UNSTABLE OPERATIONS IN HOMOTOPY K-THEORY

by

Denis-Charles Cisinski

1. Homotopy K-theory via cdh-descent

1.1. — Let *k* be a field of characteristic zero. We denote by Sm/k and Sch/k the categories of smooth *k*-schemes and of *k*-schemes of finite type, respectively. We will write $\mathscr{C}(k)$ for the topos of Nisnevich sheaves on Sm/k, and $\mathscr{C}(k)$ for the topos of Nisnevich sheaves on Sch/k. Finally, $\mathscr{C}_{cdh}(k)$ stands for the topos of sheaves on Sch/k with respect to the cdh-topology. Note that, by Hironaka's resolution of singularity theorem, the cdh-topology is also well defined on Sm/k, and $\mathscr{C}_{cdh}(k)$ is canonically equivalent to the category of cdh-sheaves on Sm/k.

1.2. — Given a topos \mathcal{E} , we denote by $\mathcal{H}_s(\mathcal{E})$ the homotopy category of the Joyal-Jardine model category of simplicial sheaves on \mathcal{E} . If I is an interval of \mathcal{E} , then we denote by $\mathcal{H}(\mathcal{E})$ the homotopy category of the Morel-Voevodsky model category structure on simplicial sheaves on \mathcal{E} with respect to the interval I (the notation leaves out I because, in practice, at least in what follows, it will always be the same, namely I = \mathbf{A}^1).

1.3. — Let K be the object of $\mathscr{H}_{s}(\underline{\mathscr{C}}(k))$ which represents algebraic K-theory of k-schemes of finite type: for a k-scheme X, we have a natural isomorphism in the homotopy category of simplicial sets

$$\mathbf{R}Map(\mathbf{X},\mathbf{K}) = \mathbf{R}\Omega(wS.(\operatorname{Perf}(\mathbf{X}))),$$

where the right hand side is Thomason-Trobaugh's version of algebraic K-theory. The fact that K is indeed an object of $\mathscr{H}_s(\underline{\mathscr{E}}(k))$ is a reformulation of the fact that algebraic K-theory satisfies Nisnevich descent.

Note that the cdh-sheafification functor $\underline{\mathscr{C}}(k) \to \mathscr{C}_{cdh}(k)$ induces a left Quillen functor which preserves weak equivalences, and thus defines a functor

$$\mathscr{H}_{s}(\underline{\mathscr{C}}(k)) \to \mathscr{H}_{s}(\mathscr{C}_{cdh}(k)) \quad , \qquad F \mapsto F_{cdh} \,.$$

D.-C. CISINSKI

In particular, cdh-sheafifying algebraic K-theory defines an object K_{cdh} in $\mathscr{H}_s(\mathscr{E}_{cdh}(k))$. On the other hand, by virtue of a theorem of Haesemeyer, homotopy K-theory satifies cdh-descent over *Sch/k*, which means that the homotopy K-theory simplicial presheaf $\Omega^{\infty}(KH)$ may be viewed as an object of $\mathscr{H}_s(\mathscr{E}_{cdh}(k))$ (where KH(X) denotes the homotopy K-theory spectrum of X and Ω^{∞} stands for the infinite loop space functor; in some sense, $\Omega^{\infty}(KH)$ is thus a truncated version of usual homotopy K-theory).

Theorem 1.4. — There is a canonical isomorphism $K_{cdh} \simeq \Omega^{\infty}(KH)$ in $\mathscr{H}_{s}(\mathscr{E}_{cdh}(k))$.

