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A convergence theory for the ℎ𝑝-FEM applied to a variety of constant-coefficient Helmholtz problems was 
pioneered in the papers [35], [36], [15], [34]. This theory shows that, if the solution operator is bounded 
polynomially in the wavenumber 𝑘, then the Galerkin method is quasioptimal provided that ℎ𝑘∕𝑝 ≤ 𝐶1 and 
𝑝 ≥ 𝐶2 log𝑘, where 𝐶1 is sufficiently small, 𝐶2 is sufficiently large, and both are independent of 𝑘, ℎ, and 𝑝. The 
significance of this result is that if ℎ𝑘∕𝑝 = 𝐶1 and 𝑝 = 𝐶2 log𝑘, then quasioptimality is achieved with the total 
number of degrees of freedom proportional to 𝑘𝑑 ; i.e., the ℎ𝑝-FEM does not suffer from the pollution effect.
This paper proves the analogous quasioptimality result for the heterogeneous (i.e. variable-coefficient) Helmholtz 
equation, posed in ℝ𝑑 , 𝑑 = 2, 3, with the Sommerfeld radiation condition at infinity, and 𝐶∞ coefficients. We 
also prove a bound on the relative error of the Galerkin solution in the particular case of the plane-wave 
scattering problem. These are the first ever results on the wavenumber-explicit convergence of the ℎ𝑝-FEM 
for the Helmholtz equation with variable coefficients.
1. Introduction

1.1. Context

Over the last 10 years, a wavenumber-explicit convergence theory 
for the ℎ𝑝-FEM applied to the Helmholtz equation

Δ𝑢+ 𝑘2𝑢 = −𝑓 (1.1)

was established in the papers [35], [36], [15], [34]. This theory is based 
on decomposing solutions of the Helmholtz equation into two compo-
nents:

(i) an analytic component, satisfying bounds with the same 𝑘-
dependence as those satisfied by the full Helmholtz solution, and

(ii) a component with finite regularity, satisfying bounds with im-
proved 𝑘-dependence compared to those satisfied by the full 
Helmholtz solution.

Such a decomposition was obtained for

• the Helmholtz equation (1.1) posed in ℝ𝑑 , 𝑑 = 2, 3, with compactly-
supported 𝑓 , and with the Sommerfeld radiation condition
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𝜕𝑢

𝜕𝑟
(𝑥) − i𝑘𝑢(𝑥) = 𝑜

(
1

𝑟(𝑑−1)∕2

)
(1.2)

as 𝑟 ∶= |𝑥| →∞, uniformly in 𝑥 ∶= 𝑥∕𝑟 [35, Lemma 3.5],
• the Helmholtz exterior Dirichlet problem where the obstacle has 

analytic boundary [36, Theorem 4.20],
• the Helmholtz interior impedance problem where the domain is 

either smooth (𝑑 = 2, 3) [36, Theorem 4.10], [34, Theorem 4.5], or 
polygonal [36, Theorem 4.10], [15, Theorem 3.2].

This decomposition was then used to prove quasioptimality of the ℎ𝑝-
FEM applied to the standard Helmholtz variational formulation in [35], 
[36], [15], and applied to a discontinuous Galerkin formulation in [34]. 
Indeed, for the standard variational formulation (defined for the full-
space problem in Definition 2.2 below) applied to the boundary value 
problems above, if the solution operator of the problem is bounded 
polynomially in 𝑘 (see Definition 2.6 below), then there exist 𝐶1, 𝐶2, 
and 𝐶qo (independent of 𝑘, ℎ, and 𝑝) such that if

ℎ𝑘

𝑝
≤ 𝐶1 and 𝑝 ≥ 𝐶2 log𝑘 (1.3)

then the Galerkin solution 𝑢𝑁 exists, is unique, and satisfies
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‖‖𝑢− 𝑢𝑁
‖‖𝐻1

𝑘
≤ 𝐶qo min

𝑣𝑁∈𝑉𝑁

‖‖𝑢− 𝑣𝑁
‖‖𝐻1

𝑘
,

where 𝑉𝑁 is the ℎ𝑝 approximation space and the norm ‖ ⋅ ‖𝐻1
𝑘

is the 
standard weighted 𝐻1 norm (defined by (2.7) below). Since the total 
number of degrees of freedom of the approximation space is propor-
tional to (𝑝∕ℎ)𝑑 , the significance of this result is that it shows there is a 
choice of ℎ and 𝑝 such that the Galerkin solution is quasioptimal, with 
quasioptimality constant (i.e. 𝐶qo) independent of 𝑘, and with the to-
tal number of degrees of freedom proportional to 𝑘𝑑 ; thus, with these 
choices of 𝑘 and 𝑝, the ℎ𝑝-FEM does not suffer from the pollution effect 
[2].

Over the last few years, there has been increasing interest in the 
numerical analysis of the heterogeneous Helmholtz equation, i.e. the 
Helmholtz equation with variable coefficients

∇ ⋅ (𝖠∇𝑢) + 𝑘2𝑛𝑢 = −𝑓 ; (1.4)

see, e.g., [8], [3], [10], [18], [38], [21], [16], [29], [19]. However 
there do not yet exist in the literature analogous results to those in 
[35], [36], [15], [34] for the variable-coefficient Helmholtz equation.

1.2. Informal statement and discussion of the main results

The main results This paper considers the variable-coefficient
Helmholtz equation (1.4) with 𝐶∞ coefficients posed in ℝ𝑑 , 𝑑 = 2, 3, 
with the Sommerfeld radiation condition at infinity. We obtain analo-
gous results to those obtained in [35] for this scenario with constant 
coefficients. That is, we prove quasioptimality of the ℎ𝑝-FEM under the 
conditions (1.3) and provided that the solution operator is polynomially 
bounded in 𝑘; see Theorem 3.4 below.

We obtain this result by decomposing the solution 𝑢 to (1.4) into 
two components:

𝑢|𝐵𝑅
= 𝑢𝐻2 + 𝑢

where 𝑢𝐻2 ∈ 𝐻2(𝐵𝑅) and 𝑢 is analytic in 𝐵𝑅, where 𝐵𝑅 denotes the 
ball of radius 𝑅 centred at the origin (and 𝑅 is arbitrary); see Theo-
rem 3.1 below. This is exactly analogous to the decomposition obtained 
in [35], except that now 𝑢 satisfies the variable-coefficient equation 
(1.4) instead of (1.1).

Overview of the ideas behind the decomposition and subsequent bounds

The idea in [35] was to decompose the data 𝑓 in (1.1) into “low-” and 
“high-” frequency components, with 𝑢 the Helmholtz solution for the 
low-frequency component of 𝑓 and 𝑢𝐻2 the Helmholtz solution for the 
high-frequency component of 𝑓 . The frequency cut-offs were defining 
using the indicator function

1𝐵𝜆𝑘
(𝜁 ) ∶=

{
1 for |𝜁 | ≤ 𝜆𝑘,

0 for |𝜁 | ≥ 𝜆𝑘,
(1.5)

with 𝜆 a free parameter (see [35, Equation 3.31] and the surrounding 
text). In [35] the frequency cut-off (1.5) was then used with (a) the 
expression for 𝑢 as a convolution of the fundamental solution and the 
data 𝑓 , and (b) the fact that the fundamental solution is known explic-
itly when 𝖠 = 𝖨 and 𝑛 = 1, to obtain the appropriate bounds on 𝑢 and 
𝑢𝐻2 using explicit calculation.

In this paper we use the same idea as in [35] of decomposing into 
low- and high-frequency components, but apply frequency cut-offs to 
the solution 𝑢 as opposed to the data 𝑓 . Then, given any cut-off function 
that is zero for |𝜁 | ≥ 𝐶𝑘, bounding the corresponding low-frequency 
component 𝑢 is relatively straightforward using basic properties of 
the Fourier-transform (namely the expression for the Fourier transform 
of a derivative and Parseval’s theorem). Indeed, in Fourier space each 
derivative corresponds to a power of the Fourier variable 𝜁 , and the 
frequency cut-off means that |𝜁 | ≤ 𝐶𝑘 for 𝑢; i.e. every derivative of 
𝑢 brings down a power of 𝑘 compared to 𝑢 (see §5.3 below). The 
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main difficulty therefore is showing that the high-frequency component 
𝑢𝐻2 satisfies a bound with one power of 𝑘 improvement over the bound 
satisfied by 𝑢.

The main idea of the present paper is that the high-frequency cut-off 
can be chosen so that the (scaled) Helmholtz operator

𝑃𝑘 ∶= −
(
𝑘−2∇ ⋅ (𝖠∇⋅) + 𝑛

)
(1.6)

is semiclassically elliptic on the support of the high-frequency cut-off. 
Furthermore, choosing the cut-off function to be smooth (as opposed to 
discontinuous, as in (1.5)) then allows us to use basic facts about the 
“nice” behaviour of elliptic semiclassical pseudodifferential operators 
(namely, they are invertible up to a small error) to prove the required 
bound on 𝑢𝐻2 . (Recall that semiclassical pseudodifferential operators 
are just pseudodifferential operators with a large/small parameter; in 
this case the large parameter is 𝑘.)

We now discuss further the frequency cut-offs and the bound on 𝑢𝐻2

via ellipticity.

The frequency cut-offs In contrast to (1.5), we choose 𝜒𝜇 ∈ 𝐶∞
comp(ℝ

𝑑 )
such that

𝜒𝜇

(
𝑘−2|𝜁 |2) ={

1 for |𝜁 | ≤√
𝜇 𝑘,

0 for |𝜁 | ≥√
2𝜇 𝑘,

(1.7)

where the parameter 𝜇 is chosen later in the argument. With the Fourier 
transform and its inverse defined by

𝜑(𝜁 ) ∶= ∫
ℝ𝑑

exp
(
− i𝑥 ⋅ 𝜁

)
𝜑(𝑥) d𝑥 and

−1𝜓(𝑥) ∶= (2𝜋)−𝑑 ∫
ℝ𝑑

exp
(
i𝑥 ⋅ 𝜁

)
𝜓(𝜁 ) d𝜁, (1.8)

we define the low-frequency cut-off Π𝐿 by

Π𝐿𝑣(𝑥) ∶= −1
(
𝜒𝜇

(
𝑘−2|𝜁 |2)𝑣(𝜁 )

)
, (1.9)

and the high-frequency cut-off Π𝐻 by

Π𝐻𝑣(𝑥) ∶= −1
((

1 − 𝜒𝜇

(
𝑘−2|𝜁 |2))𝑣(𝜁 )

)
, (1.10)

so that Π𝐿 +Π𝐻 = 𝐼 . We let 𝜑 ∈ 𝐶∞
𝑐 be equal to one on 𝐵𝑅+1 and vanish 

outside 𝐵𝑅+2, and then

𝑢 ∶= Π𝐿(𝜑𝑢)|||𝐵𝑅

and 𝑢𝐻2 ∶= Π𝐻 (𝜑𝑢)|||𝐵𝑅

. (1.11)

The bound on the high-frequency component 𝑢𝐻2 via ellipticity Recall that 
a PDE is elliptic if its principal symbol is non-zero. The concept of 
ellipticity for semiclassical differential operators (or, more generally, 
semiclassical pseudodifferential operators) is analogous, except that it 
now involves the semiclassical principal symbol (see (4.17) below). The 
semiclassical principal symbol of 𝑃𝑘 (1.6) is

⟨𝖠𝜉, 𝜉⟩− 𝑛, (1.12)

where ⟨⋅, ⋅⟩ denotes the 𝓁2 inner product and 𝜉 = 𝑘−1𝜁 (see (4.12) below 
and the surrounding text).

