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Abstract

We study locally constant coefficients. We first study the theory of homotopy Kan exten-
sions with locally constant coefficients in model categories, and explain how it characterizes
the homotopy theory of small categories. We explain how to interpret this in terms of left
Bousfield localization of categories of diagrams with values in a combinatorial model cate-
gory. Finally, we explain how the theory of homotopy Kan extensions in derivators can be
used to understand locally constant functors.

1. Homology with locally constant coefficients

1·1. Given a model category1V with small colimits, and a small category A, we will
write [A, V ] for the category of functors from A to V . Weak equivalences in [A, V ] are the
termwise weak equivalences. We denote by Ho([A, V ]) the localization of [A, V ] by the
class of weak equivalences.

1·2. We denote by LC(A, V ) the full subcategory of the category Ho([A, V ]) whose
objects are the locally constant functors, i.e. the functors

F: A �� V

such that for any map a �� a′ in A, the map

Fa
�� Fa′

is a weak equivalence in V , or equivalently, an isomorphism in Ho(V ) (where Fa is the
evaluation of F at the object a).

Note that for any functor u: A �� B, the inverse image functor

u∗: [B, V ] �� [A, V ] (1·2·1)

preserves weak equivalences, so that it induces a functor

u∗: Ho([B, V ]) �� Ho([A, V ]). (1·2·2)

1 We mean a Quillen closed model category [Qui67]. However, we could take any kind of model cat-
egory giving rise to a good theory of homotopy colimits (i.e. to a Grothendieck derivator); see the work of
Andrei Rădulescu–Banu [RB06] for more general examples.
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The functor u∗ obviously preserves locally constant functors, so that it induces a functor

u∗: LC(B, V ) �� LC(A, V ). (1·2·3)

In terms of ∞-categories, we can think intuitively of this construction in the following way2.
Let us denote by V the weak ∞-category associated to V (obtained from V by form-
ally inverting weak equivalences), and write π∞(A) for the weak ∞-groupoid obtained
from A by inverting all its arrows. Then we can think of the category LC(A, V ) as the
homotopy category of the ∞-category of functors from π∞(A) to V . In particular, the cat-
egory LC(A, V ) only depends on the homotopy type of the classifying space of A. The
aim of this paper is to explain this assertion in an elementary way (using model categories
and, eventually, the theory of derivators), and to address the question of the functorialit-
ies arising from such a construction. We formulate the first instance of this principle as
follows.

THEOREM 1·3. Let u : A �� B be a functor whose nerve is a simplicial weak equival-
ence. Then the functor (1·2·3) is an equivalence of categories.

1·4. Note that Theorem 1·3 has a converse: if a functor u: A �� B induces an equival-
ence of category of type (1·2·3) for any model category V (it is even sufficient to consider
this property in the case where V is the usual model category of simplicial sets), then the
nerve of u is a simplicial weak equivalence; see Corollary 1·28. Before going into the tech-
nicalities of the proof, we propose to examine some examples which gives the combinatorial
and geometrical meaning of such a result3.

Example 1·5. Theorem 1·3 can be used to strictify some combinatorial situation. For in-
stance, let us consider the small category A associated to the following graph:

x
f ��
g

�� y .

A functor from A to V is thus the data of parallel pair of arrows in V . Let B be the free
groupoid with a single object z endowed with a non-trivial automorphism h : z �� z. The
functor

u: A �� B

defined by sending f to 1z and g to h induces a simplicial weak equivalence after apply-
ing the nerve functor: the geometric realization of A is homeomorphic to the circle S1, and
the geometric realization of B is the classifying space of the group Z, so that the geomet-
ric realization of u is a homotopy equivalence from S1 to BZ (it defines a generator of
π1(BZ) = Z). The equivalence of categories (1·2·3) states that any parallel pair of weak
equivalences in V can be replaced canonically (up to a zig zig of weak equivalences in
[A, V ]) by a pair of the form h, 1Z: Z �� Z , where h is an actual isomorphism in V .

Example 1·6. The categories LC(A, V ) allows us to study “local systems” of spaces.
Given a simplicial set X , we can consider the category �/X of simplices of X . The objects
of �/X are the pairs (n, x), where n � 0 is an integer, and x is an n-simplex of X . A

2 This is really to be considered as a heurisitic point of view: we won’t explicitly use the theory of
∞-categories in these notes.

3 These examples are given here as illustrations and are not used during this paper.
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morphism ϕ: (m, x) �� (n, y) is a morphism ϕ: Δm
�� Δn such that ϕ∗(y) = x , or, equi-

valently, such that the following diagram of simplicial sets commutes.

Δm

x
���

��
��

��
�

ϕ �� Δn

y
����

��
��

��

X

Given a morphism of simplicial sets f : X �� Y , we get a functor, which will write abusively
again f : �/X �� �/Y , defined by f (n, x) = (n, f (x)). This turns this construction into
a functor from the category of simplicial sets to the category of small categories. A folklore
result attributed to Quillen states that there exists a functorial weak equivalence from the
nerve of �/X to X ; see for instance [Cis06, proposition 4·3·15]. In particular, a morphism
of simplicial sets f : X �� Y is a simplicial weak equivalence if and only if the nerve of the
functor f : �/X �� �/Y is a simplicial weak equivalence. We define, for any simplicial
set X , the category LC(X, V ) by the formula

LC(X, V ) = LC(�/X, V ). (1·6·1)

Any morphism of simplicial sets f : X �� Y induces a functor

f ∗: LC(Y, V ) �� LC(X, V ) . (1·6·2)

Assuming Theorem 1·3, the functors (1·6·2) are equivalences of categories whenever f is a
simplicial weak equivalence.

Note that this simplicial point of view is compatible with the categorical point of view
introduced before in the following sense. If A is a small category, its nerve being denoted by
N (A), then we have a natural functor

pA: �/N (A) �� A

defined by p(n, x) = x(n) (interpreting x as a functor from the ordered set [n] = {0, . . . , n}
to A). The nerve of pA is a simplicial weak equivalence, so that, assuming Theorem 1·3, the
functor

p∗
A: LC(A, V ) �� LC(�/N (A), V ) = LC(N (A), V ) (1·6·3)

is an equivalence of categories.

