
J. K-Theory 9 (2012), 201–268
doi:10.1017/is011011005jkt169

©2011 ISOPP

Symmetric monoidal structure on
non-commutative motives
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Abstract

In this article we further the study of non-commutative motives, initiated in
[12, 43]. Our main result is the construction of a symmetric monoidal structure
on the localizing motivator Motloc

dg of dg categories. As an application,
we obtain : (1) a computation of the spectra of morphisms in Motloc

dg in
terms of non-connective algebraic K-theory; (2) a fully-faithful embedding
of Kontsevich’s category KMMk of non-commutative mixed motives into the
base category Motloc

dg .e/ of the localizing motivator; (3) a simple construction
of the Chern character maps from non-connective algebraic K-theory to
negative and periodic cyclic homology; (4) a precise connection between
Toën’s secondary K-theory and the Grothendieck ring of KMMk ; (5) a
description of the Euler characteristic in KMMk in terms of Hochschild
homology.
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Introduction

Dg categories

A differential graded (=dg) category, over a commutative base ring k, is a category
enriched over complexes of k-modules (morphisms sets are such complexes) in such
a way that composition fulfills the Leibniz rule : d.f ı g/D .df /ıgC.�1/deg.f /f ı

.dg/. Dg categories enhance and solve many of the technical problems inherent to
triangulated categories; see Keller’s ICM adress [31]. In non-commutative algebraic
geometry in the sense of Bondal, Drinfeld, Kapranov, Kontsevich, Toën, Van den
Bergh, ::: [4, 5, 17, 18, 34, 35, 36, 50], they are considered as dg-enhancements
of derived categories of (quasi-)coherent sheaves on a hypothetic non-commutative
space.

Localizing invariants

All the classical (functorial) invariants, such as Hochschild homology, cyclic
homology and its variants (periodic, negative, :::), algebraic K-theory, and even
topological Hochschild homology and topological cyclic homology (see [46]),
extend naturally from k-algebras to dg categories. In order to study all these
classical invariants simultaneously, the second named author introduced in [43] the
notion of localizing invariant. This notion, that we now recall, makes use of the
language of Grothendieck derivators [29], a formalism which allows us to state and
prove precise universal properties; consult Appendix A. Let L W HO.dgcat/ ! D

be a morphism of derivators, from the derivator associated to the Morita model
structure of dg categories (see §2.3), to a triangulated derivator (in practice, D will
be the derivator associated to a stable model category M, and L will come from a
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functor dgcat!M which sends derived Morita equivalences to weak equivalences
in M). We say that L is a localizing invariant (see Definition 8.3) if it preserves
filtered homotopy colimits as well as the terminal object, and sends Drinfeld exact
sequences of dg categories

A �! B �! C 7! L.A/ �! L.B/ �! L.C/ �! L.A/Œ1�

to distinguished triangles in the base category D.e/ of D. Thanks to the work
of Keller [32, 33], Schlichting [42], Thomason-Trobaugh [49], and Blumberg-
Mandell [3], all the mentioned invariants satisfy localization1, and so give rise to
localizing invariants. In [43], the second named author proved that there exists a
localizing invariant

U loc
dg W HO.dgcat/ �!Motloc

dg ;

with values in a strong triangulated derivator (see §A.3), such that given any strong
triangulated derivator D, we have an induced equivalence of categories

.U loc
dg /
� W HomŠ.Motloc

dg ;D/
�
�! Homloc.HO.dgcat/;D/:

The left-hand side denotes the category of homotopy colimit preserving morphisms
of derivators, and the right-hand side the category of localizing invariants.

Because of this universality property, which is a reminiscence of motives, U loc
dg

is called the universal localizing invariant, Motloc
dg the localizing motivator, and the

base category Motloc
dg .e/ of the localizing motivator the category of non-commutative

motives over k.