If the parameter 𝜇 in the cut-off function 𝜒𝜇 (1.7) is chosen to be a 
certain function of 𝖠 and 𝑛 (see (5.7) below), then the symbol (1.12) is 
bounded away from zero when 𝑘−2|𝜁 |2 ≥ 𝜇, i.e. in the region of Fourier 
space where Π𝐻 is non-zero; one therefore describes 𝑃𝑘 as “microlo-
cally elliptic”, where the adjective “microlocal” indicates that we have 
ellipticity on just a region of phase space (rather than on all of phase 
space in the more familiar global ellipticity).

These ellipticity properties are then used with the standard microlo-
cal elliptic estimate for pseudodifferential operators, appearing in the 
semiclassical setting in, e.g., [14, Appendix E], and stated in this setting 
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as Theorem 4.3 below. The whole point is that a semiclassical pseudod-
ifferential operator that is elliptic in some region of phase space can be 
inverted (up to some small error) in that region, and the norm of the 
inverse is bounded uniformly in the large parameter (here 𝑘) as long as 
one uses weighted norms (analogous to the familiar 𝐻1

𝑘
norm (2.7)).

The result is that 𝑢𝐻2 satisfies a bound with one power of 𝑘 im-
provement over the bound satisfied by 𝑢 (compare (3.1) and (2.12)). 
To give a simple illustration of how ellipticity can give this improved 
𝑘-dependence, we contrast the solutions of

𝑃𝑘𝑢 ∶= −(Δ + 𝑘2)𝑢 = 𝑓 and 𝑃𝑘𝑣 ∶= −(Δ − 𝑘2)𝑣 = 𝑓,

with both equations posed in ℝ𝑑 with compactly-supported 𝑓 , and with 
𝑢 satisfying the Sommerfeld radiation condition (1.2) and 𝑣 satisfying 
boundedness at infinity. The 𝐿2 →𝐿2 bounds that are sharp in terms of 
𝑘-dependence are

‖𝑢‖𝐿2(𝐵𝑅) ≲ 𝑘−1 ‖𝑓‖𝐿2(ℝ𝑑 ) and ‖𝑣‖𝐿2(ℝ𝑑 ) ≲ 𝑘−2 ‖𝑓‖𝐿2(ℝ𝑑 ) ,

with the former given by Part (i) of Theorem 2.7, and the latter follow-
ing from the Lax-Milgram theorem. The operator 𝑃𝑘 is not semiclassi-
cally elliptic on all of phase space (its semiclassical principal symbol is |𝜉|2 − 1), whereas 𝑃𝑘 is semiclassically elliptic on all of phase space (its 
semiclassical principal symbol is |𝜉|2 + 1); we therefore see that elliptic-
ity has resulted in the solution operator having improved 𝑘-dependence. 
The proof of the bound on 𝑢𝐻2 is more technical, but the idea – that the 
improvement in 𝑘-dependence comes from ellipticity – is the same.

The assumption that the solution operator is polynomially bounded in 𝑘 We 
need to assume that the solution operator is polynomially bounded in 
𝑘 (in sense of Definition 2.6 below), both in proving the bound on 𝑢𝐻2 , 
and in proving quasi-optimality of the ℎ𝑝-FEM.

The 𝑘-dependence of the Helmholtz solution operator depends on 
whether the problem is trapping or nontrapping. For the heterogeneous 
Helmholtz equation (1.4) posed in ℝ𝑑 (i.e. with no obstacle), trapping 
can be created by the coefficients 𝖠 and 𝑛; see, e.g., [39]. If the problem 
is nontrapping, then the Helmholtz solution operator (measured in the 
natural norms) is bounded in 𝑘. However, under the strongest form of 
trapping, the Helmholtz solution operator can grow exponentially in 𝑘
[39]. Nevertheless, it has recently been proved that, if a set of frequen-
cies of arbitrarily small measure is excluded, then the solution operator 
is polynomially bounded under any type of trapping [28]. Therefore, 
the result that the ℎ𝑝-FEM is quasi-optimal holds for a wide class of 
Helmholtz problems; see Corollary 3.5 below.

Why do we need 𝐶∞ coefficients? As highlighted above, our proof of the 
decomposition relies on standard results about semiclassical pseudodif-
ferential operators (recapped in §4). These results are usually stated for 
𝐶∞ symbols, and thus to fit into this framework 𝖠 and 𝑛 must be 𝐶∞. 
However, examining the results we use, we see that we only need the 
symbol of the PDE to be in 𝐶𝐿 where 𝐿 depends only on the dimension 
𝑑 and on the exponent 𝑀 appearing in the assumption that the solution 
operator is polynomially bounded (see Definitions 2.5 and 2.6 below). 
Therefore, while we consider 𝖠, 𝑛 ∈ 𝐶∞ to easily use results about semi-
classical pseudodifferential operators from [52], [14, Appendix E], our 
results hold for 𝖠 ∈ 𝐶𝐿 and 𝑛 ∈ 𝐶𝐿, where 𝐿 =𝐿(𝑑, 𝑀).

Extending the decomposition result to the solution of other PDEs Our proof 
of the decomposition result only relies on the principal symbol of the 
differential operator being bounded below at infinity (in the sense of 
(3.8) below). Therefore, the decomposition result Theorem 3.1 is valid 
for a much larger class of PDEs (and indeed pseudodifferential opera-
tors) than (1.4); see Remark 3.7 below for more details.

In the follow-up paper [27], we use the ideas of the present pa-
per combined with much more sophisticated tools of semiclassical 
and microlocal analysis (namely the black-box scattering framework of 
Sjöstrand–Zworski [45], the Helffer–Sjöstrand functional calculus [23], 
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and associated results by Helffer, Robert, and Sjöstrand [22], [40], 
[44]) to prove analogous decompositions for a wide variety of scattering 
problems (albeit with slightly weaker estimates on 𝑢). In particular, 
the main result of the present paper, Theorem 3.1, is rederived in this 
more general context as [27, Theorem 1.16].

We also note that, as announced in the abstract [4], Bernkopf, 
Chaumont–Frelet, and Melenk are also studying the question of 𝑘-
explicit convergence of the ℎ𝑝-FEM for the Helmholtz equation with 
variable coefficients.

Outline of the paper §2 gives the definitions of the boundary-value 
problem and the finite-element method. §3 states the main results. 
§4 recaps results about semiclassical pseudodifferential operators, with 
[52] and [14, Appendix E] as the main references. §5 proves the result 
about the decomposition 𝑢|𝐵𝑅

= 𝑢𝐻2 + 𝑢 (Theorem 3.1). §6 proves the 
result about quasioptimality of the ℎ𝑝-FEM (Theorem 3.4).

2. Formulation of the problem

2.1. The boundary value problem

Assumption 2.1 (Assumptions on the coefficients). 𝖠 ∈ 𝐶∞(ℝ𝑑 , 𝖲𝖯𝖣)
(where 𝖲𝖯𝖣 is the set of 𝑑 × 𝑑 real, symmetric, positive-definite ma-
trices) is such that supp(𝖨 − 𝖠) is compact in ℝ𝑑 and there exist 
0 <𝐴min ≤𝐴max <∞ such that, in the sense of quadratic forms,

𝐴min ≤ 𝖠(𝑥) ≤𝐴max for all 𝑥 ∈ℝ𝑑 . (2.1)

𝑛 ∈ 𝐶∞(ℝ𝑑 , ℝ) is such that supp(1 − 𝑛) is compact in ℝ𝑑 and there exist 
0 < 𝑛min ≤ 𝑛max <∞ such that

𝑛min ≤ 𝑛(𝑥) ≤ 𝑛max for all 𝑥 ∈ℝ𝑑 . (2.2)

Let 𝑅 > 0 be such that supp(𝖨 − 𝖠) ∪ supp(1 − 𝑛) ⋐ 𝐵𝑅, where 𝐵𝑅 de-
notes the ball of radius 𝑅 about the origin and ⋐ denotes compact 
containment. Let 𝛾 and 𝜕𝑛 denote the Dirichlet and Neumann traces, 
respectively, on 𝜕𝐵𝑅, where the normal vector for the Neumann trace 
points out of 𝐵𝑅.

Define DtN𝑘 ∶ 𝐻1∕2(𝜕𝐵𝑅) → 𝐻−1∕2(𝜕𝐵𝑅) to be the Dirichlet-to-
Neumann map for the equation Δ𝑢 + 𝑘2𝑢 = 0 posed in the exterior of 𝐵𝑅

with the Sommerfeld radiation condition (1.2). The definition of DtN𝑘

in terms of Hankel functions and polar coordinates (when 𝑑 = 2)/spher-
ical polar coordinates (when 𝑑 = 3) is given in, e.g., [35, Equations 3.7 
and 3.10].

Definition 2.2 (Heterogeneous Helmholtz Problem on ℝ𝑑). Given 𝖠 and 
𝑛 satisfying Assumption 2.1, 𝑅 > 0 such that supp(𝖨 − 𝖠) ∪ supp(1 − 𝑛) ⋐
𝐵𝑅, 𝑘 > 0, and 𝐹 ∈ (𝐻1(𝐵𝑅))∗, 𝑢 ∈ 𝐻1(𝐵𝑅) satisfies the Heterogeneous 
Helmholtz Problem on ℝ𝑑 if 𝑢 satisfies the variational problem

find 𝑢 ∈𝐻1(𝐵𝑅) such that 𝑎(𝑢, 𝑣) = 𝐹 (𝑣) for all 𝑣 ∈𝐻1(𝐵𝑅), (2.3)

where

𝑎(𝑢, 𝑣) ∶= ∫
𝐵𝑅

(
(𝖠∇𝑢) ⋅∇𝑣− 𝑘2𝑛𝑢𝑣

)
−
⟨
DtN𝑘(𝛾𝑢), 𝛾𝑣

⟩
𝜕𝐵𝑅

, (2.4)

where ⟨⋅, ⋅⟩𝜕𝐵𝑅
denotes the duality pairing on 𝜕𝐵𝑅 that is linear in the 

first argument and antilinear in the second.

Lemma 2.3 (Helmholtz boundary value problems included in Defini-

tion 2.2).

(i) If

𝐹 (𝑣) ∶= ∫ 𝑓 𝑣 (2.5)
𝐵𝑅
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with 𝑓 ∈ 𝐿2(𝐵𝑅), then the solution 𝑢 to (2.3) equals 𝑢̃|𝐵𝑅
, where 𝑢̃ ∈

𝐻1
loc(ℝ

𝑑 ) is the solution to

∇ ⋅ (𝖠∇𝑢̃) + 𝑘2𝑛𝑢̃ = −𝑓 in ℝ𝑑 ,

and 𝑢̃ satisfies the Sommerfeld radiation condition (1.2).
(ii) If

𝐹 (𝑣) ∶= ∫
𝜕𝐵𝑅

(
𝜕𝑛𝑢

𝐼 −DtN𝑘(𝛾𝑢𝐼 )
)
𝛾𝑣 with 𝑢𝐼 (𝑥) ∶= exp(i𝑘𝑥 ⋅ 𝑎),

(2.6)

where 𝑎 ∈ ℝ𝑑 with |𝑎| = 1, then the solution 𝑢 to (2.3) equals 𝑢̃|𝐵𝑅
, 

where 𝑢̃ ∈𝐻1
loc(ℝ

𝑑 ) is the solution of the Helmholtz plane-wave scat-
tering problem; i.e.

∇ ⋅ (𝖠∇𝑢̃) + 𝑘2𝑛𝑢̃ = 0 in ℝ𝑑 ,

and 𝑢̃𝑆 ∶= 𝑢̃− 𝑢𝐼 satisfies the Sommerfeld radiation condition (1.2).

Part (i) of Lemma 2.3 is proved in, e.g., [20, Lemma 3.3]; the proof 
of Part (ii) is similar.

