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LOCAL AND STABLE HOMOLOGICAL ALGEBRA
IN GROTHENDIECK ABELIAN CATEGORIES

DENIS-CHARLES CISINSKI and FRÉDÉRIC DÉGLISE

(communicated by Brooke Shipley)

Abstract
We define model category structures on the category of chain

complexes over a Grothendieck abelian category depending on
the choice of a generating family, and we study their behaviour
with respect to tensor products and stabilization. This gives
convenient tools to construct and understand triangulated cat-
egories of motives.
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1. Introduction

This paper is an attempt to apply the general techniques of abstract homotopical
algebra to describe derived categories of Grothendieck categories. Our motivation is
to describe model categories of complexes of sheaves “as locally as possible”, so that
we can easily get total left derived functors (like the tensor product). The formalism
we propose is made to stay close to something that looks like descent theory. Even
though the results proved here are just applications of a general theory (Bousfield
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localization, symmetric spectra), our contribution describes these model structures
with an emphasis on the specific properties in the setting of Grothendieck categories.
As an example of properties that are not known for general model categories, we give
explicit descriptions of fibrations after Bousfield localizations and prove that passing
to symmetric spectra can preserve the monoid axiom of Schwede and Shipley. We
also prove that any derived category of a Grothendieck category can be obtained as
a localization of the derived category of modules over an additive category. This is
used to give a sufficient condition for the derived category of a Grothendieck category
to be compactly generated.

As an illustration, we give the construction of the categories of motivic complexes
and motivic spectra over a regular base scheme together with their natural struc-
tures: derived inverse and direct image functors, derived tensor product, and twisted
exceptional direct image functors for smooth morphisms. In this construction, smooth
always means abusively smooth of finite type. This construction will be amplified and
generalized in the forthcoming paper [6]. The results of this paper are also widely used
to understand the notion of mixed Weil cohomology, which is introduced and studied
in [7].

We wish to thank Marc Levine and the anonymous referee for useful comments
and suggestions.

2. Model category structures on complexes

2.1.
Let A be an abelian category. If E is an object of A and n an integer, then we define

SnE (resp. DnE) as the acyclic complex concentrated in degree n with (SnE)n = E
(resp. in degrees n and n + 1 with (DnE)n = (DnE)n+1 = E and as only a nontrivial
differential the identity of E). We then have canonical inclusions Sn+1E −→ DnE
induced by the identity of E. The complex DnE represents the functor

Comp(A)op −→ Ab, C 7−→ HomA(E, Cn),

and the complex SnE represents the functor

Comp(A)op −→ Ab, C 7−→ HomA(E, ZnC),

where ZnC = ker(d : Cn −→ Cn+1) denotes the object of n-cocycles of the complex C.
We shall refer ourselves to [12] for general results and definitions on model categories,
and to [11] for the definition of cellular model categories1 and for results on Bousfield
localizations.

Theorem 2.1 (Beke). Let A be a Grothendieck abelian category. The category of
complexes Comp(A) is a proper cellular model category with quasi-isomorphisms as
weak equivalences and the monomorphisms as cofibrations.

1This notion is useful to ensure the existence of left Bousfield localizations. For such a purpose,
we can work instead with Jeff Smith’s notion of combinatorial model category [3]. The notion of
combinatorial model category might be seen as slightly simpler than the notion of cellular model
category, but it is very easy to check that the model structures considered in these notes are both
cellular and combinatorial, so we invite the reader to consider his/her favourite notion.
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Proof. See [3, Proposition 3.13] for the construction of this model category structure.
The fact that this model category is cellular comes from the fact that any monomor-
phism in a Grothendieck category is effective, and that any object in a Grothendieck
category is compact (in fact accessible according to [1]). Remark that fibrations are,
in particular, epimorphisms. This is proved as follows: For any object E in A and
any integer n, the complex DnE is acyclic. Hence any fibration has the right lifting
property with respect to the inclusions 0 −→ DnE. This lifting property for a map
p : C −→ D is equivalent to saying that for any object E of A and any integer n, the
map HomA(E, Cn) −→ HomA(E, Dn) is surjective. This implies, in particular, that
p is degreewise split, hence that p is an epimorphism. Properness now comes from
classical homological algebra as follows. Let

A
i //

p

²²

B

q

²²
C

j
// D

be a pushout (resp. a pullback) square of complexes in A. Suppose that i (resp. q) is a
cofibration (resp. fibration). As i (resp. q) is a monomorphism (resp. an epimorphism),
the same is true for j (resp. for p). Moreover, it is obvious that the cokernels of i
and j (resp. the kernels of p and q) are canonically isomorphic, which implies that we
have a long exact sequence of shape:

Hn(A) −→ Hn(B)⊕Hn(C) −→ Hn(D) −→ Hn+1(A).

We deduce then immediately that if p (resp. j) is a quasi-isomorphism, then so is q
(resp. i), which is what we wanted to prove.

2.2.
The above model category structure will be called the injective model structure.

The fibrations of this model structure will be called the injective fibrations, and the
fibrant objects the injectively fibrant objects.

The injective model structure gives a powerful tool to construct right derived
functors (well defined on unbounded complexes). To define left derived functors on
unbounded complexes, we have to consider other model structures depending on the
choice of a set of generators of A. We shall restrict ourselves to a special situation
that will occur in the cases we are interested in. This can be well formulated using
the intuition of descent theory.

Definition 2.2. Let A be a Grothendieck category.
If G is an essentially small set of objects of A, then we define a morphism in

Comp(A) to be a G-cofibration if it is contained in the smallest class of maps in
Comp(A) closed under pushouts, transfinite compositions and retracts, generated by
the inclusions Sn+1E −→ DnE, for any integer n and any E in G. A chain complex
C is G-cofibrant if the map 0 −→ C is a G-cofibration. For example, if C is a bounded
above complex such that for any integer n, Cn is a direct sum of elements of G, then
C is G-cofibrant.
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A chain complex C in A is G-local, or simply local if no confusion can arise from
the context, if for any E in G and integer n, the canonical map

HomK (A)(E[n], C) −→ HomD(A)(E[n], C)

is an isomorphism.
If H is a small family of complexes in A, then an object C of Comp(A) is H-flasque

(or simply flasque) if for any integer n and any H in H, the group HomK (A)(H, C[n])
vanishes.

A descent structure on a Grothendieck category A is a couple (G,H), where G
is an essentially small set of generators of A, and H is an essentially small set of
G-cofibrant acyclic complexes such that any H-flasque complex is G-local.

Example 2.3. Let S be an essentially small Grothendieck site andR a sheaf of rings on
S. Then the category R-Mod of sheaves of R-modules is a Grothendieck category. For
an object X of S, denote by R(X) the free sheaf of R-modules generated by X. The
family GS of the R(X)’s form a generating set for R-Mod. If X is a hypercover of X,
then the simplicial R-module R(X ) can be seen as a complex of R-modules with the
differentials given by the alternating sum of the face operators. For a hypercovering
X of an object X, denote by R̃(X ) the cone of the structural map R(X ) −→ R(X).
The complexes R(X), R(X ) and R̃(X ) are then GS -cofibrant. Let HS be the family
of all the complexes of the form R̃(X ) for any hypercover X of an object X of S.
Then the couple (GS ,HS) is a descent structure on the category R-Mod. One way to
prove this comes from Verdier’s computation of hypercohomology; see [1, Exposé V]
and [4]. If X is an object of S and C is a complex of R-modules, then we have the
formula

lim−→
X∈HX

HomK (R-Mod)(R(X ), C) = HomD(R-Mod)(R(X), C),

where HX denotes the filtering category of hypercoverings of X up to simplicial
homotopy (and HomD(R-Mod)(R(X), C) is nothing else but the hypercohomology of
X with coefficients in C). We deduce that if C is HS-flasque, as we have distinguished
triangles in K (R-Mod) of shape

R(X ) −→ R(X) −→ R̃(X ) −→ R(X )[1]

for any X in HX , then we have the isomorphisms

HomK (R-Mod)(R(X), C) = HomK (R-Mod)(R(X ), C).

As HX is filtering, we deduce that the canonical map

HomK (R-Mod)(R(X), C) −→ lim−→
X∈HX

HomK (R-Mod)(R(X ), C)

is an isomorphism. Hence C is GS -local.
This example generates new ones: let A be a Grothendieck abelian category en-

dowed with a functor

U : A −→ R-Mod

which preserves colimits and limits, and which is conservative. Then the functor U
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has a left adjoint
F : R-Mod −→ A,

and we can see that (F (GS), F (HS)) is a descent structure on A.
A natural example of this shape is the following: Let S = XZar be the small

Zariski site of a quasi-separated and quasi-compact scheme, and let R = OX be
the structural sheaf of rings on X. We can consider the Grothendieck abelian cate-
gory A = QCoh(X) of quasi-coherent OX -modules and see that the forgetful functor
U : QCoh(X) −→ OX -Mod preserves colimits and limits, and is conservative.

Another example which fits in this kind of presentation comes from the theory of
algebraic cycles.

Example 2.4. Let S be a noetherian regular scheme, and N tr
S be the category of

Nisnevich sheaves with transfers over S defined in [8, 4.2.3]. Let GS be the category
of sheaves with transfers of type LS(X) for any smooth S-scheme X. Then it follows
from Proposition 4.2.8 of loc. cit . that AS is a Grothendieck abelian category and
that GS is a set of generators. We denote by HS the set of complexes obtained as the
cones of the maps LS(X ) −→ LS(X), where X is any smooth S-scheme and X is any
Nisnevich hypercovering of X. From the example above and from Propositions 4.2.5
and 4.2.9 of loc. cit ., it follows that (GS ,HS) is a descent structure on N tr

S .

Theorem 2.5. Let A be a Grothendieck category endowed with a descent structure
(G,H). Then the category Comp(A) is a proper cellular model category with quasi-
isomorphisms as weak equivalences, and G-cofibrations as cofibrations. Furthermore,
for a complex C in A, the following conditions are equivalent:
(i) C is fibrant;
(ii) C is H-flasque;
(iii) C is G-local.
This model structure on the category Comp(A) will be called the G-model structure.

Remark 2.6. It is possible to give a nice description of the fibrations for this model
category structure; see Corollary 5.5.

2.3.
The proof of this theorem will be completed by the results below. We first have to

fix some notation.
We define I to be the set of inclusions of the form Sn+1E −→ DnE for any integer

n and any E in G.
If C is a complex, then Cyl(C) is the complex defined by

Cyl(C)n = Cn ⊕ Cn+1 ⊕ Cn

with the differential
d(x, y, z) = (dx− y,−dy, y + dz).

The projection σ : Cyl(C) −→ C, defined by the formula σ(x, y, z) = x + z, is a quasi-
isomorphism. We also have a canonical inclusion (i0, i1) : C ⊕ C −→ Cyl(C) defined
by i0(x) = (x, 0, 0) and i1(z) = (0, 0, z), so that the composite σ(i0, i1) is equal to the
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codiagonal from C ⊕ C to C. It is an easy exercise to check that to define a chain
homotopy between two maps of complexes u0 and u1 from C to C ′ is equivalent to
defining a map h from Cyl(C) to C ′ such that hie = ue for e = 0, 1.

We define at last J = J ′ ∪ J ′′, where J ′ is the set of maps 0 −→ DnE for any
integer n, any E in G, and J ′′ is the set of maps H ⊕H[n] −→ Cyl(H)[n] for any H
in H and any integer n.

To prove Theorem 2.5, we are going to verify the conditions of [12, Theorem
2.1.19] for I and J . We adopt the notation of [12]: I-cof (resp. J-cof ) is the class
of G-cofibrations (resp. the smallest class of maps closed under pushouts, transfinite
compositions and retracts which contains J), and I-inj (resp. J-inj ) is the class of
maps which have the right lifting property with respect to I (resp. J). We will prove
that I-cof , J-cof , I-inj and J-inj are respectively the class of cofibrations, the class
of trivial cofibrations, the class of trivial fibrations and the class of fibrations for this
model structure.

Lemma 2.7. For any E in G and any integer n, the complexes SnE and DnE are
G-cofibrant. For any G-cofibrant complex C, the inclusion C ⊕ C −→ Cyl(C) is a G-
cofibration. Furthermore, if C is acyclic, then this map is also a quasi-isomorphism.