Example 1·7. In the case where V = sSet is the model category of simplicial sets, the
category LC(A, sSet) is canonically equivalent to the homotopy category of spaces over the
nerve of A × �; see [Cis06, propositions 4·4·15, 4·4·18, 4·4·21 and corollary 6·4·27]. As
the category of simplices � has a terminal object, its nerve is contractible, so that the pro-
jection N (A) × N (�) �� N (A) induces an equivalence of categories Ho(sSet/N (A) ×
N (�)) � Ho(sSet/N (A)). Finally we have a canonical equivalence of categories

LC(A, sSet) � Ho(sSet/N (A)). (1·7·1)

Under these identifications, given a functor u : A �� B, the functor (1·2·3) corresponds to
the homotopy pullback functor

Ho(sSet/N (B)) �� Ho(sSet/N (A))

(Y �� N (B))
� �� (Y ×h

N (B) N (A) �� N (A)) .
(1·7·2)
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This shows that Theorem 1·3 is true for V = sSet (using the fact that sSet is right proper).
However the proof of Theorem 1·3 will not use this fact4.

In the simplicial setting, using the natural weak equivalence N (�/X) �� X , we get an
equivalence of categories

Ho(sSet/N (�/X)) � Ho(sSet/X), (1·7·3)

hence a natural equivalence of categories

LC(X, sSet) � Ho(sSet/X) (1·7·4)

for any simplicial set X .

Example 1·8. Consider the left Quillen equivalence

| − |: sSet �� Top (1·8·1)

induced by the geometric realization functor from simplicial sets to topological spaces.
Denoting by Sing its right adjoint, it induces, for any topological space X , a left Quillen
equivalence

| − |: sSet/Sing(X) �� Top/X (1·8·2)

defined by sending Y �� Sing(X) to the its geometric realization composed with the counit
map from |Sing(X)| to X .

If X is locally contractible (with some other mild assumptions which are fulfilled for
instance when X is a locally compact CW-complex), the category Ho(Top/X) is equivalent
to the homotopy category of locally constant ∞-stacks on X . This is proven for example by
Shulman [Shu08]. Locally constant stacks on X also admit the following description.

Let Oc(X) be the set of contractible open subsets of X , ordered by inclusion. The category
of simplicial presheaves on Oc(X) is endowed with the Joyal-Heller model structure: the
cofibrations (resp. the weak equivalences) are the termwise cofibrations (resp. weak equi-
valences) of simplicial sets. Write L[Oc(X)op, sSet] for the left Bousfield localization of
[Oc(X)op, sSet] by the inclusions between contractible open subsets of X . We then have an
equivalence of categories

Ho(L[(Oc(X)op, sSet]) � LC(Oc(X)op, sSet) (1·8·3)

(the local objects of this Bousfield localization are exactly the locally constant functors on
Oc(X)op; see Proposition 2·3 below). Let us write sSh(X) for the category of sheaves of
simplicial sets on X . It is endowed with the Joyal model structure: the cofibrations are the
monomorphisms, and the weak equivalences are the maps F �� G such that, for any point
x of X , the morphism of simplicial sets Fx

�� Gx is a simplicial weak equivalence. This
corresponds to the homotopy theory of stacks on X . Define sShlc(X) as the left Bousfield
localization of sSh(X) by the inclusions between contractible open subsets of X . The model
category sShlc(X) corresponds to the homotopy theory of locally constant stacks on X .

The sheafification functor

a: L[Oc(X)op, sSet] �� sShlc(X) (1·8·4)

4 But it is possible to prove it this way: this follows from Theorem 3·6 below, and from the identification
(3·7·2).
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is then a left Quillen equivalence. It is obviously a left Quillen functor. Consider an hyper-
covering U• �� U of a contractible open subspace U of X , such that, for any n � 0, Un

is a sum of contractible open subspaces of U . Then the map U• �� U is a weak equival-
ence of L[Oc(X)op, sSet] (this follows formally from [Cis03a, example 3·4·23, proposition
4·3·14 and corollary 5·3·18]). The fact (1·8·4) is a left Quillen equivalence thus follows
from [Cis03a, theorem 3·3·1] or [DHI04, theorem 1·2]. In other words: any locally constant
prestack on Oc(X) satisfies descent (hence is a stack on X ).

In conclusion, when X is nice enough (e.g. a locally compact CW-complex) we have the
following equivalences of categories

LC(Oc(X)op, sSet) � Ho(sShlc(X)) � Ho(Top/X) � LC(Sing(X), sSet), (1·8·5)

where the first equivalence comes from the Quillen equivalence (1·8·4), the second equi-
valence comes from Shulman’s Theorem5 [Shu08], and the third one comes from the left
Quillen equivalence (1·8·2) and from (1·7·4).

1·9. We will now go to the proof of Theorem 1·3, which will need a little preparation.
Define a functor between small categories u : A �� B to be a weak equivalence if the

functor (1·2·3) is an equivalence of categories (we assume the cocomplete model category
V has been fixed).

A small category A is aspherical if the map A �� e is a weak equivalence (where e
denotes the terminal category). A functor u: A �� B will be said to be aspherical if, for any
object b of B, the functor A/b �� B/b is a weak equivalence (where A/b = (u ↓ b) is the
comma category of objects of A over b, and B/b = (1B ↓ b)).

Theorem 1·3 asserts that any functor whose nerve is a simplicial weak equivalence
is a weak equivalence in the sense defined above. This will follow from the result
below.

THEOREM 1·10. Let W be a class of functors between small categories. We assume that
W is a weak basic localizer in the sense of Grothendieck [Mal05a], which means that the
following properties are satisfied.

La Any identity is in W . The class W satisfies the two out of three property. If a map
i: A �� B has a retraction r: B �� A such that ir is in W , then i is in W .

Lb If a small category A has a terminal object, then the map from A to the terminal
category is in W .

Lc Given a functor u: A �� B, if for any object b of B, the induced functor A/b �� B/b
is in W , then u is in W .

Then any functor between small categories whose nerve is a simplicial weak equivalence is
in W .

Proof. See [Cis06, theorem 6·1·18].

Remark 1·11. The class of functors between small categories whose nerve is a simpli-
cial weak equivalence is known to be a weak basic localizer: property La comes from the

5 Shulman does not consider the Joyal model structure on sSh(X), but rather the Lurie model structure,
which has less weak equivalences. However, the Quillen equivalence (1·8·4) shows in particular that, as far
as we are concerned with locally constant ∞-stacks on a locally contractible space, there is no difference
between the classical point of view and Lurie’s version.
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stability of simplicial weak equivalences by retracts, property Lb comes from the fact the
nerve of category with a terminal object is contractible, and property Lc is nothing but
Quillen’s Theorem A [Qui73]. Hence Theorem 1·3 can be reformulated by saying that the
class of functors between small categories whose nerve is a simplicial weak equivalence is
the smallest weak basic localizer.

1·12. To prove Theorem 1·3, we will prove that the class of weak equivalences satisfies
the properties listed in the previous theorem. Property La is easy to check. It thus remains
to prove properties Lb and Lc. In other words, we have to prove that any category with a
terminal object is aspherical, and that any aspherical functor is a weak equivalence. We will
use the theory of homotopy Kan extensions in V .