Let the weighted 𝐻1 norm, ‖ ⋅ ‖𝐻1
𝑘
(𝐵𝑅)

, be defined by

‖𝑢‖2
𝐻1

𝑘
(𝐵𝑅)

∶= ‖∇𝑢‖2
𝐿2(𝐵𝑅)

+ 𝑘2 ‖𝑢‖2
𝐿2(𝐵𝑅)

. (2.7)

Lemma 2.4. The solution of the Heterogeneous Helmholtz Problem on ℝ𝑑

(defined in Definition 2.2) exists, is unique, and there exists 𝐶(𝑘, 𝖠, 𝑛, 𝑅) > 0
such that

‖𝑢‖𝐻1
𝑘
(𝐵𝑅)

≤ 𝐶 ‖𝐹‖(𝐻1
𝑘
(𝐵𝑅))∗

for all 𝑘 > 0. (2.8)

Proof. Uniqueness follows from the unique continuation principle; see 
[20, §1], [21, §2] and the references therein. Since 𝑎(⋅, ⋅) satisfies a Gård-
ing inequality (see (6.4) below), Fredholm theory then gives existence 
and the bound (2.8). ■

Properties of DtN𝑘 and 𝑎(⋅, ⋅) We use later the following two properties 
of DtN𝑘: given 𝑘0, 𝑅0 > 0, there exists 𝐶DtN = 𝐶DtN(𝑘0𝑅0) such that, for 
all 𝑘 ≥ 𝑘0 and 𝑅 ≥𝑅0,|||⟨DtN𝑘(𝛾𝑢), 𝛾𝑣⟩𝜕𝐵𝑅

⟩||| ≤ 𝐶DtN1 ‖𝑢‖𝐻1
𝑘
(𝐵𝑅)

‖𝑣‖𝐻1
𝑘
(𝐵𝑅)

(2.9)

for all 𝑢, 𝑣 ∈𝐻1(𝐵𝑅), and

−ℜ
⟨
DtN𝑘𝜙,𝜙

⟩
𝜕𝐵𝑅

≥ 0 for all 𝜙 ∈𝐻1∕2(𝜕𝐵𝑅). (2.10)

For a proof of (2.9), see [35, Lemma 3.3]. For a proof of (2.10), see [37, 
Theorem 2.6.4] (for 𝑑 = 3) and [7, Corollary 3.1] or [35, Lemma 3.10]
(for 𝑑 = 2, 3).

Let 𝐶cont = 𝐶cont (𝖠, 𝑛, 𝑅, 𝑘0) be the continuity constant of the sesquilin-
ear form 𝑎(⋅, ⋅) (defined in (2.4)) in the norm ‖ ⋅ ‖𝐻1

𝑘
(𝐵𝑅)

; i.e.

𝑎(𝑢, 𝑣) ≤ 𝐶cont ‖𝑢‖𝐻1
𝑘
(𝐵𝑅)

‖𝑣‖𝐻1
𝑘
(𝐵𝑅)

for all 𝑢, 𝑣 ∈𝐻1(𝐵𝑅) and 𝑘 ≥ 𝑘0.

By the Cauchy-Schwarz inequality and (2.9),

𝐶cont ≤max{𝐴max, 𝑛max} +𝐶DtN1. (2.11)

2.2. The behaviour of the solution operator for large 𝑘

Definition 2.5 (𝐶sol). Given 𝑓 ∈ 𝐿2(𝐵𝑅), let 𝑢 be the solution of the 
heterogeneous Helmholtz equation (1.4) with the Sommerfeld radiation 
condition (1.2) (i.e. 𝑢 is the solution of the variational problem (2.3)
with 𝐹 (𝑣) given by (2.5)). Given 𝑘0 > 0, let 𝐶sol = 𝐶sol(𝑘, 𝖠, 𝑛, 𝑅, 𝑘0) > 0
be such that

‖𝑢‖𝐻1
𝑘
(𝐵𝑅)

≤ 𝐶sol ‖𝑓‖𝐿2(𝐵𝑅) for all 𝑘 > 0. (2.12)

𝐶sol exists by Lemma 2.4; indeed, with 𝐶 given by (2.8), 𝐶sol ∶= 𝐶∕𝑘.
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How 𝐶sol depends on 𝑘 is crucial to the analysis below, and to 
emphasise this we write 𝐶sol = 𝐶sol(𝑘). Below we consider 𝐶sol with dif-
ferent values of 𝑅, and we then write, e.g., 𝐶sol(𝑘; 𝑅) (as in the bound 
(3.2) below).

A key assumption in the analysis of the Helmholtz ℎ𝑝-FEM is that 
𝐶sol(𝑘) is polynomially bounded in 𝑘 in the following sense.

Definition 2.6 (𝐶sol is polynomially bounded in 𝑘). Given 𝑘0 and 𝐾 ⊂

[𝑘0, ∞), 𝐶sol(𝑘) is polynomially bounded for 𝑘 ∈ 𝐾 if there exists 𝐶 > 0
and 𝑀 > 0 such that

𝐶sol(𝑘) ≤ 𝐶𝑘𝑀 for all 𝑘 ∈𝐾, (2.13)

where 𝐶 and 𝑀 are independent of 𝑘 (but depend on 𝑘0 and possibly 
also on 𝐾, 𝖠, 𝑛, 𝑑, 𝑅).

There exist 𝐶∞ coefficients 𝖠 and 𝑛 such that 𝐶sol(𝑘𝑗 ) ≥ 𝑐1 exp(𝑐2𝑘𝑗 )
for 0 < 𝑘1 < 𝑘2 <… with 𝑘𝑗 →∞ as 𝑗 →∞, see [39], but this exponential 
growth is the worst-possible, since 𝐶sol(𝑘) ≤ 𝑐3 exp(𝑐4𝑘) for all 𝑘 ≥ 𝑘0 by 
[5, Theorem 2]. We now recall results on when 𝐶sol(𝑘) is polynomially 
bounded in 𝑘.

Theorem 2.7 (Conditions under which 𝐶sol(𝑘) is polynomially bounded in 
𝑘).

(i) 𝖠 and 𝑛 are 𝐶∞ and nontrapping (i.e. all the trajectories of the Hamil-

tonian flow defined by the symbol of (1.4) starting in 𝐵𝑅 leave 𝐵𝑅 after 
a uniform time), then 𝐶sol(𝑘) is independent of 𝑘 for all 𝑘, i.e., (2.13)
holds for all 𝑘 with 𝑀 = 0.

(ii) If 𝑛 = 1 and 𝖠 is 𝐶0,1 then, given 𝑘0 > 0 and 𝛿 > 0 there exists a set 
𝐽 ⊂ [𝑘0, ∞) with |𝐽 | ≤ 𝛿 such that

𝐶sol(𝑘) ≤ 𝐶𝑘5𝑑∕2+1+𝜀 for all 𝑘 ∈ [𝑘0,∞) ⧵ 𝐽 , (2.14)

for any 𝜀 > 0, where 𝐶 depends on 𝛿, 𝜀, 𝑑, 𝑘0, and 𝖠. If 𝖠 is 𝐶1,𝜎 for 
some 𝜎 > 0 then the exponent is reduced to 5𝑑∕2 + 𝜀.

References for the proof. (i) is proved using either (a) the propaga-
tion of singularities results of [13] combined with either the parametrix 
argument of [48, Theorem 3]/[49, Chapter 10, Theorem 2] or Lax–
Phillips theory [30], or (b) the defect-measure argument of [6, Theorem 
1.3 and §3]. It has recently been proved that, for this situation, 𝐶sol is 
proportional to the length of the longest trajectory in 𝐵𝑅 ; see [16, The-
orems 1 and 2, and Equation 6.32].

(ii) is proved in [28, Theorem 1.1 and Corollary 3.6]. ■

2.3. The finite-element method

Let (𝑉𝑁 )∞
𝑁=0 be a sequence of finite-dimensional subspaces of 

𝐻1(𝐵𝑅) that converge to 𝐻1(𝐵𝑅) in the sense that, for all 𝑣 ∈𝐻1(𝐵𝑅),

lim
𝑁→∞

(
min

𝑣𝑁∈𝑉𝑁

‖‖𝑣− 𝑣𝑁
‖‖𝐻1(𝐵𝑅)

)
= 0.

Later we specialise to the triangulations described in [35, §5], which 
allow curved elements and thus fit 𝜕𝐵𝑅 exactly.

The finite-element method for the variational problem (2.3) is the 
Galerkin method applied to the variational problem (2.3), i.e.

find 𝑢𝑁 ∈ 𝑉𝑁 such that 𝑎(𝑢𝑁 , 𝑣𝑁 ) = 𝐹 (𝑣𝑁 ) for all 𝑣𝑁 ∈ 𝑉𝑁. (2.15)

3. Statement of the main results

Theorem 3.1 (Decomposition of the solution). Let 𝖠 and 𝑛 satisfy Assump-

tion 2.1 and let 𝑅 > 0 be such that supp(𝖨 − 𝖠) ∪ supp(1 − 𝑛) ⋐ 𝐵𝑅. Given 
𝑓 ∈ 𝐿2(𝐵𝑅), let 𝑢 satisfy ∇ ⋅ (𝖠∇𝑢) + 𝑘2𝑛𝑢 = −𝑓 in ℝ𝑑 and the Sommerfeld 
radiation condition (1.2).
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If 𝐶sol(𝑘) is polynomially bounded (in the sense of Definition 2.6) for 
𝑘 ∈𝐾 ⊂ [𝑘0, ∞), then there exist 𝐶3, 𝐶4, 𝐶5 > 0 such that

𝑢|𝐵𝑅
= 𝑢𝐻2 + 𝑢

where 𝑢𝐻2 ∈𝐻2(𝐵𝑅) with

‖‖𝜕𝛼𝑢𝐻2‖‖𝐿2(𝐵𝑅)
≤ 𝐶3𝑘

|𝛼|−2 ‖𝑓‖𝐿2(𝐵𝑅)

for all |𝛼| ≤ 2 and for all 𝑘 ∈𝐾 ⊂ [𝑘0,∞), (3.1)

and 𝑢 ∈ 𝐶∞(𝐵𝑅) with

‖‖‖𝜕𝛽𝑢‖‖‖𝐿2(𝐵𝑅)
≤ 𝐶sol(𝑘;𝑅+ 2) 𝐶4

(
𝐶5𝑘

)|𝛽|−1 ‖𝑓‖𝐿2(𝐵𝑅)

for all 𝛽 and for all 𝑘 ∈𝐾 ⊂ [𝑘0,∞), (3.2)

where 𝐶3, 𝐶4, and 𝐶5 depend on 𝖠, 𝑛, 𝑑, and 𝑘0, but are independent of 𝑘, 
𝑓 , 𝛼, and 𝛽.

Remark 3.2 (𝑢 is analytic). Since 𝐶4 and 𝐶5 are independent of 𝛽, the 
bound (3.2) implies that 𝑢 is in the class of analytic functions on 𝐵𝑅, 
(𝐵𝑅), defined by

(𝐵𝑅) ∶=
{

𝑣 ∈
⋂
𝑛∈ℕ

𝐻𝑛(𝐵𝑅) ∶ ∃ 𝑐0, 𝑐1 > 0, independent of 𝑛,

such that |𝑢|𝐻𝑛(𝐵𝑅) ≤ 𝑐1𝑐
𝑛
0𝑛!

}
,

where |𝑢|2
𝐻𝑛 ∶=

∑|𝛼|=𝑛 ‖𝜕𝛼𝑢‖2𝐿2 . See, e.g., [11, §1.1.b], both for this def-
inition, and for how the definition implies convergence of the Taylor 
series of elements of (𝐵𝑅) at every point in 𝐵𝑅.