Symmetric monoidal structure

The purpose of this article is to develop a new ingredient in the theory of non-
commutative motives: symmetric monoidal structures. The tensor product extends
naturally from k-algebras to dg categories, giving rise to a symmetric monoidal
structure on HO.dgcat/; see Theorem 3.2. Therefore, it is natural to consider
localizing invariants which are symmetric monoidal. Examples include Hochschild
homology and the mixed and periodic complex constructions; see Examples 8.9-
8.11. The main result of this article is the following.

Theorem 0.1 (see Theorem 8.5) The localizing motivator Motloc
dg carries a canoni-

cal symmetric monoidal structure�˝L�, making the universal localizing invariant
U loc

dg symmetric monoidal. Moreover, this tensor product preserves homotopy
colimits in each variable and is characterized by the following universal property:

1In the case of algebraic K-theory we consider its non-connective version.
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given any strong triangulated derivator D, endowed with a monoidal structure
which preserves homotopy colimits, we have an induced equivalence of categories

.U loc
dg /
� W Hom˝

Š
.Motloc

dg ;D/
�
�! Hom˝loc.HO.dgcat/;D/;

where the left-hand side stands for the category of symmetric monoidal homotopy
colimit preserving morphisms of derivators, while the right-hand side stands for the
category symmetric monoidal morphisms of derivators which are also localizing
invariants; see §A.5. Furthermore, Motloc

dg admits an explicit symmetric monoidal
Quillen model.

The proof of Theorem 0.1 is based on an alternative description of Motloc
dg , with

two complementary aspects: a constructive one, and another given by universal
properties.

The constructive aspect, i.e. the construction of an explicit symmetric monoidal
Quillen model for Motloc

dg , is described in the main body of the text. The key starting
point is the fact that homotopically finitely presented dg categories are stable under
derived tensor product; see Theorem 4.4. This allows us to obtain a small symmetric
monoidal category which “generates” the entire Morita homotopy category of dg
categories. Starting from this small monoidal category, we then construct a specific
symmetric monoidal Quillen model for each one of the derivators used in the
construction of Motloc

dg ; see §8.1.
The characterization of Motloc

dg by its universal property (as stated in Theo-
rem 0.1), relies on general results and constructions in the theory of Grothendieck
derivators, and is described in the appendix. We develop some general results
concerning the behavior of monoidal structures under classical operations : Kan
extension (see Theorem A.3), left Bousfield localization (see Proposition A.9) and
stabilization (see Theorem A.15). Using these general results, we then characterize
by a precise universal property each one of the Quillen models used in the
construction of the new symmetric monoidal Quillen model for Motloc

dg ; see §8.1.
Let us now describe some applications of Theorem 0.1.

Non-connective K-theory

As mentioned above, non-connective algebraic K-theory IK.�/ is an example of
a localizing invariant. In [12] the authors proved that this invariant becomes co-
representable in Motloc

dg .e/ by the unit object U loc
dg .k/ (where k corresponds to k,

seen as a dg category with one object). In other words, given any dg category A, we
have a natural isomorphism in the stable homotopy category of spectra :

RHom.U loc
dg .k/;U loc

dg .A//' IK.A/: (0.0.1)
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Remark 0.2 Note that the above co-representability isomorphism (0.0.1) combined
with Theorem 0.1 give rise to a monoidal structure on algebraic K-theory. The
agreement between this monoidal structure and the classical products in algebraic
K-theory is proved in [48, Theorem 2.4].

A fundamental problem of the theory of non-commutative motives is the
computation of the (spectra of) morphisms in the category of non-commutative
motives between any two objects. Using the monoidal structure of Theorem 0.1
we extend the above natural isomorphism (0.0.1), and thus obtain a partial solution
to this problem.

