 — Ay = Fy +G;

where
t t
F, = |logh| 2¢" [ ——— —j ) yu+2|logh| ¢’ ——— — j | x0us, 2.14
t
= —o—— — 3 )IA, ylu ]
G <p<|logh| J)[ xu (2.15)
We denote
v(t) = [! Sin (£ = VA g
i) = U—l)\logh|? J >
sin (t — s)vV—A

Wf(t) = Jl(i'fl)\logh\ TGJ(S)d‘S’

in such a way that u; = v; + w;. By the L>-global integrability estimate near the trapped
ray (2.2) and (2.14) we get

> 1Il10ghlE |1, g -1 =l og il Iluollfy + llnl 1)

jez

and therefore
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S IB Rty < og ™ (1ol + 1] -1 ) (2.16)

JEL
On the other hand, by the Strichartz estimate on logarithmic interval
1Villeoza =Bl gyt (2.17)

But, as F; is support on a time interval of size proportional to [logh|, by the Cauchy-
Schwarz inequality we get

1Bl = Tog Al 2| g1 (2.18)
Therefore, by (2.16), (2.17), and (2.18)

S 1l = (110l + llan ). (2.19)

JjeZ

Now, let us deal with w;. Let us define

(Gi+1) \logh\ eisvV—
Dllogh| V. —

Decomposing the sinus operator in half wave operators and make use of the Christ-
Kiselev lemma allows us to estimate the norm of fvf instead of these of w; By the
Strichartz estimates on logarithmic interval we get
(+1)| log |
-+ V=A
57 s <0 [ VG 0l
(i—1)|logh|

w;

* _ eit\/_j
j

Gj(s)ds

Now, remark that [A, y] is supported away from the periodic ray. Let 7 be equal to 1 in

the support of Vy and vanishing on the trapped ray. By the dual version of the L*-glo-
bal integrability estimate outside the trapped ray (2.1) we get

(j+1)|logh|

||fvf||wg||j &Gy (5)ds]
(j—1)|logh|
(j+1)|logh|
—||j 3G (5)ds|| 1= |Gl
(j—1)|logh 15324

And now, by the L*-global integrability estimate outside the trapped ray (2.1) itself:
S IGHR: gty = (ol + sl )-
=7

Therefore, we get:

2 2 2
> 5= (1ol + lan - )- (220)

ez

Thus, combining (2.19) and (2.20) we conclude thanks to the embedding P*(Z), —
IP(Z) (we recall that p > 2):
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1 1
lxelliprs ~ (Z ||Mj||fm>”s (Z ||”j||§m>25||”0||H” + [l |-

JEZ JEZ
Combining this last estimate with 2.12 and 2.13 we conclude that
el o=l g7+ oo [ -1

Finally, standard techniques permit to remove the frequencies cut-off. Therefore,
Proposition 4 implies our main Theorem.

2.3. Reduction to the trapped set

Let D be an open-neighbourhood of the trapped ray, chosen to be a cylinder with the
trapped ray for axis. We define the trapped set of D in time T

Definition 2. (x,&) € T*Q belongs to the trapped set of D in time T, denoted 7 (D),
if and only if one of the rays starting from (E)c, \_gl) and (x, — %) belongs to D after
time T.
Note that the only differences with the definition of [20] are that the rays are all fol-
lowed at speed one instead of || € [x, fy]. Therefore, with the same proofs, we get

Lemma 1. For all bicharacteristic y starting from D with speed one, we have
d(y(t), Tr(D)) >0Vte [-T -1, — T|

and

Lemma 2. For all D, D, there exists T* > 0, ¢ > 0 such that for all T > 0:
d(Tr-1+(D)", Tr(D)) > e, (2.21)
and, if D C D

d(T (D), T+(D)) > iefde(Dc, D). (222)

We say that f € L? is microlocally supported in U C T*Q, if for all a € C*(T*Q) such
that a=1 in U we have Op(a)f = f. Using the same time translations as in [20] com-
bined with the finite speed of propagation, the following Proposition implies our
main Theorem:

Proposition 5. There exists € > 0 and a small neighbourhood D of the trapped ray, such
that, for all y € C3° supported in D, if f, g are such that y(—h*A)f = f, y(—h*A)g =g,
are microlocally supported in Tiogp(D) and spatially in D and away from 0(©, U @),
and u is the solution of (1.1) with data (f, g), we have:

| o 0, e10g mya = 1 + 11811

The rest of the paper is thus devoted to prove Proposition 5.
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3 Construction of an approximate solution
3.1. The phase functions

We recall here the definition of the phase functions we used in [20] following the
works of Tkawa [22,23] and Burq [21]. We call ¢ : i/ — R a phase function on the
open set U C R if ¢ is C* on U and verifies |[V¢| = 1. We say that ¢ verifies (P) on
00, if

(1) the principal curvatures of the level surfaces of ¢ with respect to —V¢ are
non-negative in every point of U,
(2) we have

0, C{y+1Vo(x)st.1>0,y cUNIO;, Vo(y) -n(y) > 0},
(3) forall A€ R, the set {¢pp < A} is empty or convex,

and we say that ¢ verifies (P) on 00, if the role of ®; and ®, are exchanged in
the above.

In addition, we recall the definition of X'(x,p) and E'(x,p) from [20]: X'(x,p) is the
i-th point of intersection of the reflected ray starting at x in the direction p with the
obstacles, and Z'(x, p) is the direction of the reflected ray starting at x in the direction p
after i reflections.

Let 6; > 0 and ¢ be a phase function. We set

Ip(p) = {x € 00,s.t. — n(x) - Vo(x) > 6},
Up(p) = U ){Xl (% Vo(x)) +1E(x, Vo(x)), T = 0}.

X! (x, Vo(x))elp (o

Then, there exists 6; > 0 such that, if ¢ is a phase function verifying (P) on 8®p, we
can define the phase ¢; reflected on the obstacle ®; on the open set Uj(¢), verifying
(P) on 90;, by the following relation, for X' (x, V(x)) € T'y(¢) :

(X' (%, V) + 18! (x, Vo)) = (X' (x, Vo)) + 7.
We call a finite sequence | = (j,....jn), ji € {1,2} with j; # ji;1 a story of reflections,
and will denote 7 the set of all the stories of reflection. By induction, we can define the

phases ¢; for any J € Z, on the sets U;(¢).
For f € C*°(U) and m € N, let

[fl,,(U) = max sup|(a-V)---(an - V)f|.

