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Dendroidal Segal spaces and ∞-operads

Denis-Charles Cisinski and Ieke Moerdijk

Abstract

We introduce the dendroidal analogues of the notions of complete Segal space and of Segal
category, and construct two appropriate model categories for which each of these notions
corresponds to the property of being fibrant. We prove that these two model categories are
Quillen equivalent to each other, and to the monoidal model category for ∞-operads which
we constructed in an earlier paper. By slicing over the monoidal unit objects in these model
categories, we derive as immediate corollaries the known comparison results between Joyal’s
quasi-categories, Rezk’s complete Segal spaces, and Segal categories.
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Introduction

The category of dendroidal sets is an extension of that of simplicial sets, suitable for
constructing nerves, not just of categories but also of (coloured) operads. It was introduced
with this purpose, and with the aim of giving an inductive definition of weak higher categories,
in [14, 15]. This category dSet of dendroidal sets carries a symmetric monoidal closed structure
which is closely related to the Boardman–Vogt tensor product of operads, and the inclusion of
the category sSet of simplicial sets into dSet can in fact be identified with the forgetful functor,
from the slice (or comma) category of dendroidal sets over the unit η of the monoidal structure
back to dendroidal sets, via an explicit isomorphism of categories

dSet/η = sSet. (I)

Dendroidal sets carry a very rich homotopical structure, which we began to explore in [7].
For example, there is a monoidal Quillen model structure on dSet, whose fibrant objects
include all nerves of operads. In fact, these fibrant objects can be thought of as simple
combinatorial models of the notion of operad-up-to-homotopy or ‘∞-operad’. Like any Quillen
model structure, this model structure on dendroidal sets induces another model structure
on any slice category. Under the identification dSet/η = sSet, this induced model structure
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can be shown to coincide with the Joyal model structure on simplicial sets, whose fibrant
objects are most commonly known under the name ‘∞-categories’ (and are also referred to as
quasi-categories, weak Kan complexes, or inner Kan complexes [4, 11, 13]).

These ∞-categories model a notion of category-up-to-homotopy. Other ways of modelling
such a notion have occurred in the literature, including the theory of Segal categories [2, 17]
and of complete Segal spaces [16]. The latter two concepts are both based on the much older
observation that a simplicial set X is the nerve of a category if and only if the canonical map

Xn −→ X1 ×X0 · · · ×X0 X1 (II)

sending a simplex to its one-dimensional ribbons is an isomorphism. Indeed, Simpson and Rezk
both base their theories on bisimplicial sets X for which the map (II) is a weak equivalence
of simplicial sets (and replacing the fibred product on the right-hand side by its homotopy
version). Building on the work of Simpson and Rezk, the relation between these different
ways of modelling categories-up-to-homotopy was recently made precise through the works of
Bergner, Joyal and Tierney, and Lurie. Indeed, Simpson’s Segal categories, Rezk’s complete
Segal spaces, and Joyal’s∞-categories all arise as the fibrant objects in a specific Quillen model
category structure, and these different model category structures have now been related to each
other by explicit Quillen equivalences [2, 13]. Moreover, they are all Quillen equivalent to the
model category of simplicial categories discovered by Bergner [2], thus providing a strictification
or rigidification result for each of these notions of category-up-to-homotopy.

The goal of this paper and its sequel [8] is to develop analogous theories of Segal operads
(rather than categories) and complete dendroidal (rather than simplicial) Segal spaces, to relate
these to each other and to dendroidal sets via Quillen equivalences, and to prove a strictification
result for each of them by relating them to simplicial operads. By a simple slicing procedure
like in (I), the earlier results just mentioned for categories-up-to-homotopy can all be recovered
from our results, which can in this sense be said to be more general.

In more detail, then, we will consider the category sdSet of simplicial objects in dendroidal
sets, or what is the same, dendroidal spaces. We will define a Segal-type condition on the
objects of this category, based on an extension to trees of ‘the union of one-dimensional
ribbons in an n-simplex’ to which we will refer as the Segal core of a tree. In Section 5,
we will establish a closed model category structure on sdSet whose fibrant objects satisfy a
tree-like Segal condition involving these Segal cores, and a completeness condition like the one
of Rezk, and prove (Corollary 6.7) that this model category is Quillen equivalent to our earlier
model category structure on dendroidal sets [7]. The definitions and proofs of these results are
based on some elementary observations about these Segal cores presented in Section 2, and
on a characterization of weak equivalences between ∞-operads as maps which are ‘essentially
surjective and fully faithful’ in a suitable sense (Theorem 3.5). The proof also exploits the
hybrid nature of the objects of sdSet, which can be viewed alternatively as simplicial objects
in one category or as dendroidal objects in another. In fact, the first view point is taken in
Section 4, while the second viewpoint underlies the notion of complete dendroidal Segal space
and the formulation of the main equivalence (Corollary 6.7). The relation between these two
view points is most clearly expressed by Theorem 6.6 which equates two seemingly different
model category structures.

Again using the Segal cores, we define the notion of a Segal operad in Section 8. These
Segal operads will then be shown to be the fibrant objects for a model category structure
on a full subcategory of the category sdSet of dendroidal spaces, the category of so-called
Segal pre-operads (Theorems 8.13 and 8.17). Using most if not all of the earlier results, we
will then be able to show that this model category with Segal operads as fibrant objects is
Quillen equivalent to the model category having complete dendroidal Segal spaces as fibrant
objects (Theorem 8.15), and hence also Quillen equivalent to the original model category of
dendroidal sets.
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We believe these results are of interest in themselves, and because they generalize important
classical results from the simplicial-categorical context to the dendroidal-operadic one. In
addition, they will all be used in our proof of the strictification theorem for∞-operads presented
in [8].

1. Preliminaries

We begin by recalling the basic definitions related to dendroidal sets; see [7, 14, 15]. The
starting point is a category Ω of trees. Its objects are finite (non-planar) trees. These trees
have internal edges (between vertices) and external ones (attached to just one vertex); the root
is one such external edge, the others are called ‘leaves’, or ‘input edges’. Each such tree freely
generates a coloured operad, and the arrows in Ω are the maps between these operads. Thus,
by definition, Ω is a full subcategory of the category of (symmetric coloured) operads.

Each natural number n � 0 defines a linear tree with n vertices and n + 1 edges, the input
edge being labelled 0, and the output or root edge labelled n. The corresponding coloured
operad is the category defined by the linear order 0 � · · · � n. Thus, the simplicial category Δ
is a full subcategory of Ω, and we denote the inclusion by

i : Δ −→ Ω, [n] �−→ n = i[n].

The category dSet of dendroidal sets is by definition the category of presheaves (that is,
contravariant Set-valued functors) on Ω, just like the category of simplicial sets is that of
presheaves on Δ. The inclusion functor i induces a pair of adjoint functors

i! : sSet � dSet : i∗,

where i∗ is the restriction along i and i! is its fully faithful left adjoint (i∗ also has a fully
faithful right adjoint i∗).

We will write Ω[T ] for the dendroidal set represented by a tree T . With the similar notation
Δ[n] for representable simplicial sets, we thus have

i!Δ[n] = Ω[n],

and this identification determines i! uniquely up to unique isomorphism (as colimit-preserving
functor).

There is a natural identification of Δ with the slice category Ω/i[0], and this leads to an
identification

sSet = dSet/η,

where η = Ω[0]. Under this identification, the functor i! corresponds to the forgetful functor
dSet/η → dSet.

The full embedding of Ω into (coloured) operads gives an adjoint pair

τd : dSet � Operad : Nd,

where the right adjoint Nd is called the dendroidal nerve. These functors restrict to the usual
nerve of a small category and its left adjoint.

The category of dendroidal sets carries a symmetric monoidal closed structure, denoted
by ⊗ and Hom. Its unit object is the representable dendroidal set η = Ω[0]. This structure
is compatible with the product of simplicial sets as well as with the Boardman–Vogt tensor
product of operads, in the sense that, for any simplicial sets M and N , and for any dendroidal
sets X and Y , we have natural identifications

i!(M ×N) = i!(M)⊗ i!(N) and τd(X ⊗ Y ) = τd(X)⊗BV τd(Y ).
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We now recall some of the main combinatorial properties in the category of dendroidal sets;
see [7, 14, 15] for more details.

Just like for the simplicial category Δ, the arrows in Ω are generated by elementary
arrows. These are faces and degeneracies like for Δ, together with the isomorphisms (the
only isomorphisms in Δ are the identities). In particular, for a tree T , we may define ∂Ω[T ]
as the maximal proper subobject of Ω[T ], or, equivalently, as the union of all the images
of the elementary face maps Ω[S]→ Ω[T ]. We refer to ∂Ω[T ] as the boundary of Ω[T ]. The
saturation of the set of boundary inclusions ∂Ω[T ]→ Ω[T ] (that is, the closure under transfinite
composition, pushout, and retract) gives rise to the class of normal monomorphisms. The
normal monomorphisms can also be characterized as the monomorphisms of dendroidal sets u :
X → Y such that, for any tree T in Ω, the action of Aut(T ) on the set Y (T )− u(X(T )) is free. A
dendroidal set X is normal if the map ∅ → X is a normal monomorphism. We will often use the
following property: given any morphism of dendroidal sets X → Y , if Y is normal, then so is X.

For an internal edge e in a tree T , we denote by T/e the tree obtained from T by contracting
the edge e. Then there is an elementary face map

∂e : T/e −→ T

in Ω. Face maps of this shape are called inner or internal. We write Λe[T ] for the maximal
subobject of Ω[T ] which does not contain the image of the internal face ∂e : Ω[T/e]→ Ω[T ]
(equivalently, Λe[T ] may be described as the union of all the images of the elementary faces
Ω[S]→ Ω[T ] which do not factor through ∂e). We refer to Λe[T ] as the inner horn of Ω[T ]
associated to e. The class of inner anodyne extensions is defined to be the closure of the set of
inner horn inclusions by transfinite composition, pushout, and retract.