Theorem 0.3 (see Theorem 9.2) Let B be a saturated dg category in the sense
of Kontsevich, i.e. its complexes of morphisms are perfect and B is perfect as a
bimodule over itself; see Definition 5.1. Then, for every small dg category A, we
have a natural isomorphism in the stable homotopy category of spectra

RHom.U loc
dg .B/;U loc

dg .A//' IK.rep.B;A//;

where rep.�;�/ denotes the internal Hom-functor in the Morita homotopy category
of dg categories; see §2.4.

Given a quasi-compact and separated k-schemeX , there is a natural dg category
perf.X/ which enhances the category of perfect complexes (i.e. of compact objects)
in the (unbounded) derived category Dqcoh.X/ of quasi-coherent sheaves on X ; see
Example 5.5. Moreover, when X is smooth and proper, the dg category perf.X/
is a saturated dg category. In this geometrical situation, we have the following
computation.

Proposition 0.4 (see Proposition 9.3) Given smooth and proper k-schemes X and
Y , we have a natural isomorphism in the stable homotopy category of spectra

RHom.U loc
dg .perf.X//;U loc

dg .perf.Y ///' IK.X �Y /;

where IK.X�Y / denotes the non-connective algebraicK-theory spectrum ofX�Y .

Kontsevich’s category of non-commutative mixed motives

In his non-commutative algebraic geometry program [34, 35, 36], Kontsevich
introduced the category KMMk of non-commutative mixed motives; see §9.2.
Roughly, KMMk is obtained by taking a formal Karoubian triangulated envelope
of the category of saturated dg categories (with algebraic K-theory of bimodules as
morphism sets). Using Theorem 0.3, we prove the following result.

Proposition 0.5 (see Proposition 9.5) There is a natural fully-faithful embedding
(enriched over spectra) of Kontsevich’s category KMMk of non-commutative mixed
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motives into the base category Motloc
dg .e/ of the localizing motivator. The essential

image is the thick triangulated subcategory spanned by motives of saturated dg
categories.

Note that, in contrast with Kontsevich’s ad hoc definition, the category Motloc
dg .e/

of non-commutative motives is defined purely in terms of precise universal proper-
ties.

Chern characters

Let
E W HO.dgcat/ �!D

be a symmetric monoidal localizing invariant. Thanks to Theorem 0.1 there is a
(unique) symmetric monoidal homotopy colimit preserving morphism of derivators
Egm which makes the diagram

HO.dgcat/ E

U loc
dg

D

Motloc
dg

Egm

commute (up to unique 2-isomorphism). We call Egm the geometric realization of E.
If E.k/' 1 denotes the unit of D, we can also associate to E its absolute realization

Eabs WDRHomD.1;Egm.�// (see Definition 9.6)

Proposition 0.6 (see Proposition 9.7) The geometric realization of E induces a
canonical Chern character

IK.�/)RHom.1;E.�//' Eabs.U loc
dg .�//:

Here, IK.�/ and Eabs.U loc
dg .�// are two morphisms of derivators defined on

HO.dgcat/.

Let A be a small dg category. When E is given by the mixed complex
construction (see Example 8.10), the absolute realization of U loc

dg .A/ identifies with
the negative cyclic homology complex HC�.A/ of A. Therefore by Proposition 0.6,
we obtain a canonical Chern character

IK.�/) HC�.�/

from non-connective K-theory to negative cyclic homology; see Example 9.10.
When E is given by the composition of the mixed complex construction with the
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periodization procedure (see Example 8.11), the absolute realization of U loc
dg .A/

identifies with the periodic cyclic homology complex HP.A/ of A. Therefore by
Proposition 0.6, we obtain a canonical Chern character

IK.�/) HP.�/

from non-connective K-theory to periodic cyclic homology; see Example 9.11.

Remark 0.7 Note that the above co-representability isomorphism (0.0.1) combined
with Theorem 0.1 give rise to a multiplicative structure on the canonical Chern
characters of Proposition 0.6. The agreement between this multiplicative structure
and the classical one is proved in [48, Theorem 2.8 and Corollary 2.9].