(aes™ U
The following estimate due to [21-23]:
Proposition 6. For every m > 0 we have
VOl < Cal VOl

Moreover, according to Burq [21]:
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Proposition 7. There exists M >0 such that, for each (i,j) € {1,2}% there exists open
sets containing the trapped ray U, ; such that, if ] = {i,...,j} verifies |J| > M, and ¢ veri-
fies (P), @; can be defined in U, ;.

We set

Use = Ui NUBR MUy NU,
and U CAZ;{ ~ to be an open cylinder having for axis the periodic trajectory and con-
tained in U . It will be shrunk in the sequel if necessary. Finally, we recall the follow-
ing estimate concerning the derivatives with respect to ¢ of the phases built beginning

with ¢ = (x —y) - |—§‘ we obtained in [20]:

Proposition 8. Let ¢(x) = (x — y) ﬁ We denote ¢;(x,&) the reflected phase we build
beginning with ¢. Then, for all multi-indices o, f there exists a constant D, g > 0 such
that the following estimate holds on U:

DD}V )| < D,

3.2. The microlocal cut-off

According to Section 2, we are reduced to show Proposition 5. By Lemma 2, we can
construct a small shrinking of U, Us C Us, and g, € C*(T*Q) such that g, =1

in an open neighbourhood of 7 ioen(U)s G, ), = 0 outside 7 5jjogp(Uss) in such a
way that, for all multi-indexes «,

|0, p|=h™2Pe. (3.1)

It suffices to show Strichartz estimates in time €|logh| for data microlocally supported
in 7 1o h|(Z:{oo) and spatially supported in U/, and away from a small neighbourhood
V of (@, U®,). Let y, € C such that y, = 0 near 9(0®; U ®,) and y, = 1 outside V.
For such functions, 7,0p(q. ,)f =/, thus it suffices to show

Iz~ 2 260P @) s 0 clroghpss =1l (32)
for all y € C* supported in ... We will show the strongest estimate:
e 260P (@ 1), rogiyss =1 (33)

by the TT* method - see, for example, [4] - it suffices to show the dispersive estimate,
for 0 <t < e¢|llogh|:
1

d+1 d—1"*
st

Qe ™ 2 Quillp = (3.4)

where
Qe,n = lﬁ(—th)XoOp(ée,h)-

The symbol associated with Q. admits the development (see, for example, Zworski

(35])
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Y (ih)k N+1
A (De D) (@, (6 100 0), ey + Os(H ),

k=0

hence we introduce as in [20], for N > 1
X (in)* k(=
qE,h,N(x’ é) = Z k! <D5’Dy> (qc,h(x’ f)Xo()’)‘MW));,:g,y:x-

k=0

Then, to show (3.4), it suffices to show

1

_itﬂ0p<QE,h,N)||L1—>L°OS o= (3.5)

|Op(ge,nn)"e

for N large enough. Note that, in particular,
SUPPCIE,h,N - TZe\logh\(uoc) ﬁuoo X {|€| € [OCO; ﬁo]} (36)

and g, N is spatially supported outside a small neighbourhood of 0(®; U®,) not
depending of ¢, h, N.
It suffices to obtain
. 1
10P(qen,v)" cos (t/=A) Op(qe s w)l 1 1= T
* . 1
10p(ge )" s (63/=A) Op (e )l = -
We will deal for example with the cosinus part, the sinus is handled in the same way.
We set
1

(27mh)

5{, wn (%) = P J ‘fi(x*y)'é/hqe, r.n(x, E)dE,

in order to have, for u € L2

(0P () x) = [ &, ()
Notice that
OP(ge,1n)* cos (tV/=A) Op(ge 1, v)u(x) = j0p<qe, )" cos ((V=A)S. 1 (x)u(y)dy,
thus, to show (3.5), it suffices to study &’ .y and to show that, for N large enough

|Op(ge.n.n)” cos (tV—A)é{,h)N|SM, for 0 <t < ¢|loghl.

Let V; be a small neighbourhood of 9(®; U ®;) on which g, n is vanishing and y, €
CP(RY) be such that y, =1 on U, NV:. We choose y, to be supported on
Conv(®; U ®,)\(®; U®,) and away from a small enough neighbourhood of 9(®; U
©,), Conv denoting the convex hull. Note that in particular, Op(q.nn)" =
Op(qe,nN) 7. The symbol of Op(q. 1,5)" enjoys the development

ih(D,, D¢)

gennN(x.&) =e de,nN-
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Thus, by (3.1), taking € >0 small enough, we have \q:’(;?N\Sl for all |o| <d-+1.
Moreover, q:f(;) y is compactly supported in frequencies. Therefore, by Ryuichi Ashino,
Michihiro Nagase, and Rémi Vaillancourt [36], Section 4, Op(q., r,n) is bounded on
L>° — L™ independently of h. Therefore, we only have to show, for all 0 < T < ¢|log h|

1
/o COS (tv—A)é{)h)N|$@,for 0 <t <e¢lloghl (3.7)

for N large enough.

In order to do so, we will construct a parametrix in time 0 <t < ¢|logh| for the
wave equation with data (& nn0). The first step will be to construct an approximate
solution of wave equation with data

(e g v (%, €),0)

where ¢ € R%, & € Suppg. .y is fixed and considered as a parameter.

3.3. Approximation of the solution

3.3.1. The Neumann sum
We look for the solution w of

OFw — Aw =0in Q
w(t=0)(x) =eg(x, )
ow(t=0)(x) =0

Wion =0

as the Neumann series

w=Y (-1l

where

Pw — AW =0in R?
w(t=0)(x) = e D /hg(x, &) (3.8)
ow(t=0)(x) =0

and, for J # 0, J = (1, ju)s J' = (j1» s 1)

o*w — AW =0in R\ O,
w(t=0),0w(t=0) =0 (3.9)
W|]0®jn - W‘[(?@J

Let us denote
o) (6.8) = @;(x,¢) and ¢y (x, &) = ¢;(x, — &),

that is, ¢ is the reflected phase constructed with ¢(x, é) (x—y)- m and ¢; is the
reflected phase constructed with ¢(x, — &) = —(x — y) - ‘ - We look for w' as the sum
of the two series
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WIZW]’++WI’_
h ok
= ST Wl (1) ORI Py S o7 6t/ '
k;k(x) |f| ; . (|é|>

If w} ™ solves the transport equations
(20 + Vo; -V +Ag)wp ™ =0,
and for k > 1

(20, + Vo; -V +Ap))w; " = —w ),
with, for ] =0

_ 1
W8’+(x, 0) = W((Z))’ (x, O) = 5q(x, é),
wi = (x,0) = 0, Yk > 1,
atW2’+(X, 0) + &W%’_(x, 0) =0, Vk > 0,

and, for |J| > 1

oWy ™ (x,0) = wp " (x,0) =0,

then v solves (3.8), (3.9).
Solving the transport equations for | = () gives immediately

i)
wh = :5q<x+t|—§|,€>,

t
wg’i = _JODWI:I(X:(S_ t)é,s)ds k>1.