Proof. The pushout square

SnE //

²²

0

²²
Dn−1E // Sn+1E

implies the first assertion.
Remember that the cone Cone(p) of a morphism of complexes p : X −→ Y is

defined by Cone(p)n = Y n ⊕Xn+1, with the differentials given by the formula d(y, x)
= (dy + px,−dx). We then have an obvious short exact sequence

0 // Y
u // Cone(p) v // X[1] // 0 ,

where u(y) = (y, 0), and v(y, x) = x.
Consider an element E of G and an integer n. One checks Cone(1Sn+1E) = DnE

and the inclusion of Sn+1E in Cone(1Sn+1E) is the canonical inclusion of Sn+1E in
DnE. The complex Cone(1DnE) is the split acyclic complex

0 −→ E −→ E ⊕ E −→ E −→ 0,

where E ⊕ E is placed in degree n + 1. One deduces that the canonical map

DnE qSn+1E Cone(1Sn+1E) −→ Cone(1DnE)

is a G-cofibration: it corresponds to the obvious inclusion of the complex

0 −→ 0 −→ E ⊕ E −→ E −→ 0

in Cone(1DnE). In particular, the map Cone(1Sn+1E) −→ Cone(1DnE) is a G-cofibra-
tion. Let C be the class of maps A −→ B such that the map

B qA Cone(1A) −→ Cone(1B)
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induced by the commutative square

A //

²²

Cone(1A)

²²
B // Cone(1B)

is a G-cofibration. This class of maps is stable by pushouts, transfinite compositions
and retracts (the exercise is left to the reader). As C contains I, it has to contain
all of I-cof . Hence, if C is G-cofibrant, as the map 0 −→ C is in C, then the map
C −→ Cone(1C) is a G-cofibration. We deduce, for any G-cofibrant complex C, that
the canonical inclusion C −→ Cone(1C) is a G-cofibration. Indeed, we have a pushout
square of the following form:

C //

²²

C ⊕ C

²²
Cone(1C) // Cyl(C)

and the G-cofibrations are stable by pushout.
If moreover C is acyclic, then so is C ⊕ C. As the map Cyl(C) −→ C is always a

quasi-isomorphism, the complex Cyl(C) is acyclic as well. Hence the inclusion C ⊕
C −→ Cyl(C) has to be a quasi-isomorphism.

Lemma 2.8. Any element of J-cof is both a G-cofibration and a quasi-isomorphism.

Proof. Any G-cofibration is a monomorphism and the class of maps which are mono-
morphisms and quasi-isomorphisms is stable by pushouts, transfinite compositions
and retracts. Hence the class of G-cofibrations, which are quasi-isomorphisms is also
stable by any of these operations. It is then sufficient to check that any map in J is
a G-cofibration and a quasi-isomorphism. This follows from Lemma 2.7.

Lemma 2.9. Let C be a complex in A. Then the map C −→ 0 is in J-inj if and only
if C is H-flasque.

Proof. Let H be in H, and u a map from H to C[n]. The data of a chain homotopy
between u and the zero map is equivalent to the data of a lifting k in the commutative
square below.

H ⊕H
(u,0) //

²²

C[n]

²²
Cyl(H) //

k

::

0.

As the right lifting property of C −→ 0 with respect to maps of shape 0 −→ A is
always verified, this proves the assertion.

Lemma 2.10. A H-flasque complex C is acyclic if and only if the map C −→ 0 has
the right lifting property with respect to I.
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Proof. For any complex C in A, as the cohomology group Hn(HomA(E, C)) is the
cokernel of the map

HomComp(A)(Dn−1E, C) −→ HomComp(A)(SnE,C),

it is clear that C −→ 0 is in I-inj if and only if the complexes HomA(E, C) are acyclic
for any E in G. If C is H-flasque, then for any E in G and integer n, we have the
canonical isomorphisms

Hn(HomA(E,C)) = HomK (A)(E,C[n]) = HomD(A)(E, C[n]).

To finish the proof, it is then sufficient to say that a complex C in A is acyclic if and
only if for any E in G and integer n, the group HomD(A)(E, C[n]) vanishes.

Lemma 2.11. A map in J-inj is a quasi-isomorphism if and only if it is in I-inj .

Proof. Let p : X −→ Y be map in J-inj . We can see that it is an epimorphism: for
any element E of G and any integer n, the map

HomA(E, Xn) = HomComp(A)(DnE, X) −→ HomComp(A)(DnE, Y ) = HomA(E, Y n)

is surjective. As G is a set of generators of A, this implies that p is an epimorphism. In
particular, ker p is acyclic if and only if p is a quasi-isomorphism. If p is in I-inj , then
the map ker p −→ 0 is also in I-inj . But J ⊂ I-cof (see 2.8), which by, by Lemma 2.9,
implies that ker p is H-flasque. Hence by Lemma 2.10, the complex ker p is acyclic,
and p is a quasi-isomorphism.

Consider now a quasi-isomorphism p in J-inj . As p is then an epimorphism, ker p
is acyclic, and as right lifting properties are stable by pullback, the map ker p −→ 0
is in J-inj . One deduces from 2.9 and 2.10 that the map ker p −→ 0 is in I-inj . Let

Sn+1E
x //

²²

X

p

²²
DnE y

// Y

be a commutative square in Comp(A) where E is in G, and n is an integer. It cor-
responds to the maps x : E −→ Xn+1 and y : E −→ Y n such that px = dy. To show
that the square above admits a lift is equivalent to showing that there is a map
ξ : E −→ Xn such that dξ = x and pξ = y. As p has the right lifting property with
respect to J , HomA(E, pn) is surjective, and so there exists a map x′ : E −→ Xn such
that px′ = y. We know that pdx′ = dpx′ = dy = px, so that x− dx′ factors through
ker p. As the map ker p −→ 0 has the right lifting property with respect to I, this
implies that there is a map x′′ : E −→ Xn such that px′′ = 0 and dx′′ = x− dx′. We
can now set ξ = x′ + x′′. We have that pξ = px′ + px′′ = y and dξ = dx′ + dx′′ = x.
Hence the desired lift.

Proof of Theorem 2.5. One deduces from 2.8 and 2.11 that all the conditions of [12,
Theorem 2.1.19] are satisfied. In particular, we obtain that we have defined a cofi-
brantly generated model category with quasi-isomorphisms as weak equivalences and
with I (resp. J) as a set of generators for the cofibrations (resp. for the trivial cofibra-
tions). To see that this structure is cellular, it is sufficient to say that any G-cofibration
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is a monomorphism and that any monomorphism in a Grothendieck category is effec-
tive. Properness comes from the fact that cofibrations (resp. fibrations) are monomor-
phisms (resp. epimorphisms) and standard results of homological algebra (see the end
of the proof of 2.1).

It remains to prove the equivalence of conditions (i)–(iii). Using the above defini-
tions and 2.9, it is sufficient to show that (iii) implies (ii). Let C be a G-local complex.
One can prove that the full subcategory of K (A) made of G-cofibrant complexes is
contained in the localizing subcategory of K (A) generated by G (in the sense of [19]).
Then for any G-cofibrant complex A, the map below is an isomorphism.

HomK (A)(A,C) −→ HomD(A)(A,C)

In particular, for any H in H and integer n, we have HomK (A)(H, C[n]) = 0. Hence
C is H-flasque.

Remark 2.12. The model structure of Theorem 2.5 depends only on G and not on the
whole descent structure (G,H). The dataH is only a tool to get a nice characterization
of the fibrant objects in terms of flasque properties (as we will see below, that will
be useful to construct total left derived functors). One can prove directly by abstract
nonsense that for any Grothendieck category A with a choice of an essentially small
set of generators G, there is a Quillen model category structure on Comp(A) with
quasi-isomorphisms as weak equivalences and G-cofibrations as cofibrations. To prove
this, we remark that the class of quasi-isomorphisms is accessible (see the proof of [3,
Proposition 3.13]), that any map with the right lifting property with respect to G-
cofibrations is a quasi-isomorphism (by virtue of [13, Proposition 1.4]), and apply Jeff
Smith’s theorem (see [3, Theorem 1.7 and Proposition 1.15]). In fact one can show
that any small set G of generators of A can be completed in a descent structure for
A, in such a way that the description of this model category structure given by 2.5
is always available (but in practice, we essentially always have a canonical choice of
descent structure). One can proceed as follows: Choose a set J0 of generating trivial
cofibration (with respect to the model structure above). Define H to be the set of
the cokernels of the maps in J0. Then (G,H) is a descent structure. Note that the
model structure of Theorem 2.5 coincides with the model structure of Christensen
and Hovey [5] in the particular case where all the elements of G are projective. In
general, the model structure of Theorem 2.5 is a left Bousfield localization of the
model structure associated to the projective class generated by G.

Example 2.13. Consider the notation of 2.4.
Let C be a complex of sheaves with transfers over S.
For any smooth S-scheme X, we denote by HnC(X) (resp. Hn(X, C)) the n-th

cohomology of the complex of abelian groups made by the sections of C over X (resp.
the n-th Nisnevich hypercohomology of X with coefficients in the complex C where
we forget transfers).

We will say that C is Nisnevich fibrant if it is fibrant with respect to the descent
structure (GS ,HS). According to the previous theorem and [8, 4.2.9], this means one
of the following equivalent conditions are true:
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(i) For any smooth S-scheme X and any integer n, the canonical map

Hn(C(X)) → Hn
Nis(X;C)

is an isomorphism.

(ii) For any smooth S-scheme X, any Nisnevich hypercovering X of X, and any
integer n, the canonical map Hn(C(X)) → Hn(TotC(X )) is an isomorphism.

2.4.
Let A and A′ be two Grothendieck categories. Suppose that (G,H) (resp. (G′,H′))

is a descent structure on A (resp. A′). A functor f∗ : A′ −→ A satisfies descent (with
respect to the above descent structures) if it satisfies the following conditions:

(i) The functor f∗ preserves colimits.

(ii) For any E′ in G′, f∗(E′) is a direct sum of elements of G.

(iii) For any H ′ in H′, f∗(H ′) is in H.

It is a standard fact that a functor between Grothendieck categories preserves colimits
if and only if it has a right adjoint. Note also that any functor which preserves colimits
preserves, in particular, finite direct sums, so that any functor which satisfies descent
is additive.

Theorem 2.14. Under the assumptions above, let f∗ : A′ −→ A be a functor that
preserves colimits, and f∗ : A −→ A′ be its right adjoint. If f∗ satisfies descent, then
the pair of adjoint functors

f∗ : Comp(A′) −→ Comp(A) and f∗ : Comp(A) −→ Comp(A′)
is a Quillen pair with respect to the model structures associated to G and G′ by The-
orem 2.5. In particular, the functors f∗ and f∗ have the functors

Lf∗ : D(A′) −→ D(A) and Rf∗ : D(A) −→ D(A′)
as left and right derived functors respectively, and Lf∗ is left adjoint to Rf∗.

Proof. If f∗ satisfies descent, then one checks easily that it preserves cofibrations;
see [12, Lemma 2.1.20]. It is then sufficient to show that it sends trivial cofibrations
to quasi-isomorphisms. As f∗ preserves colimits and cofibrations, by virtue of loc. cit,
it is sufficient to prove that any element of f∗(J ′) is a quasi-isomorphism, where J ′

is the set of trivial cofibrations defined as in 2.3. This comes directly from the fact
that f∗(H′) is contained in H and that f∗ commutes to the formation of cones and
cylinders (just because it is additive).

Remark 2.15. Consider three Grothendieck categories endowed with descent struc-
tures A, A′, and A′′. Let f ′ ∗ : A′′ −→ A′ and f∗ : A′ −→ A be two functors commut-
ing to colimits and satisfying descent, and denote by f ′∗ and f∗ their corresponding
right adjoints. Then it follows easily from general abstract nonsense about Quillen
adjunctions and the preceding theorem that we have canonical isomorphisms of total
derived functors

Lf∗ ◦ Lf ′ ∗ ' L(f∗ ◦ f ′ ∗) and R(f ′∗ ◦ f∗) ' Rf ′∗ ◦Rf∗.
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Example 2.16. Consider the notation of Example 2.4.
Let f : T −→ S be a morphism between noetherian regular schemes. In [8, 4.2.5],

the base change functor f∗ : N tr
S −→ N tr

T is defined together with its right adjoint
f∗ : N tr

T −→ N tr
S . By definition, f∗LS(X) = LT (X ×S T ) for any smooth finite type

S-scheme X. Thus f∗ obviously satisfies descent with respect to the descent structures
(GS ,HS) and (GT ,HT ) defined in 2.4. Thus we get a pair of adjoint derived functors

Lf∗ : D(N tr
S ) −→ D(N tr

T ) and Rf∗ : D(N tr
T ) −→ D(N tr

S ).

Suppose moreover that f : T → S is smooth of finite type. Then, in [8, 4.2.5], the
functor f] : N tr

T → N tr
S is defined, which forgets the base: for any smooth finite type

T -scheme Y
π−→ T , f]LT (Y ) = LS(Y π−→ T

f−→ S). It is proved in loc. cit . that this
functor is left adjoint to the functor f∗. Obviously, f] satisfies descent, so that we get
a pair of adjoint derived functors

Lf] : D(N tr
S ) −→ D(N tr

T ) and Rf∗ = f∗ : D(N tr
T ) −→ D(N tr

S ).