A morphism of dendroidal sets X → Y is called an inner fibration if it has the right lifting
property with respect to the set of inner horn inclusions Λe[T ]→ Ω[T ]. A dendroidal set X
is called an inner Kan complex, or an ∞-operad if the map from X to the terminal object of
dSet is an inner fibration. Under the identification dSet/η = sSet, the ∞-operads which admit a
(necessarily unique) map to η are precisely the ∞-categories (quasi-categories) of Joyal. We
may now formulate one of the main results of [7].

Theorem 1.1. The category dSet of dendroidal sets carries a cofibrantly generated model
category structure, whose cofibrations are the normal monomorphisms, and whose fibrant
objets are the ∞-operads. This structure is left proper and monoidal (that is, compatible
with tensor product). The induced model category structure on dSet/η = sSet corresponds to
the Joyal model structure on sSet.

The weak equivalences of the model structure above are called the weak operadic equiva-
lences. This model category structure on dSet will be referred to as the model category structure
for ∞-operads.

2. Segal cores

2.1. We recall that, for each n � 0, the nth corolla Cn is defined as the smallest rooted
tree with one vertex and n leaves.

······

Cn = •
a2

a1

��������� an

������������
a

(2.1)
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In general, we say that a face map F −→ T is a subtree if F −→ T is a composition of external
faces. In other words, a face map F −→ T is a subtree if F is obtained by successively pruning
away top vertices, or pruning away root vertices which have only one internal edge attached
to them.

F
���� ����

T =

��������������

��������������

(2.2)

Definition 2.2. Given a tree T with at least one vertex, we define its Segal core Sc[T ]
as the subobject of Ω[T ] defined as the union of all the images of those maps Ω[Cn]→ Ω[T ]
corresponding to subtrees of shape Cn → T . Remark that, up to isomorphism, such a map
Cn → T is completely determined by the vertex of T in its image, so we can write

Sc[T ] =
⋃
v

Ω[Cn(v)],

where the union is over all the vertices of T , and n(v) is the number of input edges at v.
If T = [0] is the tree with no vertices (so that Ω[T ] = Ω[0] = η is the unit object of the

Boardman–Vogt tensor product), then it will be convenient to define Sc[T ] = η.

Recall from [7, Paragraph 1.2] that an (elementary) face S → T of a tree T is called outer
or external if S is obtained from T by pruning away an external vertex, that is, a vertex with
exactly one inner edge attached to it.

Definition 2.3. Let T be a tree. The external boundary of Ω[T ] is the subobject ∂extΩ[T ]
of Ω[T ] obtained as the union of all the external faces of T .

Proposition 2.4. For any tree T, the inclusion Sc[T ]→ Ω[T ] is inner anodyne.

Proof. Note that, if T has at most one vertex, then this inclusion is an isomorphism, while,
if T has exactly two vertices, then this is an inner horn. So we may assume that T has at least
three vertices.

If T has N vertices, then Ω[T ] has a natural filtration by subobjects

Ω[T ]1 ⊂ Ω[T ]2 ⊂ · · · ⊂ Ω[T ]N−1 ⊂ Ω[T ]N = Ω[T ],

where, for 1 � n � N ,

Ω[T ]n =
⋃
ξ

Ω[Fξ]

is the union over all subtrees Fξ of T with at most n vertices. Note that, by definition, we have

Ω[T ]1 = Sc[T ] and Ω[T ]N−1 = ∂extΩ[T ].

By virtue of [15, Lemma 5.1], the inclusion ∂extΩ[S]→ Ω[S] is inner anodyne for any tree S
with at least two vertices. We shall use this to prove that the inclusion Ω[T ]n−1 → Ω[T ]n is
inner anodyne for 2 � n � N , which will prove the proposition.
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Let F0, . . . , Fk be all subtrees of T having n vertices. For 0 � j � k, we put

Sj =
⋃

0�i�j

Ω[Fi] ⊂ Ω[T ].

We shall prove by induction on j that the map

Sj ∩ Ω[T ]n−1 −→ Sj

is inner anodyne. The case j = 0 follows from the identification Ω[Fi] ∩ Ω[T ]n−1 = ∂extΩ[Fi],
0 � i � k. Assume that j > 0. Note that, since

Sj−1 ∩ Sj ∩ Ω[T ]n−1 = Sj−1 ∩ Ω[T ]n−1,

the following diagram is a pushout:

Sj−1 ∩ Ω[T ]n−1
��

��

Sj−1

��
Sj ∩ Ω[T ]n−1

�� Sj−1 ∪ (Ω[Fj ] ∩ Ω[T ]n−1)

Moreover, since Ω[Fp] ∩ Ω[Fq] ⊂ Ω[T ]n−1 for p 
= q, we have

Ω[Fj ] ∩ (Sj−1 ∪ (Ω[Fj ] ∩ Ω[T ]n−1)) = Ω[Fj ] ∩ Ω[T ]n−1,

which gives the following pushout square:

Ω[Fj ] ∩ Ω[T ]n−1
��

��

Ω[Fj ]

��
Sj−1 ∪ (Ω[Fj ] ∩ Ω[T ]n−1) �� Sj

Since the top arrows in these two squares are inner anodyne, so are the lower ones, and we
obtain that the composite

Sj ∩ Ω[T ]n−1 −→ Sj−1 ∪ (Ω[Fj ] ∩ Ω[T ]n−1) −→ Sj

is inner anodyne as well. For j = k, we conclude that the map

Ω[T ]n−1 −→ Sk ∪ Ω[T ]n−1 = Ω[T ]n

is the pushout of an inner anodyne extension.

Proposition 2.5. Let W be a class satisfying the following three conditions.

(i) The class W is closed under transfinite compositions, pushouts, and retracts.
(ii) Any Segal core inclusion belongs to W.
(iii) For any normal monomorphisms between normal dendroidal sets u : X → Y and v :

Y → Z, if u and vu are in W, so is v.

Then any inner anodyne extension belongs to W.

Proof. As, by definition, the class of inner anodyne extensions is the smallest class of maps
which satisfies condition (i) and contains the inner horn inclusions, it is sufficient to prove that
any inner horn inclusion belongs to W. For a tree T with at least two vertices, and any internal
edge e in T , we have the following natural inclusions:

Sc[T ] −→ ∂extΩ[T ] −→ Λe[T ] −→ Ω[T ]. (2.3)
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We shall prove by induction on the number |T | of vertices of T that all these inclusions belong
to W (note that this is not so if T has only one vertex). In fact, if A is a union of at least two
external faces of T , then Sc[T ] ⊂ A, while, if B is the union of ∂extΩ[T ] and of a collection of
internal faces not including the one contracting e, then there are interpolating inclusions

Sc[T ] −→ A −→ ∂extΩ[T ] −→ B −→ Λe[T ] −→ Ω[T ]. (2.4)

Our induction on |T | will proceed by showing that all these inclusions belong to W.
To begin with, if |T | = 2, then Ω[T ] has just two external faces, and one internal one (given

by the edge e), so Sc[T ] = A = ∂extΩ[T ] = B = Λe[T ], and hence, as W contains isomorphisms
and Segal core inclusions, all the inclusions in (2.4) are in W.

Consider now a tree S with |S| > 2, and assume that, for any tree T such that 2 � |T | < |S|,
all the maps in (2.4) are in W. We shall first show that, for any set {Ri}0�i�j of at least two
external faces of S, the map

Sc[S] −→ A =
⋃

0�i�j

Ω[Ri] (2.5)

is in W. For the set of all external faces of S, the map (2.5) is the inclusion Sc[S]→ ∂extΩ[S],
so that we shall have shown that this map belongs to W as well. By condition (iii), it then
follows that the map A→ ∂extΩ[S] also belongs to W.

To prove that (2.5) is in W, consider the case of just two distinct external faces R0 and R1

in S. Then the map

Sc[R0 ∩R1] −→ Ω[R0 ∩R1]

belongs to W (also if R0 ∩R1 is a tree with just one vertex), as does the map Sc[R1]→ Ω[R1].
Now, consider the commutative diagram below.

Sc[R0 ∩R1] ��

��

Sc[R1]

����������������

��
Ω[R0] ∩ Ω[R1] �� Sc[R1] ∪ (Ω[R0] ∩ Ω[R1]) �� Ω[R1]

The square is a pushout, so the right-hand vertical map belongs to W. As the slanted map also
does by assumption, we find that the right-hand horizontal map belongs to W. Next, the two
pushout diagrams

Sc[R1] ∪ (Ω[R0] ∩ Ω[R1]) ��

��

Ω[R1]

��
Sc[R1] ∪ Ω[R0] �� Ω[R0] ∪ Ω[R1]

and

Sc[R0] ��

��

Ω[R0]

��
Sc[R0] ∪ Sc[R1] �� Ω[R0] ∪ Sc[R1]

show that

Sc[S] = Sc[R0] ∪ Sc[R1] −→ Ω[R0] ∪ Ω[R1]

belongs to W. This shows that (2.5) belongs to W for any collection of two distinct external
faces. Consider now a collection {Ri}0�i�j of distinct external faces of S, with j � 1. We shall
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prove by induction on j that (2.5) belongs to W. The case j = 1 just having been dealt with,
we may assume that j � 2. By induction, we have that the map

Sc[R0] −→
⋃

0<i�j

Ω[R0 ∩Ri]

belongs to W, because R0 ∩Ri is an external face of R0 for 0 < i � j. Also, the map Sc[R0]→
Ω[R0] is in W, so that, by condition (iii), the map⋃

0<i�j

Ω[R0 ∩Ri] −→ Ω[R0]

belongs to W. By induction, the map

Sc[S] −→
⋃

0<i�j

Ω[Ri]

is in W, whence we deduce from the pushout⋃
0<i�j

Ω[R0 ∩Ri] ��

��

Ω[R0]

��⋃
0<i�j

Ω[Ri] ��
⋃

0�i�j

Ω[Ri]

that (2.5) is the composite of two maps in W. This completes the proof of the fact that all the
maps of type (2.5) belong to W.