3.3.2. Reflections on the obstacles

Now, we would like to reflect w"* on the obstacle. To this purpose, starting from the
phases ¢(x, &) = (Xl—fy‘ and ¢(x, — &) = \c\)é we would like to define the reflected
phases as explained in the first subsection.

We decompose the set of the stories of reflections as

I=T,U1,

where 7, are all stories beginning with a reflection on ©, that is of the form (1,...),
and 7, beginning with a reflection on ®,, that is of the form (2,...). Let e be a unit
vector with the same direction as R. We take e oriented from ®; to ®,. For ﬁ in a
small enough neighbourhood V of {e, — e} we have

(1) if&-e>0, then & j verifies (P) on ®; and — ‘)J < verifies (P) on ©,
2) ifé-e<, then 20 verifies (P) on ®, and — | é‘) < verifies (P) on O,
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Remark that

e In situation (1), the support of w** never cross ®; and the support of w’
never cross ®, in any time,

e in situation (2), the support of wP* never cross ®, and the support of w’
never cross ®; in any time.

We set

e In situation (1): (Z4,Z_) := (Z5,Z),
e in situation (2): (Z,Z_) := (Z1,Z,).

Then, (3.9) is satisfied for w™ for all J € I . indeed, because the support of w’*
never cross ®,_, we have for all time 0 = wl(,)@ﬁ = w|{3®} , and so on. Thus, we are
reduced to construct the w"*’s for J € Z+. In the same way as in [20], shrinking U, if
necessary, all the phases we will be dealing with are well defined according to the previ-
ous remarks.

Then, in the exact same way as [20], we solve the transport equations along the
rays:

Proposition 9. We denote by )A(,t(x,VQ)]t) the backward spatial component of the flow
starting from (x,Vo; ), defined in the same way as X_,(x, Vo; ), at the difference that
we ignore the first obstacle encountered if it’s not ®;, and we ignore the obstacles after
|J| reflections. Moreover, for ] = (ji = i1,....jn) € Z;,, denote by

(00) (1> eojk) if X,t(x,V(p]i)has been reflected n — k times,
X, G, t) = .
0 if X_(x,Vg;)has been reflected ntimes.
Then, the w),’s are given by, for t > 0 and x € U;(p)
wg (1) = Agj (v, )q(X i (x, Voy ), €)

where
Goj (x) Go* (X V" (x, Vo))
— X oo X < — = ,
Gy (X~ (x, Vo)) Go= (XV(x, Vi)
and, for k > 1, and x € U; (o)

Aq’] (x,¢) =

t
W= () = jogw,oc,( 9 WS TNX L (6 V), o)ds
where
N G + G(ptx X*l](%f_xt)l*l) x’V(Pt
Cwan = W Ssg®@ 7 Ve
/ Goj (X (x’vﬁoj ) GQDI_(x,g,t)(Xft(%V(P]_))

With the exact same proofs as in [20], Section 4.3.2, following the rays at speed one
instead of speed || € [0, By], W™ verify the following properties:

Proposition 10. We have
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(1) wi(xt) #0 = (X4(x, Vo)), &) € Suppg,

(2) forx ¢ Uj(p) and 0 <t < ¢|loghl, Wi’t(x, t) =0,

(3) there exists c1,c; >0 such that for every ] € I, the support of w{c’i(x,-) is
included in {ci|]| <t} for any x, and for x & Suppy, it is included
in {c1]]| <t <]+ 1)},

(4) in times 0 < t < ¢|logh|, Suppy, N Suppw’ = (-, t) is included in Us..

Moreover, Proposition 6 and Proposition 8 combined with Proposition 9 and (3.1)
gives immediately:

Proposition 11. The following bounds hold on U,
|Dccfwi,i |SC|1]|h—(2k+\cx|)ce.

3.4. Decay estimates

We recall the principal result who permits to estimate the decay of the reflected solu-
tions, namely the convergence of the product of the Gaussian curvatures A¢; obtained
by Ikawa [22,23] and Burq [21]. In the present framework of two obstacles, it writes,
from [21, Proposition 3.23]:

Proposition 12. Let 0 < 4 < 1 be the product of the two eigenvalues lesser than one of
the Poincaré map associated with the periodic trajectory. Then, there exists 0 < o < 1,
and for I = (1,2) and I = (2,1), for every 1 € {{1},{2},0}, there exists a C> function
ay,; defined in Uy, such that, for all ] = (I,...,I,1), we have

——

r times
sup |[Ap; — Aapl,, < Cop /ol
Z/{oo
Combined with the explicit expressions of Proposition 9 and (3.1), this result gives as in
[20] the following decay:
Proposition 13. We following bounds hold on U:
|W£,t|m < Ckl\/|h7(2k+m)ce.

Moreover, on the whole space, |w{<|m < Cph~(Gktm)ce,

3.5. Critical points of the phase

We need to study the critical points of the phase in order to be able to perform a sta-
tionary phase argument on the solution we are building. At the difference of [20], the
phases here stationate in whole directions. Therefore, we will perform a stationary phase
on each sphere S%71(0,s). To this purpose, we need
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Proposition 14. Let us denote
Sy (n&t) = o5 (% O)IE] — tl¢].
Then, there exists 1 > 0 such that for all |J| > 1,

d(xV(x, Vq)]i(x,f)),)/) <n and wh*(x,1,&) #0

= D:S; (%, &,t) # 0. (3.10)

Moreover, as soon as d(XV(x,Vo,(x,&)),y) > n, for all s>0 and x there exists a
unique s;(x,s) € S471(0,s) such that, for all t >0

wh = (x, -,s]i (x,5)) # 0 and Dsd—l(O’S)SJi— (x, 57 (x,5),1) = 0. (3.11)
Furthermore, if d(XV(x, Vo, (x, &), y) > 1 and s € [xo, By),
detDéd,l(O)s)Si](x, s]i (x,5),t) > ¢ >0. (3.12)

Proof. For the seek of readability, we denote S; =S/, ¢;:= ¢/, w =w"" and we
make the proof for the positive part of the wave, w" T : for w"~, the proof is the same.