Proof. — By construction of KH, there is a canonical morphism of simplicial presheaves $K \to \Omega^{\infty}(KH)$ over *Sch/k*. As KH satisfies cdh-descent, this map defines by adjunction a morphism $K_{cdh} \to \Omega^{\infty}(KH)$ in $\mathscr{H}_s(\mathscr{E}_{cdh}(k))$. To prove that the latter is an isomorphism, as smooth *k*-schemes are generators of $\mathscr{H}_s(\mathscr{E}_{cdh}(k))$, it is sufficient to prove that, for any smooth *k*-scheme X, the induced map

$$\mathbf{R}Map(\mathbf{X}, \mathbf{K}_{cdb}) \rightarrow \mathbf{R}Map(\mathbf{X}, \Omega^{\infty}(\mathbf{KH})) \simeq \Omega^{\infty}(\mathbf{KH}(\mathbf{X}))$$

is an isomorphism in the homotopy category of spaces. But we know that K and $\Omega^{\infty}(KH)$ agree on smooth *k*-schemes, so that, as KH satisfies cdh-descent, the restriction of K on *Sm/k* satisies cdh-descent as well. In other words, for any smooth *k*-scheme X, the natural map

$$K(X) \simeq \mathbf{R}Map(X, K) \rightarrow \mathbf{R}Map(X, K_{cdh})$$

is an isomorphism. As the map $K(X) \rightarrow \Omega^{\infty}(KH(X))$ is an isomorphism as well, this achieves the proof.

2. Unstable operations on K-theories

Here, we will interpret Riou's classification of unstable operations for algebraic K-theory of smooth *k*-schemes in several directions.

2.1. Let $\iota : Sm/k \to Sch/k$ be the inclusion functor. We write $\iota^* : \underline{\mathscr{C}}(k) \to \mathscr{C}(k)$ for the corresponding restriction functor, and ι_{\sharp} for its left adjoint (so that $\iota_{\sharp}(X) = X$ for any smooth *k*-scheme X). The pair $(\iota_{\sharp}, \iota^*)$ induces a derived adjunction

$$\mathbf{L}\iota_{\sharp}: \mathscr{H}_{s}(\mathscr{E}(k)) \rightleftharpoons \mathscr{H}_{s}(\mathscr{E}(k)): \iota^{*}$$

as well as an A^1 -version

$$\mathbf{L}_{l_{\sharp}}: \mathscr{H}(\mathscr{E}(k)) \rightleftharpoons \mathscr{H}(\mathscr{E}(k)): \iota^*$$

(note that ι^* does not need to be derived because it preserves weak equivalences on the nose). In either case, the functor $L\iota_{\sharp}$ is fully faithful, because we have the formula

$$1 \simeq \iota^* \mathbf{L} \iota_{\sharp}$$

Moreover the functor $L_{i\sharp}$ preserves finite products. This implies that it is compatible with the plus construction. Moreover, $\iota^*(K)$ represents algebraic K-theory of smooth k-schemes. In other words, we have

$$L\iota_{\sharp}\iota^{*}(K) \simeq L\iota_{\sharp}((\mathbb{Z} \times BGL)^{+}) \simeq (\mathbb{Z} \times L\iota_{\sharp}(BGL))^{+} \simeq (\mathbb{Z} \times BGL)^{+} \simeq K$$

2

This implies right away the following little computation.

Proposition 2.2. — For any natural number $n \ge 0$, there is a natural isomorphism

 $\mathbf{R}Map(\mathbf{K}^n,\mathbf{K})\simeq\mathbf{R}Map(\imath^*(\mathbf{K})^n,\imath^*(\mathbf{K}))$

in the homotopy category of spaces.

This means that unstable cohomological operations on algebraic K-theory of k-schemes of finite type are completely characterized by cohomological operations for smooth k-schemes. Therefore, we can use Riou's results as follows⁽¹⁾.

Theorem 2.3. — For any integer $n \ge 0$ and any natural map

 $\alpha: \mathrm{K}_{\mathrm{o}}(\mathrm{X})^{n} \to \mathrm{K}_{\mathrm{o}}(\mathrm{X})$

defined for smooth k-schemes X, there is a unique morphism

 $\bar{\alpha}: \mathbf{K}^n \to \mathbf{K}$

in $\mathcal{H}_{s}(\mathcal{E}(k))$ which lifts α .

Proof. — By virtue of the preceding proposition, it is sufficient to promote α as a morphism $t^*(K)^n \to t^*(K)$ in $\mathscr{H}_s(\mathscr{E}(k))$. But, as $t^*(K)$ is homotopy invariant, it is sufficient to understand the morphisms from $t^*(K)^n$ to $t^*(K)$ in the homotopy category of schemes $\mathscr{H}(\mathscr{E}(k))$. By virtue of Riou's theorem, these correspond precisely to the natural transformations $K_0^n \to K_0$ defined on smooth *k*-schemes.