We now turn to the internal faces of the tree S, and let B be the union of ∂extΩ[S] and of a
family of internal faces Ω[∂a1S], . . . ,Ω[∂akS], given by internal edges a1, . . . , ak, all distinct from
another internal edge e. We shall prove that ∂extΩ[S]→ B belongs to W. Then the composition
Sc[S]→ ∂extΩ[S]→ B belongs to W as well, and if B contains all internal faces but the one
given by e, we find that the inclusion Sc[S]→ Λe[S] belongs to W. Since Sc[S]→ Ω[S] is in W
by assumption, condition (iii) implies that Λe[S]→ Ω[S] is in W. So, to complete the proof of
the proposition, it is sufficient to prove that, under our inductive assumption (that the maps
in (2.4) all belong to W for smaller trees), the map

∂extΩ[S] −→ B = ∂extΩ[S] ∪
⋃

1�i�k

Ω[∂aiS] (2.6)

belongs to W for any family of internal edges a1, . . . , ak as above.
We proceed by induction on k. If k = 1, then S has at least two internal edges, hence ∂a1S

has at least two vertices, so, by assumption on trees smaller than S, the map

∂extΩ[∂a1S] −→ Ω[∂a1S]

belongs to W. But

∂extΩ[∂a1S] = Ω[∂a1S] ∩ ∂extΩ[S],

so we have a pushout diagram

∂extΩ[∂a1S] ��

��

Ω[∂a1S]

��
∂extΩ[S] �� ∂extΩ[S] ∪ Ω[∂a1S]

Thus, the inclusion map ∂extΩ[S]→ ∂extΩ[S] ∪ Ω[∂a1S] is in W. This proves the case k = 1.



DENDROIDAL SEGAL SPACES AND ∞-OPERADS 683

If k > 1, then we have⎛
⎝∂extΩ[S] ∪

⋃
1�i<k

Ω[∂aiS]

⎞
⎠ ∩ Ω[∂akS] = ∂extΩ[∂akS] ∪

⋃
1�i�k

Ω[∂ai∂akS],

so the diagram

∂extΩ[∂akS] ∪
⋃

1�i�k

Ω[∂ai∂akS] ��

��

Ω[∂akS]

��
∂extΩ[S] ∪

⋃
1�i<k

Ω[∂aiS] �� ∂
extΩ[S] ∪

⋃
1�i�k

Ω[∂aiS]

is a pushout. Moreover, the family {∂ai∂akS}1�i<k of internal faces of T = ∂akS misses the
edge e, so that, by assumption, all the inclusions in (2.4) belong to W. We conclude that the
top arrow in the pushout above belongs to W, whence so does the bottom arrow. By induction
on k, the map

∂extΩ[S] −→ ∂extΩ[S] ∪
⋃

1�i<k

Ω[∂aiS]

is in W, and as W is closed under composition, we find that (2.6) is in W.

Corollary 2.6. A dendroidal set X is the nerve of an operad if and only if, for any tree
T, the map

XT = HomdSet(Ω[T ],X) −→ HomdSet(Sc[T ],X)

is bijective.

Proof. Assume that X = Nd(P ) for a (coloured) operad P . Then, as the functor τd sends
inner anodyne inclusions to isomorphisms, it follows from Proposition 2.4 that the map
HomdSet(Ω[T ],X)→ HomdSet(Sc[T ],X) is bijective. The converse follows easily from Proposi-
tion 2.5 and from the characterization of dendroidal nerves given by Moerdijk and Weiss [15,
Proposition 5.3 and Theorem 6.1].

Remark 2.7. The preceding corollary gives in particular the well-known characterization
of small categories as simplicial sets satisfying the Grothendieck–Segal condition: given a
simplicial set X, then, for T = n with n � 1, we have

HomdSet(Sc[T ],X) = X1 ×X0 X1 ×X0 · · · ×X0 X1︸ ︷︷ ︸
n times

.

3. Equivalences of ∞-operads

3.1. For an ∞-category X, we denote by k(X) the maximal Kan complex contained in
X; see [11, Corollary 1.5]. Recall that, if A and X are two dendroidal sets, then Hom(A,X)
denotes their internal Hom (with respect to the Boardman–Vogt tensor product of dendroidal
sets).

Given two dendroidal sets A and X, we write

hom(A,X) = i∗ Hom(A,X).
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If X is an ∞-operad, and if A is normal, then Hom(A,X) is an ∞-operad, so that hom(A,X)
is an ∞-category; see [15, Theorem 9.1].

For an ∞-operad X and a simplicial set K, we will write X(K) for the subcomplex of
Hom(i!(K),X) which consists of dendrices

a : Ω[T ]× i!(K) −→ X,

such that, for any edge u in the tree T , the induced map

au : K −→ i∗(X)

factors through k(i∗(X)) (that is, all the 1-cells in the image of au are weakly invertible in
i∗(X)).

For an ∞-operad X and a normal dendroidal set A, we write k(A,X) for the subcomplex of
hom(A,X) which consists of maps

u : A⊗ i!(Δ[n]) −→ X,

such that, for all vertices a of A (that is, maps a : η → A), the induced map

ua : Δ[n] −→ i∗(X)

factors through k(i∗(X)). So, by definition, for any normal dendroidal set A, any simplicial set
K, and any ∞-operad X, there is a natural bijection:

HomsSet(K, k(A,X)) � HomdSet(A,X(K)). (3.1)

Furthermore, by virtue of [7, 6.8], we have the equality:

k(A,X) = k(hom(A,X)) (3.2)

(in particular, k(A,X) is a Kan complex).

3.2. Recall that, in any model category C, given a cofibrant object A and a fibrant object
X, one of the models of the mapping space Map(A,X) is the simplicial set defined by

Map(A,X)n = HomC(A,Xn), (3.3)

where X• is a Reedy fibrant resolution of X (where X is seen as a simplicially constant object
of CΔop

); see [10, 5.4.7 and 5.4.9], for instance. In the case where C = dSet and X is an ∞-
operad, then the simplicial dendroidal set X(Δ[•]) is Reedy fibrant, and, for any integer n � 0,
the map X → X(Δ[n]) is a weak equivalence (this follows immediately from [7, Corollary 6.9]).
In particular, we obtain the following proposition.

Proposition 3.3. If A is a normal dendroidal set and X an ∞-operad, then there is a
natural isomorphism (in fact, identity) of simplicial sets

k(A,X) � Map(A,X).

Proof. This follows immediately from the identifications (3.1) and (3.3).

Lemma 3.4. Let X be an ∞-operad.

(i) For any simplicial set K, and for any normal dendroidal set A, there is a natural bijection

HomHo(sSet)(K, k(A,X)) � HomHo(dSet)(A,X(K)).
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(ii) For any cofibration (respectively, trivial cofibration) between normal dendroidal sets
A→ B, the map k(B,X)→ k(A,X) is a fibration (respectively, a trivial fibration) between
Kan complexes.

(iii) For any pushout of normal dendroidal sets

A ��

i

��

A′

i′

��
B �� B′

with i a cofibration, the commutative square

k(B′,X) ��

��

k(A′,X)

��
k(B,X) �� k(A,X)

is a pullback.
(iv) For any sequence of cofibrations between normal dendroidal sets

A0 −→ A1 −→ · · · −→ An −→ An+1 −→ · · · ,
the map

k

(
lim−→
n

An,X

)
−→ lim←−

n

k(An,X)

is an isomorphism.

Proof. This follows immediately from Proposition 3.3, using the general properties of
mapping space functors; see, for instance, [10, Proposition 5.4.1 and Theorem 5.4.9].

Theorem 3.5. Let f : X → Y be a morphism between ∞-operads. The following condi-
tions are equivalent.

(a) For any integer n � 0, the map k(Ω[Cn],X)→ k(Ω[Cn], Y ) is a simplicial homotopy
equivalence, as is the map k(η,X)→ k(η, Y ).

(b) For any tree T, the map k(Ω[T ],X)→ k(Ω[T ], Y ) is a simplicial homotopy equivalence.
(c) For any normal dendroidal set A, the map k(A,X)→ k(A, Y ) is a simplicial homotopy

equivalence.
(d) The map f : X → Y is a weak operadic equivalence.

Proof. Assume condition (a). We claim that, for any tree T , the induced map k(Sc[T ],X)→
k(Sc[T ], Y ) is a simplicial homotopy equivalence. Note that, for T = [0], this is a special case
of (a). Therefore, to prove this, we may assume that T has at least one vertex. Let v1, . . . , vk

be the vertices of T , and, for 1 � i � k, write ni for the number of input edges of vi in T . We
then have

Sc[T ] =
⋃

1�i�k

Ω[Cni
].

Moreover, for two indices i 
= j, the intersection Ω[Cni
] ∩ Ω[Cnj

] is either empty or isomorphic
to η. For 1 � j � k, define

Ai =
⋃

1�i�j

Ω[Cni
].
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For 1 < i � k, there is a pushout square

Ai−1 ∩ Ω[Cni
] ��

��

Ω[Cni
]

��
Ai−1

�� Ai

in which the intersection Ai−1 ∩ Ω[Cni
] is isomorphic to a finite sum of copies of η. By the cube

lemma (see the dual version of [10, Lemma 5.2.6]), using properties (ii) and (iii) of Lemma 3.4,
we obtain by induction on i that the maps

k(Ai,X) −→ k(Ai, Y )

are simplicial homotopy equivalences. In particular, for i = k, this means that the map

k(Sc[T ],X) −→ k(Sc[T ], Y )

is a simplicial homotopy equivalence. Thus, since the vertical maps in the commutative square

k(Ω[T ],X) ��

��

k(Ω[T ], Y )

��
k(Sc[T ],X) �� k(Sc[T ], Y )

are simplicial homotopy equivalences as well (by Proposition 2.4 and Lemma 3.4(ii)), this
proves (b).