In the same way as in [20], we obtain, differentiating |V¢;(x, IEIP = 1€ with
respect to ¢ and integrating the transport equation obtained along the rays up to the
first phase:

D:S; (%6, t) = X V(x, Vs (x, €)) —y — (¢ = (%, 9)) E (3.13)

¢
i
where [;(x, &) is given by
(%8 = d(x% X (6, Vo, (x,£)) + (X7 (x5, Vo, (%, €)), X (x, Vo, (. £)))
e (XU (3, Vi, (5, €)), XV (6 Ve (5 9))).

Note that, by Proposition 10, (1), w/*(x, &, t) # 0 implies that, because g is supported
away of the boundary, for [J| > 1

t—1(x,&) >8>0

and thus, we get (3.10). Moreover, we deduce that
Dot &) = X s V7 (5,80 =y = ( (X6 Ty ) =) 15
Thus, if ¢ is such that Dgi1, 3 Sy(x, &) =0,
_ ¢
X V(x, Vo, (x, ¢)) —)’//m’

hence @ is a direction allowing reaching the point x from the point y following the
story of reflection J. Note that there are a priori two such vectors on S%71(0,s) : one
and its opposite, but because w»* =0 for ] € Z_, we have w/(x,t,&) =0 for one of
them. We thus get (3.11). Note that the critical point ¢ such that w/(x,t, &) # 0 is the
one verifying
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(X Ul(x,Vq)](x, &) — y) |é| (3.14)

The Hessian in R? of S; is derivated like in [20], differentiating Vo, (x, RINESIRE
with respect to & and integrating the transport equation obtained along the rays once
again:

2ot h(x &) Efé_ét
Pesy (% ot) =g 1 = (Ié |é|>t

d 1

ZJ_D Dy (X—s(x V oy (%, €)), &) (DB Yy (X—s(x. Vipy (x.€)). €))
k=

where we denoted J© := J(-,s/2) and Wy (x, &) := [€|py(x, &). We would like to deduce

an expression of D? s1(0,0 Sj(x, &, t) for & = s5(x, t). To this purpose, we recall that

Lemma 3. Let g : R — R™ be a submersion in 0 and M := g~'(0). Moreover, let f :
R? — R and F be its restriction to M. We suppose that F has a critical point in a € M.
Then, the Hessian of F in a is the restriction of

d*f, — Lo dg,
to T,M, where A is the Lagrange multiplier of f with respect to g in a, that is the unique
linear form /. € L(R™,R) such that df, = 40 dg,.
Here, we can take g(¢) := |¢|* —s%. Then Dg(¢) = 2¢. The Lagrange multiplier of
S(x,-) with respect to g in & := s;(x,s) is the unique A € R such that
DgS](x, t, é) = 216
Therefore, according to (3.13)

2= (X V(x, Vo, (. 8)) — y) é =) g

On the other hand, by Lemma 3

D‘stfl(o’s)S](X, é, t) = (DES]()C, é, t) — 2/11(1)

IT:5"1(0,s)

Thus, D Sd H0,9Y S(x, &, 1) is the restriction to T:S%7'(0,s) of

- (X_m(x,Vgof(x, &) —y) —=ld+—5t

d_ ok
_ZJ\‘Dgaxk%(s)( (6 Vo (x, €)), &) (DeOx o (X- (x’vq’l(x’é))’é))t’
k=170

But, the quadratic form EE vanishes in TéSdfl. Therefore, D

e d—1 i‘dﬁl(o,s)sj(x’ é, t) is the
restriction to T:S% " (0,s) of



— (X7, Vs (%, €)) —

d_ ik
- L DOy o (X—s(x, Vo, (x, ), &) (DO W0 (X (3, Vipy (x.€)). €)).
k=1

And as the matrices
Dc“axk‘ﬁﬂs‘) (X (e V(Pj(x’ ) <¢) (Déaxk‘//w (Xs(x, V(p](x, ), f))t

are positives, and according to (3.14), we get the last part of the statement.

4, Proof of the main result

y) 3
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Let K > 0. By the previous section, the function

JZWJ (x, 1, &)™ 0] S DE=HEN/h i | Vede

% dZZ

* JeT

satisfies the approximate equation

azu—Au— +h

with data

By the Duhamel formula, the difference from the actual solution, that is

d

) B) P (AU STy

*

o5 (% é)\él*ﬂé\)/ﬂﬂ*dé
JeT

((0), 0ru(0)) = (3}, 5 0)-

cos (t\/ —A) ¢’, is bounded in H” norm by

C x K x i sup

s€[0, t], €[00, Bo)

So, for 0 < t < ¢|logh|

with

and

SO lewks eTOF GOl

* JeT

(cos (1V/=A) &) (x) = Sk (x,t) + Ry (%, )

Sk(x,t)

* JeI

Rl = Tog h{A< " sup

S)C

u

dZZJiWi* (.1, €)™ 07 oD (i |
=0

D oWk (s, &)eT o G,
(SA

from

(4.1)

(4.2)

(4.3)
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4.1. The reminder
We first deal with the reminder term Rg. Let us denote
WEE (x5, &) = Cwg ™, (s, E)eTiler (- OIE=en/m

Notice that, by construction of the wy’s, w{c is supported in a set of diameter (C + t).
Therefore, using Proposition 13, Proposition 6 and the derivative of a product we get:

S0 WES 1 =C(1 + 0F 310" WES [ SCie(1 + 1) 7 R
JeT JeT JeT

and thus, by the Sobolev embedding H, — L> and (4.3)

{]GI s.twl 1#0})