Given a functor u: A �� B, the functor (1·2·1) has a left adjoint

u!: [A, V ] �� [B, V ] (1·12·1)

which admits a total left derived functor

Lu!: Ho([A, V ]) �� Ho([B, V ]). (1·12·2)

The functor Lu! is also a left adjoint of the functor (1·2·2); see [Cis03b, RB06]. When B is
the terminal category, we will write L lim−→A

= Lu! for the corresponding homotopy colimit
functor.

1·13. For each object b of B, we have the following pullback square of categories

A/b

u/b

��

v �� A

u

��
B/b

w
�� B

(1·13·1)

(where w is the obvious forgetful functor). Given a functor F from A (resp. B) to V , we
will write

F/b = v∗(F) (resp. F/b = w∗(F)). (1·13·2)

This gives the following formula for a functor F: B �� V

u∗(F)/b = (u/b)∗(F/b). (1·13·3)

It is a fact that left homotopy Kan extensions can be computed pointwise (like in ordinary
category theory), which can be formulated like this:

PROPOSITION 1·14. For any functor F: A �� V , and any object b of B, the base change
map

L lim−→
A/b

F/b �� Lu!(F)b

is an isomorphism in Ho(V ).

Proof. See [Cis03b] or, in a more general context, [RB06, theorem 9·6·5].

PROPOSITION 1·15. Let I be a small category. A morphism F �� G in Ho([I, V ]) is
an isomorphism if and only for any object i of I , the map Fi

�� Gi is an isomorphism in
Ho(V ).
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Proof. See [Cis03b] or [RB06, theorem 9·7·1].

Remark 1·16. It is obvious, by construction, that the evaluation at i of any isomorphism of
Ho([I, V ]) induces an isomorphism of Ho(V ). The purpose of the proof of Proposition 1·15
is to ensure that we have inverted enough weak equivalences of [I, V ] for the converse to
hold.

PROPOSITION 1·17. Let u : A �� B be a weak equivalence of small categories. Then,
for any locally constant functor F: B �� V , the map

L lim−→
A

u∗(F) �� L lim−→
B

F

is an isomorphism in Ho(V ).

Proof. Given a small category I and an object X , denote by X I the constant functor from
I to V with value X . Let F : B �� V be a locally constant functor. Using the fact that
(1·2·3) is fully faithful, we see that

Hom Ho([B,V ])(F, X B) �� Hom Ho([A,V ])(u∗(F), u∗(X B))

is bijective. As u∗(X B) = X A, the identifications

Hom Ho([B,V ])(F, X B) � Hom Ho(V )(L lim−→
B

F, X)

Hom Ho([A,V ])(u∗(F), X A) � Hom Ho(V )(L lim−→
A

u∗(F), X)

and the Yoneda Lemma applied to Ho(V ) completes the proof.

COROLLARY 1·18. Let I be an aspherical category, and F : I �� V be a locally con-
stant functor. Then for any object i of I , the map

Fi
�� L lim−→

I

F

is an isomorphism in Ho(V ).

Proof. Apply Proposition 1·17 to the functor from the terminal category to I defined by i .

LEMMA 1·19. Let u: A �� B be a functor between small categories which has a left or
a right adjoint v: B �� A. Then u and v are weak equivalences.

Proof. It is sufficient to prove that the functors

u∗: LC(B, V ) �� LC(A, V ) and v∗: LC(A, V ) �� LC(B, V )

are quasi-inverse to each other. Assume for instance that v is right adjoint to u. Then, as

A � �� Ho([A, V ])
is obviously a 2-functor, we see immediately that u∗ is right adjoint to v∗, the unit 1 �� u∗v∗

(resp. the counit v∗u∗ �� 1) being induced by the unit 1 �� vu (resp. by the counit
uv �� 1). To conclude the proof, it remains to see that, in the case where F is locally con-
stant, the maps

F �� u∗v∗(F) and v∗u∗(F) �� F

are termwise weak equivalences, which is obvious.
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PROPOSITION 1·20. Any small category which has a terminal object is aspherical.

Proof. A small category I has a terminal object if and only if the functor from I to the
terminal category has a right adjoint. This proposition thus follows immediately from the
preceding lemma.

COROLLARY 1·21. A functor u: A �� B is aspherical if and only if for any object b of
B, the category A/b is aspherical.

Proof. As the class of weak equivalences satifies the two out of three property, this follows
from the fact that the category B/b has a terminal object (namely (b, 1b)).

1·22. A functor u: A �� B is locally constant if for any map b �� b′ in B, the functor
A/b �� A/b′ is a weak equivalence. For example, by virtue of Corollary 1·21, any aspher-
ical functor is locally constant.

Example 1·23. Let p: X �� Y a Kan fibration. Then, assuming Theorem 1·3, the functor
p: �/X �� �/Y is locally constant: a morphism (m, y) �� (n, z) in �/Y correspond to a
diagram of simplicial sets of shape

Δm
�� Δn

�� Y ,

so that one can form the following pullbacks.

X ×Y Δm
��

��

X ×Y Δn
��

��

X

p

��
Δm

�� Δn
�� Y.

These induce pullback squares of categories

�/(X ×Y Δm) ��

��

�/(X ×Y Δn) ��

��

�/X

p

��
�/Δm

�� �/Δn
�� �/Y

from which we deduce that the functor

(�/X)/(y, m) �� (�/X)/(z, n)

is isomorphic to the functor

�/(X ×Y Δm) �� �/(X ×Y Δn) .

The fact that p is a Kan fibration implies that the nerve of the latter is a simplicial weak
equivalence (using the right properness of the model category of simplicial sets).

PROPOSITION 1·24 (Formal Serre spectral sequence). If u : A �� B is locally constant,
then the functor (1·12·2) preserves locally constant functors. In particular, it induces a func-
tor

Lu!: LC(A, V ) �� LC(B, V )

which is a left adjoint to the functor (1·2·3).
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Proof. Let F be a locally constant functor, and β : b �� b′ be a map in B, We have to
show that the induced map

Lu!(F)b
�� Lu!(F)b′

is an isomorphism in Ho(V ). Denote by jβ: A/b �� A/b′ the functor induced by β (which
is a weak equivalence by assumption on u). With the notations (1·13·2), we have

j∗
β (F/b′) = F/b .

This corollary thus follows immediately from Proposition 1·14 and from Proposition 1·17.

Remark 1·25. It can be proved that the functor (1·2·3) always has a left adjoint; see Co-
rollary 3·11. The purpose of Proposition 1·24 is really to compute this adjoint.