The fact that condition (b) implies condition (c) followsby similar arguments† from
Lemma 3.4, using the skeletal filtration of normal dendroidal sets [15, section 4].

A reformulation of Lemma 3.4(i) in the particular case where K = Δ[0] is that, for a normal
dendroidal set A and an ∞-operad X, we have a natural bijection

π0(k(A,X)) � HomHo(dSet)(A,X).

It thus follows from the Yoneda lemma that condition (c) implies condition (d).
Finally, the fact that condition (d) implies condition (c) (and, therefore, condition (a)) is

obvious: it follows from Lemma 3.4(ii) and from Ken Brown’s Lemma [10, Lemma 1.1.12]
that the functor k(A,−) sends weak operadic equivalences between ∞-operads to simplicial
homotopy equivalences.

3.6. Let X be an ∞-operad. Given an (n + 1)-tuple of 0-cells (x1, . . . , xn, x) in X, the
space of maps X(x1, . . . , xn;x) is obtained by the pullback below, in which the map p is the
map induced by the inclusion η  · · ·  η → Ω[Cn] (with n + 1 copies of η, corresponding to
the n + 1 objects (a1, . . . , an, a) of Cn; see (2.1)).

X(x1, . . . , xn;x) ��

��

Hom(Ω[Cn],X)

p

��
η

(x1,...,xn,x)
�� Xn+1

Using the identification sSet = dSet/η, we shall consider X(x1, . . . , xn;x) as a simplicial set.
Observe that X(x1, . . . , xn;x) is actually a Kan complex (see [7, Proposition 6.13]).

†Another proof consists to see that, by Cisinski and Moerdijk [7, 1.7], for a normal dendroidal set A, the
category Ω/A is a regular skeletal category in the sense of [6, 8.2.3], from which we deduce that A is the
homotopy colimit of representable objects over A (see [6, 8.2.9]), and we can use Proposition 3.3 to see that
the functor k(−, X) turns homotopy colimits into homotopy limits (see, for instance, [5, 6.13]), which implies
the result.
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Definition 3.7. Let f : X → Y be a morphism of ∞-operads.
The map f is fully faithful if, for any (n + 1)-tuple of 0-cells (x1, . . . , xn, x) in X, the

morphism
X(x1, . . . , xn;x) −→ Y (f(x1), . . . , f(xn); f(x))

is a simplicial homotopy equivalence.
The map f is essentially surjective if the functor underlying the morphism of operads

τd(X)→ τd(Y ) is essentially surjective.

Remark 3.8. For an ∞-operad X, the set of isomorphism classes of objects in τd(X)
is in bijection with the set π0(k(i∗X)); see [7, 4.1]. The condition of essential surjectivity is
thus equivalent to the fact that the map k(i∗X)→ k(i∗Y ) induces a surjection on connected
components.

Moreover, by virtue of [7, Proposition 6.14], we have natural bijections

π0(X(x1, . . . , xn;x)) � τd(X)(x1, . . . , xn;x).

As a consequence, if f : X → Y is fully faithful, so is the induced morphism of operads τd(f) :
τd(X)→ τd(Y ). Therefore, if f : X → Y is fully faithful and essentially surjective, then the
map k(i∗X)→ k(i∗Y ) induces a bijection on connected components.

We recall the following well-known fact.

Lemma 3.9. A commutative square of simplicial sets

X
u ��

p

��

X ′

p′

��
Y v

�� Y ′

in which p and p′ are Kan fibrations is a homotopy pullback square if and only if, for any
0-simplex y of Y, the map between the corresponding fibres

p−1(y) = Xy −→ X ′
v(y) = p′−1(v(y))

is a simplicial homotopy equivalence.

The following lemma is a direct consequence of the preceding lemma.

Lemma 3.10. Consider a commutative square of simplicial sets.

X
u ��

p

��

X ′

p′

��
Y v

�� Y ′

Assume, furthermore, that p and p′ are Kan fibrations, and that the map v is a weak homotopy
equivalence. Then the map u is a weak homotopy equivalence if and only if, for any 0-simplex
y of Y, the map between the corresponding fibres

Xy −→ X ′
v(y)

is a simplicial homotopy equivalence.
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Theorem 3.11. Let f : X → Y be a morphism between two∞-operads. Then f is a weak
operadic equivalence if and only if it is fully faithful and essentially surjective.

Proof. Given an∞-operad X, and an (n + 1)-tuple (x1, . . . , xn, x) of objects of X, that is, a
0-simplex of k(i∗X)n+1 = k(∂Ω[Cn],X), we have the following diagram in which the right-hand
square is a pullback square (see [7, Remark 6.2 and Corollary 6.8]):

X(x1, . . . , xn;x) ��

��

k(Ω[Cn],X) ��

��

hom(Ω[Cn],X)

��
η

(x1,...,xn,x)
�� k(i∗X)n+1 �� i∗Xn+1

Hence, the left-hand square above is a pullback as well. Assume that f is fully faithful
and essentially surjective. We will first prove that the induced morphism k(i∗X)→ k(i∗Y )
is a simplicial homotopy equivalence. As the corresponding map π0(k(i∗X))→ π0(k(i∗Y )) is
bijective (see Remark 3.8), it is sufficient to prove that, for any 0-simplex x of k(i∗X), the map
of loop spaces

Ω(k(i∗X), x) −→ Ω(k(i∗Y ), f(x))

is a weak homotopy equivalence. For this purpose, it will be sufficient to prove that the
commutative square

Ω(k(i∗X), x) ��

��

Ω(k(i∗Y ), f(x))

��
X(x;x) �� Y (f(x); f(x))

(3.4)

is homotopy cartesian. In general, the set of connected components of the Kan complex
X(x1, . . . , xn;x) is in bijection with the set τd(X)(x1, . . . , xn;x); see [7, Proposition 6.14].
We can thus describe the loop space Ω(k(i∗X), x) as the disjoint union of the connected
components of X(x;x) which correspond to automorphisms of x in the category underlying the
operad τd(X). In particular, the inclusion Ω(k(i∗X), x) ⊂ X(x;x) is a Kan fibration between
Kan complexes. Using the fact that the functor underlying the map τd(X)→ τd(Y ) is fully
faithful (whence conservative), we see that the map

π1(k(i∗X), x) = π0(Ω(k(i∗X), x)) −→ π0(Ω(k(i∗Y ), f(x))) = π1(k(i∗Y ), f(x))

is bijective. The square (3.4) is thus cartesian, and, as its vertical maps are Kan fibrations,
it is homotopy cartesian as well. Therefore, the map k(i∗X)→ k(i∗Y ) is a simplicial homo-
topy equivalence. As a consequence, for any corolla Cn, we also have simplicial homotopy
equivalences

k(i∗X)n+1 = k(∂Ω[Cn],X) −→ k(i∗Y )n+1 = k(∂Ω[Cn], Y ).

By applying Lemma 3.10 to the commutative squares

k(Ω[Cn],X) ��

��

k(Ω[Cn], Y )

��
k(∂Ω[Cn],X) �� k(∂Ω[Cn], Y )

(3.5)

we conclude that the maps k(Ω[Cn],X)→ k(Ω[Cn], Y ) are all simplicial homotopy
equivalences. The characterization given by condition (a) of Theorem 3.5 thus implies that
f is a weak operadic equivalence.

For the converse, we just apply again Lemma 3.10 to the commutative squares (3.5).
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Remark 3.12. As we have seen implicitly in the proof above, Theorem 3.5 and Lemma
3.9 lead to a characterization of fully faithful maps: a morphism between ∞-operads X → Y
is fully faithful if and only if the commutative squares of shape (3.5) are homotopy pullback
squares of Kan complexes for any n � 0.

4. Locally constant simplicial dendroidal sets

4.1. Let sdSet = dSetΔ
op � ̂Δ× Ω be the category of simplicial dendroidal sets. The category

dSet (respectively, sSet) of dendroidal (respectively, simplicial) sets is naturally embedded in sdSet,
by viewing a dendroidal (respectively, simplicial) set as a constant simplicial (respectively,
dendroidal) object in dSet (respectively, in sSet). For a simplicial dendroidal set X, a tree T ,
and an integer n � 0, the evaluation of X at (T, n) will often be denoted by X(T )n.

Given a simplicial dendroidal set X, we denote by

sSetop −→ dSet, K �−→ XK ,

the (essentially) unique limit-preserving functor which sends Δ[n] to XΔ[n] := Xn.
Starting from the model category structure on dSet, and using that the category of simplices

Δ is a Reedy category, one obtains the Reedy model structure on sdSet; see [10, Theorem 5.2.5].
We shall call this structure the simplicial Reedy model category structure on sdSet. By definition,
the weak equivalences are the termwise weak operadic equivalences (by evaluating at simplices),
while the fibrations (respectively, the trivial fibrations) are the maps X → Y such that, for any
integer n � 0, the map

XΔ[n] −→ X∂Δ[n] ×Y ∂Δ[n] Y Δ[n]

is a fibration (respectively, a trivial fibration) in dSet. In other words, we have the following
proposition.

Proposition 4.2. The simplicial Reedy model structure on sdSet is a cofibrantly generated
model category. A generating set of cofibrations of sdSet is given by the inclusions

∂Δ[n]× Ω[T ] ∪Δ[n]× ∂Ω[T ] −→ Δ[n]× Ω[T ],

for any integer n � 0 and any tree T, while, if K is a generating set of trivial cofibrations
(between normal dendroidal sets) in dSet, then a generating set of trivial cofibrations of sdSet is
given by the inclusions

∂Δ[n]×B ∪Δ[n]×A −→ Δ[n]×B,

for any integer n � 0 and any map A→ B in K.

Corollary 4.3. The cofibrations of the simplicial Reedy model category structure on sdSet
are the termwise normal monomorphisms of dendroidal sets.