By Proposition 10 we get in the same way as in [20], due to the finite speed of
propagation:

||Rk || =Ck| log h|H* 24 (1 + t) J—(K+d)ce

{T eI stwh_, #0}|=(1+1), (4.4)
and therefore
HRK”LOOSCKl 10gh|hK(l—2ce)—d(2+ce)(1 + t)§+1 (4.5)
Thus, for 0 < t < ¢|log A
||RK||LOCSCK| logh|§+1hK(1—2ce)—d(2+ce) < CKhK(l_ZCE)_d(l+C€>_1.
We take € > 0 small enough so that 2ce <1 and we get
IRkl < Cich 71,

Let us now fix K large enough so that

K d+1
—_3d-1>-"—""+1.
2 >

Then, as 0 < t < ¢|logh]| is equivalent to h < e™r, we obtain

d+1 t

|[R|[;~ < Cxh™ 2 e (4.6)
for 0 <t < ¢|loghl.
4.2. The free wave J={)
Let us denote
K
S (x,t) = J (Fih/|&|) x,t, E)e ()&=t /h g e
o djgj 2 (FnfIEN" (5 )

the free part of the wave, and

K
Sk = Gt o | D e T i

= =17 k=0
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the reflected waves, in such a way that
Sk = S+ Sk.

Note that ) is simply the approximate expression of the solution of the wave equation
with data (¢”,0), in the free space:

S0 (x,t) = (cos (t —Ao) 5y> (x) + RY (x, 1)

where A, denote the Laplacian in the free space and by the Duhamel formula, for
0 <t <elloghl

IRl =H"~"| log b sup [|[TW" (-5, &)l
S5 ¢

The usual dispersive estimate for the waves in the free space gives, by the frequencies
localisation of ¢

| COoS (t _A0>5}’| Ttdl
and thus dealing with R?< as we did for Rx we get
N prEwEg for 0 <t < ¢|logh|. (4.7)

4.3. The reflected waves |J| > 1
According to Proposition 14, the parts
d(X 7V (x, Vo;)y) <n

enjoys a rapid decay and we thus have

A Y [ e (b

oNd
27'[]’1 >

+ ) 0(h™).

=1

Note that, using (4.4), the sum over J is finite at fixed t, hence the O(h™) part does not
contribute. We write the remaining part of Si as, illegitimately omitting
Lax-(x, Vo) y for the seek of clarity:

Sk (x, dj{:ji:![ZE:wJ (x, 1, &)eFilor e ORI=D/h (g /12 )k g

+ ez
dZZJ J Zw] (x, £, &)™ 07 S OII=HEN/h (i 15 \k g dis.
2 h + ez Js=u JE=s120

Let ko > 1 to be fixed later depending only on the dimension. According to Proposition 14, we
can perform a stationary phase on each sphere {|¢|=s}, for each term of the sum
(Tex translation failed), up to order #*. We obtain, as the sphere is of dimension d — 1, for
t >0,
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Sk(xt) =—— K Z ZJ Filey Cesi b))/ (i ) 00 (£, x) ds

sJET k=0

Bo
= (m) LY J Rl (% 1,5)ds (4.8)
+,JeT

1 XL o (e 21
+ - Z J Z wh* (%1, &) (x,c)\c\ftlc\)/h(;ih/|§|)kdg
(2mh)” L5727 ) 5

(with the convention Zfﬁ»l =0 if K < ko + 1) where for 0 < k < ko, the term W}~ is
a linear combination of

D%kw{)’ = (t,x,57(t,x,5)), Di(kfl)w]l’ = (t,%,57(£,%,5)); e w,[c = (t,x,5(t,x,5)),

where s;(t,x,s) is the stationary point of the phase on the hypersphere {|¢| = s}, and

Rst;h is the reminder involved in the stationary phase, verifying (see, for example, [35,
Section 3.5])
+ k L+
LS, [sH > sup|Diwg = (x, -, 1)), (4.9)
0<k<k
|| < M(ko, d)

where M(ko,d) depends only on ky and on the dimension d, hence only on d. Then the
proof proceeds as in [20, Section 5]. Indeed, as by Proposition 10, Suppy, N Suppw{c’t is
included in Uy we can use the decay estimates of
Proposition 13 and Proposition 11 to obtain respectively

W ™| < GV 70 < t < ¢|loghl, x € Suppy, (4.10)

and
IDEw; | < CJIWHRHDe (o) > 1,0 < t < €|loghl, x € Suppy, (4.11)

where we recall that 0 < 4 < 1. Let us now denote

K/ = max(ko, K,M(k(), d)),
depending only on the dimension d. By Proposition 10 again, w{c’t(x, -) is supported in
{alll] <t<c(]J]] +1)} for x € Suppy, hence using (4.10), for 0 <t < ¢|logh| and
x € Suppy, we get

Z |Wit‘ < Ckhfzkce Z )I]\ < Ckhfzkce Z/lrflsckhfzkceef,ut

Jez ]s.t.w{ﬁéo fZé

for some u > 0 depending only on A and on ¢,. We take € > 0 small enough so that
2K’ce < 1 to get, for 0 < t < ¢|logh| and x € suppy,

D _IwpTI=Coe ™, and Y |wp[=Cehie ™ for 1 < k<K' (4.12)
JeT JeT

In the same way, using (4.11) together with Proposition 10, for 0 < t < ¢|logh|, x €
Suppye, 0 < k <K', and || < 2K’, we get for some v > 0 (depending only on the con-
stants C, for || < 2K’ and on ¢;, hence only on d and the geometry of the obstacles)
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Z|D§W£,i| S h7(2k+‘fx‘)C6 Z CL}‘

JeT Is.t. wf{#O

< h7<2k+|1\)66|{],s't' Wllg’i 4 0} C;TShf(ZkH“DC‘(l N t)cgc_l
B

L,

< (1 + €| logh|)h— 4K cep—3veg—21,

where the bound on the second line is obtained similarly to (4.4) (the implicit constant
arising depends a-priori on k, but we can take it uniform with respect to 0 < k < K’),
we used the fact that |¢| < 2K’ on the third line, and that 0 <t < ¢|logh| on the last
line. Taking € > 0 small enough so that (4K’ c +%V)6 < %, we thus obtain, for 0 <t <
€| loghl, x € Suppy,, 0 < k < K’ and |o| < 2K’

> |DEwp T |<h e, (4.13)

JeT

Therefore, combining (4.12) and (4.13) with (4.8) and (4.9) we obtain, taking ko :=

( and recalling that wi is a linear combination of Dka] (t,x,57(t,x,5)),

DZQ( 71 Wy (4, %,57(6,%,5)), oo Wi (6%, 5(t, X,5)) (and in particular wé =Wy,
%Sk (%, £)] < Ch™F'e " for 0 < t < ¢|loghl, (4.14)

for some C>0 and p >0 depending only of o, f;,d and of the geometry of
the obstacles.

