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About the wave equation outside two strictly
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ABSTRACT
We prove global Strichartz estimates without loss for the wave equa-
tion outside two strictly convex obstacles, following the road-map
previously introduced by the author for the Schr€odinger equation.
Moreover, we show a first step towards the large data scattering for
the critical non-linear equation associated to this geometrical setting,
and prove the scattering for a class of non-trapping obstacles close
to the two convex framework.
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1. Introduction

Let (M, g) be a Riemannian manifold of dimension d. We are interested in the linear
wave equation on M

@2
t u� Dgu ¼ 0

ðuð0Þ, @tuð0ÞÞ ¼ ðf , gÞ:

(
(1.1)

where Dg designs the Laplace-Beltrami operator. In order to study the perturbative the-
ory and the nonlinear problems associated with this equation, it is crucial to estimate
the size and the decay of the solutions. Such estimates are the so called Strichartz esti-
mates

jjujjLpð0,TÞLqðXÞ � CT jju0jj _H c þ jju1jj _H c�1

� �
, (1.2)

where (p, q) has to follow the admissibility condition given by the scaling of the equation
1
p
þ d

q
¼ d

2
� c, (1.3)

and
1
p
� d � 1

2
1
2
� 1
q

� �
: (1.4)

We say that the estimates hold with a loss of order k > 0 if they hold for (p, q) satisfy-
ing the scaling condition (1.3), and

1
p
� d � 1

2
� k

� �
1
2
� 1
q

� �
:
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Strichartz estimates were first introduced and established in Strichartz [1] for the p¼ q case
inR

d, then extended to all exponents in [2,3], and [4]. As usual, the variable coefficient case
is more difficult. In the case of a manifold without boundary, the finite speed of propagation
shows that it suffices to obtain the estimates in local coordinates to obtain local Strichartz
estimates. Such estimates were obtained by [5–7], and [8]. The estimates outside one convex
obstacle were obtained by Smith and Sogge [9], following the parametrix construction of
Melrose and Taylor. Local estimates on a general domain were first proved by Nicolas Burq,
Gilles Lebeau and Fabrice Planchon [10] for certain ranges of (p, q), using spectral estimates
of Smith and Sogge [11]. The range of indices was then extended by Matthew D. Blair, Hart
F. Smith, and Christopher D. Sogge [12]. This range cannot recover all indices satisfying
(1.4): [13] showed indeed that a loss have to occur if some concavity is met. Recently, Oana
Ivanovici, Richard Lascar, Gilles Lebeau, and Fabrice Planchon [14] proved in a model case
local Strichartz estimates inside a convex domain with a loss close to the sharpest one. Their
result is extended in Oana Ivanovici, Gilles Lebeau, and Fabrice Planchon [15] to the wave
equation inside a general strictly convex domain.
Phenomenons such as closed geodesics can be obstacles to the establishment of global

estimates. Under a non-trapping assumption, Smith [16] proved in the odd dimensional
case that local estimates can be extended to global ones. This result was extended to the
even dimensions independently by Burq [17] and Metcalfe [18].
However, Nicolas Burq, Colin Guillarmou, and Andrew Hassell [19] showed that

Strichartz estimates without loss for the Schr€odinger equation hold for an asymptotically
Euclidian manifold without boundary for which the trapped set is sufficiently small and
exhibit an hyperbolic dynamic.
Going in the same direction for the problem with boundaries, we recently showed in

[20] global Strichartz estimates without loss for the Schr€odinger equation outside two
convex obstacles. The aim of this paper is to extend this result to the wave equation.
More precisely, we prove

Theorem 1. Let H1 and H2 be two compact, strictly convex subsets of Rd, u be a solution
of (1.1) in X ¼ R

dnðH1 [H2Þ and ðp, q, cÞ verifying (1.3) and (1.4). Then

jjujjLpðR, LqÞ � C jjf jj _H c þ jjgjj _H c�1

� �
: (1.5)

The crucial remark of Smith and Sogge [16] is that local Strichartz estimates combined
with the exponential decay of the energy permits to obtain global Strichartz estimates.
For the exterior of one convex obstacle in odd dimension, this decay holds and global
Strichartz estimates without loss are obtained. In even dimension, such an exponential
decay does not hold anymore. However, Burq [17] remarked that it can be replaced by
weaker estimates of L2� integrability of the local energy

jjðvu, v@tuÞjjL2ðR, L2�H�1Þ�jju0jj _H c þ jju1jj _H c�1 , (1.6)

where v is any compactly supported function, and such an estimate for the complemen-
tary of a convex obstacle is a direct consequence of well-known resolvent estimates.
But in the case of the exterior of two convex obstacles, (1.6) does not hold anymore:

a logarithmic loss occurs due to the trapped geodesic and we only have

jjðvu, v@tuÞjjL2ðR, L2�H�1Þ�j log hj jju0jj _H c þ jju1jj _H c�1

� �
: (1.7)
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for data supported in frequencies � h�1: The L2-integrability of the local energy is the
waves-analogue of the smoothing effect for the Schr€odinger equation, for which a loss
occurs in the same way. Nicolas Burq, Colin Guillarmou, and Andrew Hassell [19]
remarked that such a loss can be compensated if we show Strichartz estimates in loga-
rithmic times and we followed this idea in [20]. We follow here the same road-map and
show that this logarithmic loss can be compensated if we show Strichartz estimates in
logarithmic times in the neighbourhood of the trapped ray

jjvujjLpð0, j log hjÞLq�jju0jjL2 þ jju1jjH�1 :

Then, we reduce again the problem, to data which micro-locally contains only points of
the tangent space which do not escape a given neighbourhood of the periodic ray after
logarithmic times. Finally, we construct an approximate solution for such data, inspired
by [21–23], and we show that this approximation gives the desired estimate.
Note that a large part of the construction we are doing here is similar to the one we

did in [20] for the Schr€odinger equation, and we will extensively use results of this pre-
vious paper. On the one hand, the wave equation enjoys an exact speed of propagation
whereas the Sch€odinger flow propagates at a speed proportional to the frequency, hence
the proofs of the results based on this phenomenon for the Schr€odinger flow will hold
for the wave flow with simpler proofs. On the other hand, the phases of the approxi-
mate solution we are building stationate now in whole lines, instead of points, and it is
a little more subtle to close the final argument.

1.1. Application

As an application, we consider a critical defocusing non-linear wave equation in
R

3nðH1 [H2Þ

@2
t u� DDuþ u5 ¼ 0

ðuð0Þ, @tuð0ÞÞ ¼ ðf , gÞ:

(
(1.8)

Note that the global existence for such an equation in a domain was obtained in
Nicolas Burq, Gilles Lebeau and Fabrice Planchon [10]. By the finite speed of propaga-
tion, their result apply in particular to the exterior of obstacles. Therefore, it is legitim-
ate to wonder what solutions look like in large time, and in particular if the non-
linearity still plays a role. If it is not the case, we say that the solution scatters. More
precisely, we say that a solution scatters if there exists a solution of the linear equation
v such that

jjuðtÞ � vðtÞjj _H 1ðXÞ ! 0,

as t goes to infinity. The scattering in R
3 was shown by Bahouri and Shatah [24].

Provided a good set of Strichartz estimates exists for the linear equation, their proof
adapts to the case of a finite-border domain if one is able to deal with the arising
boundary term. This term can be controlled in particular if one obtain the decay of the
local energy near the obstacle (see Section 5):
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1
T

ðT
0

ð
X\Bð0,AÞ

jruðx, tÞj2 þ juðx, tÞj6 dxdt ! 0 (1.9)

as T goes to infinity. In the case of the exterior of two balls, where Theorem 1 gives us
the good set of Strichartz estimates, we show that we can obtain this control everywhere
except in the neighbourhood of the trapped ray: more precisely

Theorem 2. Let H1 and H2 be two disjoint balls of R
3. Then, there exists a family

ðSðTÞÞT�1 of open neighbourhoods of the trapped ray R verifying

SðTÞ ! R as T ! þ1
such that any global solution of (1.8) in X :¼ R

3nðH1 [H2Þ verifies, as T goes to infinity

1
T

ðT
0

ð
X\Bð0,AÞð ÞnSðTÞ

ruðx, tÞj2 þ juðx, tÞj6 dxdt ! 0:
��

This is a first step to show the scattering for any data in this exterior problem. We are
precisely following this path in the work in progress [25], where this step is extended to
the exterior of two arbitrary convex obstacles and used to show the scattering in
this framework.
We now deal with a geometrical situation which is close to the exterior of two convex

obstacles, but does not have a trapped ray: the exterior of dog bones. We are actually
able to show the scattering outside a class of non-star-shaped obstacles containing dog
bones with arbitrary thin necks. In order to state this result, let us recall the definition
of an illuminated subset – which is a generalisation of star-shaped ones – first intro-
duced by Bloom and Kazarinoff [26]:

Definition 1. A subset K of Rd is said to be illuminated by a convex subset C � R
d if

min
@K

rq � � > 0

where q is the gauge of C and � the outward-pointing normal derivative to @K:

We are now able to state our result:

Theorem 3. Let C � R
3 be the ellipsoïd of equation

x2 þ y2 þ �z2 ¼ 1, 0 < � � 1 (1.10)

resp.

x2 þ �y2 þ �z2 ¼ 1,
1þ

ffiffiffi
3

p

4
� � � 1 (1.11)

and K be a compact subset of R3 illuminated by C. Then, any solution of (1.8) in X ¼
R

3nK scatters in _H
1ðXÞ:

Notice that Abou-Shakra obtained in [27] the scattering for obstacles illuminated by a
deformation of a sphere using a slightly different method, but her result does not permit
to handle dog bones with arbitrary thin necks. Our key tool to obtain Theorem 2 and
Theorem 3 is an identity due to Morawetz [28] in the case of the linear equation, and used
here in the spirit of Ginibre and Velo [29]. Such an identity rely on the choice of a good
weight function v which has to be adapted to the geometry and verify a very rigid and
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poorly understood constraint: D2v � 0: In the case of Theorem 3, the natural weight is
given by the gauge of the ellipsoïd we are dealing with, and does not verify this constraint
for arbitrary thin ellipsoïds. In order to deal with it, we present a method which permits to
bypass this obstruction: noticing that corresponding four dimensional ellipsoïds verify the
constraint, we extend the solution as the solution of a four dimensional non-linear wave
equation, show the estimate for such a solution, and then go back to the original, three
dimensional solution. We believe that such an argument may be useful in other situations.

2. Reduction of the problem

2.1. Estimates of L2-integrability of the local energy

We first show the following two estimates of the L2� integrability of the local energy,
that we will need in the sequel. There are the analogs of the smoothing estimates for
the Schr€odinger flow, and were introduced by Burq [17] in the non-trapping case. The
first one is an estimate without loss away of the trapped ray. The second one holds in
the whole exterior domain, but with a logarithmic loss.