Remark 3.3 (The bounds of Theorem 3.1 written with the notation ∇𝑛). 
The analogous bounds to (3.1) and (3.2) in [35], [36] are written using 
the notation

|||∇𝑛𝑢(𝑥)|||2 ∶= ∑
|𝛼|=𝑛

𝑛!
𝛼!

|||𝜕𝛼𝑢(𝑥)|||2.
Since ∑|𝛼|=𝑛(𝑛!∕𝛼!) = 𝑑𝑛,

if ‖𝜕𝛼𝑢‖𝐿2(𝐵𝑅) ≤ 1 (2)|𝛼| for all 𝛼 with |𝛼| = 𝑛,

then ‖∇𝑛𝑢‖𝐿2(𝐵𝑅) ≤ 1 (2√𝑑
)𝑛

,

and so the bounds (3.1) and (3.2) can also be written as bounds on ‖‖∇𝑛𝑢𝐻2‖‖𝐿2(𝐵𝑅)
and ‖‖∇𝑛𝑢‖‖𝐿2(𝐵𝑅)

respectively.

The following result about quasioptimality of the ℎ𝑝-FEM is then 
obtained by combining Theorem 3.1, well-known results about the con-
vergence of the Galerkin method based on duality arguments (recapped 
in Lemma 6.4 below), and results about the ℎ𝑝 approximation spaces in 
[35, §5] (used in Lemma 6.5 below).

Theorem 3.4 (Quasioptimality of the ℎ𝑝-FEM if 𝐶sol(𝑘) is polynomially 
bounded). Let 𝑑 = 2 or 3, and let 𝑘0 > 0. Let (𝑉𝑁 )∞

𝑁=0 be the piecewise-

polynomial approximation spaces described in [35, §5] (where, in par-

ticular, the triangulations are quasi-uniform), and let 𝑢𝑁 be the Galerkin 
solution defined by (2.15).

If 𝐶sol(𝑘) is polynomially bounded (in the sense of Definition 2.6) for 
𝑘 ∈ 𝐾 ⊂ [𝑘0, ∞) then there exist 𝐶1, 𝐶2 > 0, depending on 𝖠, 𝑛, 𝑅, and 𝑑, 
and 𝑘0, but independent of 𝑘, ℎ, and 𝑝, such that if (1.3) holds, then, for all 
𝑘 ∈𝐾 , the Galerkin solution exists, is unique, and satisfies the quasi-optimal 
error bound

‖‖𝑢− 𝑢𝑁
‖‖𝐻1

𝑘
(𝐵𝑅)

≤ 𝐶qo min
𝑣𝑁∈𝑉𝑁

‖‖𝑢− 𝑣𝑁
‖‖𝐻1

𝑘
(𝐵𝑅)

, (3.3)

with

𝐶qo ∶=
2
(
max{𝐴max, 𝑛max} +𝐶DtN1

)
(3.4)
𝐴min
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Combining Theorem 3.4 with the results on 𝐶sol(𝑘) recapped in The-
orem 2.7, we obtain the following specific examples of coefficients 𝖠
and 𝑛 when quasioptimality holds.

Corollary 3.5 (Quasioptimality under specific conditions on 𝖠 and 𝑛). Let 
𝑑 = 2 or 3, and let 𝑘0 > 0.

(i) If 𝖠 and 𝑛 are nontrapping, then there exist 𝐶1, 𝐶2 > 0, depending on 
𝖠, 𝑛, 𝑅, and 𝑑, and 𝑘0, but independent of 𝑘, ℎ, and 𝑝, such that if (1.3)
holds then, for all 𝑘 ≥ 𝑘0, the Galerkin solution exists, is unique, and 
satisfies the quasi-optimal error bound (3.3) with 𝐶qo given by (3.4).

(ii) If 𝖠 is 𝐶∞ and 𝑛 = 1 then, given 𝛿 > 0, there exist a set 𝐽 with |𝐽 | ≤ 𝛿

and constants 𝐶1, 𝐶2 > 0, with all three depending on 𝖠, 𝑛, 𝑅, 𝑑, and 
𝑘0, but independent of 𝑘, and 𝐶2 additionally depending on 𝛿 and 𝑘0
such that, for all 𝑘 ∈ [𝑘0, ∞) ⧵𝐽 , if (1.3) holds (with 𝐶1, 𝐶2 replaced by 
𝐶1, 𝐶2) then the Galerkin solution exists, is unique, and satisfies (3.3)
with 𝐶qo given by (3.4).

For the plane-wave scattering problem (i.e. for 𝐹 (𝑣) given by (2.6)), 
the regularity result

|𝑢|𝐻2(𝐵𝑅) ≤ 𝐶osc𝑘‖𝑢‖𝐻1
𝑘
(𝐵𝑅)

(3.5)

was recently proved in [29, Theorem 9.1 and Remark 9.10], where 
𝐶osc depends on 𝖠, 𝑛, 𝑑, and 𝑅, but is independent of 𝑘. The polyno-
mial approximation bounds in [35, §B] imply that, for the sequence of 
approximation spaces (𝑉𝑁 )∞

𝑁=0 described in [35, §5],

min
𝑣𝑁∈𝑉𝑁

‖‖𝑢− 𝑣𝑁
‖‖𝐻1

𝑘
(𝐵𝑅)

≤ 𝐶6
ℎ

𝑝

(
1 + 𝑘ℎ

𝑝

)|𝑢|𝐻2(𝐵𝑅) (3.6)

where 𝐶6 only depends on the constants in [35, Assumption 5.2] (which 
depend on the element maps from the reference element). Using (3.6)
and (3.5) to bound the right-hand side of (3.3), we obtain the following 
bound on the relative error of the Galerkin solution.

Corollary 3.6 (Bound on the relative error of the Galerkin solution). Let 
the assumptions of Theorem 3.4 hold and, furthermore, let 𝐹 (𝑣) be given 
by (2.6) (so that 𝑢 is the solution of the plane-wave scattering problem). If 
𝐶sol(𝑘) is polynomially bounded (in the sense of Definition 2.6) for 𝑘 ∈𝐾 ⊂

[𝑘0, ∞), then there exists 𝐶6 > 0, independent of 𝑘, ℎ, and 𝑝, such that if 
(1.3) holds, then, for all 𝑘 ∈𝐾 ,‖‖𝑢− 𝑢𝑁

‖‖𝐻1
𝑘
(𝐵𝑅)‖𝑢‖𝐻1

𝑘
(𝐵𝑅)

≤ 𝐶qo𝐶6𝐶osc𝐶1
(
1 +𝐶1

)
, (3.7)

with 𝐶qo given by (3.4); i.e. the relative error can be made arbitrarily small 
by making 𝐶1 smaller.

Remark 3.7 (Theorem 3.1 is valid for solutions of a much larger class of 
PDEs). Inspecting the proof of Theorem 3.1 below, we see that the con-
clusion, i.e. the decomposition 𝑢 = 𝑢𝐻2 + 𝑢 with 𝑢𝐻2 and 𝑢 satisfying 
the bounds (3.1) and (3.2) respectively, holds under much weaker as-
sumptions. Indeed, the conclusion still holds under the following three 
assumptions only.

(i) 𝑃𝑘 is a family of properly-supported second-order pseudo-differen-
tial operators, with principal symbol 𝑝𝑘(𝑥, 𝜁 ),

(ii) 𝑝𝑘(𝑥, 𝜁 ) is coercive at infinity in the sense that

lim inf|𝜉|→∞, 𝑥∈ℝ𝑑

⟨
𝑘𝜉⟩−2𝑝𝑘(𝑥,𝑘𝜉) ≥ 𝑐 > 0, (3.8)

where 𝑐 > 0 does not depend on 𝑘, and
(iii) the solution to 𝑃𝑘𝑢 = −𝑓 , posed in ℝ𝑑 with supp𝑓 ⊂ 𝐵𝑅 and 𝑓 ∈

𝐿2(𝐵𝑅), satisfies the bound

‖𝑢‖𝐿2(𝐵 ) ≤ 𝐶𝑘𝑀‖𝑓‖𝐿2(𝐵 ),
𝑅+2 𝑅
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with 𝐶 and 𝑀 independent of 𝑘, 𝑢, and 𝑓 . (In fact, the 2 in the 
𝑅 + 2 on the left-hand side of the bound can be replaced by any 
number > 0.)

In particular, no assumption is made about lower-order terms of 𝑃𝑘, 
or the behaviour of 𝑢 at infinity (such as a radiation condition).

4. Recap of relevant results about semiclassical 
pseudodifferential operators

The proof of Theorem 3.1 relies on standard results about semiclassi-
cal pseudodifferential operators. We review these here, with our default 
references being [52] and [14, Appendix E]. Homogeneous – as opposed 
to semiclassical – versions of the results in this section can be found in, 
e.g., [47, Chapter 7], [41, Chapter 7], [25, Chapter 6].1

While the use of homogeneous pseudodifferential operators in nu-
merical analysis is well established, see, e.g., [41], [25], there has 
been less use of semiclassical pseudodifferential operators. However, 
these are ideally-suited for studying the high-frequency behaviour of 
Helmholtz solutions. Indeed, semiclassical pseudodifferential operators 
are just pseudodifferential operators with a large/small parameter, and 
behaviour with respect to this parameter is then explicitly kept track of 
in the associated calculus.

The semiclassical parameter ℏ = 𝑘−1 Instead of working with the pa-
rameter 𝑘 and being interested in the large-𝑘 limit, the semiclassical 
literature usually works with a parameter ℎ ∶= 𝑘−1 and is interested 
in the small-ℎ limit. So that we can easily recall results from this lit-
erature, we also work with the small parameter 𝑘−1, but to avoid a 
notational clash with the meshwidth of the FEM, we let ℏ ∶= 𝑘−1 (the 
notation ℏ comes from the fact that the semiclassical parameter is re-
lated to Planck’s constant, which is written as 2𝜋ℏ; see, e.g., [52, §1.2], 
[14, Page 82], [32, Chapter 1]). In this notation, the Helmholtz equa-
tion ∇ ⋅ (𝖠∇𝑢) + 𝑘2𝑛𝑢 = −𝑓 becomes

𝑃ℏ𝑢 = ℏ2𝑓, where 𝑃ℏ ∶= −ℏ2∇ ⋅ (𝖠∇⋅) − 𝑛. (4.1)

While some results in semiclassical analysis are valid in the limit ℏ
small, the results we recap in this section are valid for all 0 < ℏ ≤ ℏ0
with ℏ0 <∞ arbitrary.

The semiclassical Fourier transform ℏ The semiclassical Fourier trans-
form is defined for ℏ > 0 by

ℏ𝜙(𝜉) ∶= ∫
ℝ𝑑

exp
(
− i𝑥 ⋅ 𝜉∕ℏ

)
𝜙(𝑥) d𝑥,

and its inverse by

−1
ℏ

𝜓(𝑥) ∶= (2𝜋ℏ)−𝑑 ∫
ℝ𝑑

exp
(
i𝑥 ⋅ 𝜉∕ℏ

)
𝜓(𝜉) d𝜉; (4.2)

see [52, §3.3]. Then

ℏ

((
− iℏ𝜕

)𝛼
𝜙
)
= 𝜉𝛼 ℏ𝜙 (4.3)

and

‖𝜙‖𝐿2(ℝ𝑑 ) =
1

(2𝜋ℏ)𝑑∕2
‖‖ℏ𝜙

‖‖𝐿2(ℝ𝑑 ) . (4.4)

1 The counterpart of “semiclassical” involving differential/pseudodifferential 
operators without a small parameter is usually called “homogeneous” (owing 
to the homogeneity of the principal symbol) rather than “classical.” “Classi-
cal” describes the behaviour in either calculus in the small-ℏ or high-frequency 
limit respectively, where commutators of operators become Poisson brackets of 
symbols, hence classical particle dynamics replaces wave motion.
64
Semiclassical Sobolev spaces In the same way that it is convenient to 
work with the weighted 𝐻1 norm (2.7) when studying the Helmholtz 
equation with parameter 𝑘, it is convenient to use norms weighted with 
ℏ when studying (4.1). Therefore on the space

𝐻𝑠
ℏ
(ℝ𝑑 ) ∶=

{
𝑢 ∈𝐿2(ℝ𝑑 ), ⟨𝜉⟩𝑠ℏ𝑢 ∈𝐿2(ℝ𝑑 )