3. Derived tensor product

3.1.
Let A be a Grothendieck category endowed with a closed symmetric monoidal

structure2 An object X of A will be said to be flat if the functor defined by the
tensor product with X is exact. An essentially small family of generators G on A will
be said to be flat if the following conditions are satisfied:

(i) Any element of G is flat.

(ii) The set G is stable by tensor product up to isomorphism and the unit object of
A is in G.

The category Comp(A) of complexes in A is canonically endowed with a symmetric
monoidal structure induced by the one of A by setting for two complexes X and Y

(X ⊗ Y )n =
⊕

p+q=n

Xp ⊗ Y q.

The differential of X ⊗ Y is given by the Leibniz formula

d(x⊗ y) = dx⊗ y + (−1)px⊗ dy,

where p is the degree of x. The unit is just the unit of A concentrated in degree zero.
The associativity structure comes from the one on A, and the symmetry is induced
by the one on A with the usual sign convention

X ⊗ Y −→ Y ⊗X,

x⊗ y 7−→ (−1)pqy ⊗ x,

where p and q are the degree of x and y respectively. A descent structure (G,H) on
A is weakly flat if the following conditions are satisfied:

2Remember that a closed symmetric monoidal category is a symmetric monoidal category with
internal Hom’s.
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(i) The set G is stable by tensor product up to isomorphism and the unit object of
A is in G.

(ii) For any E in G and any H in H, the complex E ⊗H is acyclic.
A descent structure (G,H) on A is flat if it is weakly flat, and if for any complex C on
A and any H in H, the complex C ⊗H is acyclic. We will see that a descent structure
is flat if and only if the underlying generating family is flat; see Proposition 3.7 below.

Example 3.1. Consider a Grothendieck site S and a sheaf of rings R on S. Consider
the usual tensor product on the category of sheaves of R-modules. If the category
S has finite products, then the descent structure of Example 2.3 is flat. This comes
from the fact that for two objects X and Y in S, we have the formula R(X × Y ) =
R(X)⊗R R(Y ) and from the fact that the free sheaves of shape R(X) are flat.

Similarly, given a quasi-separated and quasi-compact scheme X, the natural de-
scent structure on the category of quasi-coherent OX -modules is flat.

Proposition 3.2. Let (G,H) be a weakly flat descent structure on A. The correspond-
ing G-model structure on Comp(A) is a symmetric monoidal model category (see [12]).
In particular, the tensor product on Comp(A) has a total left derived functor

D(A)×D(A) −→ D(A),

(A,B) 7−→ A⊗L B.

Proof. First of all, consider two G-cofibrations a : A −→ A′ and b : B −→ B′. Then
the map

c : A⊗B′ qA⊗B A′ ⊗B −→ A′ ⊗B′

induced by the commutative square

A⊗B //

²²

A⊗B′

²²
A′ ⊗B // A′ ⊗B′

is a G-cofibration: according to [12, Lemma 4.2.4], it is sufficient to check this property
when a and b are in I, but in this case, this follows easily from condition (i) of the
definition of weak flatness. Furthermore, if b is a quasi-isomorphism, then so is c: by
loc. cit., it is sufficient to prove this assuming that a is in I and b is in J , in which
case this is trivial using condition (ii). This achieves the proof.

Example 3.3. Consider the notation of Example 2.4.
The category N tr

S admits a closed symmetric monoidal structure from [8, 4.2.12,
4.12.14]. This structure satisfies the fundamental property that LS(X)⊗ LS(Y ) =
LS(X ×S Y ). Thus, the descent structure (GS ,HS) is obviously weakly flat and we
get a left derived tensor product ⊗L on D(N tr

S ).
However, we do not know if (GS ,HS) is flat, which is actually why we also consider

the weakly flat condition.

Proposition 3.4. Let (G,H) be a weakly flat descent structure on a closed symmet-
ric monoidal Grothendieck category, and let C be a complex in A. We assume the
following assumptions:
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(a) For any H in H, and for any integer n, the complex H ⊗ Cn is acyclic.

(b) For any H in H, and for any integer n, the complex H ⊗ ker(Cn −→ Cn+1) is
acyclic.

Then the functor A 7−→ A⊗ C is a left Quillen functor from the G-model structure on
Comp(A) to the injective model structure on Comp(A). In particular, for any complex
C over A and any quasi-isomorphism which is also a G-cofibration X −→ Y , the map
C ⊗X −→ C ⊗ Y is a quasi-isomorphism and a monomorphism.

Proof. Given two integers p < q, write Cp,q for the complex obtained from C by the
formula

Ci
p,q =





0 if i 6 p or i > q,
Ci if p < i < q,
ker(Cq −→ Cq+1) if i = q.

(3.1)

The complex C is a filtered colimit of the complexes Cp,q. These complexes are
bounded, and for p + 1 < q, we have an obvious degreewise split short exact sequence
of complexes

0 −→ Cp+1,q −→ Cp,q −→ Sp(Cp) −→ 0.

This implies that, for any complex K, we have a short exact sequence

0 −→ K ⊗ Cp+1,q −→ K ⊗ Cp,q −→ K ⊗ Sp(Cp) −→ 0

(it is sufficient to check this for bounded complexes K). Our assumptions thus imply
that H ⊗ Cp,q is acyclic for any p < q. In conclusion, H ⊗ C is the filtered colimit of
the acyclic complexes H ⊗ Cp,q, hence it is acyclic.

To prove that the tensor product by C defines a left Quillen functor, by apply-
ing [12, Lemma 2.1.20], it is sufficient to prove that for any map f in I (resp. in J),
the map f ⊗ C is a monomorphism (resp. a quasi-isomorphism). The only nontrivial
part to check is that for any H in H, the map

H ⊗ C ⊕H ⊗ C −→ Cyl(H)⊗ C

is a quasi-isomorphism, or in other words, that Cyl(H)⊗ C is acyclic. But we have a
push-out square

H ⊗ C //

²²

H ⊗ C ⊕H ⊗ C

²²
Cone(1H)⊗ C // Cyl(H)⊗ C,

where the left vertical map is a monomorphism. As we already know that H ⊗ C is
acyclic, it is sufficient to check that Cone(1H)⊗ C is acyclic. For this, it is sufficient
to check that, for any p < q, the complex Cone(1H)⊗ Cp,q is acyclic. If Cp,q is concen-
trated in one degree, then we have Cone(1H)⊗ Cp,q = Cone(1H⊗Cp,q ), and this is triv-
ial. For any integer i, we also have acyclic complexes: Cone(1H)⊗ Ci = Cone(1H⊗Ci).
The acyclicity of Cone(1H)⊗ Cp,q now follows by an easy induction.
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Corollary 3.5. Let A be a closed symmetric monoidal Grothendieck category en-
dowed with a flat descent structure (G,H). Then the associated G-model structure is
a monoidal model category satisfying the monoid axiom3 (see [20]).

Proof. The first assertion follows from Proposition 3.2. As the trivial cofibrations of
the injective model structure on Comp(A) are, in particular, stable by pushouts and
transfinite compositions, the monoid axiom follows from Proposition 3.4.

Lemma 3.6. Let A be a closed symmetric monoidal Grothendieck category, and G be
an essentially small set of generators of A. Consider a map of complexes i : A −→ B
such that for any E in G, i⊗ E is a quasi-isomorphism. Then for any G-cofibrant
complex C, the map of complexes i⊗ C is a quasi-isomorphism.

Proof. One easily checks that the map of complexes i⊗ SnE and i⊗DnE are quasi-
isomorphisms for any E in G and any integer n. If C ′ is a direct summand of C, and
if i⊗ C is a quasi-isomorphism, then so is i⊗ C ′. If

Sn+1E //

²²

C

²²
DnE // C ′

is a pushout in Comp(A) with E in G and n an integer, then if i⊗ C is acyclic, so
is i⊗ C ′. This comes from the cube lemma applied to the injective model structure
(see [12, Lemma 5.2.6]), and the facts that the induced map A⊗ SnE −→ A⊗DnE
is a monomorphism for any A, and that the tensor product by any complex preserves
pushouts (remember it has a right adjoint). We know by the small object argument
applied to I that any G-cofibrant complex C is a direct summand of a well-ordered
colimit of complexes constructed inductively by some pushout of the type above. As
quasi-isomorphisms are stable by filtered colimits in a Grothendieck category, one
deduces that for any G-cofibrant complex C, i⊗ C is a quasi-isomorphism.

Proposition 3.7. Let A be a closed symmetric monoidal Grothendieck category,
and (G,H) a descent structure on A. If G is flat, then the descent structure (G,H)
is flat. Moreover, the tensor product by any G-cofibrant complex preserves quasi-
isomorphisms.

Proof. Suppose that G is flat. It is then clear that the descent structure is weakly
flat. In particular, the tensor product on Comp(A) has a left derived functor defined
using the G-model structure (3.2). Let C be a G-cofibrant complex. By Lemma 3.6,
we can see that the functor X 7−→ C ⊗X preserves quasi-isomorphisms, so that for
any complex X over A, the canonical map C ⊗L X −→ C ⊗X is an isomorphism in
D(A). One concludes that for any quasi-isomorphism between G-cofibrant complexes
C −→ C ′ and any complex X, the map C ⊗X −→ C ′ ⊗X is a quasi-isomorphism.
In particular, for any H in H and any complex X, H ⊗X is acyclic and the descent
structure (G,H) is flat.

3The monoid axiom is a technical property that makes life easier when one wants to define the
homotopy theory of monoids or of modules over a given monoid in a symmetric monoidal model
category. In our particular case, this can be seen as the second statement in Proposition 3.4.
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Remark 3.8. If G is a flat generating family ofA, then for any complex X, the total left
derived functor of Y 7−→ X ⊗ Y (cf. 3.4) is isomorphic to the functor Y 7−→ X ⊗L Y
(obtained as the total left derived functor of the functor (A,B) 7−→ A⊗B; cf. 3.2).
This is an immediate consequence of the fact that the tensor product by a G-cofibrant
complex preserves quasi-isomorphisms. This property is of course interesting by itself,
but it will also be used in a very essential way to prove the monoid axiom after further
localizations (see e.g. Corollary 4.11).

3.2.
Consider a closed symmetric monoidal Grothendieck category A endowed with

a weakly flat descent structure (G,H). We will now consider a way to enlarge this
descent structure in a way which preserves weak flatness.

Let T be a given object of A, define G[T ] to be the family of objects of the form
E ⊗ T⊗n with E in G and n > 0.

We will say that T is weakly flat (with respect to (G,H)) if it has the two following
properties:

(a) For any H in H and any integer n > 0, the complex H ⊗ T⊗n is acyclic.

(b) For any object F in G[T ], there exists a quasi-isomorphism H −→ F , with H a
G-cofibrant complex, such that for any object F ′ in G[T ], the map H ⊗ F ′ −→
F ⊗ F ′ is a quasi-isomorphism.

A quasi-isomorphism H −→ F satisfying the property described in (b) will be
called a weakly flat resolution of F .

Suppose that T is weakly flat. For each object F in G[T ], choose a weakly flat
resolution uF : HF −→ F satisfying condition (b) above. Define H[T ] to be H ∪H′,
where H′ is the set of complexes of shape Cone(uF ).

Proposition 3.9. The couple (G[T ],H[T ]) is a weakly flat descent structure.

Proof. Note that the elements of H[T ] are G[T ]-cofibrant and acyclic. To prove we
have defined a descent structure, it remains to prove that any H[T ]-flasque complex
is G[T ]-local. Let C be an H[T ]-flasque complex. It is, in particular, H-flasque, so
that for any G-cofibrant complex H (e.g. H = HF ), we have

HomK (A)(H,C) = HomD(A)(H,C).

We also have distinguished triangles

HF −→ F −→ Cone(uF ) −→ HF [1]

in the homotopy category K (A), so that we deduce that C is G[T ]-local.
To prove the weak flatness, we first notice that condition (a) implies that for any

n > 0, the functor C 7−→ C ⊗ T⊗n is a left Quillen functor from the G-model structure
to the injective model structure. Condition (b) completes the proof.

Example 3.10. Let T be an object of A. Suppose that for any integer n > 0, there
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exists a short exact sequence of the form

0 −→ An −→ Bn −→ T⊗n −→ 0,

with An and Bn in G, and such that for any object F in G[T ], the sequence

0 −→ An ⊗ F −→ Bn ⊗ F −→ T⊗n ⊗ F −→ 0

remains exact. Then T is weakly flat.
Condition (a) is easy to check: if H is a G-cofibrant complex, then it is degreewise

a direct factor of a sum of elements of G, so that we get short exact sequences

0 −→ An ⊗H −→ Bn ⊗H −→ T⊗n ⊗H −→ 0.

If moreover H is acyclic, as the complexes An ⊗H and Bn ⊗H are then acyclic, then
the complex T⊗n ⊗H is acyclic as well. It remains to verify condition (b). For an
object E in G and an integer n, define H to be the complex

H = Cone
(
An ⊗ E −→ Bn ⊗ E

)
.