Proposition 1 (Global L2-integrability with no loss away of the trapped ray). Let v 2
C1
0 be supported outside a small enough neighbourhood of the trapped ray. Then, if u is

the solution of (1.1) with data (f, g):

jjðvu, v@tuÞjjL2ðR, _H c� _H
c�1Þ�jjf jj _H c þ jjgjj _H c�1 (2.1)

Proof. By [17, Section 2], it suffices to show the following resolvent estimate in order to
obtain (2.1):

jjvð�DD � ðk6i�ÞÞ�1vjjL2!L2�
1

1þ
ffiffiffiffiffiffi
jkj

p :

In the spirit of [20], let K be a non-trapping obstacle such that K andH1 [H2 coincide in the
support of v. In particular, DX ¼ D

R
dnK on the support of v. As, moreover, the resolvent esti-

mate is well-known in the non-trapping case (see Vasy and Zworski [30] and Melrose and
Sj€ostrand [31,32] for the high frequencies part, Burq [33] for the low frequencies), we have

jjvð�DX � ðk6i�ÞÞ�1vjjL2!L2 ¼ jjvð�D
R

dnK � ðk6i�ÞÞ�1vjjL2!L2�
1

1þ
ffiffiffiffiffiffi
jkj

p ,

and the Proposition is shown. w

Proposition 2 (Global L2-integrability with logarithmic loss). Let v 2 C1
0 be supported

near the trapped ray. Then, if f, g verifies wð�h2DÞf ¼ f , wð�h2DÞg ¼ g and u is the
solution of (1.1) with data (f, g):

jjðvu, v@tuÞjjL2ðR, _H c� _H
c�1Þ�j log hj1=2 jjf jj _H c þ jjgjj _H c�1

� �
(2.2)

Proof. Denote

_H
c,� ¼ Dðð�DDÞs=2 log ð2I � DÞ�1=2Þ,

Hc,� ¼ DððI � DDÞs=2 log ð2I � DÞ�1=2Þ,

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 5



by _H
�c,þ

and H�c,þ their dual, and

Hc,� ¼ _H
c,� � _H

c�1,�
, H�c,þ ¼ _H

�c,þ � _H
�ðc�1Þ,þ

:

Finally, let us denote

A ¼ i
0 �I
�D 0

� �
:

We will show the estimate

jjðvu, v@tuÞjjL2ðR, _H c,�� _H
c�1,�Þ�jjf jj _H c þ jjgjj _H c�1 : (2.3)

By a classical TT? argument (see, for example, Burq [17] and [34]), (2.3) is a direct con-
sequence of the following Proposition

Proposition 3. The resolvent vðA� ðx � i�Þ�1Þv is uniformly bounded in

H�s,þ ! Hs,�

for x 2 R and 0 < � < 1:
Which, in turn, we will obtain as a consequence of the following resolvent estimate

obtained by Burq [34]:

jjvð�DD � ðk6i�ÞÞ�1vjjL2!L2�
2 log ð2þ jkjÞ
1þ

ffiffiffiffiffiffi
jkj

p : (2.4)

As

ðA� zÞ�1 ¼ �zðDþ z2Þ�1 iðDþ z2Þ�1

iDðDþ z2Þ�1 �zðDþ z2Þ�1

� �
,

we have to show that the following norms are uniformly bounded, for all s 2 R

jjvð1þ jzjÞðDþ z2Þ�1vjjH�s,þ!Hs,� ,

jjvðDþ z2Þ�1vjjH�s,þ!Hsþ1,� ,

jjvDðDþ z2Þ�1vjjH�s,þ!Hs�1,� :

With the same arguments as Burq [17], theses bounds are all consequences of the first
one for s¼ 0, that is of

jjvð1þ jzjÞðDþ z2Þ�1vjjH0,þ!H0,� : (2.5)

To show (2.5), we follow [34], Section 4. Let

u ¼ ð1þ jzjÞðDþ z2Þ�1vf :

For W 2 C1
0 ð�1=2, 2Þ equal to one close to 1, we decompose

u ¼ W � D
z2

� �
uþ 1�W � D

z2

� �� �
u:

6 D. LAFONTAINE



On the one hand,

k 1�W � D
z2

� �� �
ukL2�k 1�W � D

z2

� �� �
vf kL2 :

On the other hand, as

W � D
z2

� �
u ¼ ð1þ jzjÞðDþ z2Þ�1W � D

z2

� �
vf ,

we have from (2.4)

jjvW � D
z2

� �
ujjL2� log ð2þ z2ÞjjW � D

z2

� �
vf jjL2 ,

and thus

log ð2þ z2Þ�1=2jjvW � D
z2

� �
ujjL2� log ð2þ z2Þ1=2jjW � D

z2

� �
vf jjL2 :

Finally, like in Burq [34], the localisation in frequencies allows us to replace the weights
in z by the H0,6 norms, and we get (2.5). w

2.2. Reduction to logarithmic times near the trapped ray

The aim of this section is to show that the following Proposition implies Theorem 1

Proposition 4. There exists � > 0 and a small neighbourhood D of the trapped ray, such
that, for all v 2 C1

0 supported in D, if f, g are such that wð�h2DÞf ¼ f , wð�h2DÞg ¼ g
and u is the solution of (1.1) with data (f, g):

jjvujjLpð0, �j log hjÞLq�jjf jj _H c þ jjgjj _H c�1 :

Thus, we will assume the previous Proposition and show Theorem 1. As the value of
� > 0 does not play any role, we assume here that �¼ 1.
In the spirit of [20], let vobst, vray 2 C1

0 be such that vobst ¼ 1 in a neighbourhood of
H1 [H2 [R, and vray 2 C1

0 such that vray ¼ 1 in a neighbourhood of R: We decom-
pose u as the sum

u ¼ ð1� vobstÞuþ vobstð1� vrayÞuþ vobstvrayu (2.6)

2.2.1. The first term: away from the trapped ray and the obstacles
Let v ¼ ð1� vobstÞu: Then v verifies

@2
t � DD

� �
v ¼ � DD, vobst½ 	u,

ðvð0Þ, @tvð0ÞÞ ¼ ðð1� vobstÞf , ð1� vobstÞgÞ:

As v is supported away from the obstacle, it solves a problem in the full space and we
can replace the Laplacian in ð@2

t � DDÞ by D
R

d : Therefore, by the Duhamel formula

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 7



vðtÞ ¼ cos t
ffiffiffiffiffiffiffiffiffiffiffiffi
�D

R
d

p� 	
ð1� vobstÞf þ

sin t
ffiffiffiffiffiffiffiffiffiffiffiffi
�D

R
d

pffiffiffiffiffiffiffiffiffiffiffiffi
�D

R
d

p ð1� vobstÞg

�
ðt
0

sin ððt � sÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
�D

R
d

p
Þffiffiffiffiffiffiffiffiffiffiffiffi

�D
R

d

p DD, v½ 	uðsÞds:
(2.7)

The first two terms are handled thanks to the Strichartz estimates for the waves in R
d :

jj cos t
ffiffiffiffiffiffiffiffiffiffiffiffi
�D

R
d

p� 	
ð1� vobstÞf þ

sin t
ffiffiffiffiffiffiffiffiffiffiffiffi
�D

R
d

pffiffiffiffiffiffiffiffiffiffiffiffi
�D

R
d

p ð1� vobstÞgjjLpðR, LqÞ

�jjf jj _H c þ jjgjj _H c�1 :

(2.8)

And by Christ-Kiselev lemma, cutting the sinus in half wave operators and the
Strichartz estimates in the full space again

k
ðt
0

sin ððt � sÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
�D

R
d

p
Þffiffiffiffiffiffiffiffiffiffiffiffi

�D
R

d

p DD, vobst½ 	uðsÞdsjjLpLq

�k
ð
R

sin ððt � sÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
�D

R
d

p
Þffiffiffiffiffiffiffiffiffiffiffiffi

�D
R

d

p DD, vobst½ 	uðsÞdsjjLpLq

�jj e
�it

ffiffiffiffiffiffiffiffiffi
�D

Rd

p
ffiffiffiffiffiffiffiffiffiffiffiffi
�D

R
d

p ð
R

eis
ffiffiffiffiffiffiffiffiffi
�D

Rd

p
DD, vobst½ 	uðsÞdsjjLpLq

�k
ð
R

eis
ffiffiffiffiffiffiffiffiffi
�D

Rd

p
DD, vobst½ 	uðsÞdsjj _H c�1 :

(2.9)

Now, thanks to the dual version of the L2 estimate (2.1) in R
d (Proposition 2 replacing

X by R
d, which enjoys no trapped geodesic) we get

k
ð
R

eis
ffiffiffiffiffiffiffiffiffi
�D

Rd

p
DD, vobst½ 	uðsÞdsjj _H c�1

¼ k
ð
R

eis
ffiffiffiffiffiffiffiffiffi
�D

Rd

p
~v DD, vobst½ 	uðsÞdsjj _H c�1�jj DD, vobst½ 	uðsÞdsjjL2 _H c�1 ,

(2.10)

where ~v ¼ 1 on the support of rvobst . But, using the L2 estimate away from the
trapped ray (2.1), because rvobst is supported away from the trapped ray:

jj DD, vobst½ 	uðsÞdsjjL2 _H c�1�jjf jj _H c�1 þ jjgjj _H c�2 þ jjrf jj _H c�1 þ jjrgjj _H c�2

�jjf jj _H c þ jjgjj _H c�1 :
(2.11)

Collecting (2.7), (2.8), (2.9), (2.10) and (2.11) we conclude that

jjð1� vobstÞujjLpLq�jjf jj _H c þ jjgjj _H c�1 : (2.12)

2.2.2. The second term: away from the trapped ray and near the obstacles
Let us now deal with

w :¼ vobstð1� vrayÞu:

8 D. LAFONTAINE



We denote here v :¼ vobstð1� vrayÞ and consider u 2 C1
0 ðð�1, 1ÞÞ satisfying u � 0,

uð0Þ ¼ 1 and
P

j2Z uðs� jÞ ¼ 1: We decompose

vu ¼
X
j2Z

uðt � jÞvu ¼:
X
j2Z

uj:

Because v is supported away from the trapped ray, using the L2 estimate away from the
trapped ray (2.1) combined with the local Strichartz estimates in time 1 for each uj
allows us to recover the estimate in the full space, with the exact same proof as Burq
[17], the only difference been using (2.1) instead of his the L2 estimate for non-trapping
geometries and we get:

jjvobstð1� vrayÞujjLpðR, LqÞ�jjf jj _H c þ jjgjj _H c�1 : (2.13)

2.2.3. The third term: near the trapped ray
We will denote here v ¼ vobstvray: We will cut u in time intervals of length j log hj:
Consider u 2 C1

0 ðð�1, 1ÞÞ satisfying u � 0, uð0Þ ¼ 1 and
P

j2Z uðs� jÞ ¼ 1: We
decompose

vu ¼
X
j2Z

u
t

j log hj � j
� �

vu ¼:
X
j2Z

uj:

The uj satisfy the equation

ð@2
t � DÞuj ¼ Fj þ Gj

where

Fj ¼ j log hj�2u00 t
j log hj � j
� �

vuþ 2j log hj�1u0 t
j log hj � j
� �

v@tu, (2.14)

Gj ¼ �u
t

j log hj � j
� �

D, v½ 	u: (2.15)