}
,

where ⟨𝜉⟩ ∶= (1 + |𝜉|2)1∕2, 𝑠 ∈ℝ,

we use the norm

‖𝑢‖2
𝐻𝑠

ℏ
(ℝ𝑑 ) ∶= (2𝜋ℏ)−𝑑 ∫

ℝ𝑑

⟨𝜉⟩2𝑠|ℏ𝑢(𝜉)|2 d𝜉; (4.5)

see [52, §8.3], [14, §E.1.8]. We abbreviate 𝐻𝑠
ℏ
(ℝ𝑑 ) to 𝐻𝑠

ℏ
and 𝐿2(ℝ𝑑 )

to 𝐿2.
We record for later the fact that, by (4.3) and (4.4), for multiindices 

𝛼,

ℏ|𝛼| ‖𝜕𝛼𝜙‖𝐿2 = ‖‖‖(− iℏ𝜕
)𝛼

𝜙
‖‖‖𝐿2 =

1
(2𝜋ℏ)𝑑∕2

‖‖𝜉𝛼 ℏ𝜙
‖‖𝐿2

≤ 1
(2𝜋ℏ)𝑑∕2

‖‖‖⟨𝜉⟩|𝛼| ℏ𝜙
‖‖‖𝐿2 = ‖𝜙‖

𝐻
|𝛼|
ℏ

. (4.6)

Phase space The set of all possible positions 𝑥 and momenta (i.e. 
Fourier variables) 𝜉 is denoted by 𝑇 ∗ℝ𝑑 ; this is known informally as 
“phase space”. Strictly, 𝑇 ∗ℝ𝑑 ∶= ℝ𝑑 × (ℝ𝑑 )∗, but for our purposes, we 
can consider 𝑇 ∗ℝ𝑑 as {(𝑥, 𝜉) ∶ 𝑥 ∈ℝ𝑑 , 𝜉 ∈ℝ𝑑}.

To deal with the behaviour of functions on phase space uniformly 
near 𝜉 =∞ (so-called fiber infinity), we consider the radial compactifica-

tion in the 𝜉 variable of 𝑇 ∗ℝ𝑑 . This is defined by

𝑇
∗
ℝ𝑑 ∶=ℝ𝑑 ×𝐵𝑑,

where 𝐵𝑑 denotes the closed unit ball, considered as the closure of the 
image of ℝ𝑑 under the radial compactification map

𝖱𝖢 ∶ 𝜉 ↦ 𝜉∕(1 + ⟨𝜉⟩);
see [14, §E.1.3]. Near the boundary of the ball, |𝜉|−1◦ 𝖱𝖢−1 is a 
smooth function, vanishing to first order at the boundary, with 
(|𝜉|−1◦ 𝖱𝖢−1, ̂𝜉◦ 𝖱𝖢−1) thus giving local coordinates on the ball near its 
boundary. The boundary of the ball should be considered as a sphere 
at infinity consisting of all possible directions of the momentum vari-
able. More generally, we denote 𝑇 ∗

𝑋 ∶=𝑋 ×𝐵𝑑 for 𝑋 ⊂ℝ𝑑 , and where 
appropriate (e.g., in dealing with finite values of 𝜉 only), we abuse 
notation by dropping the composition with 𝖱𝖢 from our notation and 
simply identifying ℝ𝑑 with the interior of 𝐵𝑑 .

Symbols, quantisation, and semiclassical pseudodifferential operators A 
symbol is a function on 𝑇 ∗ℝ𝑑 that is also allowed to depend on ℏ, and 
thus can be considered as an ℏ-dependent family of functions. Such a 
family 𝑎 = (𝑎ℏ)0<ℏ≤ℏ0

, with 𝑎ℏ ∈ 𝐶∞(𝑇 ∗ℝ𝑑 ), is a symbol of order 𝑚, writ-
ten as 𝑎 ∈ 𝑆𝑚(ℝ𝑑 ), if for any multiindices 𝛼, 𝛽

|𝜕𝛼𝑥𝜕𝛽𝜉 𝑎(𝑥, 𝜉)| ≤ 𝐶𝛼,𝛽⟨𝜉⟩𝑚−|𝛽| for all (𝑥, 𝜉) ∈ 𝑇 ∗ℝ𝑑 and for all 0 < ℏ ≤ ℏ0,

(4.7)

where 𝐶𝛼,𝛽 does not depend on ℏ, 𝑥, or 𝜉; see [52, p. 207], [14, §E.1.2]. 
In this paper, we only consider these symbol classes on ℝ𝑑 , and so we 
abbreviate 𝑆𝑚(ℝ𝑑 ) to 𝑆𝑚.

For 𝑎 ∈ 𝑆𝑚, we define the semiclassical quantisation of 𝑎, Opℏ(𝑎) ∶
𝒮(ℝ𝑑 ) →𝒮(ℝ𝑑 ), by(
Opℏ(𝑎)𝑣

)
(𝑥) ∶= (2𝜋ℏ)−𝑑 ∫

ℝ𝑑

∫
ℝ𝑑

exp
(
i(𝑥− 𝑦) ⋅ 𝜉∕ℏ

)
𝑎(𝑥, 𝜉)𝑣(𝑦) d𝑦d𝜉 (4.8)

for 𝑣 ∈𝒮(ℝ𝑑 ); [52, §4.1] [14, Page 543]. The integral in (4.8) need not 
converge, and can be understood either as an oscillatory integral in the 
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sense of [52, §3.6], [24, §7.8], or as an iterated integral, with the 𝑦
integration performed first; see [14, Page 543].

Conversely, if 𝐴 can be written in the form above, i.e. 𝐴 = Opℏ(𝑎)
with 𝑎 ∈ 𝑆𝑚, we say that 𝐴 is a semiclassical pseudo-differential operator of 
order 𝑚 and we write 𝐴 ∈Ψ𝑚

ℏ
. We use the notation 𝑎 ∈ ℏ𝑙𝑆𝑚 if ℏ−𝑙𝑎 ∈ 𝑆𝑚; 

similarly 𝐴 ∈ ℏ𝑙Ψ𝑚
ℏ

if ℏ−𝑙𝐴 ∈Ψ𝑚
ℏ

.

Theorem 4.1 (Composition and mapping properties of semiclassical pseudo-

differential operators [52, Theorem 8.10], [14, Proposition E.17 and Propo-

sition E.19]). If 𝐴 ∈Ψ𝑚1
ℏ

and 𝐵 ∈Ψ𝑚2
ℏ

, then

(i) 𝐴𝐵 ∈Ψ𝑚1+𝑚2
ℏ

,

(ii) [𝐴, 𝐵] ∶=𝐴𝐵 −𝐵𝐴 ∈ ℏΨ𝑚1+𝑚2−1
ℏ

,

(iii) For any 𝑠 ∈ℝ, 𝐴 is bounded uniformly in ℏ as an operator from 𝐻𝑠
ℏ

to 
𝐻

𝑠−𝑚1
ℏ

.

Residual class We say that 𝐴 = 𝑂(ℏ∞)Ψ−∞ if, for any 𝑠 > 0 and 𝑁 ≥ 1, 
there exists 𝐶𝑠,𝑁 > 0 so that

‖𝐴‖𝐻−𝑠
ℏ

→𝐻𝑠
ℏ
≤ 𝐶𝑁,𝑠ℏ

𝑁 ; (4.9)

i.e. 𝐴 ∈ Ψ−∞
ℏ

and furthermore all of its operator norms are bounded by 
any algebraic power of ℏ.

Principal symbol 𝜎ℏ Let the quotient space 𝑆𝑚∕ℏ𝑆𝑚−1 be defined by 
identifying elements of 𝑆𝑚 that differ only by an element of ℏ𝑆𝑚−1. For 
any 𝑚, there is a linear, surjective map

𝜎𝑚
ℏ
∶ Ψ𝑚

ℏ
→ 𝑆𝑚∕ℏ𝑆𝑚−1,

called the principal symbol map, such that, for 𝑎 ∈ 𝑆𝑚,

𝜎𝑚
ℏ

(
Opℏ(𝑎)

)
= 𝑎 mod ℏ𝑆𝑚−1; (4.10)

see [52, Page 213], [14, Proposition E.14] (observe that (4.10) implies 
that ker(𝜎𝑚

ℏ
) = ℏΨ𝑚−1

ℏ
).

When applying the map 𝜎𝑚
ℏ

to elements of Ψ𝑚
ℏ

, we denote it by 𝜎ℏ

(i.e. we omit the 𝑚 dependence) and we use 𝜎ℏ(𝐴) to denote one of the 
representatives in 𝑆𝑚 (with the results we use then independent of the 
choice of representative). Key properties of the principal symbol that 
we use below are that

𝜎ℏ(𝐴𝐵) = 𝜎ℏ(𝐴)𝜎ℏ(𝐵), (4.11)

𝜎ℏ(𝑃ℏ) = ⟨𝖠𝜉, 𝜉⟩− 𝑛, (4.12)

where ⟨⋅, ⋅⟩ denotes the 𝓁2 inner product on ℝ𝑑 . The property (4.11)
is proved in [14, Proposition E.17], (4.12) follows from (4.10) since 
𝑃ℏ =Opℏ

(⟨𝖠𝜉, 𝜉⟩ − 𝑛 − iℏ𝜉𝓁𝜕𝑗𝐴𝑗𝓁
)

(where we sum over the indices 𝑗 and 
𝓁).

Operator wavefront set WFℏ We say that (𝑥0, 𝜉0) ∈ 𝑇
∗
ℝ𝑑 is not in the 

semiclassical operator wavefront set of 𝐴 = Opℏ(𝑎) ∈ Ψ𝑚
ℏ

, denoted by 
WFℏ 𝐴, if there exists a neighbourhood 𝑈 of (𝑥0, 𝜉0) such that for all 
multiindices 𝛼, 𝛽 and all 𝑁 ≥ 1 there exists 𝐶𝛼,𝛽,𝑈,𝑁 > 0 (independent of 
ℏ) so that, for all 0 < ℏ ≤ ℏ0,

|𝜕𝛼𝑥𝜕𝛽𝜉 𝑎(𝑥, 𝜉)| ≤ 𝐶𝛼,𝛽,𝑈,𝑁ℏ𝑁 ⟨𝜉⟩−𝑁 for all (𝑥,𝖱𝖢(𝜉)) ∈𝑈 ; (4.13)

i.e. outside its semiclassical operator wavefront set an operator van-
ishes faster than any algebraic power of both ℏ and ⟨𝜉⟩−1; see [52, Page 
194], [14, Definition E.27]. Three properties of the semiclassical oper-
ator wavefront set that we use below are

WFℏ(𝐴𝐵) ⊂WFℏ 𝐴 ∩WFℏ 𝐵 (4.14)

(see [52, §8.4], [14, E.2.5]),

WFℏ

(
Opℏ(𝑎)

)
⊂ supp𝑎 (4.15)
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(since (supp𝑎)𝑐 ⊂ (WFℏ(Opℏ(𝑎)))𝑐 by (4.13)), and

WFℏ 𝐴 = ∅ ⟺ 𝐴 =𝑂(ℏ∞)Ψ−∞ (4.16)

(see [14, E.2.2]).