The obvious quasi-isomorphism H −→ T⊗n ⊗ E is a weakly flat resolution of F =
T⊗n ⊗ E.

4. Localization of derived categories

4.1.
From now on, we consider an abelian Grothendieck category A endowed with a

descent structure (G,H).
Let T be an essentially small set of complexes over A. For any A in T , we choose

a quasi-isomorphism T ′ −→ T with T ′ G-cofibrant (this exists using the cofibrant
resolutions of the G-model structure on A), and set

T ′ = {T ′ | T ∈ T }.
A morphism of complexes X → Y over A is a T -equivalence if, for any H ∪ T ′-flasque
complex K, the map

HomD(A)(Y,K) −→ HomD(A)(X, K)

is bijective.

Lemma 4.1. Let K be complex over A. The following conditions are equivalent:
(i) The complex K is H ∪ T ′-flasque.
(ii) The complex K is G-local, and for any T in T and any integer n, the group

HomD(A)(T,K[n]) vanishes.
(iii) The complex K is G-local, and for any T -equivalence X −→ Y , the map

HomD(A)(Y, K) −→ HomD(A)(X,K)

is bijective.

Proof. We know that K is H-flasque if and only if it is G-local, and it is clear that
K is H ∪ T ′-flasque if and only if it is H-flasque and T ′-flasque. Moreover, if K is
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G-local, for any quasi-isomorphism T ′ −→ T with T ′ G-cofibrant, then the map

HomD(A)(T,K) −→ HomK (A)(T ′,K) = HomD(A)(T ′,K)

is bijective. This implies that conditions (i) and (ii) are equivalent. As (i) implies
(iii) by definition, it remains to show that (iii) implies (i). But this comes from the
obvious fact that for any T ′ in T ′, the map T ′ −→ 0 is a T -equivalence.

Proposition 4.2. Let K be a complex over A. The following conditions are equiva-
lent:
(i) For any T in T , and any integer n, the group HomD(A)(T, K[n]) vanishes.
(ii) For any T -equivalence X −→ Y , the map

HomD(A)(Y, K) −→ HomD(A)(X,K)

is bijective.

Proof. Let K −→ K ′ be a quasi-isomorphism with K ′ G-local—this exists using the
fibrant resolutions of the G-model structure. It is clear that condition (i) (resp. (ii))
is verified for K if and only if it is for K ′; thus we can assume that K is G-local. This
proposition then follows immediately from Lemma 4.1.

4.2.
We will say that a complex K is T -local if it satisfies one of the equivalent con-

ditions of the proposition above. It is straightforward to check that a map of com-
plexes X −→ Y is a T -equivalence if and only if for any T -local complex K, the map
HomD(A)(Y, K) −→ HomD(A)(X, K) is bijective. Hence the notion of T -equivalence
does not depend on the descent structure (G,H).

Proposition 4.3. The category Comp(A) admits a proper cellular model category
structure with T -equivalences as weak equivalences and G-cofibrations as cofibrations.
This model category structure on Comp(A) is the left Bousfield localization of the
G-model structure by the maps 0 −→ T [n] for T in T and n in Z. We will call this
model category structure the G-model structure associated to T .

The fibrant objects for this model structure can be characterized as the G-local and
T -local complexes.

Let DT (A) denote the localization of Comp(A) by the T -equivalences. If T(A) is the
localizing subcategory of D(A) generated by the objects T [n] for T in T and any integer
n4, then DT (A) = D(A)/T(A). In particular, the category DT (A) is triangulated.
Moreover, the localization functor

D(A) −→ DT (A)

is triangulated, and it has a right adjoint that is fully faithful and identifies DT (A)
with the full subcategory of D(A) that consists of T -local complexes.

Remark 4.4. It is possible to give an explicit description of the fibrations for this
model category structure; see Corollary 5.6.

4That is, the smallest full triangulated subcategory of D(A) stable by direct sums which contains
T .
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Proof. As the G-model structure is (left) proper and cellular, we can apply Hirsch-
horn’s general construction [11] and obtain a cellular left proper model category
structure on Comp(A) as the left Bousfield localization of the G-model structure by
the maps 0 −→ T [n] for T in T and n in Z. By definition, the cofibrations of this
latter model structure still are the G-cofibrations. There remains to show three points
to conclude: characterize the fibrant objects as announced in the statement of this
proposition, identify DT (A) with a full subcategory of D(A), and prove that this
model category structure is right proper. Let us show the first point. For any pair
(X, Y ) of objects of Comp(A), we can define functorially (at least in the homotopy
category of simplicial sets) a pointed simplicial set RHom(X, Y ) whose higher homo-
topy groups are the HomD(A)(X[n], Y )’s for n > 0. In Hirschhorn’s construction, the
fibrant objects of the Bousfield localization of the G-model structure are then char-
acterized as the objects K such that for any integer n,

RHom(T [n],K) −→ RHom(0[n],K) ' 0

is a (weak) homotopy equivalence. But this is is clearly equivalent to saying that
the groups HomD(A)(T,K[n]) vanish. The general theory of left Bousfield localiza-
tion shows that the localization functor D(A) −→ DT (A) has a fully faithful right
adjoint whose essential image is made of fibrant objects, that are exactly the G-
local T ′-flasque complexes. To identify DT (A) with the quotient D(A)/T(A), by
Proposition 4.2 and the theory of left Bousfield localization of triangulated categories
(see [19]), it is sufficient to prove that for any C in T(A), the map 0 −→ C is a T -
equivalence. This is an easy exercise left to the reader. To prove right properness,
consider now a pullback square of complexes

X ′ u //

p′

²²

X

p

²²
Y ′

v
// Y,

where p is a fibration for the localized model structure, and v is a T -equivalence. We
have to prove that u is a T -equivalence. But p is also a fibration for the G-model
structure, and as the G-model structure is right proper, this square is homotopy
cartesian with respect to the G-model structure. This is equivalent to saying that we
have a canonical distinguished triangle

X ′ −→ Y ′ ⊕X −→ Y −→ X ′[1]

in D(A). As the localization functor from D(A) to DT (A) is triangulated, this is
also a distinguished triangle in DT (A). But v is an isomorphism in DT (A), which
then implies that u is also an isomorphism. As a morphism in a model category is a
weak equivalence if and only if it is an isomorphism in the corresponding homotopy
category, this implies that u is a T -equivalence.
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Proposition 4.5. A pushout square of complexes of A,

K
u //

i

²²

L

j

²²
K ′

u′
// L′,

in which i is a monomorphism, is a homotopy pushout square with respect to the G-
model structure associated to T . In particular, if i (resp. u) is a T -equivalence, then
j (resp. u′) is a T -equivalence.

Proof. As the identity of Comp(A) is a left Quillen functor from the G-model struc-
ture to the G-model structure associated to T , it is sufficient to prove that such a
pushout square is a homotopy pushout square with respect to the G-model structure.
But the notion of a homotopy pushout square only depends on the weak equivalences,
so that we are free to work with the injective model structure. The assertion is then
trivial.

Proposition 4.6. The T -equivalences are stable by filtering colimits in Comp(A).

Proof. We know that the quasi-isomorphisms are stable by filtering colimits (just
because the filtering colimits are exact in any Grothendieck abelian category). This
is equivalent to saying that for any filtering category I and any functor F from I to
Comp(A), the canonical map

holim−−−→
i

Fi −→ lim−→
i

Fi

is a quasi-isomorphism. But as the functor holim−−−→ sends termwise T -equivalences to
T -equivalences, this implies our assertion.

Proposition 4.7. A morphism of complexes of A is a fibration with respect to the
G-model structure associated to T if and only if it is a fibration with respect to the
G-model structure with T -local kernel.

Proof. Let p : K −→ L be a fibration with respect to the G-model structure associated
to T . It has to be a fibration with respect to the G-model structure and as the
fibrations are stable by pullback, the map from the kernel of p to 0 has to be a
fibration with respect to the G-model structure associated to T . Hence the kernel of
p is T -local. Conversely, let p be a fibration with respect to the G-model structure
with T -local kernel. We can factor p = qi where i : K −→ M is a G-cofibration and
a T -equivalence and q : M −→ L is a fibration with respect to the G-model structure
associated to T . As the G-model structure associated to T is right proper, the induced
map from the kernel of p to the kernel of q is a T -equivalence. But as these two kernels
are T -local, the map ker p −→ ker q has to be a quasi-isomorphism, however both p
and q are epimorphisms (this comes from the fact that they have the right lifting
property with respect to the maps 0 −→ DnE for E in G and n an integer). We thus
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have a morphism of distinguished triangles in D(A)

ker p //

j

²²

K
p //

i

²²

L //

1L

²²

ker p[1]

j[1]

²²
ker q // M q

// L // ker q[1],

x,

where j is an quasi-isomorphism. This proves that i is also a quasi-isomorphism. As
it is also a G-cofibration, it follows that p is a retract of q. As q is a fibration with
respect to the G-model structure associated to T , p must have the same property.

We recall here a folklore result that is quite useful to play the game between
Bousfield localizations and Quillen functors; see [11].

Lemma 4.8. Let G : C −→ C′ be a left Quillen functor between model categories. Sup-
pose that we have a class S of maps in C such that the left Bousfield localization of
C with respect to S exists. We denote by CS the category C endowed with the model
category structure obtained as the left Bousfield localization by S. Denote by D a right
adjoint to G. Then the following conditions are equivalent:
(a) The functor G is a left Quillen functor from CS to C′.
(b) For any fibrant object X ′ in C′, D(X ′) is a fibrant object in CS.
(c) The functor G sends the weak equivalences between cofibrant objects in CS to

weak equivalences.
(d) The functor LG : Ho(C) −→ Ho(C′) sends the elements of S to isomorphisms.

Proposition 4.9. Let A (resp. A′) be a Grothendieck abelian category with descent
structure (G,H) (resp. (G′,H)). Let f∗ : A′ → A be a functor which has a right adjoint
f∗ and satisfies descent. Consider a set T of G-cofibrant complexes over A, and a set
T ′ of G′-cofibrant complexes over A′ such that f∗(T ′) ⊂ T . Then the pair of adjoint
functors

f∗ : Comp(A′) −→ Comp(A) and f∗ : Comp(A) −→ Comp(A′)
is a Quillen pair with respect to the G′-model structure associated to T ′ and the G-
model structure associated to T . In particular, we have a pair of adjoint functors

Lf∗ : DT ′(A′) −→ DT (A) and Rf∗ : DT (A) −→ DT ′(A′)
obtained as the left- and right derived functors of f∗ and f∗ respectively to the above
model structures.

Proof. By virtue of Theorem 2.14, the functor f∗ is a left Quillen functor, so that it
has a total left derived functor

Lf∗ : D(A′) −→ DT (A).

Using Proposition 4.3 and condition (d) of Lemma 4.8, it is sufficient to check that
Lf∗ sends the elements of T ′ to null objects in DT (A), which is obvious.

Remark 4.10. We have of course the same 2-functoriality results as in Remark 2.15
in the case where the obvious compatibilities are verified.
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4.3.
Let A be a closed symmetric monoidal Grothendieck category endowed with a

weakly flat descent structure (G,H). A set T of G-cofibrant complexes of A will be
said to be flat (with respect to G) if for any E in G and any T in T , E ⊗ T is in T .

Corollary 4.11. Let A be a closed symmetric monoidal Grothendieck category. We
suppose that we have a weakly flat descent structure (G,H) on A and a flat set T
of G-cofibrant complexes of A. Then the G-model structure associated to T is a sym-
metric monoidal model category, and the localization functor D(A) −→ DT (A) is a
symmetric monoidal functor.

If moreover G is flat, then this model category satisfies the monoid axiom of [20].

Proof. The proof of Lemma 3.6 can be modified slightly to prove that for any G-
cofibrant complex A and any T in T , the map 0 −→ A⊗ T is a T -equivalence. To
prove the first assertion, we have to show that, given a G-cofibration A −→ B and a
trivial G-cofibration C −→ D in the G-model structure associated to T , then the map
A⊗D qA⊗C B ⊗ C −→ B ⊗D is a T -equivalence and a cofibration. It is sufficient
to check this when A −→ B is a generating G-cofibration; see [12, Lemma 4.2.4]. In
particular, we can assume that both A and B are G-cofibrant. As we already know
that the tensor product is well behaved with respect to cofibrations, we easily see that
it is sufficient to prove that the tensor product of a trivial cofibration by a cofibrant
object is a trivial cofibration, which follows from a new application of Lemma 4.8.
Given any G-cofibrant complex A, condition (d) of the lemma for G = A⊗ (−) follows
from the fact that, for any T in T , the map 0 −→ A⊗ T is a T -equivalence.