We denote

vjðtÞ ¼
Ð t
ðj�1Þj log hj

sin ðt � sÞ
ffiffiffiffiffiffiffi
�D

pffiffiffiffiffiffiffi
�D

p FjðsÞds,

wjðtÞ ¼
Ð t
ðj�1Þj log hj

sin ðt � sÞ
ffiffiffiffiffiffiffi
�D

pffiffiffiffiffiffiffi
�D

p GjðsÞds,

in such a way that uj ¼ vj þ wj: By the L2-global integrability estimate near the trapped
ray (2.2) and (2.14) we getX

j2Z
jjj log hjFjjj2L2ðR, _H c�1Þ�j log hj jju0jj2_H c þ jju1jj2_H c�1

� 	
,

and therefore
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X
j2Z

jjFjjj2L2ðR, _H c�1Þ�j log hj�1 jju0jj2_H c þ jju1jj2_H c�1

� 	
: (2.16)

On the other hand, by the Strichartz estimate on logarithmic interval

jjvjjjLpLq�jjFjjjL1 _H c�1 : (2.17)

But, as Fj is support on a time interval of size proportional to jlog hj, by the Cauchy-
Schwarz inequality we get

jjFjjjL1 _H c�1�j log hj1=2jjFjjjL2 _H c�1 : (2.18)

Therefore, by (2.16), (2.17), and (2.18)X
j2Z

jjvjjj2LpLq� jju0jj2_H c þ jju1jj2_H c�1

� 	
: (2.19)

Now, let us deal with wj. Let us define

~w6
j ¼ e�it

ffiffiffiffiffi
�D

p ððjþ1Þj log hj

ðj�1Þj log hj

eis
ffiffiffiffiffi
�D

pffiffiffiffiffiffiffi
�D

p GjðsÞds:

Decomposing the sinus operator in half wave operators and make use of the Christ-
Kiselev lemma allows us to estimate the norm of ~w6

j instead of these of wj. By the
Strichartz estimates on logarithmic interval we get

jj~w6
j jjLpLq � k

ððjþ1Þj log hj

ðj�1Þj log hj
eis
ffiffiffiffiffi
�D

p
GjðsÞdsjj _H c�1 :

Now, remark that ½D, v	 is supported away from the periodic ray. Let ~v be equal to 1 in
the support of rv and vanishing on the trapped ray. By the dual version of the L2-glo-
bal integrability estimate outside the trapped ray (2.1) we get

jj~w6
j jjLpLq � k

ððjþ1Þj log hj

ðj�1Þj log hj
eis
ffiffiffiffiffi
�D

p
GjðsÞdsjj _H c�1

¼ k
ððjþ1Þj log hj

ðj�1Þj log hj
eis
ffiffiffiffiffi
�D

p
~vGjðsÞdsjj _H c�1�jjGjjjL2 _H c�1 :

And now, by the L2-global integrability estimate outside the trapped ray (2.1) itself:X
j2Z

jjGjjj2L2ðR, _H c�1Þ� jju0jj2_H c þ jju1jj2_H c�1

� 	
:

Therefore, we get: X
j2Z

jjwjjj2LpLq� jju0jj2_H c þ jju1jj2_H c�1

� 	
: (2.20)

Thus, combining (2.19) and (2.20) we conclude thanks to the embedding l2ðZÞ, !
lpðZÞ (we recall that p � 2):
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jjvujjLpLq �
X
j2Z

jjujjjpLpLq
� �1

p�
X
j2Z

jjujjj2LpLq
� �1

2�jju0jj _H c þ jju1jj _H c�1 :

Combining this last estimate with 2.12 and 2.13 we conclude that

jjujjLpLq�jju0jj _H c þ jju1jj _H c�1 :

Finally, standard techniques permit to remove the frequencies cut-off. Therefore,
Proposition 4 implies our main Theorem.

2.3. Reduction to the trapped set

Let D be an open-neighbourhood of the trapped ray, chosen to be a cylinder with the
trapped ray for axis. We define the trapped set of D in time T

Definition 2. ðx, nÞ 2 T?X belongs to the trapped set of D in time T, denoted T TðDÞ,
if and only if one of the rays starting from x, n

jnj

� 	
and x, � n

jnj

� 	
belongs to D after

time T.
Note that the only differences with the definition of [20] are that the rays are all fol-

lowed at speed one instead of jnj 2 ½a0, b0	: Therefore, with the same proofs, we get

Lemma 1. For all bicharacteristic c starting from D with speed one, we have

dðcðtÞ, T TðDÞcÞ > 0 8t 2 �T � 1, � T½ 	

and

Lemma 2. For all D, ~D, there exists T? > 0, c> 0 such that for all T � 0:

dðT T�T?ðDÞc, T TðDÞÞ � e�cT , (2.21)

and, if D � ~D

dðT Tð~DÞc, T TðDÞÞ �
1
4
e�cTdð~Dc

,DÞ: (2.22)

We say that f 2 L2 is microlocally supported in U � T?X, if for all a 2 C1ðT?XÞ such
that a¼ 1 in U we have OpðaÞf ¼ f : Using the same time translations as in [20] com-
bined with the finite speed of propagation, the following Proposition implies our
main Theorem:

Proposition 5. There exists � > 0 and a small neighbourhood D of the trapped ray, such
that, for all v 2 C1

0 supported in D, if f, g are such that wð�h2DÞf ¼ f , wð�h2DÞg ¼ g,
are microlocally supported in T�j log hjðDÞ and spatially in D and away from @ðH1 [H2Þ,
and u is the solution of (1.1) with data (f, g), we have:

jjvujjLpð0, �j log hjÞLq�jjf jj _H c þ jjgjj _H c�1 :

The rest of the paper is thus devoted to prove Proposition 5.
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3 Construction of an approximate solution

3.1. The phase functions

We recall here the definition of the phase functions we used in [20] following the
works of Ikawa [22,23] and Burq [21]. We call u : U ! R a phase function on the
open set U � R

d if u is C1 on U and verifies jruj ¼ 1: We say that u verifies (P) on
@H1 if

(1) the principal curvatures of the level surfaces of u with respect to �ru are
non-negative in every point of U ,

(2) we have

H2 � fy þ sruðxÞ s:t: s � 0, y 2 U \ @H1,ruðyÞ � nðyÞ � 0g,

(3) for all A 2 R, the set fu � Ag is empty or convex,

and we say that u verifies (P) on @H2 if the role of H1 and H2 are exchanged in
the above.
In addition, we recall the definition of Xiðx, pÞ and Niðx, pÞ from [20]: Xiðx, pÞ is the

i-th point of intersection of the reflected ray starting at x in the direction p with the
obstacles, and Niðx, pÞ is the direction of the reflected ray starting at x in the direction p
after i reflections.
Let d1 � 0 and u be a phase function. We set

CpðuÞ ¼ fx 2 @Hp s:t:� nðxÞ � ruðxÞ � d1g,
UpðuÞ ¼ [

X1ðx,ruðxÞÞ2CpðuÞ
fX1ðx,ruðxÞÞ þ sNðx,ruðxÞÞ, s � 0g:

Then, there exists d1 � 0 such that, if u is a phase function verifying ðPÞ on @Hp, we
can define the phase uj reflected on the obstacle Hj on the open set U jðuÞ, verifying
(P) on @Hj, by the following relation, for X1ðx,ruðxÞÞ 2 CpðuÞ :

ujðX1ðx,ruÞ þ sN1ðx,ruÞÞ ¼ uðX1ðx,ruÞÞ þ s:

We call a finite sequence J ¼ ðj1, :::, jnÞ, ji 2 f1, 2g with ji 6¼ jiþ1 a story of reflections,
and will denote I the set of all the stories of reflection. By induction, we can define the
phases uJ for any J 2 I , on the sets U JðuÞ:
For f 2 C1ðUÞ and m 2 N, let

jf jmðUÞ ¼ max
ðaiÞ2ðS2Þm

sup
U

jða1 � rÞ � � � ðam � rÞf j:

The following estimate due to [21–23]:

Proposition 6. For every m � 0 we have

jruJ jm � Cmjrujm:

Moreover, according to Burq [21]:
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Proposition 7. There exists M> 0 such that, for each ði, jÞ 2 f1, 2g2, there exists open
sets containing the trapped ray U i, j such that, if J ¼ fi, :::, jg verifies jJj � M, and u veri-
fies (P), uJ can be defined in U i, j:

We set

Û1 ¼ U11 \ U12 \ U21 \ U22,

and U1 � Û1 to be an open cylinder having for axis the periodic trajectory and con-
tained in Û1: It will be shrunk in the sequel if necessary. Finally, we recall the follow-
ing estimate concerning the derivatives with respect to n of the phases built beginning
with u ¼ ðx� yÞ � n

jnj we obtained in [20]:

Proposition 8. Let uðxÞ ¼ ðx � yÞ � n
jnj. We denote uJðx, nÞ the reflected phase we build

beginning with u. Then, for all multi-indices a, b there exists a constant Da,b > 0 such
that the following estimate holds on U1:

jDa
nD

b
xruJ j � DjJj

a, b:

3.2. The microlocal cut-off

According to Section 2, we are reduced to show Proposition 5. By Lemma 2, we can
construct a small shrinking of U1, ~U1 � U1, and ~q�, h 2 C1ðT?XÞ such that ~q�, h ¼ 1
in an open neighbourhood of T 2�j log hjð~U1Þ, ~q�, h ¼ 0 outside T 2�j log hjðU1Þ in such a
way that, for all multi-indexes a,

j@a~q�, hj�h�2jajc�: (3.1)

It suffices to show Strichartz estimates in time �j log hj for data microlocally supported
in T �j log hjð~U1Þ and spatially supported in ~U1 and away from a small neighbourhood
V of @ðH1 [H2Þ: Let v0 2 C1 such that v0 ¼ 0 near @ðH1 [H2Þ and v0 ¼ 1 outside V:
For such functions, v0Opð~q�, hÞf ¼ f , thus it suffices to show

jjve�it
ffiffiffiffiffi
�D

p
v0Opð~q�, hÞf jjLpð0, �j log hjÞLq�jjf jj _H c , (3.2)

for all v 2 C1 supported in ~U1: We will show the strongest estimate:

jje�it
ffiffiffiffiffi
�D

p
v0Opð~q�, hÞf jjLpð0, �j log hjÞLq�jjf jj _H c : (3.3)

by the TT? method – see, for example, [4] – it suffices to show the dispersive estimate,
for 0 � t � �j log hj :

jjQ?
�, he

�it
ffiffiffiffiffi
�D

p
Q�, hjjL1!L1�

1

h
dþ1
2 t

d�1
2

: (3.4)

where

Q�, h :¼ wð�h2DÞv0Opð~q�, hÞ:

The symbol associated with Q�, h admits the development (see, for example, Zworski
[35])
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XN
k¼0

ðihÞk

k!
hDn ,Dyikð~q�, hðx, nÞv0ðyÞwðgÞÞg¼n, y¼x þ OSðhNþ1Þ,

hence we introduce as in [20], for N � 1

q�, h,Nðx, nÞ :¼
XN
k¼0

ðihÞk

k!
hDn,Dyikð~q�, hðx, nÞv0ðyÞwðgÞÞg¼n, y¼x:

Then, to show (3.4), it suffices to show

jjOpðq�, h,NÞ?e�it
ffiffiffiffiffi
�D

p
Opðq�, h,NÞjjL1!L1�

1

h
dþ1
2 t

d�1
2

(3.5)

for N large enough. Note that, in particular,

Suppq�, h,N � T 2�j log hjðU1Þ \ U1 � fjnj 2 a0, b0½ 	g (3.6)

and q�, h,N is spatially supported outside a small neighbourhood of @ðH1 [H2Þ not
depending of �, h,N:

It suffices to obtain

jjOpðq�, h,NÞ? cos t
ffiffiffiffiffiffiffi
�D

p� �
Opðq�, h,NÞjjL1!L1�

1

h
dþ1
2 t

d�1
2

,

jjOpðq�, h,NÞ? sin t
ffiffiffiffiffiffiffi
�D

p� �
Opðq�, h,NÞjjL1!L1�

1

h
dþ1
2 t

d�1
2

:

We will deal for example with the cosinus part, the sinus is handled in the same way.
We set

dy�, h,NðxÞ ¼
1

ð2phÞd
ð
e�iðx�yÞ�n=hq�,T,Nðx, nÞdn,

in order to have, for u 2 L2

Opðq�, h,NÞu
� �

ðxÞ ¼
ð
dy�, h,NðxÞuðyÞdy:

Notice that

Opðq�, h,NÞ? cos t
ffiffiffiffiffiffiffi
�D

p� �
Opðq�, h,NÞuðxÞ ¼

ð
Opðq�, h,NÞ? cos t

ffiffiffiffiffiffiffi
�D

p� �
dy�,T,NðxÞuðyÞdy,

thus, to show (3.5), it suffices to study dy�, h,N and to show that, for N large enough

jOpðq�, h,NÞ? cos t
ffiffiffiffiffiffiffi
�D

p� �
dy�, h,N j�

1

h
dþ1
2 t

d�1
2

, for 0 � t � �j log hj:

Let V1 be a small neighbourhood of @ðH1 [H2Þ on which q�, h,N is vanishing and v0 2
C1
0 ðRdÞ be such that v0 ¼ 1 on U1 \ Vc

1: We choose vþ to be supported on
ConvðH1 [H2ÞnðH1 [H2Þ and away from a small enough neighbourhood of @ðH1 [
H2Þ, Conv denoting the convex hull. Note that in particular, Opðq�, h,NÞ? ¼
Opðq�, h,NÞ?vþ: The symbol of Opðq�,T,NÞ? enjoys the development

q�, h,N
?ðx, nÞ ¼ eihhDx ,Dniq�, h,N :
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Thus, by (3.1), taking � > 0 small enough, we have jq?ðaÞ�,T,N j�1 for all jaj � d þ 1:
Moreover, q?ðaÞ�,T,N is compactly supported in frequencies. Therefore, by Ryuichi Ashino,
Michihiro Nagase, and R�emi Vaillancourt [36], Section 4, Opðq�,T,NÞ is bounded on
L1 ! L1 independently of h. Therefore, we only have to show, for all 0 � T � �j log hj

jv0 cos t
ffiffiffiffiffiffiffi
�D

p� �
dy�, h,N j�

1

h
dþ1
2 t

d�1
2

, for 0 � t � �j log hj (3.7)

for N large enough.
In order to do so, we will construct a parametrix in time 0 � t � �j log hj for the

wave equation with data ðdy�, h,N , 0Þ: The first step will be to construct an approximate
solution of wave equation with data

ðe�iðx�yÞ�n=hq�, h,Nðx, nÞ, 0Þ
where n 2 R

d, n 2 Suppq�, h,N is fixed and considered as a parameter.

3.3. Approximation of the solution

3.3.1. The Neumann sum
We look for the solution w of

@2
t w� Dw ¼ 0 in X

wðt ¼ 0ÞðxÞ ¼ e�iðx�yÞ�n=hqðx, nÞ
@twðt ¼ 0ÞðxÞ ¼ 0

wj@X ¼ 0

8>>>><
>>>>:

as the Neumann series

w ¼
X
J2I

ð�1ÞjJjwJ

where

@2
t w

; � Dw; ¼ 0 in R
d

wðt ¼ 0ÞðxÞ ¼ e�iðx�yÞ�n=hqðx, nÞ
@twðt ¼ 0ÞðxÞ ¼ 0

8>><
>>: (3.8)

and, for J 6¼ ;, J ¼ ðj1, :::, jnÞ, J0 ¼ ðj1, :::, jn�1Þ

@2
t w

J � DwJ ¼ 0 in R
dnHjn

wðt ¼ 0Þ, @twðt ¼ 0Þ ¼ 0

wJ
j@Hjn

¼ wJ0

j@Hjn
:

8>><
>>: (3.9)

Let us denote

uþ
J ðx, nÞ ¼ uJðx, nÞ and u�

J ðx, nÞ ¼ uJðx, � nÞ,

that is, uþ
J is the reflected phase constructed with uðx, nÞ ¼ ðx � yÞ � n

jnj and u�
J is the

reflected phase constructed with uðx, � nÞ ¼ �ðx � yÞ � n
jnj : We look for wJ as the sum

of the two series
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wJ ¼ wJ,þ þ wJ,�

¼
X
k�0

wJ,þ
k ðx, tÞe�iðuþ

J jnj�tjnjÞ=hð�i
h
jnjÞ

k þ
X
k�0

wJ,�
k ðx, tÞeiðu�

J jnj�tjnjÞ=hði hjnjÞ
k:

If wJ,6
0 solves the transport equations

ð2@t þru6
J � r þ DuJÞwJ,6

0 ¼ 0,

and for k � 1

ð2@t þru6
J � r þ DuJÞwJ,6

k ¼ �wwJ,6
k�1,

with, for J ¼ ;

w;,þ
0 ðx, 0Þ ¼ w;,�

0 ðx, 0Þ ¼ 1
2
qðx, nÞ,

w;,6
k ðx, 0Þ ¼ 0, 8k � 1,

@tw
;,þ
k ðx, 0Þ þ @tw

;,�
k ðx, 0Þ ¼ 0, 8k � 0,

and, for jJj � 1

wJ,6
kj@Hjn

¼ wJ0 ,6
kj@Hjn

,

@tw
J,6
k ðx, 0Þ ¼ wJ,6

k ðx, 0Þ ¼ 0,

then wJ solves (3.8), (3.9).
Solving the transport equations for J ¼ ; gives immediately

w;,þ
0 ¼ 1

2
q x� t

n
jnj , n

� �
,

w;,�
0 ¼ 1

2
q xþ t

n
jnj , n

� �
,

w;,6
k ¼ �

ðt
0
ww6

k�1ðx7ðs� tÞ n
jnj , sÞds k � 1:

3.3.2. Reflections on the obstacles
Now, we would like to reflect w;,6 on the obstacle. To this purpose, starting from the
phases uðx, nÞ ¼ ðx�yÞ�n

jnj and uðx, � nÞ ¼ � ðx�yÞ�n
jnj we would like to define the reflected

phases as explained in the first subsection.
We decompose the set of the stories of reflections as

I ¼ I 1 [ I 2

where I 1 are all stories beginning with a reflection on H1, that is of the form ð1, :::Þ,
and I 2 beginning with a reflection on H2, that is of the form ð2, :::Þ: Let e be a unit
vector with the same direction as R: We take e oriented from H1 to H2: For

n
jnj in a

small enough neighbourhood V of fe, � eg we have

(1) if n � e > 0, then ðx�yÞ�n
jnj verifies (P) on H1 and � ðx�yÞ�n

jnj verifies (P) on H2

(2) if n � e < 0, then ðx�yÞ�n
jnj verifies (P) on H2 and � ðx�yÞ�n

jnj verifies (P) on H1
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Remark that


 In situation (1), the support of w;,þ never cross H1 and the support of w;,�

never cross H2 in any time,

 in situation (2), the support of w;,þ never cross H2 and the support of w;,�

never cross H1 in any time.

We set


 In situation (1): ðIþ, I�Þ :¼ ðI 2, I 1Þ,

 in situation (2): ðIþ, I�Þ :¼ ðI1, I 2Þ:

Then, (3.9) is satisfied for w6 for all J 2 I7 : indeed, because the support of w;,6

never cross Hi7 , we have for all time 0 ¼ w;,6
j@Hi7

¼ w i7f g
j@Hi7

, and so on. Thus, we are
reduced to construct the wJ,6’s for J 2 I6: In the same way as in [20], shrinking U1 if
necessary, all the phases we will be dealing with are well defined according to the previ-
ous remarks.
Then, in the exact same way as [20], we solve the transport equations along the

rays:

Proposition 9. We denote by X̂�tðx,ru6
J Þ the backward spatial component of the flow

starting from ðx,ru6
J Þ, defined in the same way as X�tðx,ru6

J Þ, at the difference that
we ignore the first obstacle encountered if it’s not Hjn , and we ignore the obstacles after
jJj reflections. Moreover, for J ¼ ðj1 ¼ i1, :::, jnÞ 2 I i1 , denote by

Jðx, n, tÞ ¼
ðj1, :::, jkÞ if X̂�tðx,ru6

J Þ has been reflected n� k times,

; if X̂�tðx,ru6
J Þ has been reflected n times:

(

Then, the wJ
k’s are given by, for t � 0 and x 2 U JðuÞ

wJ,6
0 ðx, tÞ ¼ Ku6

J ðx, nÞqðX̂�tðx,ru6
J Þ, nÞ

where

Ku6
J ðx, nÞ ¼

Gu6
J ðxÞ

Gu6
J ðX�1ðx,ru6

J ÞÞ
� � � � �

Gu6ðX�jJj�1ðx,ru6
J ÞÞ

Gu6ðX�jJjðx,ru6
J ÞÞ

,

and, for k � 1, and x 2 U JðuÞ

wJ,6
k ðx, tÞ ¼

ðt
0
guJ

ðx, ðt � sÞ, nÞwwJðx, n,6ðt�sÞÞ
k�1 ðX̂�ðt�sÞðx,ru6

J Þ, sÞds

where

g6uJ
ðx, n, tÞ ¼

Gu6
J ðxÞ

Gu6
J ðX�1ðx,ru6

J ÞÞ
� � � � �

Gu6
Jðx, n, tÞðX�jJðx, n, tÞj�1Þðx,ru6

J ÞÞ
Gu6

Jðx, n, tÞðX̂�tðx,ru6
J ÞÞ

:

With the exact same proofs as in [20], Section 4.3.2, following the rays at speed one
instead of speed jnj 2 ½a0, b0	, wJ,6 verify the following properties:

Proposition 10. We have

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 17



(1) wJ
kðx, tÞ 6¼ 0 ) ðX̂�tðx,ruJÞ, nÞ 2 Suppq,

(2) for x 62 U JðuÞ and 0 � t � �j log hj, wJ,6
k ðx, tÞ ¼ 0,

(3) there exists c1, c2 > 0 such that for every J 2 I , the support of wJ,6
k ðx, �Þ is

included in c1jJj � tf g for any x, and for x 2 Suppv0 it is included
in c1jJj � t � c2ðjJj þ 1Þ

 �

,
(4) in times 0 � t � �j log hj, Suppv0 \ SuppwJ,6

k ð�, tÞ is included in U1:

Moreover, Proposition 6 and Proposition 8 combined with Proposition 9 and (3.1)
gives immediately:

Proposition 11. The following bounds hold on U1

jDa
nw

J,6
k j�CjJj

a h
�ð2kþjajÞc�:

3.4. Decay estimates

We recall the principal result who permits to estimate the decay of the reflected solu-
tions, namely the convergence of the product of the Gaussian curvatures KuJ obtained
by Ikawa [22,23] and Burq [21]. In the present framework of two obstacles, it writes,
from [21, Proposition 3.23]:

Proposition 12. Let 0 < k < 1 be the product of the two eigenvalues lesser than one of
the Poincar�e map associated with the periodic trajectory. Then, there exists 0 < a < 1,
and for I ¼ ð1, 2Þ and I ¼ ð2, 1Þ, for every l 2 ff1g, f2g, ;g, there exists a C1 function
aI, l defined in U1, such that, for all J ¼ ðI, :::, I|fflffl{zfflffl}

r times

, lÞ, we have

sup
U1

jKuJ � kraI, ljm � Cmk
rajJj:

Combined with the explicit expressions of Proposition 9 and (3.1), this result gives as in
[20] the following decay:

Proposition 13. We following bounds hold on U1:

jwJ,6
k jm � Ckk

jJjh�ð2kþmÞc�:

Moreover, on the whole space, jwJ
kjm � Ckh�ð2kþmÞc�:

3.5. Critical points of the phase

We need to study the critical points of the phase in order to be able to perform a sta-
tionary phase argument on the solution we are building. At the difference of [20], the
phases here stationate in whole directions. Therefore, we will perform a stationary phase
on each sphere Sd�1ð0, sÞ: To this purpose, we need
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Proposition 14. Let us denote

S6
J ðx, n, tÞ ¼ u6

J ðx, nÞjnj � tjnj:

Then, there exists g > 0 such that for all jJj � 1,

dðX�jJjðx,ru6
J ðx, nÞÞ, yÞ � g and wJ,6ðx, t, nÞ 6¼ 0
) DnS6

J ðx, n, tÞ 6¼ 0:
(3.10)

Moreover, as soon as dðX�jJjðx,ruJðx, nÞÞ, yÞ � g, for all s> 0 and x there exists a
unique sJðx, sÞ 2 Sd�1ð0, sÞ such that, for all t � 0

wJ,6ðx, � , s6J ðx, sÞÞ 6¼ 0 and DSd�1ð0, sÞS
6
J ðx, s6J ðx, sÞ, tÞ ¼ 0: (3.11)

Furthermore, if dðX�jJjðx,ruJðx, nÞÞ, yÞ � g and s 2 ½a0, b0	,
detD2

Sd�1ð0, sÞS
6
Jðx, s6J ðx, sÞ, tÞ � c > 0: (3.12)

Proof. For the seek of readability, we denote SJ ¼ Sþ
J , uJ :¼ uþ

J , w
J ¼ wJ,þ and we

make the proof for the positive part of the wave, wJ,þ : for wJ,�, the proof is the same.
In the same way as in [20], we obtain, differentiating jruJðx, nÞjnjj2 ¼ jnj2 with

respect to n and integrating the transport equation obtained along the rays up to the
first phase:

DnS6
J ðx, n, tÞ ¼ X�jJjðx,ruJðx, nÞÞ � y� ðt � lJðx, nÞÞ

n
jnj , (3.13)

where lJðx, nÞ is given by

lJðx, nÞ ¼ dðx,X�1ðx,ruJðx, nÞÞÞ þ dðX�1ðx,ruJðx, nÞÞ,X�2ðx,ruJðx, nÞÞÞ
þ � � � þ dðX�jJj�1ðx,ruJðx, nÞÞ,X�jJjðx,ruJðx, nÞÞÞ:

Note that, by Proposition 10, (1), wJ,6ðx, n, tÞ 6¼ 0 implies that, because q is supported
away of the boundary, for jJj � 1

t � lJðx, nÞ � d0 > 0

and thus, we get (3.10). Moreover, we deduce that

DSd�1ð0, sÞSJðx, nÞ ¼ X�jJjðx,ru6
J ðx, nÞÞ � y� X�jJjðx,ruJðx, nÞÞ � y

� 	
� n
jnj

� �
n
jnj :

Thus, if n is such that DSd�1ð0, sÞSJðx, nÞ ¼ 0,

X�jJjðx,ruJðx, nÞÞ � y==
n
jnj ,

hence n
jnj is a direction allowing reaching the point x from the point y following the

story of reflection J. Note that there are a priori two such vectors on Sd�1ð0, sÞ : one
and its opposite, but because wJ,þ ¼ 0 for J 2 I�, we have wJðx, t, nÞ ¼ 0 for one of
them. We thus get (3.11). Note that the critical point n such that wJðx, t, nÞ 6¼ 0 is the
one verifying
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X�jJjðx,ruJðx, nÞÞ � y
� 	

� n
jnj > 0: (3.14)

The Hessian in R
d of SJ is derivated like in [20], differentiating jruJðx, nÞjnjj2 ¼ jnj2

with respect to n and integrating the transport equation obtained along the rays once
again:

D2
nS

6
J ðx, n, tÞ ¼

lJðx, nÞ
jnj Id � Id

jnj �
nnt

jnj3

 !
t

�
Xd
k¼1

ð l
jnj

0
Dn@xkwJðsÞ ðX�sðx,ruJðx, nÞÞ, nÞ Dn@xkwJðsÞ ðX�sðx,ruJðx, nÞÞ, nÞ

� �t,
where we denoted JðsÞ :¼ Jð�, s=2Þ and wJðx, nÞ :¼ jnjuJðx, nÞ: We would like to deduce
an expression of D2

Sd�1ð0, sÞSJðx, n, tÞ for n ¼ sJðx, tÞ: To this purpose, we recall that

Lemma 3. Let g : Rd ! R
m be a submersion in 0 and M :¼ g�1ð0Þ. Moreover, let f :

R
d ! R and F be its restriction to M. We suppose that F has a critical point in a 2 M.

Then, the Hessian of F in a is the restriction of

d2fa � k � d2ga
to TaM, where k is the Lagrange multiplier of f with respect to g in a, that is the unique
linear form k 2 LðRm,RÞ such that dfa ¼ k � dga:
Here, we can take gðnÞ :¼ jnj2 � s2: Then DgðnÞ ¼ 2n: The Lagrange multiplier of

SJðx, �Þ with respect to g in n :¼ sJðx, sÞ is the unique k 2 R such that

DnSJðx, t, nÞ ¼ 2kn:

Therefore, according to (3.13)

2k ¼ X�jJjðx,ruJðx, nÞÞ � y
� 	

� n

jnj2
� ðt � lJðx, nÞÞ

1
jnj :

On the other hand, by Lemma 3

D2
Sd�1ð0, sÞSJðx, n, tÞ ¼ D2

nSJðx, n, tÞ � 2kId
� 	

jTnSn�1ð0, sÞ
:

Thus, D2
Sd�1ð0, sÞSJðx, n, tÞ is the restriction to TnSd�1ð0, sÞ of

� ðX�jJjðx,ru6
J ðx, nÞÞ � yÞ � n

jnj2
Id þ nnt

jnj3
t

�
Xd
k¼1

ð l
jnj

0
Dn@xkwJðsÞ ðX�sðx,ruJðx, nÞÞ, nÞ Dn@xkwJðsÞ ðX�sðx,ruJðx, nÞÞ, nÞ

� �t
:

But, the quadratic form nnt vanishes in TnSd�1: Therefore, D2
Sd�1ð0, sÞSJðx, n, tÞ is the

restriction to TnSd�1ð0, sÞ of
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� ðX�jJjðx,ruJðx, nÞÞ � yÞ � n

jnj2
Id

�
Xd
k¼1

ð l
jnj

0
Dn@xkwJðsÞ ðX�sðx,ruJðx, nÞÞ, nÞ Dn@xkwJðsÞ ðX�sðx,ruJðx, nÞÞ, nÞ

� �t
:

And as the matrices

Dn@xkwJðsÞ ðX�sðx,ruJðx, nÞÞ, nÞ Dn@xkwJðsÞ ðX�sðx,ruJðx, nÞÞ, nÞ
� �t

are positives, and according to (3.14), we get the last part of the statement. w

4. Proof of the main result

Let K � 0: By the previous section, the function

ðx, tÞ ! 1

ð2phÞd
X
6

X
J2I

ðXK
k¼0

wJ,6
k ðx, t, nÞe7iðu6

J ðx, nÞjnj�tjnjÞ=hð7ih=jnjÞkdn

satisfies the approximate equation

@2
t u� Du ¼ ð7hÞK 1

ð2phÞd
X
6

X
J2I

ð
wwJ,6

K�1ðx, t, nÞe7iðu6
J ðx, nÞjnj�tjnjÞ=hjnj�Kdn

with data

ðuð0Þ, @tuð0ÞÞ ¼ ðdy�, h,N , 0Þ:

By the Duhamel formula, the difference from the actual solution, that is from
cos t

ffiffiffiffiffiffiffi
�D

p� �
dy, is bounded in Hm norm by

C � hK�d � jtj sup
s2 0, t½ 	, n2 a0, b0½ 	

X
6

X
J2I

jjwwJ,6
K�1ð�, s, nÞe7iðu6

J ð�, nÞjnj�tjnjÞ=hjjHm :

So, for 0 � t � �j log hj

cos t
ffiffiffiffiffiffiffi
�D

p� �
dy

� �
ðxÞ ¼ SKðx, tÞ þ RKðx, tÞ (4.1)

with

SKðx, tÞ ¼
1

ð2phÞd
X
6

X
J2I

ðXK
k¼0

wJ,6
k ðx, t, nÞe7iðu6

J ðx, nÞjnj�tjnjÞ=hð7ih=jnjÞkdn (4.2)

and

jjRK jjHm�j log hjhK�d sup
s, n

X
6

X
J2I

jjwwJ,6
K�1ð�, s, nÞe7iðu6

J ð�, nÞjnj�tjnjÞ=hjjHm : (4.3)

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 21



4.1. The reminder

We first deal with the reminder term RK. Let us denote

WJ,6
K�1ðx, s, nÞ ¼ wwJ,6

K�1ð�, s, nÞe7iðu6
J ð�, nÞjnj�tjnjÞ=h

Notice that, by construction of the wk’s, w
J
k is supported in a set of diameter ðC þ tÞ:

Therefore, using Proposition 13, Proposition 6 and the derivative of a product we get:X
J2I

jj@mWJ,6
K�1jjL2�CKð1þ tÞ

d
2

X
J2I

jj@mWJ,6
K�1jjL1�CKð1þ tÞ

d
2h�m

X
J2I

h�ð2KþmÞc�

and thus, by the Sobolev embedding Hd, ! L1 and (4.3)

jjRK jjL1�CK j log hjhK�2dð1þ tÞ
d
2h�ð2KþdÞc� J 2 I , s:twJ

K�1 6¼ 0
n o��� ���:

By Proposition 10 we get in the same way as in [20], due to the finite speed of
propagation:

J 2 I , s:twJ
K�1 6¼ 0


 ��� ���ð1þ tÞ, (4.4)

and therefore

jjRK jjL1�CK j log hjhKð1�2c�Þ�dð2þc�Þð1þ tÞ
d
2þ1 (4.5)

