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In this note, we provide a detailed proof of Lemma 1.11 in [2], rephrased here
as the combination of Corollaries 1.5 and 2.6. As we explain in [2], theses two
facts imply that the operadic model structure on the category of dendrodial sets
is enriched in simplicial sets with the Joyal model structure, respectively that its
restriction to open dendroidal sets is a symmetric monoidal model category. We
emphasize that the corrections required for our paper [1] and described in [2] only
need the first fact, and hence only need Corollary 1.5 below.

1. Tensoring with simplices

Let us show the following statement.

Proposition 1.1. For any n ≥ 0 and any object T of Ω, the map

(∂∆[n]⊗ Ω[T ]) ∪ (∆[n]⊗ ∂Ω[T ])→ ∆[n]⊗ Ω[T ]

is a normal monomorphism.

The map here is from the pushout over ∂∆[n] ⊗ ∂Ω[T ]. Note that, if S is any
tree, Ω[S]⊗Ω[T ] is the dendroidal nerve of a Σ-cofibrant operad, and is therefore a
normal dendroidal set. As, in the category of dendroidal sets, any monomorphism
with normal target is a normal monomorphism, it is only the property of being a
monomorphism which needs to be checked here.

In what follows, we will abreviate the notations by writing T = Ω[T ] and [n] =
∆[n].

Proof. This property amounts to showing that both maps ∂[n]⊗ T → [n]⊗ T and
[n] ⊗ ∂T → [n] ⊗ T are mono, and their pullback is contained in ∂[n] ⊗ ∂T ; in
other words, using that the canonical maps of the form ∂i[n] ⊗ T → [n] ⊗ T and
[n] ⊗ ∂xT → [n] ⊗ T are easily seen to be monomorphisms, we have to prove that
one has the following identifications:

(A1) ∂i[n]⊗ T ∩ ∂j [n]⊗ T = (∂i[n] ∩ ∂j [n])⊗ T ;
(A2) [n]⊗ ∂xT ∩ [n]⊗ ∂yT = [n]⊗ (∂xT ∩ ∂yT );
(A3) ∂i[n]⊗ T ∩ [n]⊗ ∂xT = ∂i[n]⊗ ∂xT .

The inclusions from right to left are obvious and the inclusions form left to right
will follow from a suitable way of encoding dendrices of [n] ⊗ T , as expressed in
Lemma 1.2 below. �

By definition, a dendrex of [n] ⊗ T is a map S → A where A is a shuffle of [n]
and T . Since A� [n]⊗ T and S → A factors as S � S′ � A, every such dendrex
factors as a degeneracy followed by a mono. So we will look at monos

S � [n]⊗ T,

which are then faces of shuffles of [n] and T . We will use the natural partial ordering
on the edges of a tree where the root is minimal and the leaves are maximal.

For an integer n ≥ 0, a height function on a tree S is multi-valued function

h : Edges(S)→ {0, 1, . . . , n}
1
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with the property that if e ≤ e′ and i ∈ h(e), i′ ∈ h(e′), then i ≤ i′. (We might call
such an h monotone).

For example, for n = 5 and
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indicates the height function h(a) = {1}, h(c) = {1, 3}, etc.

Lemma 1.2. There is a bijective correspondence between monos S′ � [n]⊗T and
pairs (u : S � T, h) where u : S → T is a face of T and h is a height function on
S. This correspondence has the following properties.

(1) For any i ∈ {0, 1, . . . , n} the map S′ � [n]⊗ T factors through ∂i[n]⊗ T if
and only if i does not occur in the image of h. For any I ⊆ {0, 1, . . . , n} the
map S′ � [n] ⊗ T factors through

⋂
i∈I ∂i[n] ⊗ T if and only if the image

of h does not contain any element of I.
(2) For any face F � T , the map S′ � [n]⊗ T factors through [n]⊗ F if and

only if u : S � T factors through F .

Example. The tree S with height function h pictured in (1) and (2) above
corresponds to the tree S′ :
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which is a face of the “complete” shuffle A of [n]⊗ S:
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Proof of lemma 1.2. Given a complete shuffle A ⊆ [n] ⊗ T and a face S′ � A,
consider the map

Edges(S′)→ Edges(A) ⊆ Edges[n]× Edges(T ) = {0, . . . , n} × Edges(T )

Write h′ : Edges(S′) → {0, . . . , n} and u′ : Edges(S′) → Edges(T ) for the two
factors of this map. The function u′ in fact defines a map S′ → T in Ω, which we
factor as

u ◦ σ : S′ � S → T.
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Let h = h′ ◦ σ−1 : Edges(S)→ {0, 1, . . . , n}. Then h is a height function on S.
In the above picture, S is obtained from S′ by deleting the white vertices as

well as the numbers occuring as subscripts of the letters, and h is obtained by
associating to an edge of S the set of all numbers on corresponding edges of S′.