If we assume that G is flat, then (G,H) is flat (3.7). To prove the second assertion
(the monoid axiom), we will consider the left Bousfield localization of the injective
model structure on the category Comp (A) by the maps 0 −→ T [n] for any integer n
and any T in T . We will call the latter model category structure the T -injective model
structure. The identity of Comp (A) is a left Quillen equivalence from the G-model
structure associated to T to the T -injective model structure. One easily deduces from
this, from Propositions 4.5 and 4.6, and from the identification DT (A) = D(A)/T(A)
of Proposition 4.3 that the class of weak equivalences coincides for the two model
structures associated to T . In particular, the class of monomorphisms which are T -
equivalences is stable by transfinite composition and by pushout. It is then sufficient
to prove that for any complex C, the functor C 7−→ C ⊗D is a left Quillen functor
from the G-model structure associated to T to the T -injective model structure. From
Proposition 3.4 and from Lemma 4.8 it follows that it is sufficient for this to prove that
for any T -equivalence A −→ B between G-cofibrant complexes, the map C ⊗A −→
C ⊗B is a T -equivalence. But for any G-cofibrant complex K, C ⊗K is isomorphic
to the derived tensor product of C and K (see Remark 3.8), so that by functoriality
C ⊗A −→ C ⊗B is an isomorphism in the homotopy category DT (A). Hence the
result.

Example 4.12. Consider the notation of Examples 2.4 and 2.13.
For a noetherian regular scheme S, we let TS be the essentially small set of com-

plexes of sheaves with transfers of the form LS(A1
X)

p∗−→ LS(X) for any smooth S-
scheme X, p : A1

X → X being the canonical projection.
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We define the category of motivic complexes over S as the category

DMeff (S) := DTS (N tr
S )

with the notation of Proposition 4.3.
A complex C is TS-local (we will also say A1-local) if and only if its Nisnevich

hypercohomology sheaves are homotopy invariant. Remark that if C is Nisnevich
fibrant, then it is A1-local if and only if, for any smooth S-scheme X, the map
induced by the projection C(X) → C(A1

X) is a quasi-isomorphism, or equivalently,
the cohomology presheaves of C are homotopy invariant.

From Proposition 4.3, the category DMeff (S) is equivalent to the full subcategory
of D(N tr

S ) made by the Nisnevich fibrant and A1-local complexes. This result has
to be compared to the original definition by Voevodsky on motivic complexes over
a perfect field (see [9, Chapter 5, following Proposition 3.1.13]. In fact, according to
the strongest result of the theory (Theorem 3.1.12 of loc. cit.), over a perfect field, a
complex of Nisnevich sheaves with transfers is A1-local if and only if its cohomology
sheaves are homotopy invariant5.

According to Corollary 4.11 and Example 3.3, the category DMeff (S) is sym-
metric monoidal. According to Proposition 4.9 and Example 2.16, for any morphism
f : T → S of regular schemes, we have a pair of adjoint functors

Lf∗ : DMeff (S) ¿ DMeff (T ) : Rf∗

and if f is smooth, another pair

Lf] : DMeff (T ) ¿ DMeff (S) : Rf∗ = f∗ = Lf∗.

If we denote by MS(X) the object represented by a smooth scheme in DMeff (S), we
have the fundamental relations

MS(X)⊗L MS(Y ) = MS(X ×S Y ),
Rf∗MS(X) = MT (X ×S T ),
Lf]MT (Y ) = MS(Y )

whenever it makes sense.

5. Presentations of the derived category

5.1.
Let R be a commutative ring with unit, and A an essentially small additive

R-linear category. We denote by A-Mod the category of right A-modules, that is
the category of R-linear additive functors from Aop to the category of R-modules.
The Yoneda embedding of A in A-Mod is additive, R-linear and fully faithful. For
any object X of A, we will also denote by X the right A-module represented by X.

Proposition 5.1. Let GA be a set of representative objects of A. Then (GA,∅) is a
descent structure on the category of A-modules. In other words, the GA-model structure

5Among the notable facts this theorem implies is the description of the homotopy t-structure on
DMeff (k) and the Gersten resolution for an object of its heart.
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on the category of complexes of A-modules is the model category structure with the
quasi-isomorphisms as weak equivalences and the epimorphisms as fibrations.

Proof. It is clear that (GA,∅) is a descent structure on the category of A-modules
because GA is obviously a set of generators and because any complex of A-modules is
GA-local. By definition of the GA-model structure, the fibrations are the maps which
have the right lifting property with respect to the maps 0 −→ DnE for any E in GA
and any integer n. But as DnE represents the evaluation functor K 7−→ Hom(E, Kn),
this implies that the fibrations are exactly the epimorphisms of complexes of A-
modules.

5.2.
Let A be a Grothendieck category and (G,H) a descent structure on A. Let A be

the full subcategory of A whose objects are the finite direct sums of elements of G,
and let i be the inclusion functor. We have a functor

i∗ : A −→ A-Mod

defined by

i∗(F )(X) = HomA(i(X), F )

for any object F of A and any object X of A. The functor i∗ has a left adjoint i! that
can be defined as the left Kan extension of i:

i! : A-Mod −→ A.

In particular, if X is an object of A, we have i!(X) = i(X) (recall that we denote also
by X the presheaf on A represented by X).

By virtue of the Gabriel-Popescu theorem [10,15,17], we know that the functor i∗

is fully faithful and that the functor i! is exact (i.e. preserves finite limits).

Lemma 5.2. The functor i! : Comp(A-Mod) −→ Comp(A) is a left Quillen functor
from the GA-model structure (5.1) to the G-model structure.

Proof. As i! preserves colimits, it is sufficient to prove that it sends the generating
cofibrations (resp. trivial cofibrations) to cofibrations (resp. to trivial cofibrations).
But for any object X of A, E = i!(X) = i(X) is in G and for any integer n we have
i!(DnX) = DnE and i!(SnX) = SnE, so that the conclusion follows.

5.3.
From now on we fix a regular cardinal α with the following properties:

(a) The functor i∗ preserves α-filtered colimits.

(b) Any complex of A-modules is a α-filtered colimit of complexes of A-modules
which are of α-small presentation6.

6An object is of α-small presentation if the functor Hom(X,−) preserves α-filtered colimits
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We denote by S a set of representatives of maps of shape

lim−→
j∈J

i∗i!(Fj) −→ i∗i!(lim−→
j∈J

Fj),

where J is a α-filtered small partially ordered set, and F is a functor from J to the
category of A-modules with values in objects of α-small presentation, J being itself
of α-small presentation in the category of partially ordered sets.

We will consider the GA-model structure on Comp(A-Mod) associated to the set
of maps T = S ∪ i∗H.

Lemma 5.3. For any complex C of A-modules, the map C −→ i∗i!(C) is a T -equi-
valence.

Proof. As T -equivalences are stable by filtered colimits (see 4.6), this follows formally
from the definition of S and from the fact that any filtered partially ordered set is a
α-filtered colimit of partially ordered sets of α-small presentation.

Theorem 5.4. The functor i! : Comp(A-Mod) −→ Comp(A) is a Quillen equiva-
lence from the GA-model structure associated to T on Comp(A-Mod) to the G-model
structure on Comp(A).

Proof. Proposition 4.9 shows that we have defined a left Quillen functor. It remains
to prove that the total left derived functor

Li! : DT (A-Mod) −→ D(A)

is an equivalence of categories. Note that, with the functor i! being exact and sending
the elements of T to quasi-isomorphisms, it has to send T -equivalences to quasi-
isomorphisms. The fully faithfulness of i∗ thus implies immediately the essential sur-
jectivity of Li!. This also implies immediately the fact that Ri∗ is fully faithful. Using
Lemma 5.3 and the fact that i! preserves monomorphisms and sends T -equivalences
to quasi-isomorphisms, one easily checks that the class of maps of Comp(A), which
are monomorphisms and whose image by i∗ is a T -equivalence, is stable by pushouts,
by transfinite compositions, and by retracts. Using again Lemma 5.3 and the fact
that i∗H belongs to T (by definition), this implies, using the small object argument,
that i∗ sends any trivial cofibration of Comp(A) to a T -equivalence. By Ken Brown’s
lemma, this implies that i∗ preserves weak equivalences between G-cofibrant com-
plexes. If C is a GA-cofibrant complex of A-modules, then we thus have a canonical
isomorphism i∗i!(C) −→ Ri∗(i!(C)) in D(A), so that the unit map C −→ Ri∗(i!(C))
has to be an isomorphism by Lemma 5.3.

5.4.
Suppose that a morphism u : K −→ L is a G-surjection if for any E in G, the map

HomA(E,K) −→ HomA(E, L)

is surjective.

Corollary 5.5. A morphism of complexes of A is a fibration for the G-model struc-
ture if and only if it is a degreewise G-surjection with G-local kernel.
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Proof. Any fibration for the G-model structure on Comp(A) is a G-surjection with
G-local kernel. Conversely, it follows from Theorem 2.5 and Propositions 4.7 and 5.1
that a morphism p : X −→ Y of complexes of A is degreewise G-surjective with G-
local kernel if and only if i∗(p) is a fibration with respect to the GA-model structure
associated to T . This implies that p has the right lifting property with respect to
trivial cofibrations between cofibrant objects. But, from Lemma 2.7, it follows that
all the generating trivial cofibrations are cofibrations between cofibrant objects. Hence
the result.

Corollary 5.6. Let A be a Grothendieck category endowed with a descent structure
(G,H) and a set T of complexes of A. A morphism of complexes of A is a fibration
with respect to the G-model structure associated to T if and only if it is degreewise
G-surjective with a G-local and T -local kernel.

Proof. This follows from Proposition 4.7 and Corollary 5.5.

Remark 5.7. The preceding result implies that we can describe a generating set of
trivial cofibrations of the G-model structure associated to T on Comp(A): just add
to the generating trivial cofibrations of the G-model structure on Comp(A) the maps
T ′ ⊕ T ′[n] −→ Cyl(T ′)[n] where n runs over the integers, T over the set T , and where
T ′ is a choice of a G-cofibrant resolution of T .

6. How to get compact generators

6.1.
Recall that, for a triangulated category T , an object X is compact if for any set I

and any family of objects Yi, i ∈ I, in T , the map
⊕

i∈I

HomT (X, Yi) −→ HomT (X,
⊕

i∈I

Yi)

is surjective (hence bijective). One checks easily that the full subcategory of compact
objects in T is a triangulated subcategory of T .

Consider a Grothendieck abelian category A. We say that a descent structure
(G,H) on A is bounded if the complexes H in H are all bounded and degreewise finite
sums of objects in G. The following lemma is straightforward.

Lemma 6.1. Let R be a commutative ring with unit and A be an R-linear additive
category. Any bounded complex of A-modules which is degreewise a finite sum of
representable A-modules is compact in the triangulated category K (A-Mod).

6.2.
Consider a bounded descent structure (G,H) on A. Let A be the full subcategory

of A that consists of finite sums of objects in G. We define the triangulated category
Dc(A) as follows: Consider the bounded homotopy category of A, denoted by K b(A).
The previous lemma implies easily that the triangulated category of compact objects
in K (A-Mod) contains the pseudo-abelianization7 of K b(A). We can consider the

7This means the idempotent completion: we add formally the kernel and cokernel of any projector.
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objects in H as bounded complexes in A. Let 〈H〉 be the thick subcategory of K b(A)
generated by the objects inH, and define Dc(A) to be the pseudo-abelianization of the
Verdier quotient of K b(A) by 〈H〉. From a general result of Balmer and Schlichting [2]
it follows that Dc(A) is canonically endowed with a structure of triangulated category
such that the functor K b(A) −→ Dc(A) is triangulated.

Theorem 6.2. Assume, for any object X in G, that the functor HomA(X,−) pre-
serves small direct sums. Any object in G, seen as a complex concentrated in degree
0, is a compact object in D(A). Moreover, the functor

Li! : D(A-Mod) −→ D(A)

induces an equivalence of triangulated categories between the category of compact
objects of D(A) and the category Dc(A).

Proof. Under the hypothesis made on the elements of G, the functor i! is fully faithful
on the full subcategory of Comp(A-Mod) made of the GA-cofibrant complexes. This
comes from the facts that i is fully faithful by definition and that if C is a GA-cofibrant
complex of A-modules, then for any integer n, Cn is a direct summand of a direct
sum of representable presheaves on A. Any bounded complex which is degreewise a
direct sum of representable A-modules is in the essential image of i!. In particular, H
is in the essential image of i!.