4.4. Conclusion

Thus, collecting (4.1), (4.6), (4.7) and (4.14) we get

1
o cos (t\/—A)é{hN|SW, for 0 <t < ¢|loghl.
7 NN

That is (3.7). Thus, Theorem 1 is proved by the work of reduction of the previ-
ous sections.

5. The non-linear problem

Let us now consider the following defocusing non-linear wave equation in R*\ K

{atzu—ADu—kuS:O
(u(0), 0u(0)) = (£.8)-

KC will be the reunion of two balls, or an illuminated obstacle as defined in the intro-
duction, and we are concerned by the scattering problem in both situations. Our main
tool will be the following momentum identity, which was first introduced by Morawetz
[28] in a similar form to show some decay properties of the linear wave equation:
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Lemma 4. Let u be a solution of (NLW) in Q and y € C*°(Q,R). Then we have

1 1
O J — 0uNVuVy — = Ayudu | = J (D*}Vu, Vu) — —J WAy
Q 2 0 4)a (5.1)

Proof. The identity can be shown by standard integrations by parts justified by a limit-
ing argument. O

5.1. A scattering criterion

The scattering in R*> was shown by Bahouri and Shatah [24]. Their proof still hold in
the case of a domain with boundaries if we are able to control the boundary term
appearing in their computations, that is

Lemma 5. Let u be a solution of (NLW) in a finite-border domain Q of R* such that
Strichartz estimates (1.5) holds. If

1 T
—J J |0,ul*dodt — 0,
0Q

T Jo
as T goes to infinity, then u scatter in H'.

Note that the trace of the normal derivative is not an easy object to deal with,
because this trace is a priori not defined in L?(9Q) for elements of H 1(Q). Moreover,
even if we can define it for almost every u(f) when u is a solution of (NLW) because of
the particular structure of the equation, the application

ueH N {value in time tof solutions of NLW} — 8,u € L*(0Q)

is in our knowledge not known to be continuous.

For this reason, we prefer to deal with the following criterion, which involve only the
local energy of the equation, and that we deduce from the previous one using the
momentum identity (5.1):

Lemma 6. Let u be a solution of (NLW) in a finite-border domain Q of R® such that
Strichartz estimates (1.5) holds. There exists A > 0, B(0,A) D 0Q, such that, if

1 T
—J J |Vu(x, t)|* + |u(x, t)|* dxdt — 0, (5.2)
T Jo Jans(o,4)

g ol
as T goes to infinity, then u scatters in H .

Proof. Let y € C*(R?,R) be such that Vy = —n on 0Q, supported in B(0, A). Suppose
that

1 T
—J J (Vu(x, t))* + |u(x, t)|° dxdt — 0
T Jo Jans, a)

as T goes to infinity. We use Lemma 4 with the weight y to get:
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O J —atuVuVX—leuatu :J (D*yVu, Vu) —lj WAy
Q 2 Q 4 )a

2 1
+—J |u|6A}5+—J 10,u*do.
3J)a 2 Joq

Integrating in time we get
T

T
J J |8nu|2d0dtSJ |5‘,uVu+|u8tu|+J
0 JoQ QNB(0,A)

j ul® + [ + |Vul,
0 JonB(,4)

and using Minkowsky inequality,

r : b ) :
J J |8nu|2d0dtS<J |(9tu|2> <J |w2> +A§<J |a,u|2> (J |u|6>
0 JoQ Q Q Q Q
T (T 3
+J J (|u|6+|Vu|2)+A3J (J |u|6>
0 Jonao,4) o \Jonao,4)

T

T 3
sAc(E)+J J (|u|6+|Vu|2)+T§<J J |u|6> .
0 Jona(o,4) 0 Jans(o,4)

1

Thus
1 JTJ 2 CE)  1(" 6 2
~ |Opu*dodt=<, ——> + = (lul” +[Vul)
T )y Joo T Tl Jans,a)
1 (" :
+ —J J ul°] —o0
T Jo Jans, a)
as T — oo and by Lemma 5 we conclude that u scatter in H g O

Notice that the Morawetz identity (5.1) permits to obtain this criterion as soon as
one has a weight function y such that Vy-n > 0 on 9Q, D*y is positive definite, and
A*y < 0. Constructing such weights will therefore be of key interest in the sequel.

5.2. A partial result in the exterior of two balls

In the exterior of two balls, Lemma 4 seems not to be sufficient to show the scattering
criterion (5.2) because we are not able to find an appropriate weight function. However,
we can choose a weight function which has the right behaviour everywhere except in a
neighbourhood of the trapped ray, and therefore obtain Theorem 2, which is a first step
towards the scattering for all data: it is extended to the exterior of two convex obstacles
and used to show the scattering in this framework in the work in progress [25].

Proof of Theorem 2. Without loss of generality, we suppose that ®; is centred in 0. We
denote by c the centre of ®,. We choose the weight

2(x) = x|+ x = ¢

and use Lemma 4 with weight x
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1 1
O J — 0uNVuVy — = Ayudu :J (D*%Vu, Vu) ——J WAy
Q 2 Q 4)a
2 6 1 2
+-| [u Ay —=| |0au|"Vy-ndo.
3Ja 2 Jon

Vy-n>0ond0®; UJO, : indeed, on O, — n = ﬁ and thus

—C X

Remark that —
x—cl|x
— 0)

AL e 1
be—dl Il e = el 1]

and the same hold on ®,. Moreover, A’y = 0. Thus we obtain
T 1 2( 5
ol -1 OuVu-Vy+ EAxu@,u > 3 [u’Ay + | (D*yVu, Vu) (5.3)
0 Q Q

Integrating this inequality and controlling the left-hand side using the Hardy inequality

J L i <] vt for f € rj(@)

we get

T

J J [ul°Ay + (D*yVu, Vu) dxdt<E. (5.4)

0 Jo

From the one hand, Ay = 4 on B(0, A), thus
J |u|6SAJ |u|6AstJ |u|°Ay,
QNB(0, A) QNB(0, A) Q
and therefore, by (5.4)
(5.5)