Compactly-supported operators We say that 𝐴 is compactly supported if 
its Schwartz kernel is compactly supported in some set 𝐾 ⋐ ℝ𝑑 × ℝ𝑑 , 
for all 0 < ℏ ≤ ℏ0. We recall that if (ℝ𝑑 ) ∶= 𝐶∞

comp(ℝ
𝑑 ) (i.e. the set of 

test functions) and ′(ℝ𝑑 ) denote the set of linear functionals on (ℝ𝑑 )
(i.e. the set of distributions), given a bounded, sequentially-continuous 
operator 𝐴 ∶  → ′ there exists a Schwartz kernel 𝐴 ∈ ′(ℝ𝑑 × ℝ𝑑 )
such that

𝐴𝑣(𝑥) = ∫
ℝ𝑑

𝐴(𝑥, 𝑦)𝑣(𝑦) d𝑦,

in the sense of distributions; see, e.g., [24, Theorem 5.2.1], [14, §A.7]. 
We use below the facts that

• 𝐴 is compactly supported iff there exist 𝜒1, 𝜒2 ∈  such that 𝐴 =
𝜒1𝐴𝜒2, thus

• if 𝜒1, 𝜒2 ∈ are compactly supported functions, then 𝜒1𝐴𝜒2 is com-
pactly supported, and

• if 𝑃 is a differential operator and 𝜒 ∈, then both 𝜒𝑃 and 𝑃𝜒 are 
compactly supported.

Ellipticity We say that 𝐵 ∈ Ψ𝑚
ℏ

is elliptic on 𝑋 ⊂ 𝑇
∗
ℝ𝑑 if there exists 

𝑐 > 0, independent of ℏ, such that

⟨𝜉⟩−𝑚|||𝜎ℏ(𝐵)(𝑥, 𝜉)||| ≥ 𝑐, for all (𝑥,𝖱𝖢(𝜉)) ∈𝑋 and for all 0 < ℏ ≤ ℏ0.

(4.17)

A key feature of elliptic operators is that they are microlocally in-
vertible; this is reflected in the following result.

Proposition 4.2 (Elliptic parametrix [14, Proposition E.32]). 2Let 𝐴 ∈Ψ𝑚
ℏ

and 𝐵 ∈ Ψ𝓁
ℏ

be such that 𝐵 is elliptic on WFℏ(𝐴). Then there exist 𝑄, 𝑄′ ∈
Ψ𝑚−𝓁

ℏ
such that

𝐴 =𝐵𝑄+𝑂(ℏ∞)Ψ−∞ =𝑄′𝐵 +𝑂(ℏ∞)Ψ−∞ .

Theorem 4.3 (Elliptic estimate [14, Theorem E.33]). 2Let 𝐴 ∈ Ψ𝑚1
ℏ

, 𝐵1 ∈
Ψ𝑚2

ℏ
, and 𝑃 ∈Ψ𝓁

ℏ
be so that 𝐵1𝑃 is elliptic on WFℏ(𝐴).

(i) Given 𝑠, 𝑁 > 0, and 𝑀 > 0, if 𝑣 ∈′ and 𝐵1𝑃𝑣 ∈𝐻𝑠−𝑚2−𝓁 then 𝐴𝑣 ∈
𝐻𝑠−𝑚1 and there exists 𝐶𝑠 > 0, 𝐶𝑁,𝑀,𝑠 > 0 (independent of 𝑣 and ℏ) 
such that

‖𝐴𝑣‖
𝐻

𝑠−𝑚1
ℏ

≤ 𝐶𝑠
‖‖𝐵1𝑃𝑣‖‖𝐻𝑠−𝑚2−𝓁

ℏ

+𝐶𝑁,𝑀,𝑠 ℏ
𝑀 ‖𝑣‖𝐻−𝑁

ℏ
. (4.18)

(ii) If, in addition, 𝐴 and 𝐵1𝑃 are compactly supported, then there exists 
𝜒 ∈ 𝐶∞

comp so that

‖𝐴𝑣‖
𝐻

𝑠−𝑚1
ℏ

≤ 𝐶𝑠
‖‖𝐵1𝑃𝑣‖‖𝐻𝑠−𝑚2−𝓁

ℏ

+𝐶𝑁,𝑀,𝑠 ℏ
𝑀 ‖‖𝜒𝑣‖‖𝐻−𝑁

ℏ
. (4.19)

Part (i) of Theorem 4.3 is proved by using Proposition 4.2 with 
𝐵 = 𝐵1𝑃 ∈ Ψ𝑚2+𝓁

ℏ
, applying the resulting operator equation to 𝑣, and 

taking norms. The operator 𝑄′ ∈ Ψ𝑚1−𝑚2−𝓁
ℏ

and the constant 𝐶𝑠 is then ‖𝑄′‖
𝐻

𝑠−𝑚2−𝓁
ℏ

→𝐻
𝑠−𝑚1
ℏ

. The proof of Part (ii) is similar, using that, since 𝐴
and 𝐵1𝑃 are both compactly supported, there exists 𝜒 ∈ 𝐶∞

comp such that 
(𝐴 −𝐵1𝑃 )𝑣 = (𝐴 −𝐵1𝑃 )𝜒𝑣.

2 We highlight that working in ℝ𝑑 (as opposed to on a general manifold de-
fined by coordinate charts) allows us to remove the proper-support assumption 
appearing in [14, Proposition E.32, Theorem E.33].
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5. Proof of Theorem 3.1

In the notation introduced in §4, Theorem 3.1 becomes the follow-
ing.

Theorem 5.1. Let 𝖠 and 𝑛 satisfy Assumption 2.1 and let 𝑅 > 0 be such that 
supp(𝖨 − 𝖠) ∪ supp(1 − 𝑛) ⋐ 𝐵𝑅. Given 𝑓 ∈ 𝐿2(𝐵𝑅), let 𝑢 satisfy 𝑃ℏ𝑢 = ℏ2𝑓

in ℝ𝑑 and the Sommerfeld radiation condition (1.2). Assume that, given 
𝑘0 > 0, 𝐶sol(𝑘) is polynomially bounded (in the sense of Definition 2.6) for 
𝑘 ∈𝐾 ⊂ [𝑘0, ∞). Given 𝑘0 > 0, let ℏ0 ∶= 𝑘−10 , and let 𝐻 ∶= {𝑘−1 ∶ 𝑘 ∈𝐾} ⊂
(0, ℏ0].

Then there exist 𝐶3, 𝐶4, 𝐶5 > 0 such that

𝑢|𝐵𝑅
= 𝑢𝐻2 + 𝑢

where 𝑢𝐻2 ∈𝐻2
ℏ
(𝐵𝑅) with

‖‖𝜕𝛼𝑢𝐻2‖‖𝐿2(𝐵𝑅)
≤ 𝐶3ℏ

2−|𝛼| ‖𝑓‖𝐿2(𝐵𝑅)

for all |𝛼| ≤ 2 and for all ℏ ∈𝐻 ⊂ (0, ℏ0], (5.1)

and 𝑢 ∈ 𝐶∞(𝐵𝑅) with

‖‖‖𝜕𝛽𝑢‖‖‖𝐿2(𝐵𝑅)
≤ 𝐶sol

(
ℏ−1;𝑅+ 2

)
𝐶4

(
ℏ

𝐶5

)1−|𝛽| ‖𝑓‖𝐿2(𝐵𝑅)

for all 𝛽 and for all ℏ ∈𝐻 ⊂ (0, ℏ0], (5.2)

where 𝐶3, 𝐶4, and 𝐶5 depend on 𝖠, 𝑛, 𝑑, and ℏ0, but are independent of ℏ, 
𝑓 , 𝛼, and 𝛽.

5.1. Step 0: restatement of bounds on the solution operator in semiclassical 
notation

The definition of 𝐶sol (Definition 2.5) implies that, in semiclassical 
notation,

‖𝑢‖𝐻1
ℏ
(𝐵𝑅)

≤ ℏ𝐶sol(ℏ−1)‖𝑓‖𝐿2(𝐵𝑅) for all ℏ > 0. (5.3)

It is convenient to record here in semiclassical notation the bound on 
the solution operator when 𝐶sol is polynomially bounded.

Lemma 5.2 (Polynomial boundedness rewritten in terms of ℏ). Given 𝑓 ∈
𝐿2
comp(ℝ

𝑑 ), let 𝑢 ∈𝐻1
loc(ℝ

𝑑 ) be the solution to

𝑃ℏ𝑢 = ℏ2𝑓

satisfying the Sommerfeld radiation condition (1.2) (with 𝑘 = ℏ−1).

If 𝐶sol(𝑘) is polynomially bounded for 𝑘 ∈ 𝐾 ⊂ [𝑘0, ∞) (in the sense of 
Definition 2.6), then there exists 𝑀 > 0 (independent of ℏ) such that, given 
𝜒 ∈ 𝐶∞

comp(ℝ
𝑑 ), there exists 𝐶 > 0 (independent of ℏ but dependent on 𝜒) 

such that

‖𝜒𝑢‖𝐿2 ≤ 𝐶ℏ1−𝑀 ‖𝑓‖𝐿2 for ℏ ∈𝐻 ⊂ (0, ℏ0], (5.4)

where ℏ0 ∶= 𝑘−10 and 𝐻 ∶= {𝑘−1 ∶ 𝑘 ∈𝐾}.

The bound (5.4) also holds with ‖𝜒𝑢‖𝐿2 replaced by ‖𝜒𝑢‖𝐻1
ℏ
, but we 

only need it in the form (5.4) for what follows.

5.2. Step 1: the definitions of 𝑢 and 𝑢𝐻2

The cut-off functions 𝜒 and 𝜒𝜇 Let 𝜒 ∈ 𝐶∞
comp(ℝ

𝑑 ; [0, 1]) be such that

𝜒 =

{
1 in 𝐵1

0 outside 𝐵2.
(5.5)

For 𝜇 > 0, let

𝜒𝜇(⋅) ∶= 𝜒

(
⋅
)

. (5.6)

𝜇
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Fig. 5.1. The locations of WFℏ(Π𝐻 ) and WFℏ(Π𝐿), the regions where the princi-
pal symbols of Π𝐻 and Π𝐿 equal one, and the region where 𝑃ℏ is elliptic.

We define 𝜇0 = 𝜇0(𝖠, 𝑛) by

𝜇0(𝖠, 𝑛) ∶=
(
1 +

2𝑛max
𝐴min

)
. (5.7)

The reason for this definition is that it implies that

if |𝜉|2 ≥ 𝜇0 then ⟨𝜉⟩−2𝜎ℏ(𝑃 ) ≥ 𝐴min
2

> 0. (5.8)

Indeed, by (4.12),

⟨𝜉⟩−2𝜎ℏ(𝑃 ) ≥ 𝐴min|𝜉|2 − 𝑛max

1 + |𝜉|2 =
𝐴min
2

+
(

𝐴min
2

)(|𝜉|2 − 1 − 2𝑛max∕𝐴min

1 + |𝜉|2
)

,

and (5.8) follows. The importance of the property (5.8) is explained at 
the end of this subsection.

The frequency cut-offs Π𝐿 and Π𝐻 We define Π𝐿 and Π𝐻 , the projec-
tions on low and high frequencies respectively, by (1.9) and (1.10). 
The definition of the quantisation Opℏ (4.8) and the change of variable 
𝜁 = 𝜉∕ℏ imply that

Π𝐿 =Opℏ
(
𝜒𝜇(|𝜉|2)) (5.9)

and

Π𝐻 = 𝐼 −Π𝐿. (5.10)

These definitions and the definition of Ψ𝑚
ℏ
(ℝ𝑑 ) in §4 imply that Π𝐿 ∈

Ψ−∞
ℏ

(ℝ𝑑 ) and Π𝐻 ∈Ψ0
ℏ
(ℝ𝑑 ).

The locations of the wavefront sets of the frequency cut-offs, and the re-
gions where their symbols equal one In Fig. 5.1 we show, as functions 
of |𝜉|2, the locations of WFℏ(Π𝐻 ) and WFℏ(Π𝐿), and the regions where 
𝜎ℏ(Π𝐻 ), and 𝜎ℏ(Π𝐿) equal one. These locations/regions are obtained us-
ing (4.15) and (4.10) respectively. For example, since 1 −𝜒𝜇(|𝜉|2) = 1 for |𝜉|2 ≥ 2𝜇 and = 0 for |𝜉|2 ≤ 𝜇, (4.10) and (4.15) imply that

𝜎ℏ(Π𝐻 ) = 1 on
{
𝜉 ∶ |𝜉|2 ≥ 2𝜇

}
and WFℏ(Π𝐻 ) ⊂

{
𝜉 ∶ |𝜉|2 ≥ 𝜇

}
.