Toën’s secondary K-theory

In his sheaf categorification program [52, 54], Toën introduced a “categorified”
version of algebraic K-theory, named secondary K-theory. Given a commutative
ring k, the secondary K-theory ring K.2/0 .k/ of k is roughly the quotient of the free
abelian group on derived Morita isomorphism classes of saturated dg categories, by
the relations ŒB� D ŒA�C ŒC� coming from Drinfeld exact sequences A! B ! C.
The multiplication is induced from the derived tensor product; see §9.4. As Toën
pointed out in [52], one of the motivations for the study of this secondary K-theory
is its expected connection with an hypothetical Grothendieck ring of motives in the
non-commutative setting. Thanks to the monoidal structure of Theorem 0.1 we are
now able to make this connection precise.

Definition 0.8 (see Definition 9.16) Given a commutative ring k, the Grothendieck
ring K0.k/ of non-commutative motives over k is the Grothendieck ring of
Kontsevich mixed motives (i.e. of the thick triangulated subcategory of Motloc

dg .e/

generated by the objects U loc
dg .A/, where A runs over the family of saturated dg

categories).

Kontsevich’s saturated dg categories can be characterized conceptually as the
dualizable objects in the Morita homotopy category; see Theorem 5.8. Therefore,
since the universal localizing invariant U loc

dg is symmetric monoidal we obtain a ring
homomorphism

ˆ.k/ WK
.2/
0 .k/ �!K0.k/:

Moreover, the Grothendieck ring of Definition 0.8 is non-trivial (see Remark 9.17),
functorial in k (see Remark 9.18), and the ring homomorphism ˆ.k/ is functorial in
k and surjective “up to cofinality” (see Remark 9.19). Furthermore, any realization
of K.2/0 .k/ (i.e. ring homomorphism K

.2/
0 .k/ ! R), which is induced from a
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symmetric monoidal localizing invariant, factors through ˆ.k/. An interesting
example is provided by Toën’s rank map

rk0 WK
.2/
0 .k/ �!K0.k/ (see Remark 9.19).

Euler characteristic

Recall that, in any symmetric monoidal category, we have the notion of Euler
characteristic �.X/ of a dualizable objectX (see Definition 9.20). In the symmetric
monoidal category of non-commutative motives we have the following computation.

Proposition 0.9 (see Proposition 9.24) Let A be a saturated dg category. Then,
�.U loc

dg .A// is the element of the Grothendieck group K0.k/ which is associated to
the (perfect) Hochschild homology complex HH.A/ of A.

When k is the field of complex numbers, the Grothendieck ring K0.C/ is
naturally isomorphic to Z and the Hochschild homology of a smooth and proper
k-scheme X agrees with the Hodge cohomology H�.X;��X / of X . Therefore,
when we work over C, and if perf.X/ denotes the (saturated) dg category of perfect
complexes over X , the Euler characteristic of U loc

dg .perf.X// is the classical Euler
characteristic of X .

Acknowledgments : The authors are very grateful to Bertrand Toën for sharing
his insights on saturated dg categories, to Maxim Kontsevich for comments on
a previous version which motivated the creation of subsection 9.3, and to the
anonymous referee for his comments and suggestions which allowed us to greatly
improve the article. The second named author would like also to thank Paul Balmer
and Christian Haesemeyer for some conversations. This article was initiated at the
Institut Henri Poincaré in Paris. The authors would like to thank this institution for
its hospitality and stimulating working environment.

1. Preliminaries

1.1. Notations

Throughout the article we will work over a fixed commutative and unital base ring
k.

We will denote by C.k/ be the category of (unbounded) complexes of k-
modules; see [25, §2.3]. We will use co-homological notation, i.e. the differential
increases the degree. The category C.k/ is a symmetric monoidal model category
(see [25, Definition 4.2.6]), where one uses the projective model structure for which
weak equivalences are quasi-isomorphisms and fibrations are surjections; see [25,
Proposition 4.2.13].