Proof. It is well known that any Reedy cofibration is a termwise cofibration. Therefore, it
is sufficient to prove that any termwise normal monomorphism is a cofibration of the simplicial
Reedy model category structure on sdSet. As both Ω and Δ are skeletal categories in the sense
of [6, 8.1.1], so is their product [6, 8.1.7]. Moreover, for any integer n � 0 and any tree T ,
the boundary of the representable presheaf Δ[n]× Ω[T ] is nothing but the presheaf ∂Δ[n]×
Ω[T ] ∪Δ[n]× ∂Ω[T ]. Therefore, the Reedy cofibrations of sdSet are the normal monomorphisms
in the absolute sense (see [6, 8.1.30 and 8.1.35] for A = Δ× Ω). Thus, Reedy cofibrations
are precisely the monomorphisms X → Y in sdSet such that, for any integer n � 0 and any
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tree T , any non-degenerate element y ∈ Yn,T which does not belong to the image of Xn,T has a
trivial stabilizer in Aut(([n], T )) = Aut(T ). On the other hand, a monomorphism of simplicial
dendroidal sets X → Y is termwise normal if and only if, for any integer n � 0 and any tree
T , any element y ∈ Yn,T which does not belong to the image of Xn,T has a trivial stabilizer.
Therefore, any termwise normal monomorphism is a Reedy cofibration.

4.4. In the sequel, we will simply refer to the cofibrations of the simplicial Reedy model
category structure on sdSet as normal monomorphisms.

Remark 4.5. Any fibrant object of the simplicial Reedy model category on sdSet is termwise
fibrant (that is, is termwise an ∞-operad).

Definition 4.6. We define the locally constant model category structure on sdSet as the
left Bousfield localization of the simplicial Reedy model category structure on sdSet by the set
of projections Δ[n]× Ω[T ]→ Ω[T ], for any tree T and any integer n � 0 (see [9] for the general
theory of left Bousfield localization of model categories).

Proposition 4.7. Let X be a simplicial dendroidal set. Assume that X is fibrant for the
simplicial Reedy model category structure. Then the following conditions are equivalent:

(i) the map from X to the terminal object has the right lifting property with respect to
the inclusions

Λk[n]× Ω[T ] ∪Δ[n]× ∂Ω[T ] −→ Δ[n]× Ω[T ],

for any tree T and for any integers n � 1 and 0 � k � n;
(ii) for any integer n � 0, the map X0 → Xn is an equivalence of ∞-operads;
(iii) X is fibrant for the locally constant model category structure on sdSet.

Proof. The equivalence between conditions (ii) and (iii) holds by definition of left Bousfield
localizations, as, for any tree T , we have a natural identification in Ho(sSet)

Map(Ω[T ],Xn) = Map(Δ[n]× Ω[T ],X),

for any integer n � 0.
Next, it follows easily from [6, Corollary 2.1.20; 10, Lemma 4.2.4] that the class of

monomorphisms K → L in sSet such that, for any tree T , the map

K × Ω[T ] ∪ L× ∂Ω[T ] −→ L× Ω[T ]

is a trivial cofibration of the locally constant model category structure on sdSet, contains
the class of trivial cofibrations of the usual model category structure on sSet. Therefore,
condition (iii) implies condition (i). Conversely, as the horn inclusions generate the trivial
cofibrations of the usual model category structure on sSet, it is clear that condition (i) implies
condition (iii).

Proposition 4.8. The inclusion dSet ⊂ sdSet is a left Quillen equivalence from the model
category for ∞-operads to the locally constant model category structure. Moreover, this
inclusion preserves and detects weak equivalences between arbitrary objects.

Proof. This inclusion functor is left adjoint to the evaluation at zero functor

ev0 : sdSet −→ dSet, X �−→ X0.
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Note first that the inclusion functor dSet ⊂ sdSet is a left Quillen functor which preserves
weak equivalences: by virtue of Corollary 4.3, it preserves cofibrations, and it preserves weak
equivalences by definition of the locally constant model structure. Thus, to complete the proof,
it is sufficient to check the following two properties:

(a) for any fibrant object X of the locally constant model structure, the natural map X0 →
X is a weak equivalence;

(b) for any fibrant object X in dSet, there exists a weak equivalence X → Y in sdSet with Y
fibrant in the locally constant model structure, such that the induced map X → Y0 is a
weak equivalence of dendroidal sets.

Property (a) follows from the characterization of fibrant objects given by condition (ii) of the
previous proposition. Property (b) is a particular instance of the existence of Reedy fibrant
resolutions.†

5. Dendroidal Segal spaces

5.1. We shall now consider different model category structures on the category of simplicial
dendroidal sets.

Given a simplicial dendroidal set X, let us denote by

dSetop −→ sSet, A �−→ XA,

the (essentially) unique limit-preserving functor which sends a tree T to XΩ[T ] := X(T ).
Starting from the usual model category structure on the category of simplicial sets, we first

have the following proposition.

Proposition 5.2. The category sdSet admits a cofibrantly generated and proper model
category structure whose weak equivalences are the termwise simplicial weak homotopy
equivalences (that is, the maps X → Y such that, for any tree T, the map XT → YT is a
simplicial weak homotopy equivalence), and whose cofibrations are the normal monomorphisms.
Moreover, a morphism of simplicial dendroidal sets X → Y is a fibration (respectively, a trivial
fibration) if and only if, for any tree T, the map

XΩ[T ] −→ X∂Ω[T ] ×Y ∂Ω[T ] Y Ω[T ] (5.1)

is a Kan fibration (respectively, a trivial Kan fibration). In other words, a set of generators for
cofibrations is provided by the maps

∂Δ[n]× Ω[T ] ∪Δ[n]× ∂Ω[T ] −→ Δ[n]× Ω[T ],

for any tree T and for any integer n � 0, while a generating set of trivial cofibrations is given
by the maps

Λk[n]× Ω[T ] ∪Δ[n]× ∂Ω[T ] −→ Δ[n]× Ω[T ],

for any tree T and for any integers n � 1 and 0 � k � n.

Proof. As the category Ω is a generalized Reedy category (see [3, Example 2.8]), the model
category above can be obtained as a special case of [3, Theorem 1.6].

†One can also prove (b) more explicitely from [7, Corollary 6.9]: given an ∞-operad X, we can consider
the simplicial dendroidal set Y defined by Yn,T = k(Ω[T ], X)n for any integer n � 0 and any tree T (see
Subsection 3.2).
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Remark 5.3. We shall call the model category of Proposition 5.2 the generalized Reedy
model category structure on sdSet.

Definition 5.4. We define the model category structure for dendroidal Segal spaces as
the left Bousfield localization of the generalized Reedy model category on sdSet by the set of
maps Sc[T ]→ Ω[T ], for any tree T (we consider dSet as full subcategory of sdSet via the obvious
inclusion dSet ⊂ sdSet). A fibrant object for this model category will be called a dendroidal Segal
space.

Proposition 5.5. The model category structure for dendroidal Segal spaces is the left
Bousfield localization of the generalized Reedy model category structure on sdSet by the set of
maps Λe[T ]→ Ω[T ], for any tree T with an inner edge e.

Proof. It follows immediately from Proposition 2.5 that, for any tree T with given inner
edge e, the map Λe[T ]→ Ω[T ] is a weak equivalence of the model category structure for
dendroidal Segal spaces. Conversely, let W be the class of maps of dendroidal sets which are
weak equivalences in the left Bousfield localization of the generalized Reedy model category
on sdSet by the set of maps Λe[T ]→ Ω[T ], for any tree T with an inner edge e. It is clear that
any inner anodyne extension in dSet belongs to W, so that, by virtue of Proposition 2.4, for any
tree T , the inclusion Sc[T ]→ Ω[T ] is in W.

Corollary 5.6. Let X be a simplicial dendroidal set. Assume that X is fibrant for the
generalized Reedy model category structure. Then the following conditions are equivalent:

(i) X is a dendroidal Segal space;
(ii) for any tree T, the map XΩ[T ] → XSc[T ] is a trivial Kan fibration in sSet;
(iii) for any tree T with a given inner edge e, the map XΩ[T ] → XΛe[T ] is a trivial Kan

fibration in sSet.

Proof. For any normal dendroidal set A, there is a canonical identification

Map(A,X) = XA.

The corollary thus follows from the definition of left Bousfield localizations and from
Proposition 5.5.

Proposition 5.7. A morphism of dendroidal Segal spaces X → Y is a weak equivalence
if and only if, its evaluation at T

X(T ) = XΩ[T ] −→ Y Ω[T ] = Y (T )

is a simplicial homotopy equivalence for T = η as well as for T = Cn, n � 0.

Proof. A morphism of dendroidal Segal spaces is a weak equivalence of the model structure
for dendroidal Segal spaces if and only if it is a weak equivalence of the generalized Reedy
model category structure. In other words, a morphism of dendroidal Segal spaces X → Y is a
weak equivalence if and only if its evaluation at T

XΩ[T ] −→ Y Ω[T ]
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is a simplicial homotopy equivalence for any tree T . By virtue of condition (ii) of the preceding
corollary, we see that evaluating a dendroidal Segal space at a tree T gives the same information
as evaluating at Sc[T ]. We easily conclude the proof from the fact that Sc[T ] is a (homotopy)
colimit of dendroidal sets of shape η or Ω[Cn], n � 0.

5.8. If X is a dendroidal Segal space, and if (x1, . . . , xn, x) is an (n + 1)-tuple of elements
of X(η)n+1

0 , then we define X(x1, . . . , xn;x) by the following pullback:

X(x1, . . . , xn;x) ��

��

X(Cn)

��
Δ[0]

(x1,...,xn,x)
�� X(η)n+1

in which the map X(Cn)→ X(η)n+1 = X∂Ω[Cn] is the map induced by the inclusion
∐

n+1 η =
∂Ω[Cn]→ Ω[Cn]. As X(Cn)→ X(η)n+1 is a Kan fibration, the pullback square above is
homotopy cartesian, and X(x1, . . . , xn;x) is a Kan complex.