Thus, for 0 � t � �j log hj

jjRK jjL1�CK j log hj
d
2þ1hKð1�2c�Þ�dð2þc�Þ � CKh

Kð1�2c�Þ�dð1þc�Þ�1:

We take � > 0 small enough so that 2c� � 1
2 and we get

jjRK jjL1 � CKh
K
2�3d�1:

Let us now fix K large enough so that

K
2
� 3d � 1 � � d þ 1

2
þ 1:

Then, as 0 � t � �j log hj is equivalent to h � e�
t
�, we obtain

jjRK jjL1 � CKh
�dþ1

2 e�
t
�: (4.6)

for 0 � t � �j log hj:

4.2. The free wave J5;

Let us denote

S;Kðx, tÞ ¼
1

ð2phÞd
X
6

ðXK
k¼0

ð7ih=jnjÞkw;,6
k ðx, t, nÞe�iððx�yÞ�n7tjnjÞ=hdn

the free part of the wave, and

SrK ¼ 1

ð2phÞd
X
6

X
jJj�1

ðXK
k¼0

wJ,6
k ðx, t, nÞe7iðu6

J ðx, nÞjnj�tjnjÞ=hð7ih=jnjÞkdn,
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the reflected waves, in such a way that

SK ¼ S;K þ SrK :

Note that S;K is simply the approximate expression of the solution of the wave equation
with data ðdy, 0Þ, in the free space:

S;Kðx, tÞ ¼ cos t
ffiffiffiffiffiffiffiffiffi
�D0

p� 	
dy

� 	
ðxÞ þ R;

Kðx, tÞ

where D0 denote the Laplacian in the free space and by the Duhamel formula, for
0 � t � �j log hj

jjR;
K jjHm�hK�dj log hj sup

s, n
jjww;ð�, s, nÞjjHm

The usual dispersive estimate for the waves in the free space gives, by the frequencies
localisation of dy

j cos t
ffiffiffiffiffiffiffiffiffi
�D0

p� 	
dyj� 1

h
dþ1
2 t

d�1
2

and thus dealing with R;
K as we did for RK we get

jS;K j�
1

h
dþ1
2 t

d�1
2

, for 0 � t � �j log hj: (4.7)

4.3. The reflected waves jJj � 1

According to Proposition 14, the parts

dðX�jJjðx,ru6
J Þ, yÞ � g

enjoys a rapid decay and we thus have

SrK ¼ 1

ð2phÞd
X
6

X
jJj�1

ðXK
k¼0

wJ,6
k ðx, t, nÞe7iðu6

J ðx, nÞjnj�tjnjÞ=h1dðX�jJjðx,ru6
J Þ, yÞ�gð7ih=jnjÞkdn

þ
X
jJj�1

Oðh1Þ:

Note that, using (4.4), the sum over J is finite at fixed t, hence the Oðh1Þ part does not
contribute. We write the remaining part of SrK as, illegitimately omitting
1dðX�jJjðx,ru6

J Þ, yÞ�g for the seek of clarity:

SrKðx, tÞ ¼
1

ð2phÞd
X
6

X
J2I

ðXK
k¼0

wJ,6
k ðx, t, nÞe7iðu6

J ðx, nÞjnj�tjnjÞ=hð7ih=jnjÞkdn

¼ 1

ð2phÞd
X
6

X
J2I

ðb0
s¼a0

ð
jnj¼s

XK
k¼0

wJ,6
k ðx, t, nÞe7iðu6

J ðx, nÞjnj�tjnjÞ=hð7ih=sÞkdnds:

Let k0 � 1 to be fixed later depending only on the dimension. According to Proposition 14, we
can perform a stationary phase on each sphere jnj ¼ sf g, for each term of the sum
ðTex translation failedÞ, up to order hk0 : We obtain, as the sphere is of dimension d� 1, for
t � 0,
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SrKðx, tÞ ¼
1

ð2phÞd
h

d�1
2

X
6, J2I

Xk0
k¼0

ðb0
a0

e7iðu6
J ðx, sJðt, xÞÞs�tsÞ=hð7ih=sÞk~wJ,6

k ðt, xÞds

þ 1

ð2phÞd
h

d�1
2

X
6, J2I

ðb0
a0

RJ,6
st:ph:ðx, t, sÞds

þ 1

ð2phÞd
X
6, J2I

ð XK
k¼k0þ1

wJ,6
k ðx, t, nÞe7iðu6

J ðx, nÞjnj�tjnjÞ=hð7ih=jnjÞkdn,

(4.8)

(with the convention
PK

k0þ1 ¼ 0 if K < k0 þ 1) where for 0 � k � k0, the term ~wJ,6
k is

a linear combination of

D2k
n wJ,6

0 ðt, x, sJðt, x, sÞÞ,D2ðk�1Þ
n wJ,6

1 ðt, x, sJðt, x, sÞÞ, :::,wJ,6
k ðt, x, sJðt, x, sÞÞ,

where sJðt, x, sÞ is the stationary point of the phase on the hypersphere fjnj ¼ sg, and
RJ,6
st:ph: is the reminder involved in the stationary phase, verifying (see, for example, [35,

Section 3.5])

jRJ,6
st:ph:j�hk0þ1

X
0 � k � k0

jaj � Mðk0, dÞ

sup Da
nw

J,6
k ðx, � , tÞj,

�� (4.9)

where Mðk0, dÞ depends only on k0 and on the dimension d, hence only on d. Then the
proof proceeds as in [20, Section 5]. Indeed, as by Proposition 10, Suppv0 \ SuppwJ,6

k is
included in U1 in times 0 � t � �j log hj, we can use the decay estimates of
Proposition 13 and Proposition 11 to obtain respectively

jwJ,6
k j � Ckk

jJjh�2kc�, 8 0 � t � �j log hj, x 2 Suppv0, (4.10)

and

jDa
nw

J,6
k j � CjJj

a h
ð�2kþjajÞc�, 8 jaj � 1, 0 � t � �j log hj, x 2 Suppv0, (4.11)

where we recall that 0 < k < 1: Let us now denote

K 0 :¼ maxðk0,K,Mðk0, dÞÞ,
depending only on the dimension d. By Proposition 10 again, wJ,6

k ðx, �Þ is supported in
fc1jJj � t � c2ðjJj þ 1Þg for x 2 Suppv0, hence using (4.10), for 0 � t � �j log hj and
x 2 Suppv0 we getX

J2I
jwJ,6

k j � Ckh
�2kc�

X
J s:t:wJ

k 6¼0

kjJj � Ckh
�2kc�

X
r� t

c2

kr�1�Ckh
�2kc�e�lt ,

for some l > 0 depending only on k and on c2. We take � > 0 small enough so that
2K 0c� � 1

2 to get, for 0 � t � �j log hj and x 2 suppv0X
J2I

jwJ,6
0 j�C0e

�lt, and
X
J2I

jwJ,6
k j�Ckh

�1
2e�lt for 1 � k � K 0: (4.12)

In the same way, using (4.11) together with Proposition 10, for 0 � t � �j log hj, x 2
Suppv0, 0 � k � K 0, and jaj � 2K 0, we get for some � > 0 (depending only on the con-
stants Ca for jaj � 2K 0 and on c1, hence only on d and the geometry of the obstacles)
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X
J2I

jDa
nw

J,6
k j � h�ð2kþjajÞc�

X
J s:t: wJ

k 6¼0

CjJj
a

� h�ð2kþjajÞc�jfJ, s:t:wJ,6
k 6¼ 0gjC

t
c1
a�h�ð2kþjajÞc�ð1þ tÞC

t
c1
a

� ð1þ tÞh�4K0c�e�t ¼ ð1þ tÞh�4K 0c�e
3
2�te�

1
2�t

� ð1þ �j log hjÞh�4K 0c�h�
3
2��e�

1
2�t ,

where the bound on the second line is obtained similarly to (4.4) (the implicit constant
arising depends a-priori on k, but we can take it uniform with respect to 0 � k � K 0),
we used the fact that jaj � 2K 0 on the third line, and that 0 � t � �j log hj on the last
line. Taking � > 0 small enough so that 4K 0cþ 3

2 �
� �

� � 1
3 , we thus obtain, for 0 � t �

�j log hj, x 2 Suppv0, 0 � k � K 0 and jaj � 2K 0X
J2I

jDa
nw

J,6
k j�h�

1
2e�

1
2�t: (4.13)

Therefore, combining (4.12) and (4.13) with (4.8) and (4.9) we obtain, taking k0 :¼
dd�1

2 e, and recalling that ~wJ,6
k is a linear combination of D2k

n w
J,6
0 ðt, x, sJðt, x, sÞÞ,

D2ðk�1Þ
n wJ,6

1 ðt, x, sJðt, x, sÞÞ, :::,wJ,6
k ðt, x, sJðt, x, sÞÞ (and in particular ~wJ,6

0 ¼ wJ,6
0 ),

jv0SrKðx, tÞj � Ch�
dþ1
2 e�qt for 0 � t � �j log hj, (4.14)

for some C> 0 and q > 0 depending only of a0, b0, d and of the geometry of
the obstacles.

4.4. Conclusion

Thus, collecting (4.1), (4.6), (4.7) and (4.14) we get

jv0 cos t
ffiffiffiffiffiffiffi
�D

p� �
dy�, h,N j�

1

h
dþ1
2 t

d�1
2

, for 0 � t � �j log hj:

That is (3.7). Thus, Theorem 1 is proved by the work of reduction of the previ-
ous sections.

5. The non-linear problem

Let us now consider the following defocusing non-linear wave equation in R
3nK

@2
t u� DDuþ u5 ¼ 0

ðuð0Þ, @tuð0ÞÞ ¼ ðf , gÞ:



K will be the reunion of two balls, or an illuminated obstacle as defined in the intro-
duction, and we are concerned by the scattering problem in both situations. Our main
tool will be the following momentum identity, which was first introduced by Morawetz
[28] in a similar form to show some decay properties of the linear wave equation:

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 25



Lemma 4. Let u be a solution of (NLW) in X and v 2 C1ðX,RÞ. Then we have

@t

ð
X
� @tururv� 1

2
Dvu@tu

� �
¼
ð
X
ðD2vru,ruÞ � 1

4

ð
X
u2D2v

þ 3
2

ð
X
juj6Dv� 1

2

ð
@X
j@nuj2@nv:

(5.1)

Proof. The identity can be shown by standard integrations by parts justified by a limit-
ing argument. w

5.1. A scattering criterion

The scattering in R
3 was shown by Bahouri and Shatah [24]. Their proof still hold in

the case of a domain with boundaries if we are able to control the boundary term
appearing in their computations, that is

Lemma 5. Let u be a solution of (NLW) in a finite-border domain X of R3 such that
Strichartz estimates (1.5) holds. If

1
T

ðT
0

ð
@X
j@nuj2drdt ! 0,

as T goes to infinity, then u scatter in _H
1
:

Note that the trace of the normal derivative is not an easy object to deal with,
because this trace is a priori not defined in L2ð@XÞ for elements of _H