Symmetric monoidal structure on non-commutative motives 209

The category of sets will be denoted by Set, the category of simplicial sets
by sSet, and the category of pointed simplicial sets by sSet�; see [21, §I]. The
categories sSet and sSet� are symmetric monoidal model categories; see [21, Propo-
sition 4.2.8]. The weak equivalences are the maps whose geometric realization is a
weak equivalence of topological spaces, the fibrations are the Kan-fibrations, and
the cofibrations are the inclusion maps.

We will denote by SpN the category of spectra and by Sp† the category of
symmetric spectra (of pointed simplicial sets); see [28].

Finally, the adjunctions will be displayed vertically with the left (resp. right)
adjoint on the left- (resp. right-) hand side.

1.2. Triangulated categories

Throughout the article we will use the language of triangulated categories. The
reader unfamiliar with this language is invited to consult Neeman’s book [40] or
Verdier’s original monograph [55]. Recall from [40, Definition 4.2.7] that given a
triangulated category T admitting arbitrary small coproducts, an object G in T is
called compact if for each family fYigi2I of objects in T , the canonical morphismM

i2I

HomT .G;Yi /
�
�! HomT .G;

M
i2I

Yi /

is invertible. We will denote by Tc the category of compact objects in T .

1.3. Quillen model categories

Throughout the article we will use freely the language of Quillen model cate-
gories. The reader unfamiliar with this language is invited to consult Goerss and
Jardine [21], Hirschhorn [24], Hovey [25], or Quillen’s original monograph [41].
Given a model category M, we will denote by Ho.M/ its homotopy category and by

Map.�;�/ W Ho.M/op �Ho.M/ �! Ho.sSet/

its homotopy function complex; see [24, Definition 17.4.1].

1.4. Grothendieck derivators

Throughout the article we will use the language of Grothendieck derivators.
Derivators allow us to state and prove precise universal properties and to dispense
with many of the technical problems one faces in using Quillen model categories.
Since this language may be less familiar to the reader, we revise it in the appendix.
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Given a model category M, we will denote by HO.M/ its associated derivator; see
§A.2. Any triangulated derivator D is canonically enriched over spectra; see §A.9.
We will denote by RHomD.X;Y / the spectrum of maps from X to Y in D. When
there is no ambiguity, we will write RHom.X;Y / instead of RHomD.X;Y /.

2. Background on dg categories

In this section we collect the notions and results on the (homotopy) theory of
dg categories which will be used throughout the article; see [44, 45, 50]. In
subsection 2.5 we introduce the notion of flat dg category and prove a technical
result (Proposition 2.22) which will play a central role in the article.

Definition 2.1 A small dg category A is a C.k/-category; see [6, Definition 6.2.1].
Recall that this consists of the following data :

- a set of objects obj.A/ (usually denoted by A itself);

- for each ordered pair of objects .x;y/ in A, a complex of k-modules A.x;y/;

- for each ordered triple of objects .x;y;z/ in A, a composition morphism in
C.k/

A.y;z/˝A.x;y/ �!A.x;z/;

satisfying the usual associativity condition;

- for each object x in A, a morphism k ! A.x;x/, satisfying the usual unit
condition with respect to the above composition.

Definition 2.2 A dg functor F WA! B is a C.k/-functor; see [6, Definition 6.2.3].
Recall that this consists of the following data :

- a map of sets F W obj.A/ �! obj.B/;

- for each ordered pair of objects .x;y/ in A, a morphism in C.k/

F.x;y/ WA.x;y/ �! B.F x;Fy/;

satisfying the usual unit and associativity conditions.

Notation 2.3 We denote by dgcat the category of small dg categories.
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2.1. Dg cells

(i) Let k be the dg category with one object � and such that k.�;�/ WD k (in
degree zero). Note that given a small dg category B, there is a bijection
between the set of dg functors from k to B and the set of objects of B.