Definition 5.9. A morphism of dendroidal Segal spaces f : X → Y is fully faithful if, for
any (n + 1)-tuple of 0-cells (x1, . . . , xn, x) in X(η), the morphism

X(x1, . . . , xn;x) −→ Y (f(x1), . . . , f(xn); f(x))

is a simplicial homotopy equivalence.
A morphism of dendroidal Segal spaces is a weak equivalence on objects if its evaluation at

η is a simplicial weak equivalence.

Corollary 5.10. A morphism of dendroidal Segal spaces is a weak equivalence if and
only if it is fully faithful as well as a weak equivalence on objects.

Proof. This follows immediately from Proposition 5.7 and from Lemma 3.10.

6. Complete dendroidal Segal spaces

6.1. Recall the dendroidal interval Jd = i!(J), where J = Nπ1(Δ[1]) denotes the nerve of
the contractible groupoid with two objects 0 and 1.

Definition 6.2. We define the dendroidal Rezk model category as the left Bousfield
localization of the model category for dendroidal Segal spaces (5.4) by the maps

Ω[T ]⊗ Jd −→ Ω[T ], T ∈ Ω,

obtained by tensoring with the unique morphism Jd → η, the image under i! of the unique map
J → Δ[0]. The fibrant objects of the dendroidal Rezk model category will be called complete
dendroidal Segal spaces. The weak equivalences of this model category structure will be called
the complete weak equivalences.

Proposition 6.3. For any normal dendroidal set A, the map A⊗ Jd −→ A induced by
the projection Jd −→ η is a complete weak equivalence.
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Proof. It is sufficient to prove that this map is a weak equivalence for the induced model
category structure on sdSet/A, the latter being equivalent to the category of presheaves on the
category Δ× Ω/A (where Ω/A is the category of elements of A). On the other hand, we know
that tensoring by Jd preserves colimits as well as normal monomorphisms. As, by virtue of [7,
Corollary 1.7], Ω/A is then a regular skeletal category in the sense of [6, 8.2.3], this proposition
is a straightforward application of [6, 8.2.14].

Corollary 6.4. The inclusion dSet ⊂ sdSet sends the weak operadic equivalences between
normal dendroidal sets to complete weak equivalences.

Proof. By virtue of Propositions 5.5 and 6.3, this inclusion functor sends J-anodyne exten-
sions in the sense of [7, 3.2] to complete weak equivalences. This corollary thus immediately
follows from [7, Proposition 3.16] and from Ken Brown’s Lemma [10, Lemma 1.1.12].

Corollary 6.5. Let K be a generating set of trivial cofibrations in dSet. We assume that all
the maps in K are morphisms between normal dendroidal sets (which is a harmless hypothesis,
by virtue of [7, Remark 3.15]). A simplicial dendroidal set X is a complete dendroidal Segal
space if and only if it is a Segal space, and if the map from X to the terminal simplicial
dendroidal set has the right lifting property with respect to the inclusions of shape

∂Δ[n]×B ∪Δ[n]×A −→ Δ[n]×B,

for j : A→ B in K and n � 0.

Proof. Let L be the set of maps ∂Δ[n]×B ∪Δ[n]×A→ Δ[n]×B, for A→ B in K and
n � 0, and consider the left Bousfield localization of the model category for dendroidal Segal
spaces by L. It is clear that the L-fibrant objects are precisely the Segal spaces X such that
the map from X to the terminal object has the right lifting property with respect to the
elements of L. Therefore, it is sufficient to prove that this left Bousfield localization at L
coincides with the dendroidal Rezk model category structure on sdSet. Using Corollaries 4.3
and 6.4, we easily see that the elements of L are cofibrations and complete weak equivalences.
On the other hand, for any trivial cofibration X → Y in dSet and any integer n � 0 the map
∂Δ[n]× Y ∪Δ[n]×X → Δ[n]× Y is a trivial cofibration of the localized model structure at
L (this readily follows from [10, Lemma 4.2.4], for instance). In particular, for any tree T ,
and ε ∈ {0, 1}, the map Ω[T ] = Ω[T ]⊗ {ε} → Ω[T ]⊗ Jd is a weak equivalence of the localized
model structure at L. Therefore, any complete weak equivalence is a weak equivalence for the
left Bousfield localization by L.

Theorem 6.6. The locally constant model category structure on sdSet (4.6) and the
dendroidal Rezk model category structure (6.2) are equal.

Proof. As these two model category structures on sdSet have the same class of cofibrations,
it is sufficient to observe that they have the same class of fibrant objects, which follows from
Corollary 6.5 and from the characterization of fibrant objects given by Propositions 4.2, 4.7(i),
5.2, and Corollary 5.6(iii).

Corollary 6.7. The inclusion functor dSet ⊂ sdSet is a left Quillen equivalence from the
model category for ∞-operads to the dendroidal Rezk model category.
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Proof. This follows from the preceding theorem and from Proposition 4.8.

Corollary 6.8. A morphism of dendroidal sets is a weak operadic equivalence if and only
if its image under the inclusion dSet ⊂ sdSet is a complete weak equivalence.

Proof. This is a reformulation of the last assertion of Proposition 4.8 through Theorem 6.6.

Corollary 6.9. Let X → Y be a morphism between complete dendroidal Segal spaces.
The following conditions are equivalent.

(a) The map X → Y is a complete weak equivalence.
(b) For any integer n � 0, the map Xn → Yn is an equivalence of ∞-operads.
(c) The map X0 → Y0 is an equivalence of ∞-operads.
(d) For any tree T, the map X(T )→ Y (T ) is a homotopy equivalence between Kan

complexes.

6.10. Consider the cosimplicial dendroidal set

ΔJ : Δ −→ dSet, (6.1)

defined by

ΔJ [n] = i!Nπ1(Δ[n]) (6.2)

(so that ΔJ [1] = Jd). This cosimplicial object defines a unique colimit-preserving functor

sdSet −→ dSet, X �−→ |X|J , (6.3)

such that

|Δ[n]× Ω[T ]|J = ΔJ [n]⊗ Ω[T ]. (6.4)

The functor | − |J has a right adjoint

dSet −→ sdSet, X �−→ SingJ(X), (6.5)

defined by

SingJ(X)(T )n = HomdSet(ΔJ [n]⊗ Ω[T ],X). (6.6)

Proposition 6.11. The functor (6.3) is a left Quillen equivalence from the dendroidal
Rezk model category to the model category for ∞-operads.

Proof. Using the fact that dSet is a monoidal model category, it is easily seen that (6.3) is
a left Quillen functor from the generalized Reedy model structure (given by Proposition 5.2)
to the model category for ∞-operads. Therefore, to prove that this is a left Quillen functor for
the dendroidal Rezk model structure, it is sufficient to prove that it sends inner horns as well
as maps of shape

Ω[T ]⊗ Jd −→ Ω[T ], T ∈ Ω,

to weak operadic equivalences. But this latter property follows from the fact that the
composition of (6.3) with the inclusion dSet ⊂ sdSet is (isomorphic to) the identity. Similarly, to
prove that (6.3) is a left Quillen equivalence, by virtue of Corollary 6.7, it is sufficient to prove
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that its composition with the inclusion dSet ⊂ sdSet is a left Quillen equivalence, which is more
than obvious.

6.12. Let ∞-Operad be the full subcategory of dSet spanned by ∞-operads (that is, fibrant
objects). We define a functor

K :∞-Operad −→ sdSet, (6.7)

by the formula below (see 3.1):

K(X)(T )n = k(Ω[T ],X)n. (6.8)

Proposition 6.13. The functor (6.7) takes its values in the full subcategory of sdSet
spanned by complete dendroidal Segal spaces. Moreover, it preserves fibrations as well as
weak equivalences between ∞-operads, and, under the canonical equivalence Ho(∞-Operad ) �
Ho(dSet), the corresponding functor

K : Ho(dSet) −→ Ho(sdSet)

is canonically isomorphic to the functor

RSingJ : Ho(dSet) −→ Ho(sdSet)

(which is an equivalence of categories).

Proof. In view of the identification of Proposition 3.3, this is a straightforward application of
the general properties of mapping spaces; see [10, Propositions 5.4.1, 5.4.3, and 5.4.7] (remark
that, for any normal dendroidal set A, ΔJ [•]⊗A provides a canonical cosimplicial frame of A
in the sense of [10, Definition 5.2.7]).

Remark 6.14. The Boardman–Vogt tensor product on dSet induces a symmetric monoidal
structure on sdSet: for two simplicial dendroidal sets X and Y , their tensor product X ⊗ Y is
simply defined termwise:

(X ⊗ Y )n = Xn ⊗ Yn, n � 0.

Using the fact that dSet is a symmetric monoidal model category with respect to the Boardman–
Vogt tensor product (Theorem 1.1), it is easily seen that sdSet, endowed with the dendroidal
Rezk model structure, is also a symmetric monoidal model category. Moreover, the functor
dSet ⊂ sdSet is a symmetric monoidal left Quillen equivalence.

7. Segal pre-operads

Definition 7.1. A Segal pre-operad is a dendroidal space A such that A(η) is a discrete
simplicial set (that is, all the simplices of positive dimension in A(η) are degenerated). We
denote by PreOper the full subcategory of sdSet spanned by Segal pre-operads.

7.2. The category of Segal pre-operads is in fact the category of presheaves on the category
S(Ω), which is obtained as the localization of Δ× Ω by the arrows of shape ([n], η)→ ([m], η).
We denote by

γ : Δ× Ω −→ S(Ω), (7.1)
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the localization functor. Under the identification PreOper � ̂S(Ω), the inverse image functor

γ∗ : PreOper −→ sdSet (7.2)

is simply the inclusion functor. The inclusion functor γ∗ thus has a right adjoint

γ∗ : sdSet −→ PreOper, (7.3)

as well as a left adjoint
γ! : sdSet −→ PreOper. (7.4)

The explicit description of these adjoints will be needed later on.
The right adjoint, γ∗ : sdSet → PreOper, is defined as follows. Let X be a dendroidal space.