Scholium 1·26. Proposition 1·24 is related with the classical Serre spectral sequence as
follows. Consider the case where V = Comp(Ab) is the category of complexes of abelian
groups (considered with the projective model structure, i.e. the weak equivalences are the
quasi-isomorphisms, and the fibrations are the degreewise surjective maps; see [Hov99, The-
orem 2·3·11]). Then, for any small category A, the category Ho([A, V ]) is nothing but the
(unbounded) derived category D([A, Ab]) of the abelian category of functors from A to
abelian groups. Given a functor F from A to the category of complexes of abelian groups,
the homology of A with value in F is defined by

Hi(A, F) = H−i (L lim−→
A

F) .

Let L be a local system on A (i.e. a functor from π1(A) to Ab). It can be considered
as an object of LC(A, Comp(Ab)). For a given functor u : A �� B, we have a canonical
isomorphism

L lim−→
B

Lu!(L) � L lim−→
A

L .

Proposition 1·24 ensures that, if u is locally constant, then Lu!(L) is locally constant, which
means in particular that the objects H−i (Lu!(L)) = Li u!(L) are local systems on B (i.e.
presheaves of abelian groups on π1(B)) for any i � 0. As a consequence, the corresponding
Leray-Grothendieck spectral sequence

E2
p,q = Hp(B, Lqu!(L)) =⇒ Hp+q(A, L)

is a spectral sequence which involves only homology groups with coefficients in local sys-
tems. Note that the local system Li u!(L) can be described explicitly: for any object b of B,
we have, by Proposition 1·14,

Li u!(L)b � Hi (A/b, L/b) .

Assume furthermore that, for any map b �� b′ in B the map N (A/b) �� N (A/b′) is a
simplicial weak equivalence (which implies that u is locally constant, at least if we admit
Theorem 1·3). Then, by virtue of Quillen’s Theorem B [Qui73], for any object b of B, A/b
is the homotopy fiber at b of the map u: A �� B. Hence the local system Li u!(L) is locally
the homology of the homotopy fiber of u with coefficients in the local system L .

In the case u : A �� B is the functor �/X �� �/Y associated to a Kan fibration (see
Example 1·23), we obtain the spectral sequence of a Kan fibration in homology (compare
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with [GZ67, appendix II]). The classical Serre spectral sequence in homology is obtained
from the latter using Example 1·8.

The same arguments in the case where V = Comp(Ab)op gives the Serre spectral se-
quence in cohomology.

PROPOSITION 1·27 (Formal Quillen Theorem A). Any aspherical functor is a weak
equivalence.

Proof. Let u: A �� B be an aspherical functor. Then u is in particular locally constant,
so that, by virtue of Proposition 1·24, the functor Lu! preserves locally constant functor, and
induces a left adjoint to the functor (1·2·3). Let F : B �� V be a locally constant functor.
We will prove that the co-unit map

Lu!u∗(F) �� F

is an isomorphism. According to Proposition 1·15, it is sufficient to prove that for any object
b of B, the map

(Lu!u∗(F))b
�� Fb

is an isomorphism in Ho(V ). This follows immediately from the computations below:

(Lu!u∗(F))b � L lim−→
A/b

u∗(F)/b (Proposition 1·14)

= L lim−→
A/b

(u/b)∗(F/b) (Formula (1·13·3))

� L lim−→
B/b

F/b (Proposition 1·17 applied to u/b)

� Fb (because (b, 1b) is a terminal object of B/b).

Consider now a locally constant functor F: A �� V . We will show that the unit map

F �� u∗Lu!(F)

is an isomorphism. By virtue of Proposition 1·15, we are reduced to prove that, for any
object a of A, the map

Fa
�� (u∗Lu!(F))a

is an isomorphism. We compute again

Fa � L lim−→
A/u(a)

F/u(a) (Corollary 1·18 for I = A/u(a) and i = (a, 1u(a)))

� Lu!(F)u(a) (Proposition 1·14)

= (u∗Lu!(F))a

and this ends the proof.

Proof of Theorem 1·3. It is sufficient to check that the class of weak equivalences satisfies
the properties listed in Theorem 1·10. The class of weak equivalences obviously satifies
property La. Property Lb follows from Proposition 1·20, and property Lc from Proposi-
tion 1·27.
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COROLLARY 1·28. Let u: A �� B a functor between small categories. The nerve of u is
a simplicial weak equivalence if and only if for any model category V , the functor

u∗: LC(B, V ) �� LC(A, V )

is an equivalence of categories.

Proof. Theorem 1·3 asserts this is a necessary condition. It is very easy to check that this
is also sufficient: we can either use Proposition 1·17 and [Cis06, 6·5·11], or we can use
the fact that, for a given small category A, the homotopy colimit of the constant functor
indexed by A whose value is the terminal simplicial set is precisely the nerve of A (which is
completely obvious if we consider for example the Bousfield–Kan construction of homotopy
colimits).

2. Model structures for locally constant functors

2·1. We consider now a left proper combinatorial model category V and a small cat-
egory A (see [Bek00] for the definition of a combinatorial model category). The category
of functors [A, V ] has two canonical model structures. The projective model structure on
[A, V ] is defined as follows: the weak equivalences are the termwise weak equivalences,
and the fibrations are the termwise fibrations. The injective model structure on [A, V ] is
defined dually: the weak equivalences are the termwise weak equivalences, and the cofibra-
tions are the termwise cofibrations. One can check that the identity functor is a left Quillen
equivalence from the projective model structure to the injective model structure (this is just
an abstract way to say that all the cofibrations of the projective model structure are termwise
cofibrations, which is easy to check; see for example [Cis06, lemma 3·1·12]). These two
model structures are left proper. We refer to Barwick’s paper [Bar07] for an account on the
theory of left Bousfield localization of combinatorial model categories.

2·2. We fix a (regular) cardinal α with the following properties (see [Dug01]).

(a) Any object of V is a α-filtered colimit of α-small objects.
(b) The class of weak equivalences of V is stable by α-filtered colimits.
(c) There exists a cofibrant resolution functor Q which preserves α-filtered colimits.

Given an object a of A, we denote by

a!: V �� [A, V ]
the left adjoint to the evaluation functor at a. We define S as the (essentially small) set of
maps of shape

a!(Q X) �� a′
!(Q X) (2·2·1)

associated to each map a �� a′ in A and each α-small object X (and Q is some fixed
cofibrant resolution functor satisfying the condition (c) above).

We define the projective local model structure on [A, V ] as the left Bousfield localiza-
tion of the projective model structure on [A, V ] by S. The injective local model structure
on [A, V ] is the left Bousfield localization of the injective model structure on [A, V ] by
S. It is clear that the identity functor is still a left Quillen equivalence from the projective
local model structure to the injective local model structure. The weak equivalences of these
two model structures will be called the local weak equivalences. Note that, despite the ap-
pearences, the projective and injective local model structures do not depend on the chosen
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cardinal α: indeed, the following proposition shows that the corresponding local objects can
be described independently of α.