(ii) For n 2 Z, let Sn be the complex kŒn� (with k concentrated in degree n) and
Dn the mapping cone on the identity of Sn�1. We denote by S.n/ the dg
category with two objects 1 and 2 such that S.n/.1;1/ D k ; S.n/.2;2/ D
k ; S.n/.2;1/D 0 ; S.n/.1;2/D Sn and composition given by multiplication.
We denote by D.n/ the dg category with two objects 3 and 4 such that
D.n/.3;3/ D k ; D.n/.4;4/ D k ; D.n/.4;3/ D 0 ; D.n/.3;4/ D Dn and
composition given by multiplication.

(iii) For n 2 Z, let �.n/ W S.n� 1/!D.n/ be the dg functor that sends 1 to 3, 2 to
4 and Sn�1 to Dn by the identity on k in degree n� 1 :

S.n� 1/
�.n/

D.n/

1

k

Sn�1

3

k

Dn
incl

2

k

4

k

where

Sn�1
incl

Dn

0 0

0 k

id

k
id

k .degree n�1/

0 0

Notation 2.4 Let I be the set consisting of the dg functors f�.n/gn2Z and the dg
functor ;! k (where the empty dg category ; is the initial object in dgcat).

Definition 2.5 A dg category A is called a dg cell (resp. a finite dg cell) if the
unique dg functor ;!A can be expressed as a transfinite (resp. finite) composition
of pushouts of dg functors in I ; see [24, Definition 10.5.8(2)].

2.2. Dg modules

Let A be a small (fixed) dg category.

Definition 2.6 - The category H0.A/ has the same objects as A and morphisms
given by H0.A/.x;y/ WD H0.A.x;y//, where H0.�/ denotes the 0-th co-
homology group functor.
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- The opposite dg category Aop of A has the same objects as A and complexes
of morphisms given by Aop.x;y/ WDA.y;x/.

- A right dg A-module M (or simply a A-module) is a dg functor M W Aop!

Cdg.k/ with values in the dg category Cdg.k/ of complexes of k-modules.

We denote by C.A/ the category of right dg A-modules. Its objects are the right
dg A-modules and its morphisms are the natural transformations of dg functors; see
[31, §2.3]. The differential graded structure of Cdg.k/ makes C.A/ naturally into
a dg category; see [31, §3.1] for details. We denote by Cdg.A/ this dg category of
right dg A-modules. Recall from [31, Theorem 3.2] that C.A/ carries a standard
projective model structure. A morphism M !M 0 in C.A/ is a weak equivalence,
resp. a fibration, if for any object x in A, the induced morphism M.x/!M 0.x/ is
a weak equivalence, resp. a fibration, in the projective model structure on C.k/. In
particular, every object is fibrant. Moreover, the dg category Cdg.A/ endowed with
this model structure is a C.k/-model category in the sense of [25, Definition 4.2.18].

Notation 2.7 - We denote by Ddg.A/ the full dg subcategory of fibrant and
cofibrant objects in Cdg.A/.

- We denote by D.A/ the derived category of A, i.e. the localization of
C.A/ with respect to the class of weak equivalences. Note that D.A/ is a
triangulated category with arbitrary small coproducts. Recall from §1.2 that
we denote by Dc.A/ the category of compact objects in D.A/.

Since Cdg.A/ is a C.k/-model category, [50, Proposition 3.5] implies that we
have a natural equivalence of (triangulated) categories

H0.Ddg.A//'D.A/: (2.2.1)

We denote by

h WA �! Cdg.A/ x 7!A.�;x/;

the classical Yoneda dg functor; see [6, §6.3]. Since the A-modules A.�;x/, x in
A, are fibrant and cofibrant in the projective model structure, the Yoneda functor
factors through the inclusion Ddg.A/ � Cdg.A/. Thanks to the above equivalence
(2.2.1), we obtain an induced fully-faithful functor

h W H0.A/ ,!D.A/ x 7!A.�;x/:

Finally, let F W A ! B be a dg functor. As shown in [50, §3] it induces a
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restriction/extension of scalars Quillen adjunction (on the left-hand side)

C.B/

F �

D.B/

F �

C.A/

FŠ

D.A/;

LFŠ

which can be naturally derived (on the right-hand side).