1 (T E
—J J |u|® dxdt=<—.
T Jo Jans, a) T

Now, we would like to estimate the localised kinetic energy using (5.4) again. We have

t _ Y
pr=" (a2} ! g Fmdx—o C)(xz 9\
x lx = c| |x — ¢

[

The operators corresponding to the matrices

t _ Y
1= resprd — F— & -9
[ [x —¢|
are the orthogonal pro]ectlons on the plane normal to = f> Tesp. to =g Thus,

N ) L= [ R=r [ R

We choose coordinates (depending of x and ¢) such that

= (1,0,0), % = (cos ¥, sin6,0),

[
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Figure 1. Vy and V(«).

then we have, if ¢ = (¢, &, &) in this set of coordinates

1 cos20  sinfcos 0

1 x\ 2 1 x—c\* . m+|x—c| |x —¢| ¢
m<£M> +|x—c| <é.|x—c|> _(él ‘52) sin 0 cos 0 sin?0) %; '

|x — | lx — |

The largest eigenvalue of this positive quadratic form in (&, &,) writes

1 1 1 1 1\2 sin 20
Jp= | ——F—+ /[ — =] 44—
2 \|x—cl | lx —¢| x| |x[|x — ¢

therefore, there exists oy > 0 small enough and ¢ >0 such that, if « < oy, we have, for
x€QNB(0,A)

1
sin0 > o=l < ——+ — — ca. (5.7)
x
On the other hand

2 _ 2 A A
() Frma(epmg) SHG A
| |x — |

el \ 7l x — |

thus we get, combining this last inequality with (5.6) and (5.7), for x € QN B(0,A)
sin0 > o = (D*y-&,¢&) = oc|£|2. (5.8)

Remark that, because 0 is the angle between i and fiq (Figure 1)

X—C

0= arccosi- ,
x| |x —c

and let us denote, for o < o
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V(a) =QNB(0,A)N { sin? (arccosi i) > OC}-

x| [x—¢|

Note that V(z) — QN B(0,A) as o goes to zero in the sense that, denoting u the
Lebesgue’s measure on R’

u(( QN B(0,A)\V(2)) — 0 (5.9)

as o goes to zero: V(a) is a subset of QN B(0,A) excluding a small neighbourhood of
the line (0,¢). We have, on S(«), because of (5.8)

(DZX &= <x|5|2.

Thus we get

J (D*yVu,Vu) > J (D*}Vu,Vu) = ocJ
Q ) (

V(e

|Vul*
)

V(x

and by (5.4) we obtain

1 TJ 5 1E
— Vul|” dxdt<——.
TJO V(o<)| | aT

We take o = T~'/2 in order to have

! JTJ |Vul® dxdt=< E (5.10)
= u|” dxdt= —. .
T Jo Jv(ury VT

Choosing S(T) := B(0,A)\V(«(T)), (5.5) together with (5.10) gives the result. O

5.3. Obstacles illuminated by an ellipsoid

Motivated by the above result, we are interested by the scattering problem in non-trap-
ping geometries close to the exterior of two convex obstacles, such as dog bones with
arbitrary thin neck. Theorem 3, which we will prove now, gives in particular the scatter-
ing in such settings. More precisely, it permits to handle obstacles illuminated by arbi-
trary cigar-shaped ellipsoids and a certain class of flat-shaped ones.

In order to show such a result using the Morawetz identity (5.1) to obtain the criter-
ion of Lemma 6, it is natural to choose the gauge of the ellipsoid we are dealing with as
the weight function. The next Lemma gives us the range of ellipsoids for which such a
weight verify the bilaplacian constraint:

Lemma 7. Let n > 2 and

p(x) = \/x%+~~-+x§+e(x§+1 4+ a2).
Then,
A*p <0, Ve € [€0, 1]
with
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0 if k>3,

- 1 2(n—=2)(n—1) if k=2,
€0=194n n(n —2)

if k=1.

n+1

Proof. An elementary computation gives

Azp(x):A(6)+B<6><x’%+1+"'+xﬁ)+c(€>(xi+1+-~~+x,21)

I 0’ o7
where
Ale) = —(n—k+2)(n—k)e —2(n —k)(k —3)e — (k — 1)(k — 3),
B(e) = 6e((n — k+2)é® + [(2k — n) — 5]e — k + 3),
Cle) = —15(c — 1)"
In all cases, C(e) < 0.

If k > 3, it is clear that A(¢) < 0. Let us denote B(e) = (f):(n—k+2)62+[(2k—
)—5]6—k~|—3 Then B(0) = —(k—3) <0, B(1) =0, so B(e) <0 for ¢ € [0,1] and

therefore A*p < 0 for € € [0, 1].
If k=2, the roots of A(e) —n(n —2)+2(n—2)e+1 are ¢, =1+ 2]
B(e

n+1e+1 are L and 1, so A*p<o0
" 1Y

2(n—2)(n-1)
and the roots of
for e € [%4-7'2(:(;3)2(;_1,1]

Ifk=1,A(e)=—(n+1)(n—1)e +4(n—1)e is non positive if and only if € > 35,

and the roots of B(e) = (n+ 1)é® — (n + 3)e + 2 are -7 and 1, so A’p <0 for all € in

[n+1 > 1] U
Notice that in dimension three, this weight cannot be explicitly used as his bilaplacian
is not non positive. Hence, to derive the control (5.2), we will extend u as a solution of
a four dimensional non-linear wave equation, get the control for this extended solution,
and manage to go back to u.
To this purpose, we need the following existence result for the four dimen-
sional problem:

Lemma 8. Let Q be a smooth domain of R* with compact boundary, and
(uo,u1) € H“(Q) x Hi(Q). Then, there exists a unique global solution of

(#—ANu+u>=0 inRxQ
(5.11)
Ujt=0 = Uo> at“\t:o =u;, Urxga =0
satisfying

u e C(R, H'(Q) N I5(9Q)) N C\(R, HY(Q)) N L*(R, L(Q)).
Proof. Let 0 < T < 1. By the work of Matthew D. Blair, Hart F. Smith, and Christopher

D. Sogge [12], Theorem 1.1, applied to the admissible triple (p =48,q=6,y = ;71) in
dimension 4, if u is solution of
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{ (07 =Au=F in (0,T) xQ (5.12)

Ult=0 :f) at“\t:o =& URxoQ = 0

then the following Strichartz estimate holds
el s (0, 1, 15(02)) < C(|V||H§<Q> + ||g||H%(Q) + HFHLI((O,T),Lzm)))-