(5.11)

We also record the following key consequence of the results summarised 
in Fig. 5.1.

Lemma 5.3. If 𝜇 ≥ 𝜇0, then 𝑃ℏ is elliptic on WFℏ(Π𝐻 ).

This property is central to our proof of the bound (5.1) on 𝑢𝐻2 , i.e., 
the high-frequency component. It is a consequence of (5.8), and the 
reason why we choose 𝜇0 as in (5.7) is for this ellipticity result to hold.

The definitions of 𝑢 and 𝑢𝐻2 As described in §1.2, we choose 𝜑 ∈
𝐶∞
comp(ℝ

𝑑 ) be equal to one on 𝐵𝑅+1 and vanish outside 𝐵𝑅+2. We then 
let

𝑤 ∶= 𝜑𝑢

and we define

𝑢 ∶= (Π𝐿𝑤)|| and 𝑢𝐻2 ∶= (Π𝐻𝑤)|| .
|𝐵𝑅 |𝐵𝑅
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5.3. Step 2: proof of the bound (5.2) on 𝑢 (the low-frequency component)

Since Π𝐿 ∈ Ψ−∞
ℏ

, Part (iii) of Theorem 4.1, together with Sobolev 
embedding, gives Π𝐿𝑤 ∈ 𝐶∞.

The definition of Π𝐿 (1.9) and Plancherel’s identity (4.4) for the 
standard (i.e. non semiclassical) Fourier transform imply that‖‖‖𝜕𝛽(Π𝐿𝑤

)‖‖‖𝐿2 =
1

(2𝜋)𝑑∕2
‖‖‖(⋅)𝛽(

Π𝐿𝑤
)
(⋅)‖‖‖𝐿2

= 1
(2𝜋)𝑑∕2

‖‖‖(⋅)𝛽𝜒𝜇

(
ℏ2| ⋅ |2)𝑤(⋅)‖‖‖𝐿2 . (5.12)

The definitions of 𝜒 (5.5) and 𝜒𝜇 (5.6) imply that 𝜒𝜇(𝜉) = 0 for |𝜉| ≥ 2𝜇, 
so

𝜒𝜇

(
ℏ2|𝜁 |2) = 0 for |𝜁 | ≥√

2𝜇ℏ−1.

Using this fact, and then (in this order) the fact that |𝜒𝜇| ≤ 1, 
Plancherel’s identity for the standard Fourier transform, the fact that 
𝜑 = 0 outside 𝐵𝑅+2, and the definition of 𝐶sol (2.12), we find from 
(5.12) that‖‖‖𝜕𝛽(Π𝐿𝜑𝑢

)‖‖‖𝐿2 ≤ (2𝜇)|𝛽|∕2
(2𝜋)𝑑∕2

ℏ−|𝛽| ‖‖‖𝜒𝜇

(
ℏ2| ⋅ |2) (𝜑𝑢)(⋅)‖‖‖𝐿2

≤ (2𝜇)|𝛽|∕2
(2𝜋)𝑑∕2

ℏ−|𝛽| ‖ (𝜑𝑢)‖𝐿2

≤ (2𝜇)|𝛽|∕2ℏ−|𝛽| ‖𝜑𝑢‖𝐿2

≤ (2𝜇)|𝛽|∕2ℏ−|𝛽|ℏ𝐶sol(ℏ−1;𝑅+ 2)‖𝑓‖𝐿2(𝐵𝑅) .

Since‖‖‖𝜕𝛽𝑢‖‖‖𝐿2(𝐵𝑅)
= ‖‖‖𝜕𝛽 (Π𝐿𝑤)‖‖‖𝐿2(𝐵𝑅)

≤ ‖‖‖𝜕𝛽 (Π𝐿𝑤)‖‖‖𝐿2 ,

the bound (5.2) then follows with 𝐶4 ∶=
√
2𝜇 and 𝐶5 ∶=

√
2𝜇.

5.4. Step 3: proof of the bound (5.1) on 𝑢𝐻2 (the high-frequency 
component)

By the inequality (4.6), it is sufficient to prove that

‖‖Π𝐻𝑤‖‖𝐻2
ℏ
≤ 𝐶3ℏ

2 ‖𝑓‖𝐿2(𝐵𝑅) for all ℏ ∈𝐻 ⊂ (0, ℏ0). (5.13)

It is instructive to first prove (5.13) under the assumption that 
𝐶sol(𝑘) ≲ 1 (which, by Theorem 2.7 is ensured if 𝖠 and 𝑛 are nontrap-
ping). Indeed, as discussed in §1.2, this proof only requires that 𝑃ℏ is 
elliptic on WFℏ(Π𝐻 ); i.e., Lemma 5.3. Throughout the rest of this sec-
tion, therefore, we assume that 𝜇 ≥ 𝜇0, so that the result of Lemma 5.3
holds.

5.4.1. Proof of (5.13) under the assumption that 𝐶sol(𝑘) ≲ 1
We seek to apply Part (i) of Theorem 4.3 with 𝐴 = Π𝐻 (so 𝑚1 = 0), 

𝐵1 = 1 (so 𝑚2 = 0), and 𝑃 = 𝑃ℏ (so 𝓁 = 2). By Lemma 5.3, 𝐵1𝑃 is elliptic 
on WFℏ(𝐴). We can therefore apply Theorem 4.3 and obtain that, given 
𝑁, 𝑁 ′ > 0,‖‖‖Π𝐻𝑤

‖‖‖𝐻2
ℏ

≲ ‖‖𝑃ℏ𝑤
‖‖𝐿2 + ℏ𝑁 ′ ‖𝑤‖𝐻−𝑁

ℏ
, (5.14)

where the omitted constant in ≲ depends on 𝑁 and 𝑁 ′. Since 𝑃ℏ𝑢 = ℏ2𝑓 ,

𝑃ℏ𝑤 = [𝑃ℏ,𝜑]𝑢+ ℏ2𝜑𝑓,

where [⋅, ⋅] is the standard commutator defined by [𝐴1, 𝐴2] ∶= 𝐴1𝐴2 −
𝐴2𝐴1, so that (5.14) becomes‖‖‖Π𝐻𝑤

‖‖‖𝐻2
ℏ

≲ ‖‖[𝑃ℏ,𝜑]𝑢‖‖𝐿2 + ℏ2 ‖𝑓‖𝐿2 + ℏ𝑁 ′ ‖𝑤‖𝐻−𝑁
ℏ

. (5.15)

Direct calculation, using the fact that supp𝜑 ⊂ 𝐵𝑅+2, implies that‖‖‖[𝑃ℏ,𝜑]𝑢
‖‖‖𝐿2 ≲ ℏ‖𝑢‖𝐻1

ℏ
(𝐵𝑅+2)

, (5.16)

where the omitted constant depends on 𝜑, and hence on 𝑅.
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Combining (5.15) and (5.16), and recalling that supp𝜑 ⊂ 𝐵𝑅+2, we 
have‖‖‖Π𝐻𝑤

‖‖‖𝐻2
ℏ

≲ ℏ‖𝑢‖𝐻1
ℏ
(𝐵𝑅+2)

+ ℏ2 ‖𝑓‖𝐿2(𝐵𝑅) + ℏ𝑁 ′ ‖𝑢‖𝐻−𝑁
ℏ

(𝐵𝑅+2)
.

Choosing 𝑁 = 0 and 𝑁 ′ = 1, and then using (5.3), we obtain‖‖‖Π𝐻𝑤
‖‖‖𝐻2

ℏ

≲ ℏ2
(
1 +𝐶sol(ℏ−1)

)‖𝑓‖𝐿2(𝐵𝑅) . (5.17)

If 𝐶sol(ℏ−1) ≲ 1, then this implies (5.13). However, if 𝐶sol(ℏ−1) ≫ 1 (as 
occurs when 𝐶sol is polynomially bounded in the sense of Definition 2.6
with 𝑀 > 0) then (5.17) is a weaker bound than (5.13).

5.4.2. Proof of (5.13) under the assumption that 𝐶sol(𝑘) is polynomially 
bounded

Inspecting the argument in §5.4.1, we see that the assumption that 
𝐶sol(𝑘) ≲ 1 is needed to get a good bound on the commutator term 
[𝑃ℏ, 𝜑]𝑢. To remove this commutator term, one idea is to use the elliptic 
estimate in Part (i) of Theorem 4.3, using the fact that 𝑃ℏ is elliptic on 
WFℏ(Π𝐻𝜑), and apply the estimate with 𝑣 ∶= 𝑢. However, the error term 
would not be compactly supported and we would be unable to control 
it using the polynomial bound on the solution operator (5.4). We there-
fore introduce additional spatial cut-offs on the left of Π𝐻𝜑 and 𝑃ℏ to 
create compactly-supported operators and have a compactly-supported 
error term thanks to Part (ii) of Theorem 4.3.

To this end, let 𝜑1, 𝜑2 ∈ 𝐶∞
comp(ℝ

𝑑 ) be such that 𝜑1 = 1 on supp𝜑 and 
𝜑2 = 1 on supp𝜑1; we then write

Π𝐻𝜑𝑢 = (1 −𝜑1)Π𝐻𝜑𝑢+𝜑1Π𝐻𝜑𝑢. (5.18)

Since 1 −𝜑1 = 0 on supp𝜑, using (4.14) and (4.15), we obtain that

WFℏ

(
(1 −𝜑1)Π𝐻𝜑

)
⊂ 𝑇

∗
(supp(1 −𝜑1)) ∩ 𝑇

∗
(supp𝜑) = ∅.

Hence, by (4.16), (1 − 𝜑1)Π𝐻𝜑 = 𝑂(ℏ∞)Ψ−∞ , and, by the definition of 
the residual class (4.9), for any 𝑁 ≥ 1 there exists 𝐶𝑁 > 0 so that

‖(1 −𝜑1)Π𝐻𝜑𝑢‖𝐻2
ℏ
= ‖(1 −𝜑1)Π𝐻𝜑𝜑1𝑢‖𝐻2

ℏ
≤ 𝐶𝑁ℏ𝑁‖𝜑1𝑢‖𝐿2 , (5.19)

were we used the fact that 𝜑1 = 1 on supp𝜑 in the first equality.
It therefore remains to control 𝜑1Π𝐻𝜑𝑢; to do this, we use the ellip-

tic estimate of Theorem 4.3.

Lemma 5.4. 𝜑2𝑃ℏ is elliptic on WFℏ(𝜑1Π𝐻𝜑).

Proof. By (4.14) and (4.15), WFℏ(𝜑1Π𝐻𝜑) ⊂ 𝑇
∗
(supp𝜑1) ∩ WFℏΠ𝐻 . 

Since 𝜑2 = 1 on supp𝜑1, the result is a direct consequence of
Lemma 5.3. ■

By the facts about compactly-supported operators recalled in §4, 
𝜑1Π𝐻𝜑 and 𝜑2𝑃ℏ are compactly supported. Therefore, by Lemma 5.4, 
we can apply Part (ii) of Theorem 4.3 with 𝐴 = 𝜑1Π𝐻𝜑, 𝐵1 = 𝜑2, 𝑃 = 𝑃ℏ, 
𝑚1 = 0, 𝑚2 = 0, 𝓁 = 2. This result implies that there exists 𝜒 ∈ 𝐶∞

comp, and, 
for any 𝑁 ′ ≥ 1, there exists 𝐶𝑁 ′ > 0 such that

‖𝜑1Π𝐻𝜑𝑢‖𝐻2
ℏ
≲ ‖𝜑2𝑃ℏ𝑢‖𝐿2 +𝐶𝑁 ′ℏ𝑁 ′‖𝜒𝑢‖𝐿2

= ℏ2‖𝜑2𝑓‖𝐿2 +𝐶𝑁 ′ℏ𝑁 ′‖𝜒𝑢‖𝐿2 . (5.20)

Collecting (5.18), (5.19), (5.20), using (5.4), and choosing 𝑁 = 𝑁 ′ =
𝑀 + 1, we obtain (5.13).