Then γ∗(X) is the subobject of X given by all the dendrices whose vertices are degenerated.
More explicitly, for a tree T , let write E(T ) for its set of edges (colours), with the evident
inclusion (which is natural in T )

vT :
∐

e∈E(T )

η −→ Ω[T ].

For a simplicial set K, we shall identify the set K0 with the corresponding discrete simplicial
set, and write s : K0 → K for the inclusion. Then γ∗(X)(T ) is defined as the following pullback
of simplicial sets:

γ∗(X)(T ) ��

��

X(T )

v∗
T��∏

e∈E(T )

X(η)0 s ��
∏

e∈E(T )

X(η)
(7.5)

The left adjoint γ! : sdSet → PreOper can also be made explicit as follows. For a simplicial
dendroidal set X as above, consider the set π0X(η) of connected components of the simplicial
set X(η). We have γ!(X)(T ) = X(T ) for any tree T such that there is no map T → η in Ω. If
there is a map ε : T → η in Ω, then it is unique (remember there is a canonical isomorphism
Ω/η = Δ), and we can describe γ!(X)(T ) as the pushout below.

X(η) ��

��

X(T )

��
π0X(η) �� γ!(X)(T )

(7.6)

7.3. A morphism of Segal pre-operads is a monomorphism if and only if its image by γ∗

is (because γ∗ is a fully faithful limit-preserving functor). We say that a morphism of Segal
pre-operads X → Y is a normal monomorphism if its image by γ∗ has the same property
(this just means that the map Xn → Yn is a normal monomorphism of dendroidal sets for any
integer n � 0).

A Segal pre-operad X is normal if ∅ → X is a normal monomorphism.
A morphism of Segal pre-operads is a trivial fibration if it has the right lifting property with

respect to the class of normal monomorphisms.

Lemma 7.4. If X → Y is a normal monomorphism of simplicial dendroidal sets and
if π0X(η)→ π0Y (η) is injective, then γ!(X)→ γ!(Y ) is a normal monomorphism of Segal
pre-operads.
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Proof. One sees easily from the explicit description of γ! given by the pushouts (7.6) that,
for any tree T above η, the map γ!(X)(T )→ γ!(Y )(T ) is injective. For any tree T which has
a non-trivial automorphism in Ω, there is no map from T to η. As, for such a tree T , we have
γ!(X)(T ) = X(T ), it is clear that the map γ!(X)→ γ!(Y ) is a normal monomorphism.

Proposition 7.5. Let I be the set of maps

γ!(∂Δ[n]× Ω[T ] ∪Δ[n]× ∂Ω[T ]) −→ γ!(Δ[n]× Ω[T ]), (7.7)

for any tree T with at least one vertex, and for any integer n � 0, together with the map
∅ → η. Then the smallest class of maps in PreOper which is closed under pushouts, transfinite
compositions, and retracts, and which contains I, is the class of normal monomorphisms.

Proof. Let us call I-cofibrations the elements of the smallest class of maps which contains
I and is closed under pushouts, transfinite compositions, and retracts.

If T is a tree with at least one vertex, then, for any integer n � 0, the evaluation of the map

∂Δ[n]× Ω[T ] ∪Δ[n]× ∂Ω[T ] −→ Δ[n]× Ω[T ], (7.8)

at η is bijective, so that, by virtue of Lemma 7.4, its image by γ! is a normal monomorphism.
Hence, any map in I is a normal monomorphism of Segal pre-operads. Therefore, any I-
cofibration is a normal monomorphism.

Conversely, consider a normal monomorphism of Segal pre-operads u : A→ B. Let A′ be the
Segal pre-operad obtained from the pushout below.

∅ ��

��

A

��∐
b∈(B(η)0−A(η)0)

η �� A′

Then the inclusion A→ A′ is certainly an I-cofibration, and one checks easily that the canonical
map A′ → B is still a normal monomorphism. Thus, to prove that u : A→ B is an I-cofibration,
we may assume, without loss of generality, that the map A(η)→ B(η) is bijective on 0-simplices.
Applying the small object argument to the map u with the set of maps (7.7) (for any tree T
with at least one vertex, and for any integer n � 0), we obtain a factorization of u of shape

A
v �� C

p �� B,

in which v is an I-cofibration, while p has the right lifting property with respect to maps of
shape (7.7) (still for any tree T with at least one vertex, and for any integer n � 0). Moreover,
one checks that v induces a bijection by evaluating at η, which implies that p has the same
property. We claim that γ∗(p) has the right lifting property with respect to maps of shape (7.8)
(for any tree T and any integer n). Indeed, in the case T has at least one vertex this follows by
a standard adjunction argument. In the case where T = η, this lifting property means that the
map C(η) −→ B(η) is a trivial fibration between discrete simplicial sets, that is, is a bijective
map on the 0-simplices. Hence, since γ∗ is fully faithful, the map p has the right lifting with
respect to u. By the retract argument [10, Lemma 1.1.9], this implies that u is a retract of v,
whence is an I-cofibration.
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8. Segal operads

Definition 8.1. A Segal operad is a Segal pre-operad X such that, for any tree T , the
map

X(T ) = XΩ[T ] −→ XSc[T ]

is a trivial fibration of simplicial sets, where, if A is a dendroidal set, then XA denotes the
simplicial set whose n-simplices are the maps of dendroidal sets from A to Xn (with the notation
of Subsection 5.1, we thus have γ∗(X)A = XA). We write SegOper for the full subcategory of
PreOper spanned by Segal operads.

A Reedy fibrant Segal operad is a Segal pre-operad whose image by γ∗ is fibrant in the
model category structure for dendroidal Segal spaces (see Definition 5.4). Note that any Reedy
fibrant Segal operad is indeed a Segal operad; see Corollary 5.6.

A morphism of Segal pre-operads is a Segal weak equivalence if its image by γ∗ is a complete
weak equivalence (6.2).

A morphism between Reedy fibrant Segal operads is fully faithful if its image by the functor
γ∗ is fully faithful; see Definition 5.9.

Proposition 8.2. Let X be a dendroidal Segal space. Then γ∗(X) is a Reedy fibrant Segal
operad.

Proof. Since, for any tree T , the evaluation of the map Sc[T ]→ Ω[T ] at η is bijective, the
commutative square

γ∗γ∗(X)Ω[T ] ��

��

XΩ[T ]

��
γ∗γ∗(X)Sc[T ] �� XSc[T ]

is cartesian. Therefore, the functor γ∗γ∗ preserves dendroidal Segal spaces. In other words, the
functor γ∗ sends dendroidal Segal spaces to Reedy fibrant Segal operads.

Lemma 8.3. With the notation of Subsection 6.12, for any ∞-operad X, the natural map
X → K(X) is a complete weak equivalence.

Proof. As X = K(X)0, this is a reformulation of the fact that K(X) is a complete
dendroidal Segal space; see Propositions 4.7, 6.13, and Theorem 6.6.

Proposition 8.4. For any dendroidal Segal space X, the map X0 → X is a complete weak
equivalence.

Proof. Let X be a dendroidal Segal space. Given a bisimplicial object U , we write
diag(U) for the simplicial object defined by diag(U)n = Un,n. We define the bisimplicial
dendroidal set V by Vm,n = X

(Δ[m])
n (see Subsection 3.1), and we put W = diag(V ). The

maps Δ[m]→ Δ[0] induce embeddings Xn = V0,n ⊂ Vm,n, and thus a monomorphism X →W .
Recall that K(X0) = V•,0 is a fibrant resolution of X0 in the dendroidal Rezk model structure;
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see Proposition 6.13. We have a canonical commutative square of the following form:

X0
��

��

X

��
K(X0) �� W

in which the map X0 → K(X0) is a complete weak equivalence (by Lemma 8.3). It is thus
sufficient to prove that the maps X →W and K(X0)→W are complete weak equivalences.

By virtue of Lemma 8.3, the inclusion Xn → V•,n = K(Xn) is a weak equivalence for any
integer n � 0. Using Theorem 6.6 (so that we can compute homotopy colimits in sSetΩ

op
in the

usual way), this implies that the induced map

X = hocolim
Δ[n]∈Δop

Xn −→ hocolim
Δ[n]∈Δop

K(Xn) = W

is a complete weak equivalence.
If we work with the projective model structure on sdSet = dSetΔ

op

associated to the model
structure on dSet (that is, the model category whose weak equivalences (or fibrations) are the
maps whose evaluation at each object of Δ is a weak equivalence (or a fibration, respectively)
in dSet), then, for any tree T , the functor

Δ[n] �−→ Δ[n]× Ω[T ]

is a cosimplicial resolution of Ω[T ], while

Δ[m] �−→ X(Δ[m]) = Vm,•

is a simplicial resolution of X. Therefore, by virtue of [10, Proposition 5.4.7], for any tree T ,
we can identify the simplicial set W (T ) with the mapping space Map(Ω[T ],X). On the other
hand, as the evaluation at zero functor X �→ X0 is a right Quillen functor from dSetΔ

op

to dSet,
we have the following natural identifications in the homotopy category of Kan complexes:

Map(Ω[T ],X0) � Map(Ω[T ],X).

In other words, with the notation introduced in Subsection 6.12, by virtue of Proposition 3.3,
the map K(X0)→W induces a canonical isomorphism

K(X0) �W,

in the homotopy category of sSetΩ
op

(corresponding to termwise weak equivalences of sSet).
Therefore, the map K(X0)→W is a complete weak equivalence, and this ends the proof.

Remark 8.5. If we keep the notation used in the proof above, then we may use the
simplicial dendroidal set W to obtain a canonical resolution of X by a complete dendroidal
Segal space: one may consider a fibrant resolution W → Y for the generalized Reedy model
structure on sSetΩ

op
. Then the map X → Y is a complete weak equivalence, and Y is a complete

dendroidal Segal space.