Conversely, suppose u : S � T and h is a height function on S. We will construct
a shuffle A, in fact of [n] ⊗ S � [n] ⊗ T , and a map σ : S′ → S. We start by
subdividing each edge e in S into a number of “shorter” edges (e, i) for i ∈ h(e).

e ///o/o/o/o ◦
e5

◦e3
e2

h(e) = {2, 3, 5}

The resulting tree S′ has the same shape as S (it permits a degeneracy σ : S′ �
S), and has non-decreasing numbers along each path going up from the root. To
define the map S′ → [n]⊗ S → [n]⊗ T , we construct a complete shuffle of [n]⊗ S
and a face map S′ � A. (This shuffle will not be unique, but the composition
S′ → A→ [n]⊗T is completely determined by S � T and h.) The complete shuffle
will be a further subdivision of S′. Consider an edge e of S and its subdivision in
S′ into edges (e, i), i ∈ h(e); say (e, i1), . . . , (e, ik) where h(e) = {i1, . . . ik}.

• If e is the root edge, we subdivide it further into (e, i) for 0 ≤ i ≤ ik.
• Otherwise e is the input edge of a vertex v with output edge d, say. Let
j = maxh(d) ≤ i1. If e is an inner edge, we subdivide it further into (e, i)
where j ≤ i ≤ ik. And if e is a leaf, into (e, i) with j ≤ i ≤ n.

The resulting tree is a complete shuffle, with an obvious face map S′ → A defined
by deleting the newly added faces in A which are not in S′. Properties (1) and (2)
are clear from the construction. �

Remark 1.3. The shuffle A is uniquely determined by S and h, but is not the only
shuffle through which the corresponding map S′ → [n]⊗ S factors. For example,
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factors through the left hand tree
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as constructed, but also through the one on the right by the Boardman-Vogt rela-
tion.

Remark 1.4. The argument breaks down if we replace [n] by its closure cl[n] (ob-
tained by adding a bald vertex on top of this linear tree), because, for S′ � cl[n]⊗T ,
the corresponding tree S (with height function) need not map to T because the va-
lence may have gone down, as in
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Corollary 1.5. Let A� X be a normal monomorphism and B � Y a monomor-
phism of simplicial sets. Then

A⊗ i!Y ∪A⊗i!B X ⊗ i!B → X ⊗ i!Y
is again a normal monomorphism.

2. Tensoring open trees

2.1. Faces of a tree. Let T be a tree. Recall that a face of T is a subtree of the
form

• ∂x(T ), where x is an internal edge (“internal face”)
• ∂v(T ), where v is a top vertex (“external/top face”)
• ∂r(T ), where x is an internal edge (“external/root face”)

The root face is defined only if there is just one internal edge attached to the root.
In addition, by definition, for a corolla C any edge of C is a face of C. (For a
composition S � T of face inclusions, we sometimes refer to S as a face of higher
codimension; or — for emphasis — to the faces of codimension 1 listed above as
“elementary” faces.)

For a leaf y of a tree T , attached to a vertex v, we define

Dy(T )

to be the sum of the connected components of the graph (a forest) obtained from
T by deleting the vertex v and the edge y. To be more explicit, for a given edge
z in T we will write T/z for a subtree with root edge z. Similarly, for a vertex v,
we will write v/T for the connected component of T − v containing the root edge.
Then

Dy(T ) = T/y1 + · · ·+ T/yn + v/T

where y = y0, y1, ..., yn are the input edges of v (one also says y1, . . . , yn are
“siblings” of y).

Similarly, if x1, . . . , xn are the inputs of the root vertex r, and y is the root edge,
we define

Dr(T ) = T/x1 + · · ·+ T/xn = Dy(T ).

Finally, if y is an internal edge, we will also write

Dy(T ) = ∂y(T ).

2.2. Intersection of faces. Let us list the intersection of various types of pairs of
faces:

(a) For two external top faces ∂vT and ∂wT we have

∂v∂wT = ∂vT ∩ ∂wT = ∂w∂vT.

(b) For two internal faces ∂xT and ∂yT we similarly have

∂x∂yT = ∂xT ∩ ∂yT = ∂y∂xT.

(c) For an internal edge x and a top vertex v (or the root vertex r if ∂rT is
defined), if x is not attached to v then again

∂x∂vT = ∂xT ∩ ∂vT = ∂v∂xT.

(d) For the internal edge x attached to a top vertex v we have

∂xT ∩ ∂vT = Dx(∂vT ).

(e) Similarly, for the root face ∂rT and the internal edge y attached to r, we
have

∂yT ∩ ∂rT = Dy(∂rT ).
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Definition 2.1. A tree T is called open if it has no bald vertices (no stumps, no
nullary vertices). Notice that the full subcategory of open trees forms a sieve in Ω.
In other words, if S → T is a morphism in Ω and T is open then so is S.

2.3. The shuffle lemma for open trees. Recall that for two trees S and T , their
tensor product is a union of representable presheaves A ⊆ S ⊗ T where A is a tree
obtained as a shuffle of S and T — we also say “a shuffle of S ⊗ T”.

Lemma 2.2. Let S and T be trees, and assume S is open. Let y be an edge of
T , and A ⊆ S ⊗ T a shuffle of S ⊗ T . If F is a face of A which does not contain
y, then F is contained in S ⊗DyT (i.e. in S ⊗R for a connected component R of
DyT ).