Let C be a GA-cofibrant A-module. Considering the GA-model structure associated
to i∗(H) on Comp(A-Mod), one can choose a i∗(H)-flasque resolution of C, i.e. a quasi-
isomorphism C −→ C ′, with C ′ GA-cofibrant and i∗(H)-flasque. Using the exactness
of i! and its fully faithfulness on GA-cofibrant complexes, we see easily that the map
i!(C) −→ i!(C ′) is a quasi-isomorphism whose target is H-flasque. In particular, for
any object X in G and any integer n, the map

HomDi∗(H)(Comp(A-Mod))(X,C[i]) −→ HomD(A)(i!(X), i!(C)[i])

is an isomorphism. As G form a set of generators of the derived category of A, we
deduce from this that the functor

Li! = i! : Di∗(H)(Comp(A-Mod)) −→ D(A)

is fully faithful. As we already know it is essentially surjective (this follows immedi-
ately from Theorem 5.4, or can be checked directly: G is in the essential image of i!
by definition), we can end the proof by using Lemma 6.1 and Thomason’s theorem;
see [19, Theorem 4.4.9].

Example 6.3. Consider the notation of Example 4.12.
For any regular noetherian scheme S of finite Krull dimension, there exists a

bounded descent structure (GS ,H′S) on the category of Nisnevich sheaves with trans-
fers: using the Nisnevich version of the Brown-Gersten theorem [18, Lemma 1.17,
p. 101], we can take H′S to be the set of complexes of shape

· · · −→ 0 −→ LS(U ×X V ) −→ LS(U)⊕ LS(V ) −→ LS(X) −→ 0 −→ · · ·
associated to distinguished squares in the sense of [18, Definition 1.3, p. 96]. The
H′S-flasque complexes are then exactly those which satisfy the Nisnevich version of
the Mayer-Vietoris long exact sequence.
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Recall that the category of finite correspondences Smcor
S over S from [8, 4.1.19] is

the category whose objects are smooth S-schemes and morphisms from X to Y are
cycles in X ×S Y which support is finite equidimensional over X. It is additive and
symmetric monoidal.

According to 6.2, we consider the thick subcategory 〈H′S , TS〉 of Kb(Smcor
S ) gen-

erated by the classes H′S and TS . We denote by DMeff
gm(S) the pseudo-abelianization

of Kb(Smcor
S )/〈H′S , TS〉.

The preceding theorem implies we have a canonical fully faithful functor

DMeff
gm(S) → DMeff (S)

whose essential image is the category of compact objects of DMeff (S).

7. Stabilization and symmetric spectra

7.1.
Let A be a Grothendieck abelian category. We suppose that A is endowed with

a symmetric monoidal structure. We denote by ⊗ and 1 the tensor product and the
unit respectively. We also suppose that for any object X of A, the functor

Y 7−→ X ⊗ Y

preserves colimits.

7.2.
We will consider in this subsection G-objects of A for various (finite) groups G,

that are object A of A equipped with a representation G −→ AutA(A).
We introduce the following notation:
If A is an object of A, we put G×A =

⊕
g∈G A considered as a G-object via the

permutation isomorphisms of the summands.
If H is a subgroup of G, and A is an H-object, then G×A has two actions of

H: the first one, say γ, is obtained via the inclusion H ⊂ G, and the second one
denoted by γ′, is obtained using the structural action of H on A, making H acting
diagonally on G×A. We define G×H A as the equalizer of the family of morphisms
(γσ − γ′σ)σ∈H , and consider it equipped with its induced action of G.

We write Sn for the symmetric group (that is the group of automorphisms of the
set with n elements, n > 0), and we make the following definition.

Definition 7.1. A symmetric sequence of A is a sequence (An)n∈N such that for each
n ∈ N, An is a Sn-object of A. A morphisms of symmetric sequences is a degreewise
equivariant morphism in A.

7.3.
For an integer n > 0, we denote by n the set of integers i such that 1 6 i 6 n. We

then introduce the category S as follows. The objects are the sets n for n > 0, and
the morphisms are the bijections between such sets. Then, S is a groupoid and the
category of symmetric sequences can be described as the category of functors from S
to A. We use the notation AS to denote the category of symmetric sequences of A.
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We have a full embedding

A −→ AS, X 7−→ X{0}
which is a left adjoint to the 0-evaluation functor AS −→ A , A∗ 7−→ A0. More
precisely, if X is an object of A, then X{0} is the symmetric sequence defined by
X{0}0 = X and X{0}n = 0 for n > 0.

Consider an integer i ∈ N and a symmetric sequence A∗ of A. We put

A∗{−i} = n 7−→
{

Sn ×Sn−i An−i if n > i

0 otherwise.
(7.1)

This defines an endofunctor on AS, and we have

A∗{−i}{−j} ' A∗{−i− j}.
For an object X of A, we will write X{−i} = X{0}{−i}. For i > 0, the functor
A∗ 7−→ A∗{−i} has a right adjoint A∗ 7−→ A∗{i} which is defined by A∗{i}n = An+i,
where the action of Sn on An+i is induced by the canonical inclusion of Sn in Sn+i.

Remark that for any integer n ∈ N, the functor A −→ AS, X 7−→ X{−n} is left
adjoint to the n-evaluation functor AS −→ A, A∗ 7−→ An. Moreover, the collection
of functors AS Evn−−−→ A preserves every limits and colimits and is conservative.

We now define a symmetric monoidal structure on AS.
First of all, let us introduce a variant of S by considering the category S′ of finite

sets with morphisms only the bijections. The canonical functor S −→ S′ is thus an
equivalence of categories. This means that the restriction functor AS′ −→ AS is an
equivalence of categories.

Let now E, F : S′ −→ A be functors. We define a functor

E ⊗S F : S′ −→ A
N 7−→

⊕

N=PtQ

E(P )⊗ F (Q). (7.2)

This makes AS′ , and thus AS into a symmetric monoidal category, the unit being the
symmetric sequence 1{0}, and the symmetry isomorphism being induced by the sym-
metry isomorphism of ⊗ in A. It is then straightforward to check that the canonical
functor X 7−→ X{0} is a symmetric monoidal functor from A to AS.

Remark 7.2. The above definition is only a way to simplify the combinatorics of ⊗S.
To help the reader using it, we point out that to give a morphism of symmetric
objects A∗ ⊗S B∗ −→ C∗ is equivalent to giving families of maps Ap ⊗Bq −→ Cp+q,
which are Sp ×Sq-equivariant, the action on the right-hand side being given by the
canonical inclusion Sp ×Sq −→ Sp+q.

7.4.
Let S be an object of A. We define S⊗n as

S⊗n = S ⊗ · · · ⊗ S︸ ︷︷ ︸
n times

.
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The group of permutations Sn acts on S⊗n by the structural symmetry isomorphisms
of the monoidal structure. We denote by Sym(S) the symmetric sequence (S⊗n)n∈N
obtained by considering the above actions.

Moreover, the canonical isomorphism functor

S⊗p ⊗ S⊗q −→ S⊗p+q

obtained using the associativity isomorphism, is Sp ×Sq-equivariant. Thus, this
defines a morphism

Sym(S)⊗S Sym(S) → Sym(S).

One checks now that with this structural morphism, Sym(S) is a commutative monoid
in the categoryAS (the unit is defined by the identity of 1). Recall that the symmetric
sequence S{0} defined by S{0}0 = S and S{0}n = 0 for n > 0, and remember that
S{−1} = S{0}{−1}. Thus S{−1} is the symmetric sequence defined by S{−1}n = 0
if n 6= 1 and S{−1}1 = S. One has a natural morphism of symmetric sequences

S{−1} −→ Sym(S)

induced by the identity of S. One can check that Sym(S) is the free commutative
monoid generated by S{−1} in AS. In other words, for any commutative monoid
object M in the category of symmetric sequences, any morphism from S to M1 in A
can be extended uniquely into a morphism of commutative monoids from Sym(S) to
M in AS (exercise left to the reader).

Given an object S of A, we define the category of symmetric S-spectra as the
category of modules in AS over the commutative monoid Sym(S). In explicit terms,
a symmetric S-spectra E is a collection (En, σn)n>0, where, for any n > 0, En is an
object of A and σn : S ⊗ En −→ En+1 is a morphism in A such that the induced map
obtained by composition

S⊗m ⊗ En −→ S⊗m−1 ⊗ En+1 −→ · · · −→ S ⊗ Em+n−1 −→ Em+n

is Sm ×Sn-equivariant for any integers n > 0,m > 0. A morphism of symmetric S-
spectra u : (En, σn) −→ (Fn, τn) is a collection of Sn-equivariant maps un : En −→ Fn

such that the square

S ⊗ En
σn //

S⊗un

²²

En+1

un+1

²²
S ⊗ Fn τn

// Fn+1

commutes in A for any integer n > 0.

7.5.
We consider now a closed symmetric monoidal Grothendieck abelian category A

endowed with a weakly flat descent structure (G,H) and a flat set T of complexes of
A (see 4.3). By virtue of Corollary 4.11, the category Comp (A) is endowed with a
closed model category structure associated to T which is compatible with the tensor
product. Let S be a G-cofibrant complex. We want S to be invertible in the following
sense: we want the derived tensor product by S to be an equivalence of categories.
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For this purpose, we will embed the category Comp (A) in the category of symmetric
S-spectra by a symmetric monoidal functor, and we will define a model category
structure on the category of symmetric S-spectra for which the tensor product by S
will be a left Quillen equivalence. We will first have to study the homotopy theory of
complexes of symmetric sequences associated to T .

The category Comp (A)S of symmetric sequences in Comp (A) is canonically equiv-
alent to the category Comp (AS) of complexes of AS. Define GS to be the class of
objects E{−i} for E in G and i > 0, and HS (resp. T S) the class of complexes H{−i}
for H in H (resp. T{−i} for T in T ) and any integer i > 0.

Lemma 7.3. GS is a generating family of AS. If moreover G is flat, then GS is flat.

Proof. We first have to show that GS is a generating family for AS. But for a
symmetric sequence A∗, we have

HomAS(E{−i}, A∗) = HomA(E,Ai).

As the family of evaluation functors AS Evn−−−→ A is conservative and as G is a gener-
ating family of A, this implies that GS is a generating family of AS. It is easy to see
that GS is flat: this comes from the fact that for any objects X and Y of A and any
integers i, j > 0, we have X{−i} ⊗S Y {−j} = (X ⊗ Y ){−i− j}.
Lemma 7.4. If C is a G-cofibrant complex (resp. an acyclic complex), then C{−i}
is GS-cofibrant (resp. acyclic).

Proof. This follows from the fact that the functors A −→ AS, X 7−→ X{−i} preserve
colimits and are exact.

Lemma 7.5. For any complex C of A and any complex K∗ of AS, we have canonical
isomorphisms for i > 0

HomK (AS)(C{−i}, K∗) ' HomK (A)(C,Ki).

Proof. We have HomComp(AS)(C{−i},K∗) ' HomComp(A)(C,Ki), and this isomor-
phism is compatible with the cochain homotopy relation.

Lemma 7.6. For any complex C of A and any complex K∗ of AS, we have canonical
isomorphisms for i > 0

HomD(AS)(C{−i}, K∗) ' HomD(A)(C, Ki).

Proof. This follows from these two facts: The functor Comp(A) −→ Comp(AS),
C 7−→ C{−i} is a left Quillen functor for the injective model structures on Comp(A)
and Comp(AS) and the functor Comp(AS) −→ Comp(A), C∗ 7−→ Ci preserves
quasi-isomorphisms. Indeed, this shows that it is sufficient to prove the result for
K∗ fibrant with respect to the injective model structure. But then this reduces to
Lemma 7.5.

Proposition 7.7. (GS,HS) is a weakly flat descent structure on AS and the family
T S of the T{−i}’s for T in T and i > 0 is flat. Moreover, a complex of symmetric
sequences K∗ is GS-local (resp. HS-flasque, resp. T S-local) if and only if for any
integer i > 0, Ki is G-local (resp. H-flasque, resp. T -local).

If G is flat, then the descent structure (GS,HS) is flat.
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Proof. It follows from Lemmata 7.5 and 7.6 that a complex of symmetric sequences
K∗ is GS-local (resp. HS-flasque, resp. T S-local) if and only if for any integer i > 0,
Ki is G-local (resp. H-flasque, resp. T -local). This implies that (GS,HS) is a descent
structure. We deduce easily from Lemma 7.4 that it is weakly flat. If moreover G is
flat, then (GS,HS) is a flat descent structure: this comes from Lemmata 7.3 and 7.4
and from Proposition 3.7.

Proposition 7.8. A morphism of complexes of symmetric sequences u∗ : K∗ −→ L∗
is a T S-equivalence (resp. a fibration with respect to the GS-model structure asso-
ciated to T S) if and only if for any integer i > 0, the map ui : Ki −→ Li is a T -
equivalence (resp. a fibration with respect to the G-model structure associated to T ).