PROPOSITION 2·3. A functor F : A �� V is fibrant in the projective (resp. injective)
local model structure if and only if it is fibrant for the projective (resp. injective) model
structure and if it is locally constant.

Proof. Note first that, thanks to condition (b), for any α-filtered category I and any functor
F from I to [A, V ], the natural map

L lim−→
I

F �� lim−→
I

F

is an isomorphism in Ho([A, V ]). Hence it remains an isomorphism in the homotopy cat-
egory of the projective (resp. injective) local model structure. This implies that local weak
equivalences are stable by α-filtered colimits. Conditions (a) and (b) thus imply that for any
object X of V , and any arrow a �� a′ in A, the map

a!(Q X) �� a′
!(Q X)

is a local weak equivalence. For any object a of A, the functor a! is a left Quillen functor
from V to the projective model structure (hence also to the injective model structure, as any
cofibration of the projective model structure is a termwise cofibration). As a consequence, if
a is an object of A, X is an object of V , and F a functor from A to V , then

Hom Ho(V )(X, Fa) � Hom Ho([A,V ])(La!(X), F) � Hom Ho([A,V ])(a!(Q X), F).

It is now easy to see that, if moreover F is fibrant for the projective (resp. injective) model
structure, then it is fibrant for the projective (resp. injective) local model structure if and only
if it is locally constant.

The general properties of left Bousfield localization leads to the two following corollaries;
see [Hir03].

COROLLARY 2·4. The localization of [A, V ] by the class of local weak equivalences is
LC(A, V ).

COROLLARY 2·5. The inclusion functor LC(A, V ) �� Ho([A, V ]) has a left adjoint.

PROPOSITION 2·6. Let u : A �� B be a functor between small categories. Then the
functor

u∗: [B, V ] �� [A, V ]
is a right Quillen functor for the projective local model structures.

If moreover the nerve of u is a simplicial weak equivalence, then the functor u∗ is a right
Quillen equivalence.

Proof. The left adjoint u! of u∗ preserves cofibrations: this is obviously a left Quillen
functor for the projective model structures. It is thus sufficient to check that u∗ preserves
fibrations between fibrant objects; see [JT07, proposition 7·15]. It follows from Proposition
2·3 that fibrations between fibrant objects are just fibrations of the projective model structure
between fibrant objects of the projective model structure which are locally constant. It is
clear that u∗ preserves this property. This proves that u∗ is a right Quillen functor. The last
assertion follows from Theorem 1·3.
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Remark 2·7. According to the preceding proposition, the functor u! has a total left derived
functor

Lu!: LC(A, V ) �� LC(B, V ) .

It also has a total left derived functor

Lu!: Ho([A, V ]) �� Ho([A, V ]) .

but, in general, the diagram (in which i A and iB denote the inclusion functors)

LC(A, V )
Lu! ��

i A

��

LC(B, V )

iB

��
Ho([A, V ])

Lu!
�� Ho([B, V ])

does not (even essentially) commute. There is only a natural map

Lu!i A(F) �� iBLu!(F) .

However, Proposition 1·24 asserts that this natural map is an isomorphism whenever u is
locally constant.

PROPOSITION 2·8. Let u : A �� B be a functor between small categories. Assume that
the functor uop: Aop �� Bop is locally constant. Then the functor

u∗: [B, V ] �� [A, V ]
is a left Quillen functor for the injective local model structures.

If moreover the nerve of u is a simplicial weak equivalence, then the functor u∗ is a left
Quillen equivalence.

Proof. We know that u∗ is a left Quillen functor for the injective model structure. Hence,
by virtue of Proposition 2·3, it is sufficient to prove that the total right derived functor

Ru∗: Ho([A, V ]) �� Ho([B, V ])
preserves locally constant functors. But this latter property is just Proposition 1·24 applied
to V op. The last assertion follows again from Theorem 1·3.

3. Locally constant coefficients in Grothendieck derivators

3·1. We start this section by fixing some notations.
Let A be a small category. We will consider the category [Aop, sSet] of simplicial

presheaves on A endowed with the projective model structure. Given a subcategory S of A,
we denote by L S[Aop, sSet] the left Bousfield localization of the projective model structure
on [Aop, sSet] by S (where S is seen as a set of maps in [Aop, sSet] via the Yoneda embed-
ding). The fibrant objects of L S[Aop, sSet] are the simplicial presheaves F on A which are
termwise Kan complexes and which sends the maps of S to simplicial homotopy equival-
ences. In particular, in case A = S, L A[Aop, sSet] is the projective local model structure on
[Aop, sSet] studied in the previous section.

3·2. We refer to [Mal01, Cis03b, Cis08b] for the definition of derivators and of the basic
notions in this setting. We give here only a small sketch of the definition.
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A prederivator is a (strict) contravariant6 2-functor D from the 2-category of small cat-
egories to the 2-category of (possibly large) categories. If u: A �� B is a functor between
small categories the induced functor is denoted by

u∗: D(B) �� D(A) . (3·2·1)

A derivator is roughly a prederivator D which has small (homotopy) colimits: for any functor
u: A �� B between small categories, the functor (3·2·1) has a left adjoint

u!: D(A) �� D(B) , (3·2·2)

called the homological direct image functor associated to u, or the left homotopy Kan ex-
tension of u, and a right adjoint

u∗: D(A) �� D(B) , (3·2·3)

called the cohomological direct image functor associated to u, or the right homotopy Kan
extension of u. These data are asked to satisfy some natural conditions. The main examples
of derivators come from model categories: if V is a cocomplete model category, then we get
a derivator Ho (V ) defined by

Ho (V )(A) = Ho([Aop, V ]) (3·2·4)

(see [Cis03b, theorem 6·11]). In the case where D = Ho (V ), the main axioms a derivator
should satisfy are expressed by Proposition 1·14 (as well as its dual version) and Proposition
1·15. It is very possible to understand the statements which will follow by considering only
derivators of shape Ho (V ) for a cocomplete model category V .

Morphisms of (pre)derivators are just pseudo-natural transformations. Prederivators nat-
urally form a 2-category.

3·3. Given two prederivators D and D′, we denote by Hom(D,D′) the category of morph-
isms of derivators; see [Cis03b]. If D and D′ are derivators, we denote by Hom !(D,D′) the
full subcategory of Hom(D,D′) whose objects are the morphisms of prederivators which
commute with left homotopy Kan extensions (which are called cocontinuous morphisms in
[Cis03b]).