Proposition 2.4. — For any integer $n \ge 0$, there is a natural isomorphism

 $\mathbf{R}Map(\Omega^{\infty}(\mathrm{KH})^{n}, \Omega^{\infty}(\mathrm{KH})) \simeq \mathbf{R}Map(i^{*}(\mathrm{K})^{m}, i^{*}(\mathrm{K}))$

in the homotopy category of spaces.

Proof. — By virtue of Theorem 1.4, we have a natural isomorphism

 $\mathbf{R}Map(\Omega^{\infty}(\mathrm{KH})^{n}, \Omega^{\infty}(\mathrm{KH})) \simeq \mathbf{R}Map(\mathrm{K}^{n}_{\mathrm{cdb}}, \Omega^{\infty}(\mathrm{KH})),$

and, as KH satisfies cohomological cdh-descent, we also have a natural isomorphism

 $\mathbf{R}Map(\mathbf{K}^n_{cdh}, \Omega^\infty(\mathbf{K}\mathbf{H})) \simeq \mathbf{R}Map(\mathbf{K}^n, \Omega^\infty(\mathbf{K}\mathbf{H})).$

Therefore, by virtue of Proposition 2.2, it is sufficient to prove that the canonical map

 $\mathbf{R}Map(\mathbf{K}^n, \mathbf{K}) \rightarrow \mathbf{R}Map(\mathbf{K}^n, \Omega^{\infty}(\mathbf{K}\mathbf{H}))$

is an isomorphism. Using the identification $L_\sharp \imath^*(K)\simeq K,$ we thus have to prove that the map

 $\mathbf{R}Map(i^*\mathbf{K}^n, i^*\mathbf{K}) \rightarrow \mathbf{R}Map(i^*\mathbf{K}^n, i^*\Omega^{\infty}(\mathbf{K}\mathbf{H}))$

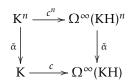
is invertible. But this comes from the well known fact that $\iota^* K \to \iota^* \Omega^{\infty}(KH)$ is an isomorphism in $\mathscr{H}_s(\mathscr{E}(k))$.

⁽¹⁾For this part, we don't need k to be a field of characteristic zero; being a regular noetherian ring is sufficient, for instance.

Corollary 2.5. — Let $n \ge 0$ be an integer and

 $\alpha: \mathrm{K}_{\mathrm{o}}(\mathrm{X})^{n} \to \mathrm{K}_{\mathrm{o}}(\mathrm{X})$

be a natural morphism defined for any smooth k-scheme X. Then there is a unique morphism $\bar{\alpha} : \mathbb{K}^n \to \mathbb{K}$ and a unique morphism $\tilde{\alpha} : \Omega^{\infty}(\mathbb{K}H)^n \to \Omega^{\infty}(\mathbb{K}H)$ in $\mathscr{H}_{s}(\underline{\mathscr{C}}(k))$ which both lift α . Furthermore, the canonical morphism $c : \mathbb{K} \to \Omega^{\infty}(\mathbb{K}H)$ then gives a commutative square



in the homotopy category $\mathcal{H}_{s}(\underline{\mathscr{E}}(k))$.

Proof. — The existence of $\bar{\alpha}$ comes from Theorem 2.3, and another use of the same theorem together with the previous proposition gives $\tilde{\alpha}$. To check that the square above commutes, it is sufficient to notice that

 $\mathbf{R}Map(\mathbf{K}^{n}, \Omega^{\infty}(\mathbf{K}\mathbf{H})) \simeq \mathbf{R}Map(\mathbf{K}^{n}_{\mathrm{cdh}}, \Omega^{\infty}(\mathbf{K}\mathbf{H})) \simeq \mathbf{R}Map(\Omega^{\infty}(\mathbf{K}\mathbf{H})^{n}, \Omega^{\infty}(\mathbf{K}\mathbf{H}))$ and to use Theorem 2.3 as well as Proposition 2.4 once again.

D.-C. Cisinski