Proof. The characterization of fibrations follows from Proposition 7.7 and Corol-
lary 5.6. If i > 0 is an integer, then the evaluation functor at i,

Comp(A)S −→ Comp(A), A∗ 7−→ Ai,

sends the GS-cofibrations (resp. the trivial GS-cofibrations) to G-cofibrations (resp.
trivial G-cofibrations). The class of GS-cofibrations (resp. of trivial GS-cofibrations)
is generated by maps of the form u{−j} : A{−j} −→ B{−j}, where j > 0 is an inte-
ger and u is a G-cofibration (resp. a trivial G-cofibration); see and apply 2.3 and
Remark 5.7 to AS. As the evaluation functor at i preserves colimits, it is sufficient
to check that for any G-cofibration (resp. trivial G-cofibration) u : A −→ B and any
integer j 6 0, the morphism u{−j}i : A{−j}i −→ B{−j}i is a G-cofibration (resp. a
trivial G-cofibration). But for i 6= j, everything is zero, so that we only have to deal
with the case i = j. Then the map u{−i}i is

⊕

Si

A = Si ×A −→ Si ×B =
⊕

Si

Bx.

Our claim thus follows from the fact that G-cofibrations (resp. trivial G-cofibrations)
are stable by (finite) direct sums. Let u∗ : K∗ −→ L∗ be a morphism of symmetric
sequences. Using the existence of factorizations into a trivial cofibration followed by
a fibration in the GS-model structure associated to T S, one can produce a diagram

K∗
k //

u

²²

M∗

v

²²
L∗

l
// N∗

in which k and l are trivial cofibrations and M∗ and N∗ are fibrant. As k and l are
both termwise T -equivalences and T S-equivalences, u is a termwise T -equivalence
(resp. a T S-equivalence) if and only if v has the same property. But as M∗ and L∗ are
fibrant, v is a T S-equivalence if and only if it is a quasi-isomorphism, and as the Mi’s
and the Ni’s are fibrant, v is a termwise T -equivalence if and only if its is a termwise
quasi-isomorphism. But we know that the evaluation functors are exact and form a
conservative family of functors, so we see that v is a termwise quasi-isomorphism if
and only if it is a quasi-isomorphism. Hence we deduce that u is a T S-equivalence if
and only if it is a termwise T -equivalence.
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7.6.
We can now consider a G-cofibrant complex S of A. We have a commutative

monoid Sym(S) in the category of symmetric sequences of Comp(A) (see 7.4). We
will write SpS

S (A) for the category of symmetric S-spectra (i.e. of Sym(S)-modules) in
Comp(A)S; see 7.4 again. The category of symmetric S-spectra is a closed symmetric
monoidal category (as any category of modules over a commutative monoid in a
symmetric monoidal category; see e.g. [16]). We will write ⊗Sym(S) or simply ⊗ for
the tensor product in SpS

S (A), and 1S for the unit (i.e. 1S = Sym(S) as a symmetric
sequence). We have a symmetric monoidal functor

Comp(A)S −→ SpS
S (A), A∗ 7−→ Sym(S)⊗S A∗,

which has a right adjoint that consists to forget the action of Sym(S)

U : SpS
S (A) −→ Comp(A)S, E 7−→ E∗.

If we think of symmetric S-spectra as collections E = (En, σn)n>0, then U(E) is the
symmetric sequence E∗ = (En)n>0.

A morphism of symmetric S-spectra will be said to be a T -equivalence (resp. a
T -fibration) if its image by U is a termwise T -equivalence (resp. a termwise fibration
with respect to the G-local model structure associated to T on Comp(A)8).

Proposition 7.9. The category SpS
S (A) is a proper cellular symmetric monoidal

model category with the T -equivalences (resp. the T -fibrations) as weak equivalen-
ces (resp. as fibrations). Furthermore, if G is flat, then the monoid axiom holds in
SpS

S (A).

Proof. The first assertion is proved by Hovey [14, Theorems 8.2 and 8.3]. The right
properness follows from the fact that the GS-model structure associated to T S on
Comp(A)S is proper and the fact that the functor U preserves and detect weak
equivalences, fibrations and pullbacks. We get the left properness in a similar way:
this follows from Proposition 4.5 applied to AS and from the facts that the cofibra-
tions of SpS

S (A) are monomorphisms and that the functor U preserves and detects
weak equivalences, monomorphisms and pushouts. The last assertion is an application
of [20, Theorem 4.1].

7.7.
We denote by DT (A, S) the localization of the category of symmetric S-spectra

by the termwise T -equivalences.

Proposition 7.10. The category SpS
S (A) is a proper cellular model category with

the T -equivalences (resp. the monomorphisms) as weak equivalences (resp. as cofibra-
tions).

Proof. It follows from Propositions 4.5 and 4.6 that the class of monomorphisms
which are T -equivalences is closed under pushouts, transfinite compositions and

8The notion of T -fibration depends on T and G, but we will neglect this as we will always work
with a fixed set G of generators.
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retracts. As the class of T -equivalences is the class of weak equivalences of a cofi-
brantly generated model category, it is accessible. We thus obtain the expected model
category structure by a straight application of Jeff Smith’s theorem; see [3]. The left
properness comes from the fact that any object is cofibrant for this model structure.
The right properness comes from the fact that any fibration for this model structure
is a T -fibration and from the right properness of the model structure of Proposi-
tion 7.9.

Proposition 7.11. If G is flat, then the functor A∗ 7−→ Sym(S)⊗S A∗ preserves
termwise T -equivalences.

Proof. As S is G-cofibrant, for any integer n > 0, S⊗n is G-cofibrant as well. This
implies that the functor A 7−→ S⊗n ⊗A preserves T -equivalences in Comp(A): to
see this, just remember that the canonical map S⊗n ⊗L A −→ S⊗n ⊗A is an iso-
morphism in DT (A) (see 3.8 and the last assertion of 4.11). This proposition thus
follows from the construction of Sym(S)⊗S A∗ (see 7.2) and from the fact that T -
equivalences are stable by finite direct sums.

Remark 7.12. The model categories of Propositions 7.9 and 7.10 are stable. This
means that a commutative square in the category of symmetric S-spectra is a homo-
topy pushout square if and only if it is a homotopy pullback square. In particu-
lar, the homotopy category DT (A, S) (localization of SpS

S (A) by the termwise T -
equivalences) is canonically endowed with a symmetric monoidal triangulated cate-
gory structure, and the functor

DT S(AS) −→ DT (A, S), A∗ 7−→ Sym(S)⊗S A∗

is a symmetric monoidal functor.

7.8.
We have a symmetric monoidal functor

Σ∞ : Comp(A) −→ SpS
S (A), A 7−→ Sym(S)⊗S A{0}.

In particular, we have the formula

Σ∞(A⊗B) ' Σ∞(A)⊗ Σ∞(B). (7.3)

The functor Σ∞ is a left adjoint of the functor

Ω∞ : SpS
S (A) −→ Comp(A), (En, σn)n>0 7−→ E0.

These two functors form a Quillen adjunction if we consider the G-model structure
associated to T on Comp(A) and the model structure of Proposition 7.9 on SpS

S (A).
We now introduce a very ugly abuse of notation. For an object A of Comp(A) and a
symmetric S-spectrum E, we define E ⊗A to be E ⊗ Σ∞(A). This can be rewritten
as

E ⊗A = E ⊗Sym(S)

(
Sym(S)⊗S A{0}

)
' E ⊗S A{0}. (7.4)

In terms of collections E = (En, σn)n>0, we have E ⊗A = (En ⊗A, σn ⊗ 1A)n>0.
This makes our purpose more precise: we would like the functor E 7−→ E ⊗ S to
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be a left Quillen equivalence. This is not the case in general, so that we have to
localize a little further.

We will say that a symmetric S-spectrum E = (En, σn)n>0 is an Ω∞-spectrum if
for any integer n > 0, En is a G-local and T -local complex of A and the map induced
by adjunction from σn

σ̃n : En −→ Hom(S, En+1) (7.5)

is a quasi-isomorphism (here Hom is the internal Hom of the category of complexes
of A). We remark that as S is G-cofibrant and as En+1 is a fibrant object of the
G-model structure associated to T , Hom(S,En+1) is also fibrant. This implies that
the map 7.5 is a quasi-isomorphism if and only if it is a T -equivalence.

A morphism of symmetric S-spectra u : A −→ B is a stable T -equivalence if for
any Ω∞-spectrum E, the induced map

u∗ : HomDT (A,S)(B, E) −→ HomDT (A,S)(A,E)

is an isomorphism of abelian groups. For example, any termwise T -equivalence is a
stable T -equivalence.

A morphism of symmetric S-spectra is a stable G-cofibration is it is a cofibration
of the model structure of Proposition 7.9.

A morphism of symmetric S-spectra is a stable T -fibration if it has the right
lifting property with respect to the stable G-cofibrations which are also stable T -
equivalences.

Proposition 7.13. The category of symmetric S-spectra is a stable proper cellular
symmetric monoidal model category with the stable T -equivalences as weak equiva-
lences, the stable G-cofibrations as cofibrations, and the stable T -fibrations as fibra-
tions. Moreover, the stable T -fibrations are the termwise G-surjective morphisms
p : E −→ F such that ker p is an Ω∞-spectrum. In particular, the fibrant objects of
this model structure are the Ω∞-spectra.

Proof. It follows from [14, Theorem 8.11] that we have defined a model category
structure. As this model structure is by definition a left Bousfield localization of a
left proper cellular model category, it is left proper. This model structure is stable as
the stable T -equivalences are the maps inducing isomorphisms on the cohomological
functors HomDT (A,S)(?, E) with E any Ω∞-spectrum. The right properness follows
then from the right properness of the model category of Proposition 7.9 as follows:
Consider a pullback square of symmetric spectra

E
u //

p

²²

F

q

²²
E′

u′
// F ′,

where p is a stable T -fibration. As p is also a fibration for the model structure of
Proposition 7.9, this square is a homotopy pullback square. But as this latter model
structure is stable, this square is also a homotopy pushout square. This implies that
this square is a homotopy pushout square in the model category defined by the
stable T -equivalences. Again, as this latter model structure is stable, we see that



LOCAL AND STABLE HOMOLOGICAL ALGEBRA 253

this commutative square has to be a homotopy pullback square. Hence, if moreover
u′ is a stable T -equivalence, then u has to be a stable T -equivalence as well, and
we have proved the right properness. The characterization of the stable T -fibrations
starts with the description of the fibrant objects as the Ω∞-spectra which comes
from [14, Theorem 8.8]. We can then finish the proof using the fact that the fibrations
of the model structure of Proposition 7.9 are exactly the termwise G-surjective maps
with termwise G-local and T -local kernels (see 5.5) and reproducing the proof of
Proposition 4.7.

7.9.
The model structure of Proposition 7.13 will be called the S-stable model structure

associated to T . We denote by DT (A, S−1) the localization of the category SpS
S (A)

by the stable T -equivalences.

7.10.
It remains to show that the functor E 7−→ E ⊗ S = E ⊗ Σ∞(S) is a left Quillen

equivalence. We already know that it is a left Quillen functor with respect to the
S-stable model category structure associated to T . We write

DT (A, S−1) −→ DT (A, S−1), E 7−→ E ⊗L S

for the corresponding total left derived functor. We define the symmetric S-spectra
S−1 = Sym(S)⊗S S{−1}. The tensor product by S−1,

SpS
S (A) −→ SpS

S (A), E 7−→ E ⊗ S−1 ' E ⊗S S{−1},
is also a left Quillen functor and has a total left derived functor

DT (A, S−1) −→ DT (A, S−1), E 7−→ E ⊗L S−1 .

Note that, if moreover G is flat, as both Σ∞(S) and S−1 are stably G-cofibrant, for
any symmetric S-spectrum E, we have canonical isomorphisms in DT (A, S−1) (7.22)

E ⊗L S ' E ⊗ S and E ⊗L S−1 ' E ⊗ S−1

(but this property will not be needed).

Proposition 7.14. The functors E 7−→ E ⊗L S and E 7−→ E ⊗L S−1 are equiva-
lences of categories and are quasi-inverse to each other. In particular, the functor
E 7−→ E ⊗ S = E ⊗ Σ∞(S) is a left Quillen equivalence.

Proof. See [14, Theorem 8.10].

Example 7.15. Consider the notation and conventions of 4.12.
Let Gm be the multiplicative group scheme over S. It is a pointed scheme with

S-point the unit section s. We associate to this pointed scheme a sheaf with transfers
L̃S(Gm), defined as the cokernel of the split monomorphism LS(S) s∗−→ LS(Gm).

A symmetric L̃S(Gm)-spectrum in the category Comp(A)S (cf. 7.6) will be called
a motivic spectrum over S.

According to Proposition 7.13, the category of symmetric Tate spectra SpTate(S)
over S is a stable symmetric monoidal category. We denote its homotopy category by
DM (S).
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By construction, we obtain a pair of adjoint functors

LΣ∞ : DMeff (S) À DM (S) : RΩ∞

such that LΣ∞ is symmetric monoidal, and LΣ∞M̃S(Gm) (usually denoted by
ZS(1)[1]) is invertible (cf. 7.14)9.