Given a (small) category, we denote by A the prederivator which associates to each small
category I the category [I op, A] of presheaves on I with values in A. This defines a 2-
functor from the 2-category of small categories to the 2-category of prederivators. Note that
we have a Yoneda Lemma for prederivators: given a small category A and a prederivator D,
the functor

Hom(A,D) �� D(Aop), F � �� F(1A) (3·3·1)

is an equivalence of categories.

THEOREM 3·4. For any derivator D, the composition by the Yoneda embedding h :
A �� Ho ([Aop, sSet]) induces an equivalence of categories

Hom !(Ho ([Aop, sSet]),D) � Hom(A,D) .

Proof. This is a translation of [Cis08b, corollary 3·26] using (3·3·1).

6 By which we mean that the 1-cells and the 2-cells are inverted.
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3·5. We denote by Hom S(A,D) the full subcategory of morphisms A �� D such that
the induced functor A �� D(e) sends the maps of S to isomorphims (where e denotes the
terminal category). A formal consequence of Theorem 3·4 is:

THEOREM 3·6. For any derivator D, the composition by the Yoneda morphism h :
A �� Ho (L S[Aop, sSet]) induces an equivalence of categories

Hom !(Ho (L S[Aop, sSet]),D) � Hom S(A,D) .

Proof. This follows immediately from Theorem 3·4 and from the universal property of
left Bousfield localization for derivators; see [Tab08, theorem 5·4].

3·7. Given a small category A and a derivator D, we define

LC(A,D) = Hom A(A,D) . (3·7·1)

It is clear that for a model category V , we have by definition

LC(A, V ) = LC(A,Ho (V )) . (3·7·2)

COROLLARY 3·8. Let u: A �� B be a functor between small categories. Then the nerve
of u is a simplicial weak equivalence if and only if for any derivator D, the functor

u∗: LC(B,D) �� LC(A,D)

is an equivalence of categories.

Proof. As any model category gives rise to a derivator, this is certainly a sufficient condi-
tion, by virtue of Corollary 1·28. It thus remains to prove that this is a necessary condition.
The nerve of the functor u is a simplicial weak equivalence if and only if the nerve of
uop: Aop �� Bop is so. This result is thus a consequence of Proposition 2·6, of Theorem 3·6,
and of the fact that any Quillen equivalence induces an equivalence of derivators.

LEMMA 3·9. Let A be a small category. The inclusion morphism

i: Ho (L A[Aop, sSet]) �� Ho ([Aop, sSet])
(defined as the right adjoint of the localization morphism) preserves left homotopy Kan
extensions.

Proof. It is sufficient to check that it preserves homotopy colimits; see [Cis08b, pro-
position 2·6]. This reduces to check that locally constant functors are stable by homo-
topy colimits in the model category of simplicial presheaves on a small category, which is
obvious.

PROPOSITION 3·10. For any derivator D and any small category A, the inclusion
functor

LC(A,D) �� Hom(A,D)

has a left adjoint and a right adjoint.

Proof. We have a localization morphism

γ : Ho ([Aop, sSet]) �� Ho (L A[Aop, sSet])
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which has a right adjoint in the 2-category of prederivators

i: Ho (L A[Aop, sSet]) �� Ho ([Aop, sSet]) .

We know that γ is cocontinuous (as it comes from a left Quillen functor; see [Cis03b,
proposition 6·2]). The previous lemma asserts that i is cocontinuous as well. It thus follows
from the fact Hom !(−,D) is 2-functor and from Theorem 3·6 that the inclusion functor

LC(A,D) �� Hom(A,D)

(which is induced by γ ) has a left adjoint (which is induced by i). Applying this to the
opposite derivator Dop (and replacing A by Aop) also gives a right adjoint.

COROLLARY 3·11. Let u : A �� B be a functor between small categories. For any de-
rivator D, the inverse image functor

u∗: LC(B,D) �� LC(A,D)

has a left adjoint and a right adjoint.

3·12. It is possible to construct a prederivator LC (A,D) such that

LC (A,D)(e) = LC(A,D) (3·12·1)

(where e still denotes the terminal category). If D is a derivator, and A is a small category,
then we define a derivator DA by the formula

DA(I ) = D(Aop × I ) . (3·12·2)

It is easy to see that DA is again a derivator. Moreover, the homotopy colimits in DA can
be computed termwise; see [Cis08b, proposition 2·8]. In the case where D = Ho (V ) for a
model category V , we get the formula

Ho (V )A(I ) = Ho([A × I op, V ]) . (3·12·3)

The prederivator LC (A,D) is the full subprederivator of DA defined by the formula

LC (A,D)(I ) = LC(A,DI op

) . (3·12·4)

In other words, LC (A,D)(I ) is the full subcategory of D(Aop × I ) whose objects are the
objects F of D(Aop × I ) such that the induced functor

dia(F): A �� [I op,D(e)]
sends any morphism of A to isomorphisms.

THEOREM 3·13. For any small category A, and any derivator D, the prederivator
LC (A,D) is a derivator, and the full inclusion

LC (A,D) �� DA

has a left adjoint and a right adjoint.

Proof. The proof will follow essentially the same lines as the proof of Proposition 3·10.
Recall that there is an internal Hom for prederivators: if D and D′ are prederivators, we

define a prederivator Hom (D,D′) by the formula

Hom (D,D′)(I ) = Hom(D,D′ I op

)
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for any small category I ; see [Cis08b, corollary 5·3]. If moreover D and D′ are derivators,
we define a prederivator Hom !(D,D′) as a full subprederivator of Hom (D,D′) as follows:
for each small category I , we put

Hom !(D,D′)(I ) = Hom !(D,D′ I op

) .

Then Hom !(D,D′) is again a derivator; see [Cis08b, proposition 5·8]. Theorem 3·4 gives
the following result. If A is a small category, then for any derivator D, the Yoneda map
h: A �� Ho ([Aop, sSet]) induces an equivalence of derivators

Hom !(Ho ([Aop, sSet]),D) � Hom (A,D) = DA .

Similarly, Theorem 3·6 implies that the Yoneda map h : A �� Ho (L A[Aop, sSet]) induces
an equivalence of derivators

Hom !(Ho (L A[Aop, sSet]),D) � LC (A,D) .

Thanks to Lemma 3·9 and to the fact that Hom !(−,D) is a 2-functor, the adjunction

γ : Ho ([Aop, sSet]) � Ho (L A[Aop, sSet]): i

thus induces an adjunction

i∗: Hom !(Ho ([Aop, sSet]),D) � Hom !(Ho (L A[Aop, sSet]),D): γ ∗ .

In particular, we see that LC (A,D) is a derivator (as it is equivalent to the derivator
Hom !(Ho (L A[Aop, sSet]),D)), and we get an adjunction of derivators

DA � LC (A,D) .