1ðXÞ: Moreover,
even if we can define it for almost every u(t) when u is a solution of (NLW) because of
the particular structure of the equation, the application

u 2 _H
1 \ value in time t of solutions of NLWf g ! @nu 2 L2ð@XÞ

is in our knowledge not known to be continuous.
For this reason, we prefer to deal with the following criterion, which involve only the

local energy of the equation, and that we deduce from the previous one using the
momentum identity (5.1):

Lemma 6. Let u be a solution of (NLW) in a finite-border domain X of R3 such that
Strichartz estimates (1.5) holds. There exists A> 0, Bð0,AÞ � @X, such that, if

1
T

ðT
0

ð
X\Bð0,AÞ

jruðx, tÞj2 þ juðx, tÞj6 dxdt ! 0, (5.2)

as T goes to infinity, then u scatters in _H
1
:

Proof. Let v 2 C1
0 ðR3,RÞ be such that rv ¼ �n on @X, supported in B(0, A). Suppose

that

1
T

ðT
0

ð
X\Bð0,AÞ

jruðx, tÞj2 þ juðx, tÞj6 dxdt ! 0

as T goes to infinity. We use Lemma 4 with the weight v to get:
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@t

ð
X
� @tururv� 1

2
Dvu@tu

� �
¼
ð
X
ðD2vru,ruÞ � 1

4

ð
X
u2D2v

þ 2
3

ð
X
juj6Dvþ 1

2

ð
@X
j@nuj2dr:

Integrating in time we getðT
0

ð
@X
j@nuj2drdt�

ð
X\Bð0,AÞ

j@turuj þ ju@tuj þ
ðT
0

ð
X\Bð0,AÞ

juj6 þ juj2 þ jruj2,

and using Minkowsky inequality,ðT
0

ð
@X
j@nuj2drdt�

ð
X
j@tuj2

� �1
2
ð
X
jruj2

� �1
2

þ A
1
3

ð
X
j@tuj2

� �1
2
ð
X
juj6

� �1
6

þ
ðT
0

ð
X\Bð0,AÞ

juj6 þ jruj2
� �

þ A
2
3

ðT
0

ð
X\Bð0,AÞ

juj6
 !1

3

�ACðEÞ þ
ðT
0

ð
X\Bð0,AÞ

ðjuj6 þ jruj2Þ þ T
2
3

ðT
0

ð
X\Bð0,AÞ

juj6
 !1

3

:

Thus

1
T

ðT
0

ð
@X
j@nuj2drdt�A

CðEÞ
T

þ 1
T

ðT
0

ð
X\Bð0,AÞ

ðjuj6 þ jruj2Þ

þ 1
T

ðT
0

ð
X\Bð0,AÞ

juj6
 !1

3

! 0

as T ! 1 and by Lemma 5 we conclude that u scatter in _H
1
: w

Notice that the Morawetz identity (5.1) permits to obtain this criterion as soon as
one has a weight function v such that rv � n � 0 on @X, D2v is positive definite, and
D2v � 0: Constructing such weights will therefore be of key interest in the sequel.

5.2. A partial result in the exterior of two balls

In the exterior of two balls, Lemma 4 seems not to be sufficient to show the scattering
criterion (5.2) because we are not able to find an appropriate weight function. However,
we can choose a weight function which has the right behaviour everywhere except in a
neighbourhood of the trapped ray, and therefore obtain Theorem 2, which is a first step
towards the scattering for all data: it is extended to the exterior of two convex obstacles
and used to show the scattering in this framework in the work in progress [25].

Proof of Theorem 2. Without loss of generality, we suppose that H1 is centred in 0. We
denote by c the centre of H2: We choose the weight

vðxÞ :¼ jxj þ jx� cj
and use Lemma 4 with weight v
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@t

ð
X
� @tururv� 1

2
Dvu@tu

� �
¼
ð
X
ðD2vru,ruÞ � 1

4

ð
X
u2D2v

þ 2
3

ð
X
juj6Dv� 1

2

ð
@X
j@nuj2rv � n dr:

Remark that �rv � n � 0 on @H1 [ @H2 : indeed, on H1, � n ¼ x
jxj and thus

�rv � n ¼ 1þ x � c
jx � cj �

x
jxj � 1� x � c

jx � cj

����
���� x
jxj

����
���� ¼ 0,

and the same hold on H2: Moreover, D2v ¼ 0: Thus we obtain

@t �
ðT
0
@turu � rvþ 1

2
Dvu@tu

 !
� 2

3

ð
X
juj6Dvþ

ð
X
ðD2vru,ruÞ (5.3)

Integrating this inequality and controlling the left-hand side using the Hardy inequalityð
X

jf j2

jxj2
�

ð
X
jrf j2 for f 2 _H

1
0ðXÞ

we get ðT
0

ð
X
juj6Dvþ ðD2vru,ruÞ dxdt�E: (5.4)

From the one hand, Dv� 1
A on B(0, A), thusð

X\Bð0,AÞ
juj6�A

ð
X\Bð0,AÞ

juj6Dv�A
ð
X
juj6Dv,

and therefore, by (5.4)

1
T

ðT
0

ð
X\Bð0,AÞ

juj6 dxdt� E
T
: (5.5)

Now, we would like to estimate the localised kinetic energy using (5.4) again. We have

D2v ¼ 1
jxj Id� xxt

jxj2

 !
þ 1
jx� cj Id� ðx � cÞðx� cÞt

jx� cj2

 !
:

The operators corresponding to the matrices

Id� xxt

jxj2
, resp:Id� ðx� cÞðx � cÞt

jx � cj2

are the orthogonal projections on the plane normal to x
jxj , resp. to

x�c
jx�cj : Thus,

ðD2v � n, nÞ ¼ 1
jxj þ

1
jx� cj

� �
jnj2 � 1

jxj n � x
jxj

� �2

� 1
jx� cj n � x � c

jx � cj

� �2

: (5.6)

We choose coordinates (depending of x and c) such that
x
jxj ¼ ð1, 0, 0Þ, x � c

jx � cj ¼ ð cos h, sin h, 0Þ,
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then we have, if n ¼ ð n̂1 n̂2 n̂3 Þ in this set of coordinates

1
jxj n � x

jxj

� �2

þ 1
jx � cj n � x � c

jx � cj

� �2

¼ n̂1 n̂2

� 	 1
jxj þ

cos2h
jx � cj

sin h cos h
jx� cj

sin h cos h
jx� cj

sin2h
jx� cj

0
BBB@

1
CCCA n̂1

n̂2

 !
:

The largest eigenvalue of this positive quadratic form in ð n̂1 n̂2 Þ writes

k2 ¼
1
2

1
jx � cj þ

1
jxj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jx � cj þ
1
jxj

� �2

� 4
sin 2h

jxjjx � cj

s0
@

1
A

therefore, there exists a0 > 0 small enough and c> 0 such that, if a � a0, we have, for
x 2 X \ Bð0,AÞ

sin2h � a ) k2 �
1

jx � cj þ
1
jxj � ca: (5.7)

On the other hand

1
jxj n � x

jxj

� �2

þ 1
jx � cj n � x� c

jx� cj

� �2

� k2jðn̂1, n̂2Þj2 � k2jnj2,

thus we get, combining this last inequality with (5.6) and (5.7), for x 2 X \ Bð0,AÞ

sin2h � a ) ðD2v � n, nÞ� ajnj2: (5.8)

Remark that, because h is the angle between x
jxj and

x�c
jx�cj (Figure 1)

h ¼ arccos
x
jxj �

x � c
jx � cj ,

and let us denote, for a � a0

Figure 1. rv and VðaÞ:
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VðaÞ ¼ X \ Bð0,AÞ \ sin 2 arccos
x
jxj �

x � c
jx � cj

� �
� a


 �
:

Note that VðaÞ ! X \ Bð0,AÞ as a goes to zero in the sense that, denoting l the
Lebesgue’s measure on R

3

l ðX \ Bð0,AÞÞnVðaÞð Þ ! 0 (5.9)

as a goes to zero: VðaÞ is a subset of X \ Bð0,AÞ excluding a small neighbourhood of
the line ð0, cÞ: We have, on SðaÞ, because of (5.8)

ðD2v � n, nÞ� ajnj2:

Thus we get ð
X
ðD2vru,ruÞ �

ð
VðaÞ

ðD2vru,ruÞ� a
ð
VðaÞ

jruj2

and by (5.4) we obtain

1
T

ðT
0

ð
VðaÞ

jruj2 dxdt� 1
a
E
T
:

We take a ¼ T�1=2 in order to have

1
T

ðT
0

ð
VðaðTÞÞ

jruj2 dxdt� Effiffiffiffi
T

p : (5.10)

Choosing SðTÞ :¼ Bð0,AÞnVðaðTÞÞ, (5.5) together with (5.10) gives the result. w

5.3. Obstacles illuminated by an ellipsoïd

Motivated by the above result, we are interested by the scattering problem in non-trap-
ping geometries close to the exterior of two convex obstacles, such as dog bones with
arbitrary thin neck. Theorem 3, which we will prove now, gives in particular the scatter-
ing in such settings. More precisely, it permits to handle obstacles illuminated by arbi-
trary cigar-shaped ellipsoïds and a certain class of flat-shaped ones.
In order to show such a result using the Morawetz identity (5.1) to obtain the criter-

ion of Lemma 6, it is natural to choose the gauge of the ellipsoïd we are dealing with as
the weight function. The next Lemma gives us the range of ellipsoïds for which such a
weight verify the bilaplacian constraint:

Lemma 7. Let n � 2 and

qðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ � � � þ x2k þ �ðx2kþ1 þ � � � þ x2nÞ

q
:

Then,

D2q � 0, 8� 2 �0, 1½ 	
with
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�0 ¼

0 if k � 3,
1
n
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn� 2Þðn� 1Þ

p
nðn� 2Þ if k ¼ 2,

4
nþ 1

if k ¼ 1:

8>>>><
>>>>:

Proof. An elementary computation gives

D2qðxÞ ¼ Að�Þ
q3

þ
Bð�Þðx2kþ1 þ � � � þ x2nÞ

q5
þ
Cð�Þðx2kþ1 þ � � � þ x2nÞ

2

q7

where

Að�Þ ¼ �ðn� kþ 2Þðn� kÞ�2 � 2ðn� kÞðk� 3Þ�� ðk� 1Þðk� 3Þ,
Bð�Þ ¼ 6�ððn� kþ 2Þ�2 þ ð2k� nÞ � 5½ 	�� kþ 3Þ,
Cð�Þ ¼ �15�2ð�� 1Þ2:

In all cases, Cð�Þ � 0:
If k � 3, it is clear that Að�Þ � 0: Let us denote ~Bð�Þ ¼ Bð�Þ

6� ¼ ðn� kþ 2Þ�2 þ ½ð2k�
nÞ � 5	�� kþ 3 . Then ~Bð0Þ ¼ �ðk� 3Þ � 0, ~Bð1Þ ¼ 0, so Bð�Þ � 0 for � 2 ½0, 1	 and
therefore D2q � 0 for � 2 ½0, 1	:
If k¼ 2, the roots of Að�Þ ¼ �nðn� 2Þ�2 þ 2ðn� 2Þ�þ 1 are �1, 2 ¼ 1

n6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn�2Þðn�1Þ

p
nðn�2Þ

and the roots of ~Bð�Þ ¼ n�2 � ðnþ 1Þ�þ 1 are 1
n and 1, so D2q � 0

for � 2 ½1n þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn�2Þðn�1Þ

p
nðn�2Þ , 1	:

If k¼ 1, Að�Þ ¼ �ðnþ 1Þðn� 1Þ�2 þ 4ðn� 1Þ� is non-positive if and only if � � 4
nþ1 ,

and the roots of ~Bð�Þ ¼ ðnþ 1Þ�2 � ðnþ 3Þ�þ 2 are 2
nþ1 and 1, so D2q � 0 for all � in

½ 4
nþ1 , 1	: w

Notice that in dimension three, this weight cannot be explicitly used as his bilaplacian
is not non positive. Hence, to derive the control (5.2), we will extend u as a solution of
a four dimensional non-linear wave equation, get the control for this extended solution,
and manage to go back to u.
To this purpose, we need the following existence result for the four dimen-

sional problem:

Lemma 8. Let X be a smooth domain of R
4 with compact boundary, and

ðu0, u1Þ 2 _H
7
4ðXÞ � H

3
4ðXÞ. Then, there exists a unique global solution of

ð@2
t � DÞuþ u5 ¼ 0 in R� X

ujt¼0 ¼ u0, @tujt¼0 ¼ u1, ujR�@X ¼ 0



(5.11)

satisfying

u 2 CðR, _H
7
4ðXÞ \ L6ðXÞÞ \ C1ðR,H3

4ðXÞÞ \ L48ðR, L6ðXÞÞ:

Proof. Let 0 < T < 1: By the work of Matthew D. Blair, Hart F. Smith, and Christopher
D. Sogge [12], Theorem 1.1, applied to the admissible triple p ¼ 48, q ¼ 6, c ¼ 7

4

� �
in

dimension 4, if u is solution of
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ð@2
t � DÞu ¼ F in ð0,TÞ � X

ujt¼0 ¼ f , @tujt¼0 ¼ g, ujR�@X ¼ 0



(5.12)

then the following Strichartz estimate holds

jjujjL48ðð0,TÞ, L6ðXÞÞ � C jjf jj
_H
7
4ðXÞ

þ jjgjj
H

3
4ðXÞ þ jjFjjL1ðð0,TÞ, L2ðXÞÞ

� 	
:

Using this estimate, we obtain the local existence following a classical fixed point
method, in the space

XT ¼ C0ðR, _H
7
4ðXÞ \ L6ðXÞÞ \ C1ðR,H3

4ðXÞÞ \ L48ðR, L6ðXÞÞ

for T sufficiently small depending of jju0jj _H 7
4ðXÞ

and jju1jjH3
4ðXÞ: The global existence

result follows using the energy conservation law. w

We are now in position to show:

Proposition 15. Let C � R
3 be the ellipsoïd of equation (1.10), resp. (1.11), K be a com-

pact subset of R3 illuminated by C and X :¼ R
3nK. Let u 2 CðR, _H1ðXÞÞ \ C1ðR, L2ðXÞÞ

be the global solution of (1.8) in X. Then

1
T

ðT
0

ð
X\Bð0,AÞ

jruðx, tÞj2 þ juðx, tÞj6 dxdt � 1
lnT

CðEðuÞÞ:

Proof. Let d > 0: There exists ud0, u
d
1, smooth functions vanishing on @X such that

jju0 � ud0jj _H 1ðXÞ þ jju1 � ud1jjL2ðXÞ � d:

We denote by ud 2 C0ðR, _H1ðXÞÞ \ C1ðR, L2ðXÞÞ the solution of (1.8) in X with
data ðud0, ud1Þ:
Let T> 0 and / 2 C1

c ðRÞ be such that 0 � / � 1, / ¼ 1 on ½�1, 1	 and / ¼ 0 on
½�2, 2	c: We take vT ¼ / �

2Tð Þ and, for ðx, zÞ 2 X� R

vd0ðx, zÞ ¼ ud0ðxÞvTðzÞvTðjxjÞ,
vd1ðx, zÞ ¼ ud1ðzÞvTðzÞvTðjxjÞ:

Let us denote by q the gauge of ellipsoïd we are dealing with, consider

~K ¼ K� �4T, 4T½ 	, ~X ¼ R
4n~K

~qðx, zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðxÞ2 þ z2

q
,

and vd 2 CðR,H7
4ð~XÞÞ \ C1ðR,H3

4ð~XÞÞ the solution of the four dimensional equation

ð@2
t � DÞvd þ ðvdÞ5 ¼ 0 in R� X

vdjt¼0 ¼ vd0, @tvdjt¼0 ¼ vd1, vdjR�@X ¼ 0

(
(5.13)

given by Lemma 8.
Notice that, by the finite speed of propagation,

vdðx, z, tÞ ¼ udðx, tÞ,
8x 2 X \ Bð0, 2T � tÞ, 8t 2 0, 2T , 8z 2 �2T þ t, 2T � t½ 	:½½ (5.14)

32 D. LAFONTAINE



We denote by n the outward pointing normal vector to @K and ~n ¼ ðn, 0Þ the outward
pointing normal vector to @ ~K: The momentum derivation (5.1) applied to vd gives

d
dt

ð�
ð
~X
@tv

drvd � r~q � 1
2

ð
~X
D~qvd@tv

dÞ ¼
ð
~X
ðD2~qrvd,rvdÞ þ 1

4
D~qjvdj6 � D2~qjvdj2

þ 1
2

ð
@ ~V

j@~nvdj2@~n~q: (5.15)

By Lemma 7, D2~q � 0: Moreover, as ~q is convex, ðD2~qrvd,rvdÞ � 0 and D~q � 0:
Therefore, integrating (5.15) we obtain

1
2

ðT
0

ð
@ ~K
j@~nvdj2@~n~q drdt � �

ð
~X
@tv

drvd � r~q � 1
2

ð
~X
D~qvd@tv

d

� �T
0

: (5.16)

Let us take T> 0 large enough so that @V � X \ Bð0,TÞ: Then, for t 2 ½0,T	,ð
@ ~K
j@~nvdj2@~n~q d~r ¼

ð
R

ð
@K
j@~nvdj2@~n~q drdz �

ðT
�T

ð
@K
j@~nvdj2@~n~q drdz:

But, by finite speed of propagation (5.14),ðT
�T

ð
@K
j@~nvdj2@~n~q drdz ¼

ðT
�T

ð
@K
j@nudj2@~n~q drdz,

so we obtain, as @nq � C by the definition of an illuminated subsetð
@ ~K
j@~n vdj2@~n~q d~r �

ðT
�T

ð
@K
j@~nudj2@~n~qdrdz

¼
ðT
�T

ð
@K
j@nudj2

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ z2

p @nq drdz�
ð
@K
j@nudj2

ðT
�T

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p dzdr,

and the integration of the right hand side givesð
@K
j@nudj2 dr�

1
lnT

ð
@ ~K
j@~nvdj2@~n~q d~r: (5.17)

Moreover, as r~q is bounded and 0 � D~q � C
jðx, zÞj , by the Cauchy-Schwarz inequality

and the Hardy inequality ð
X

jf j2

jxj2
�

ð
X
jrf j2 for f 2 _H

1
0ðXÞ

we obtain

j �
ð
~X
@tv

drvd � r~q � 1
2

ð
~X
D~qvd@tv

d

� �T
0

j�EðvdÞ, (5.18)

and this last inequality combined to (5.16) and (5.17) givesðT
0

ð
@X
ð@nudÞ2 drdt�

1
lnT

EðvdÞ: (5.19)
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It remains to estimate the energy of vd: We haveð
~X
jrvd0j

2 ¼
ð
~X
jrud0ðxÞvTðzÞvTðjxjÞ þ ud0ðxÞvTðzÞv0TðjxjÞ �

x
jxj j

2 dxdz

þ
ð
~X
jud0ðxÞj

2v0TðzÞ
2vTðjxjÞ2 dxdz�

ð
~X
jrud0ðxÞj

2vTðzÞ2vTðjxjÞ2 dxdz

þ
ð
~X
jud0ðxÞj

2vðzÞ2v0ðjxjÞ2 dxdz þ
ð
~X
jud0ðxÞj

2v0TðzÞ
2vTðjxjÞ2 dxdz,

so, by the H€older inequalityð
~X
jrvd0j

2�

ð
X
jrud0ðxÞj

2dx
ð
R

vTðzÞ2 dz þ
ð
X
jud0ðxÞj

6dx

� �1
3
ð
X
vT

0ðjxjÞ3dx
� �2

3
ð
R

vTðzÞ2dz

þ
ð
X
jud0ðxÞj

6dx

� �1
3
ð
X
vTðjxjÞ3dx

� �2
3
ð
R

vT
0ðzÞ2dz�

ð
X
jrud0j

2
ð4T
�4T

j /jj21
��

þ
ð
X
jud0j

6
� �1

3
ð
Bð0, 4TÞ

1
2T

jj/0jjL1
� �3

 !2
3 ð4T

�4T
jj/jj2L1

þ
ð
X
jud0j

6
� �1

3
ð
Bð0, 4TÞ

j /jj3L1
�� �23 ð4T

�4T

1
4T2

j/0jj2L1�T
ð
X
jrud0j

2
����

 

þT
ð
X
jud0j

6
� �1

3

þ T
ð
X
jud0j

6
� �1

3

�TCðEðudÞÞ:

Moreover, ð
~X
jvd0j

6 ¼
ð
X

ð
R

jud0ðxÞj
6vTðzÞ6vTðjxjÞ6dxdz � 4T

ð
X
jud0j

6,

and ð
~X
jvd1j

2 ¼
ð
X

ð
R

jud1ðxÞj
2vTðzÞ2vTðjxjÞ2dxdz � 4T

ð
X
jud1j

2,

therefore

EðvdÞ�TCðEðudÞÞ,
and by (5.18) we obtain ðT

0

ð
@K
j@nudj2 drdt�

T
lnT

CðEðudÞÞ: (5.20)

Notice that we cannot pass to the limit directly in this expression because as mentioned
before, the application

u 2 _H
1 \ value in time t of solutions of NLWf g ! @nu 2 L2ð@XÞ

is not known to be continuous. But, notice that using Lemma 5 with the weight v ¼
jxj2 gives in particular
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ðT
0

ð
X\Bð0,AÞ

jrudðx, tÞj2 þ judðx, tÞj6 dxdt�
ðT
0

ð
@K
j@nudj2 drdt:

Therefore, combining the last inequality with (5.20) we get

1
T

ðT
0

ð
X\Bð0,AÞ

jrudðx, tÞj2 þ judðx, tÞj6 dxdt� 1
lnT

CðEðudÞÞ,

and we can let d go to zero in this expression: as ud0 !d!0 u0 in _H
1
and ud1 !d!0 u1 in

L2, we obtain using the energy conservation law that CðEðudÞÞ!d!0 CðEðuÞÞ, and,
because the problem (1.8) is well posed, the left hand side goes as d goes to zero to

1
T

ðT
0

ð
X\Bð0,AÞ

jruðx, tÞj2 þ juðx, tÞj6 dxdt,

and the Proposition holds. w

Finally, we can conclude:

Proof of Theorem 3. The above Proposition combined with the scattering criterion of
Lemma 6 gives immediately the result. w
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