Using an obvious extension of the base change (resp. forget the base) functor from
complexes to spectra, and applying the obvious analog of Proposition 4.9, we can
construct for any morphism of regular schemes f : T −→ S a pair of adjoint functors

Lf∗ : DM (S) À DM (T ) : Rf∗

and in the case where f is smooth another pair

Lf] : DM (S) À DM (T ) : Rf∗ = f∗.

This construction will be generalized and studied more closely in the forthcoming
paper [6].

7.11.
We will need a few more details about the relationship between the tensor prod-

uct by S and S−1. We will write HomS and HomS for the internal Hom’s in the
categories of symmetric sequences and of symmetric S-spectra respectively.

Let E = (En, σn)n>0 be a symmetric S-spectrum. One can define the symmetric
S-spectrum E{1} by

E{1} = HomS(1{−1}, E) ' HomS(Sym(S){−1}, E) .

In other words, E{1} = (E{1}n, σ{1}n)n>0, where for n > 0, we have E{1}n = En+1

and σ{1}n = σn+1, and the action of Sn on En+1 is induced by the obvious inclu-
sion Sn ⊂ Sn+1. The maps σn define a morphism of symmetric S-spectra called the
suspension map

σ : E ⊗ S −→ E{1}. (7.6)

By adjunction, this defines a map

σ̃ : E −→ HomS(Σ∞(S), E{1}). (7.7)

But HomS(Σ∞(S), E{1}) ' HomS(Sym(S)⊗S S{−1}, E), so that we have a map

σ̃ : E −→ HomS(Sym(S)⊗S S{−1}, E). (7.8)

Then E is an Ω∞-spectrum if and only if it is termwise G-local and T -local and if the
map (7.8) is a termwise T -equivalence (this is an easy translation of the definition).
We deduce from this and from the fact that the functor ?⊗ S preserves stable T -
equivalences (see 7.22) that for any Ω∞-spectrum E, the map (7.6) is a stable T -
equivalence10. As E{1} is then still an Ω∞-spectrum, we can iterate this process and
obtain for any Ω∞-spectrum E a canonical stable T -equivalence

σn : E ⊗ S⊗n = E ⊗ Σ∞(S)⊗n −→ E{n}. (7.9)

9In fact, we can state a universal property satisfied by DM (S) from these two properties.
10The proof of Proposition 7.14 follows from this fact once we have noticed that HomS(Sym(S)⊗S

S{−1}, ?) is a right adjoint to the functor ?⊗ S−1.
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7.12.
The functor Σ∞ : Comp(A) −→ SpS

S (A) is a left Quillen functor from the G-model
structure associated to T to the S-stable model structure associated to T (this is
immediate). If moreover G is flat, then it easily follows from Proposition 7.11 that it
sends T -equivalences to stable T -equivalences.

The fact Σ∞ is a left Quillen functor implies that its right adjoint Ω∞ is a right
Quillen functor and that the total left derived functor

LΣ∞ : DT (A) −→ DT (A, S−1)

is a left adjoint of the total right derived functor of Ω∞

RΩ∞ : DT (A, S−1) −→ DT (A).

In particular, for any complex X of A and any symmetric S-spectrum E, we have
canonical isomorphisms of abelian groups

HomDT (A,S−1)(LΣ∞(X), E) ' HomDT (A)(X,RΩ∞(E)).

Moreover, for any Ω∞-spectrum E, we have RΩ∞(E) = E0.
A weak Ω∞-spectrum is a symmetric S-spectrum E = (En, σn)n>0 such that for

any n > 0, the map
En −→ RHom(S, En+1)

obtained by adjunction in DT (A, S) from the map σn : En ⊗ S −→ En+1 is an iso-
morphism. It is obvious that any Ω∞-spectrum is a weak Ω∞-spectrum.

Proposition 7.16. Let E be a weak Ω∞-spectrum and n > 0 an integer. Then we
have canonical isomorphisms RΩ∞(E ⊗ S⊗n) ' En in DT (A). In other words, for
any object X of DT (A), we have canonical isomorphisms

HomDT (A)(X,En) ' HomDT (A)(X,RΩ∞(E ⊗ S⊗n))

' HomDT (A,S−1)(LΣ∞(X), E ⊗ S⊗n).

Moreover, the iterated suspension map σn : E ⊗ S⊗n −→ E{n} is an isomorphism in
DT (A, S−1).

Proof. We know the assertion is true when E is actually an Ω∞-spectrum (see 7.11).
In general, thanks to the existence of the model structure of Proposition 7.9, one can
choose a termwise T -equivalence E −→ E′ such that E′ is termwise G-local and T -
local. But E′ is also a weak Ω∞-spectrum, and this implies immediately that E′ is an
Ω∞-spectrum. As the maps Ei −→ E′

i are T -equivalences for any i > 0, this implies
that E{n} −→ E′{n} is also a termwise T -equivalence for any integer n. Hence we
are reduced to the Ω∞-spectrum case.

Proposition 7.17. A pushout square of symmetric S-spectra,

E
u //

i

²²

F

j

²²
E′

u′
// F ′,

in which i is a monomorphism, is a homotopy pushout square with respect to the
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S-stable model structure associated to T . In particular, if i (resp. u) is a stable T -
equivalence, then j (resp. u′) is a stable T -equivalence.

Proof. It is sufficient to prove that this commutative square is a homotopy pushout
square for the model structure of Proposition 7.9. This square is obviously a homotopy
pushout square for the model structure of Proposition 7.10, which implies that it
has to be a homotopy pushout square for the model structure of Proposition 7.9 as
well.

Proposition 7.18. The stable T -equivalences are stable by filtering colimits in
SpS

S (A).

Proof. We know that the termwise T -equivalences are stable by filtering colimits
(this follows immediately from 4.6). This is equivalent to say that for any filtering
category I and any functor F from I to SpS

S (A), the canonical map

holim−−−→
i

Fi −→ lim−→
i

Fi

is a termwise T -equivalence, hence a stable T -equivalence. But as the functor holim−−−→
sends stable T -equivalences to stable T -equivalences, this achieves the proof.

Proposition 7.19. The category of symmetric S-spectra is endowed with a cellular
proper model category structure with the stable T -equivalences as weak equivalences
and the monomorphisms as cofibrations.

Proof. It follows from Propositions 7.17 and 7.18 that the class of monomorphisms
which are stable T -equivalences is stable by pushout, transfinite composition and
retract. We thus obtain the expected model structure as a left Bousfield localization
of the model structure of Proposition 7.10. The left properness is obvious (any object
is cofibrant) and the right properness comes from the right properness of the S-stable
model structure associated to T and from the fact that any fibration is, in particular,
a fibration for the S-stable model structure.

7.13.
The model structure of Proposition 7.19 will be called the injective S-stable model

structure associated to T .
From now on, we suppose that G is flat.

Lemma 7.20. Let A∗ be a GS-cofibrant symmetric sequence, and E be a symmetric
S-spectrum. Then the canonical map

E ⊗L
(
Sym(S)⊗S A∗

) −→ E ⊗ (
Sym(S)⊗S A∗

)

is an isomorphism in DT (A, S) (hence in DT (A, S−1) as well).

Proof. We begin with the following observation: the functor

Comp(A)S −→ Comp(A)S, E 7−→ E ⊗S A∗

preserves termwise T -equivalences. This is because by virtue of Lemma 7.3, GS is a
flat generating family of AS; see Remark 3.8.
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Let now E be a symmetric S-spectrum. We can choose a termwise T -equivalence
E′ −→ E in SpS

S (A) with E′ cofibrant for the model structure of Proposition 7.9.
But then we have a termwise T -equivalence (hence a stable T -equivalence)

E′ ⊗ (
Sym(S)⊗S A∗

) ' E′ ⊗S A∗ −→ E ⊗S A∗ ' E ⊗ (
Sym(S)⊗S A∗

)
.

This implies our assertion as both E′ and Sym(S)⊗S A∗ are cofibrant symmetric
S-spectra.

Lemma 7.21. Let E be a symmetric S-spectrum. Then the functor

SpS
S (A) −→ SpS

S (A), F 7−→ E ⊗ F

is a left Quillen functor from the model structure of Proposition 7.9 to the model
structure of Proposition 7.10.

Proof. Proposition 3.4 applied to AS gives the following: If u : A∗ −→ B∗ is a GS-
cofibration of symmetric sequences, then the induced map

E ⊗ (
Sym(S)⊗S A∗

) ' E′ ⊗S A∗ −→ E ⊗S B∗ ' E ⊗ (
Sym(S)⊗S B∗

)

is a monomorphism. If moreover u is a quasi-isomorphism, then so is the induced map
above. Hence the lemma is proved for T = ∅. To prove the general case, it is sufficient
to prove that the tensor product by E sends the generating trivial cofibrations of the
model category of Proposition 7.9 to termwise T -equivalences. But the generating
trivial cofibrations are all of shape

Sym(S)⊗S A{−i} −→ Sym(S)⊗S B{−i},
where i > 0 is an integer, and A −→ B is a G-cofibration and a T -equivalence in
Comp(A). We conclude easily using Lemma 7.20.

Proposition 7.22. Let E and F be symmetric S-spectra. If E or F is stably G-
cofibrant (i.e. a cofibrant object of the model category of Proposition 7.9), then the
canonical map

E ⊗L F −→ E ⊗ F

is an isomorphism in DT (A, S) (hence in DT (A, S−1) as well).

Proof. Let E be a fixed symmetric S-spectrum. This object gives rise to two trian-
gulated endofunctors of the category DT (A, S). We denote the first one by Φ. It is
defined by Φ(F ) = E ⊗L F (where we insist that ⊗L is the total left derived functor
of the left Quillen bifunctor ⊗ on SpS

S (A)). The second one, denoted by Ψ is the
total left derived functor of the functor F 7−→ E ⊗ F (which is well defined by virtue
of Lemma 7.21). We have a canonical map of triangulated functors Φ −→ Ψ, and
we would like it to be an isomorphism. By Lemma 7.20, we already know that it
induces an isomorphism on objects of type Sym(S)⊗S A∗ for any GS-cofibrant sym-
metric sequence A∗. But as the cokernels of the generating cofibrations of the model
structure of Proposition 7.9 are all of this type, it follows from [12, Theorem 7.3.1]
that the objects of shape Sym(S)⊗S A∗ form a generating family of the triangulated
category DT (A, S). This means that the smallest localizing subcategory of DT (A, S)
that contains the Sym(S)⊗S A∗’s is DT (A, S) itself. This implies that Φ −→ Ψ is an
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isomorphism: it remains to prove that the full subcategory of DT (A, S) that consists
of object F such that Φ(F ) ' Ψ(F ) is a triangulated subcategory and is stable by
direct sums; which is obvious. But if F is stably G-cofibrant, the map Φ(F ) −→ Ψ(F )
is just the map E ⊗L F −→ E ⊗ F .

Proposition 7.23. For any symmetric S-spectrum E, the functor A 7−→ A⊗ E is a
left Quillen functor from the S-stable model structure associated to T to the injective
S-stable model structure associated to T .

Proof. This follows immediately from Lemmata 4.8 and 7.21 and from Proposi-
tion 7.22.

Corollary 7.24. If G is flat, then the S-stable model category structure associated to
T satisfies the monoid axiom of [20].

Proof. This is an immediate consequence of Proposition 7.23.

7.14.
We still assume that G is flat.
An S-ring spectrum, or simply a ring spectrum is a commutative monoid in the

category of symmetric S-spectra. Such a ring spectrum is commutative if it is com-
mutative as a monoid.

If E is a ring spectrum, we write SpS
S (A, E) for the category of left E-modules. If

moreover E is commutative, the category SpS
S (A, E) is a closed symmetric monoidal

category. We have a functor

SpS
S (A) −→ SpS

S (A, E), F 7−→ E ⊗ F

which is a left adjoint to the forgetful functor

SpS
S (A, E) −→ SpS

S (A), M 7−→ M.

If E is commutative, the functor F 7−→ E ⊗ F is of course symmetric monoidal. A
morphism of E-modules is a stable T -equivalence (resp. a stable T -fibration) if it is
so as a morphism of symmetric S-spectra.

We will write DT (A, E) for the localization of the category of E-modules by the
class of stable T -equivalences.

Corollary 7.25. Let E be a ring spectrum. Then the category of left E-modules in
SpS

S (A) is a cellular proper stable model category with the stable T -equivalences as
weak equivalences and the stable T -fibrations as fibrations. If moreover E is commu-
tative, then this is a symmetric monoidal model category which satisfies the monoid
axiom.

Proof. The fact that we get a cofibrantly generated model category (symmetric
monoidal and satisfying the monoid axiom if E is commutative) comes from [20, The-
orem 4.1]. The proof of properness and of stability is left to the reader (it is the same
as in the proof of 7.9).
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