Proof. Let F ⊆ A ⊆ S ⊗ T be a face of shuffle A not containing the colour y. We
distinguish three cases.

(i) The edge y is internal in T . Consider the subtrees

R1, . . . , Rk

of A given by the edge with colour y. These are all internal edges of A,
and F is contained in the face G (of higher codimension) of A obtained
by contracting all these edges. By the BV–relation, G is also a face of the
shuffle B obtained from A by pushing up the S-vertices in these subtrees
R1, . . . , Rk, so that no two occurrences of y in B are connected. Here is a
picture illustrating this for small trees S and T :
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Contracting these isolated internal edges y in B defines a shuffle of S⊗∂yT ,
isomorphic to G (as subobject of S ⊗ T ) and hence containing F .

(ii) The edge y is a leaf of T . Write, as before,

Dy(T ) = T/y1 + · · ·+ T/yn + v/T

for the connected components of T − {y, v}. Since S is open the colour y
also occurs on the leaves of A (in fact, as many times as the number of
leaves of S). Since y does not occur in the face F , this face must be a face
(of higher codimension) contained in one of the connected components of A
obtained by deleting all these edges with colour y from A (and the vertices
attached to these edges, of course). But these connected components are
shuffles of S′⊗T/yi of of S′⊗ v/T for subtrees S′ of S. (In fact, one knows
exactly which subtrees: if

(bi, y), i = 1, . . . , k
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is a list of all lowest occurrences of the colour y, then the shuffles are of
S/bi⊗T/yj , and of R⊗v/T where R ⊆ S is the subtree of S with the same
root and leaves b1, . . . , bk. )

(iii) The edge y is the root edge of T . In this case the colour y also occurs
on the root of the shuffle A. In fact, the edges coloured y form a subtree
of A isomorphic to a subtree S′ of S containing the root of S (an “initial
segment”), with leaves b1, . . . , bk say. Then F must be a face of S/bi ⊗
T/yj ⊆ S/bi ⊗ DrT for some input edge yj of the root r of T . Hence
F ⊆ S ⊗Dy(T ) = S ⊗Dr(T ).

�

Remark 2.3. The lemma fails if S is not assumed to be open. A minimal example
is

◦
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Proposition 2.4. Let S and T be trees, and let x, y, z be inner edges or top or root
vertices (when the root face is defined), with x in S and y, z in T .

(i) If S is open then

S ⊗ ∂yT ∩ S ⊗ ∂zT = S ⊗ (∂yT ∩ ∂zT ).

(ii) If S and T are both open then

∂xS ⊗ T ∩ S ⊗ ∂yT = ∂xS ⊗ ∂yT.

Corollary 2.5. If S and T are open trees then

S ⊗ ∂T ∪∂S⊗∂T ∂S ⊗ T → S ⊗ T

is a monomorphism (hence, S ⊗ T being normal, a normal monomorphism).

Let us call a dendroidal set open if it is a colimit of open trees (equivalently, a
presheaf on the subcategory Ω◦ ⊆ Ω of open trees). Then by the usual induction,
the previous corollary also gives

Corollary 2.6. Let A� X and B � Y be normal monomorphisms between open
dendroidal sets. Then

A⊗ Y ∪A⊗B X ⊗B → X ⊗ Y

is again a normal monomorphism between open dendroidal sets.

Proof of Proposition 2.4. (i) Let A ⊆ S ⊗ ∂yT and B ⊆ S ⊗ ∂zT be shuffles, and
suppose F is a face of A as well as of B.

• In case y is an edge, F is a face of S ⊗ ∂zT in which the colour y does not
occur. So by the shuffle lemma, F is a face of a shuffle of S ⊗ Dy∂zT =
S ⊗ (∂yT ∩ ∂zT ).

• In case y and z are both vertices, suppose that at least one of them is not
bald, say y. Let y1, . . . , yn be all the external edges attached to this vertex
y. (These are leaves, plus possibly the root.) Then F is a face of B in which
none of these occur. So by the shuffle lemma again, F is a face of a shuffle
of S ⊗Dyi

∂zT for each i. But the connected components of Dyi
(∂zT ) are

the single edges yj (j 6= i) together with the face ∂y(∂zT ). Since the yi do
not occur in F , we find that F is a face S ⊗ ∂y∂z(T ).
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• Finally, in case y and z are both bald vertices, they also occur as bald
vertices on top of the shuffles B and A, respectively. So F is a face of
B say, in which this bald vertex y cannot occur (not as a single vertex,
nor as a composition). But such a face is already a face of a shuffle of
S ⊗ ∂y∂y(T ) = S ⊗ (∂yT ∩ ∂zT ).

(ii) Let A be a shuffle of ∂xS⊗T and B a shuffle of S⊗∂yT , and suppose F is a
face of A as well as of B. Hence F is a face of S ⊗ ∂yT in which x does not occur.
By the shuffle lemma, F is a face of ∂xS ⊗ ∂yT . �
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