6. Proof of Theorem 3.4

The two ingredients for the proof of Theorem 3.4 are

• Lemma 6.4, which is the standard duality argument giving a condi-
tion for quasi-optimality to hold in terms of how well the solution 
of the adjoint problem is approximated by the finite-element space 
(measured by the quantity 𝜂(𝑉𝑁 ) defined by (6.3)), and

• Lemma 6.5 that bounds 𝜂(𝑉𝑁 ) using the decomposition from Theo-
rem 3.1.
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Regarding Lemma 6.4: we recall that this argument came out of ideas 
introduced in [43], was then formalised in [42], and has been used 
extensively in the analysis of the Helmholtz FEM; see, e.g., [1,26,33,42,
35,36,51,50,12,9,31,10,17,21,16].

Before stating Lemma 6.4 we need to introduce some notation.

Definition 6.1 (The adjoint sesquilinear form 𝑎∗(⋅, ⋅)). The adjoint 
sesquilinear form, 𝑎∗(𝑢, 𝑣), to the sesquilinear form 𝑎(⋅, ⋅) defined in (2.4)
is given by

𝑎∗(𝑢, 𝑣) ∶= 𝑎(𝑣, 𝑢) = ∫
𝐵𝑅

(
(𝖠∇𝑢) ⋅∇𝑣− 𝑘2𝑛𝑢𝑣

)
−
⟨
𝛾𝑢,DtN𝑘(𝛾𝑣)

⟩
𝜕𝐵𝑅

.

A key role is played by the solution operator of the adjoint varia-
tional problem with data in 𝐿2(𝐵𝑅); we therefore introduce the follow-
ing notation.

Definition 6.2 (Adjoint solution operator ∗). Given 𝑓 ∈𝐿2(𝐵𝑅), let ∗𝑓

be defined as the solution of the variational problem

find ∗𝑓 ∈𝐻1(𝐵𝑅) such that

𝑎∗(∗𝑓, 𝑣) = ∫
𝐵𝑅

𝑓 𝑣 for all 𝑣 ∈𝐻1(𝐵𝑅). (6.1)

Green’s second identity applied to solutions of the Helmholtz equa-
tion satisfying the Sommerfeld radiation condition (1.2) implies that ⟨
DtN𝑘𝜓, 𝜙

⟩
𝜕𝐵𝑅

=
⟨
DtN𝑘𝜙, 𝜓

⟩
𝜕𝐵𝑅

(see, e.g., [46, Lemma 6.13]); thus 
𝑎(𝑣, 𝑢) = 𝑎(𝑢, 𝑣) and so the definition (6.1) implies that

𝑎(∗𝑓, 𝑣) = (𝑓, 𝑣)𝐿2(𝐵𝑅) for all 𝑣 ∈𝐻1(𝐵𝑅). (6.2)

Definition 6.3 (𝜂(𝑉𝑁 )). Given a sequence of finite-dimensional spaces 
(𝑉𝑁 )∞

𝑁=0 (as described in §2.3), let

𝜂(𝑉𝑁 ) ∶= sup
0≠𝑓∈𝐿2(𝐵𝑅)

min
𝑣𝑁∈𝑉𝑁

‖‖𝑆∗𝑓 − 𝑣𝑁
‖‖𝐻1

𝑘
(𝐵𝑅)‖‖‖𝑓‖‖‖𝐿2(𝐵𝑅)

. (6.3)

Lemma 6.4 (Conditions for quasi-optimality). If

𝑘𝜂(𝑉𝑁 ) ≤ 1
𝐶cont

√
𝐴min

2
(
𝑛max +𝐴min

) ,
then the Galerkin equations (2.15) have a unique solution which satisfies

‖‖𝑢− 𝑢ℎ
‖‖𝐻1

𝑘
(𝐵𝑅)

≤ 2𝐶cont
𝐴min

(
min

𝑣𝑁∈𝑉𝑁

‖‖𝑢− 𝑣𝑁
‖‖𝐻1

𝑘
(𝐵𝑅)

)
.

Proof. Using the inequality (2.10), we see that 𝑎(⋅, ⋅) satisfies the Gård-
ing inequality

ℜ
(
𝑎(𝑣, 𝑣)

) ≥𝐴min ‖𝑣‖2𝐻1
𝑘
(𝐵𝑅)

− 2𝑘2
(
𝑛max +𝐴min

)‖𝑣‖2
𝐿2(𝐵𝑅)

(6.4)

and the result follows from, e.g., the account [46, Theorem 6.32] of the 
standard duality argument with (in the notation of [46]) 𝛼 = 𝐴min and 
𝐶 = 2𝑘2

(
𝑛max +𝐴min

)
. ■

Lemma 6.5 (Bound on 𝜂(𝑉𝑁 ) using the decomposition from Theorem 3.1). 
Let 𝖠 and 𝑛 satisfy Assumption 2.1 and let 𝑅 > 0 be such that supp(𝖨 −𝖠) ∪
supp(1 − 𝑛) ⋐ 𝐵𝑅. Let (𝑉𝑁 )∞

𝑁=0 be the piecewise-polynomial approximation 
spaces described in [35, §5]. There exists 𝐶6, 𝐶7, 𝜎 > 0, all independent of 
𝑘, ℎ, and 𝑝, such that

𝑘𝜂(𝑉𝑁 ) ≤ 𝐶6𝐶3
ℎ𝑘

𝑝

(
1 + 𝑘ℎ

𝑝

)
+𝐶7𝐶sol(𝑘)

[(
ℎ

ℎ+ 𝜎

)𝑝 (
1 + ℎ𝑘

ℎ+ 𝜎

)
+ 𝑘

(
𝑘ℎ

𝜎𝑝

)𝑝( 1
𝑝
+ 𝑘ℎ

𝜎𝑝

)]
.

(6.5)
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The constants 𝐶6 and 𝜎 only depend on the constants in [35, Assumption 
5.2] defining the element maps from the reference element; 𝐶7 depends on 
these constants, and additionally on 𝐶5.

Proof. This proof is very similar to the proof of [35, Theorem 5.5]. 
Indeed, [35, Theorem 5.5] proves a bound very similar to (6.5) starting 
from bounds almost identical to the bounds (3.1) and (3.2) (recalling 
Remark 3.3 about notation). The only difference is that the bound (3.2)
contains 𝐶sol, which depends on 𝑘 (whereas in [35] 𝐶sol ∼ 1), and so we 
now need to keep track of how 𝐶sol enters the proof of [35, Theorem 
5.5].

From the definition (6.3), it is sufficient to show that, given 𝑓 ∈
𝐿2(𝐵𝑅), there exists 𝑤𝑁 ∈ 𝑉𝑁 such that

‖‖∗𝑓 −𝑤𝑁
‖‖𝐻1

𝑘
(𝐵𝑅)

≤ 𝐶 ‖𝑓‖𝐿2(𝐵𝑅) , (6.6)

where 𝐶 is the right-hand side of (6.5) divided by 𝑘. Let 𝑣 ∶= ∗𝑓 ; by 
(6.2) and Part (i) of Lemma 2.3, 𝑣 satisfies the assumptions of Theo-
rem 3.1 with 𝑓 replaced by 𝑓 , and so the bounds (3.1) and (3.2) hold 
with 𝑢 replaced by 𝑣.

By [35, First equation on Page 1896] (which uses [35, Theorem 
B.4]), the bound (3.6) holds, and thus there exists 𝑤(1)

𝑁
∈ 𝑉𝑁 such that

‖‖‖𝑣𝐻2 −𝑤
(1)
𝑁

‖‖‖𝐻1
𝑘
(𝐵𝑅)

≤ 𝐶6
ℎ

𝑝

(
1 + 𝑘ℎ

𝑝

)|𝑣|𝐻2(𝐵𝑅)

and so‖‖‖𝑣𝐻2 −𝑤
(1)
𝑁

‖‖‖𝐻1
𝑘
(𝐵𝑅)

≤ 𝐶6
ℎ

𝑝

(
1 + 𝑘ℎ

𝑝

)
𝐶3 ‖𝑓‖𝐿2(𝐵𝑅) (6.7)

by (3.1).
For the approximation of 𝑣, the only change to the argument in 

[35] is that a multiplicative factor of (𝐶sol)2 must be included on the 
right-hand side of [35, Equation 5.8]. Then [35, Equations 5.8 and 5.9]
implies that there exists 𝐶7 and 𝑤(2)

𝑁
∈ 𝑉𝑁 such that

𝑘
‖‖‖𝑣 −𝑤

(2)
𝑁

‖‖‖𝐻1
𝑘
(𝐵𝑅)

≤ 𝐶7𝐶sol(𝑘)
[(

ℎ

ℎ+ 𝜎

)𝑝 (
1 + ℎ𝑘

ℎ+ 𝜎

)
+ 𝑘

(
𝑘ℎ

𝜎𝑝

)𝑝( 1
𝑝
+ 𝑘ℎ

𝜎𝑝

)]‖𝑓‖𝐿2(𝐵𝑅)

(6.8)

(observe that this equation is identical to [35, Last equation on Page 
1896] except for the factor 𝐶sol on the right-hand side).

Let 𝑤𝑁 ∶=𝑤
(1)
𝑁

+𝑤
(2)
𝑁

. By the triangle inequality, the decomposition 
𝑣 = 𝑣𝐻2 + 𝑣 on 𝐵𝑅, and the inequalities (6.7) and (6.8), the inequality 
(6.6) holds with 𝐶 the right-hand side of (6.5) and the proof is com-
plete. ■

Corollary 6.6 (Conditions under which 𝑘 𝜂(𝑉𝑁 ) is arbitrarily small). Let 
the assumptions of Lemma 6.5 hold. Given 𝜀 > 0 and 𝑘0 > 0, there exists 
1, 2 > 0, depending only on 𝜀, 𝐶3, 𝐶6, 𝐶7, 𝜎, and 𝑘0, such that if

ℎ𝑘

𝑝
≤ 1 and 𝑝 ≥ 2

(
1 + log𝑘+ log

(
𝐶sol(𝑘)

))
,

then

𝑘𝜂(𝑉𝑁 ) ≤ 𝜀 for all 𝑘 ≥ 𝑘0.

Proof. This proof is essentially identical to the proofs of [35, Corollary 
5.6] and [36, Theorem 5.8]. First choose 1 sufficiently small such that 
1 < 𝜎 and

𝐶6𝐶3 1 (1 + 1) ≤ 𝜀

2
From the bound on 𝑘𝜂(𝑉𝑁 ) (6.5), it is then sufficient to show that

𝐶7𝐶sol(𝑘)
[(

ℎ
)𝑝 (

1 + ℎ𝑘
)
+ 𝑘

(
𝑘ℎ

)𝑝(1 + 𝑘ℎ
)]

(6.9)

ℎ+ 𝜎 ℎ+ 𝜎 𝜎𝑝 𝑝 𝜎𝑝
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can be made ≤ 𝜀∕2. Let

𝜃1 ∶=
ℎ

ℎ+ 𝜎
and 𝜃2 ∶=

1
𝜎

,

so that (6.9) is bounded by

𝐶7𝐶sol(𝑘)
[
(𝜃1)𝑝

(
1 +

1𝑝
𝜎

)
+ 𝑘(𝜃2)𝑝

(
1
𝑝
+

1
𝜎

)]
;

the result then follows since 𝜃1, 𝜃2 < 1. ■

Proof of Theorem 3.4. This follows by combining Lemma 6.4 and 
Corollary 6.6. ■
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