Applying this to the opposite derivator Dop gives the other adjoint.

Remark 3·14. The preceding result can be interpreted as follows in terms of model cat-
egories. Consider a small category A and a complete and cocomplete model category V .
Then Ho (V ) is a derivator, so that LC (A,Ho (V )) is a derivator as well. Denote by
LC(A, V ) the full subcategory of [A, V ] whose objects are the locally constant functors.
One can then verify that the prederivator associated to the category LC(A, V ) (by inverting
the termwise weak equivalences) is canonically equivalent to LC (A,Ho (V )); this can be
expressed by the formula

Ho (LC(A, V )) � LC (A,Ho (V )).

This means that the left Bousfield localizations discussed in Subsection 2·1 for combinatorial
model categories always exist in the setting of derivators. Theorem 3·13 implies that such
Bousfield localizations actually exist in the setting of ABC cofibration categories developped
in [RB06].

4. Galois correspondence and homotopy distributors

4·1. Let A and B be small categories. We get from Theorem 3·6 the following canonical
equivalence of categories

Hom !(Ho (L B[Bop, sSet]),Ho (L A[Aop, sSet])) � Hom B(B,Ho (L A[Aop, sSet]))
� Ho(L A×Bop[Aop × B, sSet]) .

(4·1·1)
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Moreover, we have an equivalence of categories

Ho(L A×Bop[Aop × B, sSet]) � Ho(Cat/A × B) (4·1·2)

where Ho(Cat/A × B) denotes the localization of the category of small categories over
A × B by the class of functors (over A × B) whose nerve are simplicial weak equivalences;
this follows for example from [Cis06, corollaries 4·4·20 and 6·4·27] and from the fact B and
Bop have the same homotopy type.

The induced equivalence of categories

S: Ho(Cat/A × B) �� Hom !(Ho (L A[Aop, sSet]),Ho (L B[Bop, sSet])) (4·1·3)

can be described very explicitly: its composition with the localization functor from Cat/A×
B to Ho(Cat/A × B) is the functor

s: Cat/A × B �� Hom !(Ho (L A[Aop, sSet]),Ho (L B[Bop, sSet])) (4·1·4)

which can be described as follows. Consider a functor C �� A×B. It is determined by a pair
of functors p: C �� A and q: C �� B. The functor q induces an inverse image morphism

q∗: L B[Bop, sSet] �� LC [Cop, sSet] (4·1·5)

which happens to be a right Quillen functor for the projective local model structures; see
Proposition 2·6. It thus defines a continuous morphism of derivators (see [Cis03b, proposi-
tion 6·12])

Rq∗: Ho (L B[Bop, sSet]) �� Ho (LC [Cop, sSet]) . (4·1·6)

Using the equivalences of type Ho (L B[Bop, sSet]) � LC (Bop,Ho (sSet)), we see that Rq∗

corresponds to the restriction to LC (Bop,Ho (sSet)) and LC (Cop,Ho (sSet)) of the in-
verse image map q∗ : DBop �� DCop

for D = Ho (sSet) (which is cocontinuous, by virtue
of [Cis08b, proposition 2·8]). We thus conclude from Lemma 3·9 that (4·1·6) is also cocon-
tinuous. The functor p induces a left Quillen functor for the projective local model structures
(by Proposition 2·6 again)

p!: LC [Cop, sSet] �� L A[Aop, sSet] . (4·1·7)

This defines a cocontinuous morphism of derivators (by the dual of [Cis03b, proposi-
tion 6·12])

Lp!: Ho (LC [Cop, sSet]) �� Ho (L A[Aop, sSet]) . (4·1·8)

The functor (4·1·4) is simply defined by sending the pair (p, q) to the composition of (4·1·6)
and (4·1·8).

s(p, q) = Lp!Rq∗: Ho (L B[Bop, sSet]) �� Ho (L A[Aop, sSet]) . (4·1·9)

PROPOSITION 4·2. Given a functor (p, q): C �� A × B, the following conditions are
equivalent;

(a) the morphism (4·1·9) is continuous (i.e. preserves homotopy limits);
(b) the morphism (4·1·8) is continuous;
(c) the functor Lp!Rq∗ : Ho(L B[Bop, sSet]) �� Ho(L A[Aop, sSet]) preserves terminal

objects;
(d) the functor Lp! : Ho(LC [Cop, sSet]) �� Ho(L A[Aop, sSet]) preserves terminal

objects;
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(e) the morphism (4·1·8) is an equivalence of derivators;
(f) the functor Lp! : Ho(LC [Cop, sSet]) �� Ho(L A[Aop, sSet]) is an equivalence of

categories;
(g) the nerve of p is a simplicial weak equivalence.

Proof. The functor (4·1·7) is a left Quillen equivalence (for the projective local model
structures) if and only if for any small category I , the induced functor

p!: [I, LC [Cop, sSet]] �� [I, L A[Aop, sSet]]
is a left Quillen equivalence. This proves that the conditions (e) and (f) are equivalent. It is
obvious that condition (e) implies condition (b). The fact that condition (g) implies condition
(f) can be obtained, for example, using Theorem 1·3. It is clear that condition (b) implies
conditions (a) and (d), and that conditions (a) or (d) implies condition (c). To finish the proof,
we will show that the condition (c) implies (g).

Under the equivalences of type Ho(L X [Xop, sSet]) � Ho(Cat/X), the functor Lp! corres-
ponds to the functor from Ho(Cat/A) to Ho(Cat/A) which is induced by composition with
p. Similarly, the functor Rq∗ corresponds to the functor from Ho(Cat/B) to Ho(Cat/C)

which sends a functor X �� B to the projection X ×h
B C �� C (where X ×h

B C denotes the
homotopy fiber product of X and C over B). These descriptions show immediately that the
condition (c) implies (g). This completes the proof.

4·3. We refer to [Mal05a, Mal05b, Cis06] for the notion of smooth functor and of proper
functor (with respect to the minimal basic localizer). The first reason we are interested by
this notion is that these functors have very good properties with respect to homotopy Kan
extensions; see [Mal05a, section 3·2]. The second reason of our interest for this class of
functors is the following statement.

PROPOSITION 4·4. The category of small categories is endowed with a structure of cat-
egory of fibrant objects in the sense of Brown [Bro73], for which the weak equivalences are
the functors whose nerve is a simplicial weak equivalence, and the fibrations are the smooth
and proper functors. Moreover, the factorizations into a weak equivalence followed by a
fibration can be made functorially.