Corollary 8.6. The functor γ∗ sends complete weak equivalences between dendroidal
Segal spaces to Segal weak equivalences, and, for any dendroidal Segal space X, the map
γ∗γ∗(X)→ X is a complete weak equivalence.

Proof. It is clearly sufficient to prove the last assertion, which follows from the fact
that, by virtue of Propositions 8.2 and 8.4, for any dendroidal Segal space X, there exists
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a commutative square

γ∗γ∗(X)0 �� γ∗γ∗(X)

��
X0

�� X

in which three hence all maps are weak equivalences.

Corollary 8.7. A morphism between dendroidal Segal spaces X → Y is a complete weak
equivalence if and only if γ∗(X)→ γ∗(Y ) is a Segal weak equivalence of Segal operads.

8.8. Given a dendroidal Segal space X, there is a canonical operad ho(X) associated to it,
whose set of colours is X(η)0, and whose sets of maps are given by π0(X(x1, . . . , xn;x)) (the fact
that this defines an operad can be proved using the explicit description of the operad associated
to an ∞-operad (see [7, Proposition 6.14]), Corollary 8.7 (to reduce to the case of a complete
dendroidal Segal space), Proposition 3.3, as well as the Quillen equivalence of Proposition 6.11;
however, it is not difficult to understand this construction in elementary terms).

Definition 8.9. A morphism of dendroidal Segal spaces X → Y is essentially surjective
if the morphism of operads ho(X)→ ho(Y ) is essentially surjective.

Remark 8.10. A morphism of dendroidal Segal spaces X → Y is fully faithful (see
Definition 5.9) and essentially surjective if and only if the induced morphism γ∗γ∗(X)→
γ∗γ∗(Y ) has the same property.

Theorem 8.11. Let f : X → Y be a morphism of dendroidal Segal spaces. The following
conditions are equivalent.

(a) The map f is a complete weak equivalence.
(b) The map γ∗(f) : γ∗(X)→ γ∗(Y ) is a weak equivalence of Segal operads.
(c) The map γ∗γ∗(f) : γ∗γ∗(X)→ γ∗γ∗(Y ) is fully faithful and essentially surjective.
(d) The map f is fully faithful and essentially surjective.

Proof. The equivalence between (a) and (b) follows from Corollary 8.7, while the equiv-
alence between (c) and (d) is a tautology. To prove the remaining equivalences, we will use
Theorem 3.11 to deduce the equivalence between conditions (a) and (d). Indeed, we may assume
that X and Y are complete (by Corollary 8.7), so that the evaluated maps X(T )→ Y (T )
may be identified with the maps of mapping spaces Map(Ω[T ],X)→ Map(Ω[T ], Y ); up to
the Quillen equivalence dSet ⊂ sdSet (see Corollary 6.7), and using Proposition 3.3, condition
(d) (respectively, (a)) may be interpreted by saying that the map between the corresponding
∞-operads is fully faithful and essentially surjective (respectively, satisfies condition (b) of
Theorem 3.5). This completes the proof of the theorem.

Lemma 8.12. If a morphism of Segal pre-operads has the right lifting property with respect
to normal monomorphisms, then it is a Segal weak equivalence.
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Proof. Consider first a normal resolution E∞ of the terminal dendroidal set (that is,
a cofibrant resolution of the terminal dendroidal set for the model category structure of
Theorem 1.1), considered as a simplicially constant simplicial dendroidal set. We may see E∞
as a Segal pre-operad, and it follows immediately from Theorem 6.6 that, for any Segal pre-
operad X, the projection E∞ ×X → X is a Segal weak equivalence. Moreover, as E∞ is even
a normal Segal pre-operad, E∞ ×X is always normal. Therefore, it is sufficient to prove that,
if p : X → Y is a morphism of normal Segal pre-operads which has the right lifting property
with respect to normal monomorphisms of pre-operads, then it is a Segal weak equivalence.
Note that Jd may be seen as Segal pre-operad, so that, for any normal pre-operad A, Jd ⊗A
is still a pre-operad, and, whenever A is normal, the map

AA = ({0}  {1})⊗A −→ J ⊗A

is a normal monomorphism; see Corollary 4.3 and [7, Proposition 1.9]. We may now complete
the proof in the standard way: as Y is normal, the map p admits a section s : Y → X, and the
commutative square

X X
(1X ,sp)��

��

X

p

��
Jd ⊗X pπ

��

h

��

Y

admits a lifting h (where π : Jd ⊗X → X denotes the map induced by the map Jd → η), which
means that the map p is a Jd-homotopy equivalence, whence a weak equivalence.

Theorem 8.13. The category of Segal pre-operads is endowed with a left proper cofibrantly
generated model category structure whose weak equivalences are the Segal weak equivalences,
and whose cofibrations are the normal monomorphisms.

Proof. The preceding lemma tells us that any trivial fibration of Segal pre-operads is a
Segal weak equivalence. On the other hand, by virtue of Proposition 7.5, the class of normal
monomorphism is generated by a small set of maps. The existence of this model category is
thus a particular case of J. Smith’s Theorem; see [1, Theorem 1.7 and Proposition 1.18]. The
left properness property follows immediately from its counterpart for the Rezk model category
structure.

8.14. The model category structure above will be called the Reedy–Segal model category
structure on PreOper. We will always consider the category of simplicial dendroidal sets as a
model category with the Rezk model structure (6.2). By construction, the functor γ∗ : PreOper →
sdSet is a left Quillen functor. Our purpose is to prove that it is in fact a left Quillen equivalence,
and that the fibrant pre-operads are precisely the Reedy fibrant Segal operads.

Theorem 8.15. The functor γ∗ : PreOper → sdSet is a left Quillen equivalence from the
model category for Segal operads to the model category for complete dendroidal Segal spaces.

Proof. As γ∗ is a fully faithful left Quillen functor which preserves and detects weak
equivalences, this follows immediately from Corollary 8.6.
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Remark 8.16. Note that Segal pre-operads are closed under tensor product (as defined in
Remark 6.14), and that the model category of Theorem 8.13 is symmetric monoidal, in such
a way that the left Quillen functor of Theorem 8.15 is symmetric monoidal as well (this is
immediate from Remark 6.14).

Theorem 8.17. Let X be a Segal pre-operad. The following conditions are equivalent:

(a) X is fibrant in the model structure of Theorem 8.13;
(b) X is a Reedy fibrant Segal operad;
(c) X is a retract of γ∗(Y ) for some complete dendroidal Segal space Y ;
(d) X is a retract of γ∗(Y ) for some dendroidal Segal space Y .

Proof. Condition (a) implies condition (b) because the inclusions Sc[T ]→ Ω[T ] are trivial
cofibrations in the symmetric monoidal model category structure of Theorem 8.13.

Let us prove that condition (b) implies condition (c). If X is Reedy fibrant, then we can
choose a trivial cofibration γ∗(X)→ Y with Y a complete dendroidal Segal space. By virtue of
Corollary 8.6, we may assume that the map γ∗X � γ∗γ∗γ∗(X)→ γ∗γ∗(Y ) is a weak equivalence
between fibrant objects in the model category for dendroidal Segal spaces. As γ∗ is fully faithful,
to prove that X is a retract of γ∗(Y ), it is sufficient to prove that the map γ∗X → γ∗γ∗(Y ) is a
cofibration (that is, a normal monomorphism): this follows from the fact that, by assumption,
for any tree T , the group Aut(T ) of automorphisms of T in Ω acts freely on Y (T )−X(T ),
and that we have an Aut(T )-equivariant inclusion of γ∗(Y )(T )−X(T ) in Y (T )−X(T ); see
the cartesian square (7.5).

Condition (c) implies condition (a): as γ∗ is a right Quillen functor (Corollary 8.15), γ∗(Y )
is fibrant for any complete dendroidal Segal space Y , and the class of fibrant objects of any
model category is closed under retracts.

It is clear that condition (c) implies condition (d).
Finally, the fact that condition (d) implies condition (b) follows from the fact that γ∗ sends

dendroidal Segal spaces to Reedy fibrant Segal operads (see Proposition 8.2).

Remark 8.18. Recall from Subsection 6.12 the canonical functor

K :∞-Operad −→ sdSet.

We know that K sends ∞-operads to complete dendroidal Segal spaces, so that, by virtue of
Proposition 8.2, we obtain a functor

γ∗K :∞-Operad −→ SegOper.

We also know from Proposition 6.13 and from Theorem 8.15 that γ∗K sends weak equivalences
of ∞-operads to weak Segal equivalences, and that the induced functor

γ∗K : Ho(∞-Operad ) −→ Ho(SegOper)

is an equivalence of categories.
Remark as well that any dendroidal set is a pre-operad, so that the inclusion dSet ⊂ sdSet

factors through an inclusion dSet ⊂ PreOper which happens to be a left Quillen equivalence (this
follows immediately from Corollary 6.7 and from Theorem 8.15). If X is an ∞-operad, seen as
a Segal pre-operad, then γ∗K(X) is a canonical fibrant replacement of X in the model category
of Theorem 8.13.
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Remark 8.19. The identification dSet/η = sSet allows us to deduce the Joyal model category
structure for quasi-categories from the model category structure for ∞-operads; see [7,
Corollary 2.10]. Similarly, the dendroidal Rezk model structure of Definition 6.2 induces
Rezk’s original model structure for complete Segal spaces [16, Section 12], while the model
category structure for Segal categories can be obtained from the model category structure of
Theorem 8.13 by slicing over η as well. The Quillen equivalences relating the homotopy theories
of Segal categories and of complete Segal spaces, proved by Joyal and Tierney [12] are deduced
immediately from their dendroidal analogues, namely Corollary 6.7 and Proposition 6.11, while
the Quillen equivalence from the model category for Segal categories to the model category for
complete Segal spaces, proved by Bergner [2], is a direct consequence of Theorem 8.15.
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