Using this estimate, we obtain the local existence following a classical fixed point
method, in the space

Xr = C(R, H(Q) N L5(Q)) N C (R, HI(Q)) N L¥(R, L(Q))
for T sufficiently small depending of ||uo]]| o and |[u][ @ The global existence
result follows using the energy conservation Taw. O
We are now in position to show:

Proposition 15. Let C C R’ be the ellipsoid of equation (1.10), resl.b.1 (1.11), K be a com-
pact subset of R? illuminated by C and Q := R’\K. Let u € C(R,H (Q)) N C'(R, L*(Q))
be the global solution of (1.8) in Q. Then

1

T
1
— Vulx, t)* + |u(x, )|® dxdt < —— C(E(u)).
TL JmB(O)A)I (" + lu(x, 1) T (E(u))

Proof. Let § > 0. There exists uj, uJ, smooth functions vanishing on 0Q such that
5 5
|0 — uOHHl(Q) + ||u — ”(1||L2(Q) < 0.

We denote by u’ € CO(R,H'(Q)) N CY(R,I*(Q)) the solution of (1.8) in Q with
data (ud, u?).

Let T>0 and ¢ € C°(R) be such that 0 < ¢ <1,¢p =1 on [-1,1] and ¢ =0 on
[—2.2]°. We take z = ¢(57) and, for (x,z) € Q x R

Vg(x, z) = ”g(x)XT(Z)XT(|x

),
v (x,2) = ] (2) xr(2) r (Ix])-

Let us denote by p the gauge of ellipsoid we are dealing with, consider
K = K x [-4T,4T], Q = R\K
plxz) =1/p(x) + 2,

and v’ € C(R, Hi(Q)) N C'(R, Hi(Q)) the solution of the four dimensional equation

(=AM +(¥)’=0 inRxQ
O SN S 5 0 (5.13)
Vieo = Voo OtV = VD Virxoo =
given by Lemma 8.
Notice that, by the finite speed of propagation,
) _ .0
VO (x,2,t) = u’(x,t), (5.14)

Vx € QN B(0,2T —t), Vt € [0,2T[, Vz € [-2T + t,2T — t].
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We denote by n the outward pointing normal vector to 0K and n = (n,0) the outward
pointing normal vector to OK. The momentum derivation (5.1) applied to v gives

d

(— J VY - Vp ——J ApV°I°) = J (D*pVv°, V) +—A,5|v‘3\6 — A*p°)?
dt Q Q 4

+1J |0:v° 20 . (5.15)
2 Jov

By Lemma 7, A2ﬁ < 0. Moreover, as p is convex, (DZZJVV‘S,VV‘S) >0 and Ap > 0.
Therefore, integrating (5.15) we obtain
1 T T
—J J 1930205 p dodt < [—J o RAVA v ——J Apv° O ] . (5.16)
2 0 Jok Q 2 0

Let us take T> 0 large enough so that 9V C QN B(0, T). Then, for ¢ € [0, T],
J 0:v°0spp dé :J J |0:v° 02 do—dz>J J 10:v°*0sp dodz.
0K R oK

But, by finite speed of propagation (5.14),

T T

J J |9:v°|*0sp dodz = J J 0,1 *0;p dodsz,

-1 Jok -1 Jok

so we obtain, as 0,p > C by the definition of an illuminated subset

T
J 105V *0sp da ZJ J |0;1°|*0; pdadz
oK

—T JOK

T T
. 5 1
- uP—L a0 dadzzj By ZJ dzdo,
JTJ8K| | Vpr+ 2 3K| | —rV1+2?
and the integration of the right hand side gives
5 1
J |9,u° ) da<ﬁj |0:v°)20sp d&. (5.17)
Moreover, as Vp is bounded and 0 < Ap < S & , by the Cauchy-Schwarz inequality
and the Hardy inequality
IF
[Vf[ for f € Ho()
ald " Jo
we obtain
|[—J_8tv5Vv Vp ——J Apv°0), ] |<E(W), (5.18)
Q 0

and this last inequality combined to (5.16) and (5.17) gives

T
N dodt=—— ()
J Lg(a,,u ) dodt=< 1nTE(v ). (5.19)
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It remains to estimate the energy of v°. We have

J, 19928 = | 1V @hta (i) + o)z @) - 5 e

]

+j~ 183 () P (2) 12 (1) dxdzsj~ V20 P (2) g (x])? e
Q Q

| WP e ) e+ [ WP e (o)
Q

so, by the Holder inequality

[ o] varad e aes ([ jearac) (| e [ i
#(] <x>|6dx)% (me>3dx)%ijT’<z>2dzsz|w3 [ ol
o] ) (j() (%n(z%nmf)%f; 9l
+(jg|u2|6)%<j3(o, i) [
([ ([ ) =ty

|¢||Lx~Tj IVl

Moreover,
I e Pt e I
QJR Q
and
j P —J | |uf<x>|2xT<z>2xT<|x|>2dxdzsuj rR
R
therefore
E(v*)STC(E(u?)),
and by (5.18) we obtain
T T
J J |0, u<‘|2dadt<—c( E(u)). (5.20)
0 JOK 1

Notice that we cannot pass to the limit directly in this expression because as mentioned
before, the application

u € H' N {value in time fof solutions of NLW} — 8,u € L*(09Q)

is not known to be continuous. But, notice that using Lemma 5 with the weight y =
|x|* gives in particular
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T T
J VUl (x, £)|* + | (x, t)|° dxdt=< J J |0,u° | dodt.
o Jox

0 Jong(o,4)

Therefore, combining the last inequality with (5.20) we get
1 (T 5 2 5 6 1 s
IVl (x, £)]” + |1’ (x, 1) dxdtSmC(E(u )

T ), JQmB(o,A)

and we can let J go to zero in this expression: as ug —sotp in H " and u‘f —s§_o Uy in
L?, we obtain using the energy conservation law that C(E(u?)) —s_oC(E(u)), and,
because the problem (1.8) is well posed, the left hand side goes as J goes to zero to

1 T
—J J Vux, )+ |u(x, £)[° dxdt,
T Jo Jans, a)

and the Proposition holds. O
Finally, we can conclude:

Proof of Theorem 3. The above Proposition combined with the scattering criterion of
Lemma 6 gives immediately the result. O
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