Proof. Any functor to the terminal category is smooth and proper (so that any small cat-
egory will be fibrant). Functors which are smooth and proper are stable under base change
and composition (see [Mal05a, corollary 3·2·4 and proposition 3·2·10]). It follows from
[Cis06, corollaries 6·4·8 and 6·4·18] and from [Mal05a, proposition 3·2·6] that the class of
trivial fibrations (i.e. of smooth and proper functors which are weak equivalences) is stable
by pullbacks. By virtue of [Cis06, proposition 6·4·14], the pullback of a weak equivalence
by a smooth and proper functor is a weak equivalence. To finish the proof, it is sufficient to
prove that any functor can factor (functorially) through a weak equivalence followed by a
smooth and proper functor, which is a consequence of [Cis06, theorem 5·3·14].

COROLLARY 4·5. The localization of the full subcategory of Cat/A × B whose objects
are the functors (p, q): C �� A × B such that p and q are smooth and proper by the class
of weak equivalences is canonicaly equivalent to Ho(Cat/A × B).

4·6. The simplicial localization L(Cat ) of Cat by the class of weak equivalences can
be described using the structure of category of fibrant objects given by Proposition 4·4. In
particular, the simplicial set Hom L(Cat )(A, B) can be described as the nerve of the category
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Map(A, B), which is defined as the full subcategory of Cat/A × B whose objects are the
functors (p, q): C �� A × B such that p is a trivial fibration (i.e. a functor which is smooth,
proper, and a weak equivalence); see [DK80]. It is easy to see from Proposition 4·4 that the
fundamental groupoid of Map(A, B) is equivalent to the full subcategory of Ho(Cat/A×B)

whose objects are the functors (p, q): C �� A × B such that p is a weak equivalence. In
other words, Proposition 4·2 can now be reformulated as follows.

COROLLARY 4·7 (Galois reconstruction theorem). The groupoid π1(Map(A, B)) is ca-
nonically equivalent to the category of cocontinuous morphisms of derivators which pre-
serve finite homotopy limits from Ho (L B[Bop, sSet]) to Ho (L A[Aop, sSet]).

4·8. Let us explain why the preceding corollary can be interpreted as a Galois recon-
struction theorem. Given a small category A, if we think of Ho (L A[Aop, sSet]) as the “topos
of representations of the ∞-groupoid associated to A”, it is natural to define the functor of
points of Ho (L A[Aop, sSet]) by

B � �� Hom ex
! (Ho (L B[Bop, sSet]),Ho (L A[Aop, sSet]))

(where Hom ex
! (Ho (L B[Bop, sSet]),Ho (L A[Aop, sSet])) denotes the category of cocontinu-

ous morphisms of derivators which preserve finite homotopy limits). This is a 2-functor from
τ�2L(Cat ) to the category of groupoids which is corepresentable precisely by A. This can
be reformulated by saying that we can reconstruct the homotopy type of A from the “topos”
Ho (L A[Aop, sSet]). This is the derivator version of Toën’s homotopy Galois theory [Toë02].

4·9. Corollary 4·5 can also be used to understand the compatibilities of the equivalences
of categories of type (4·1·3) with composition of morphisms of derivators. More precisely,
we have a bicategory Ho(Dist ), whose objects are the small categories, and whose cat-
egory of morphisms from A to B is the homotopy category Ho(Cat/A × B) (composition
is defined by homotopy fiber products). We will finish this section by explaining how Corol-
lary 4·5 implies that the functors (4·1·3) define a bifunctor from Ho(Dist ) to the 2-category
of derivators. Define a bicategory SP as follows. The obects of SP are the small categories.
Given two small categories A and B, the category of morphisms SP(A, B) is the full sub-
category of Cat/A × B whose objects are the functors (p, q): C �� A × B such that p and
q are smooth and proper. The composition law of SP is defined by fiber products (which is
meaningful, as the smooth and proper functors are stable by pullbacks and compositions).

We denote by Der ! the 2-category whose objects are the derivators, and whose morphisms
are the cocontinuous morphims (2-cells are just 2-cells in the 2-category of prederivators).

LEMMA 4·10. The functors (4·1·4) define a bifunctor

s: SPop �� Der !.

Proof. Consider a commutative diagram
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��
�

q

���
��

��
��

F
r

����
��

��
�

s

���
��

��
��

A B C
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in which the square is a pullback, and all the maps are smooth and proper. Note that for any
smooth and proper map ϕ, both ϕ and ϕop are locally constant; see [Cis06, corollary 6·4·8].
By virtue of Propositions 1·24 and 2·8, we can apply [Mal05a, proposition 3·2·28] to get
that the base change map

Lu!Rt∗ �� Rr∗Lq!

is an isomorphism in Hom !(Ho (L E [Eop, sSet]),Ho (L F [Fop, sSet])). In particular, we get a
canonical isomorphism

Ls!Lu!Rt∗Rp∗ � Ls!Rr∗Lq!Rp∗ .

These isomorphisms, together with the functors (4·1·4) define a bifunctor: to check the co-
herences, we are reduce to check that commutative squares with the Beck–Chevalley prop-
erty are stable by compositions, which is well known to hold.

4·11. We define now a bicategory Ho(SP) as follows. The objects are the small cat-
egories, and given two objects A and B, the category of morphisms from A to B is
Ho(SP(A, B)), that is the localisation of SP(A, B) by the class of weak equivalences. We
have a localization bifunctor

γ : SP �� Ho(SP) . (4·11·1)

Corollary 4·5 can now be reformulated: the canonical bifunctor

j: Ho(SP) �� Ho(Dist ) (4·11·2)

is a biequivalence.

PROPOSITION 4·12. The equivalences of categories (4·1·3) define a bifunctor

S: Ho(Dist )
op �� Der ! .

Proof. For any small categories A, B and C , we have

Ho(SP(A, B) × SP(A, B)) = Ho(SP(A, B)) × Ho(SP(B, C)) .

The universal property of localizations and Lemma 4·10 imply that we get a bifunctor

S′: Ho(SP)op �� Der ! .

We deduce from this and from the biequivalence (4·11·2) that there is a unique way to define
a bifunctor S from Ho(Dist )

op to Der ! from the equivalences of categories (4·1·3) such that
S′ j = S.

Scholium 4·13. Theorem 3·6 asserts that for any derivator D, we have an equivalence of
derivators

Hom !(Ho (L A[Aop, sSet]),D) � LC (A,D) .

As Hom !(−,D) is a 2-functor, we deduce from the preceding proposition that we get a
bifunctor

LC (−,D): Ho(Dist ) �� Der !,

which sends a small category A to LC (A,D). This defines a bifunctor

LC (−, −): Ho(Dist ) × Der ! �� Der !,

which defines an enrichment of Der ! in homotopy distributors.
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(2006).

[Cis08b] D.-C. CISINSKI. Propriétés universelles et extensions de Kan dérivées. Theory and Appl. Categ.
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