2.3. Morita model structure

Definition 2.8 A dg functor F W A! B is a called a derived Morita equivalence
if the restriction of scalars functor F � W D.B/ �! D.A/ is an equivalence of
triangulated categories. Equivalently, F is a derived Morita equivalence if the
extension of scalars functor LFŠ W D.A/

�
! D.B/ is an equivalence of triangulated

categories.

Theorem 2.9 The category dgcat carries a cofibrantly generated Quillen model
structure (called the Morita model structure), whose weak equivalences are the
derived Morita equivalences. Moreover, its set of generating cofibrations is the
set I of Notation 2.4.

Proof: See [44, Théorème 5.3].

Notation 2.10 We denote by Hmo the homotopy category hence obtained.

Recall from [44, Remarque 5.4] that the fibrant objects of the Morita model
structure (called the Morita fibrant dg categories) are the dg categories A for which
the image of the induced functor

h W H0.A/ ,!D.A/ x 7!A.�;x/

is stable under (co-)suspensions, cones and direct factors.

2.4. Monoidal structure

Definition 2.11 Let A1 and A2 be small dg categories. The tensor product A1˝A2
of A1 with A2 is defined as follows: the set of objects of A1 ˝A2 is obj.A1/ �
obj.A2/ and given objects .x;x0/ and .y;y0/ in A1˝A2, we set

.A1˝A2/..x;x0/;.y;y0//DA1.x;y/˝A2.x0;y0/:

Remark 2.12 The tensor product of dg categories gives rise to a symmetric
monoidal structure on dgcat, with unit object the dg category k (see §2.1).
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Moreover, this model structure is easily seen to be closed. However, the model
structure of Theorem 2.9 endowed with this symmetric monoidal structure is not a
symmetric monoidal model category, as the tensor product of two cofibrant objects
in dgcat is not cofibrant in general; see [50, §4]. Nevertheless, the tensor product
can be derived into a bifunctor

�˝L� W Hmo�Hmo �! Hmo .A1;A2/ 7!Q.A1/˝A2 DWA1˝L A2 ;

where Q.A1/ is a Morita cofibrant resolution of A1.
Now, let B and A be small dg categories. For any object x in B, we have a dg

functor A! Bop˝A. It sends an object y in A to .x;y/ and for each ordered pair
of objects .y;z/ in A, the morphism in C.k/

A.y;z/ �! .Bop˝A/..x;y/;.x;z//D Bop.x;x/˝A.y;z/

is given by the tensor product of the unit morphism k! Bop.x;x/ with the identity
morphism on A.y;z/. Take a Morita cofibrant resolution Q.Bop/ of Bop with the
same set of objects; see [50, Proposition 2.3(2)]. Since Bop and Q.Bop/ have the
same set of objects, one sees that for any object x in B, we have a dg functor

ix WA �!Q.Bop/˝ADW Bop˝L A: (2.4.1)

Definition 2.13 Let A be a small dg category. A A-module M is called perfect if
it is compact as an object in the derived category D.A/. We denote by Cdg.A/pe the
dg category of perfect A-modules, and put

perf.A/D Cdg.A/pe\Ddg.A/:

We thus have an equivalence of triangulated categories

H0.perf.A//'Dc.A/:

Let B and A be small dg categories. A .Bop˝L A/-module X is said to be locally
perfect over B if, for any object x in B, the A-module i�x .X/ (see (2.4.1) and §2.2)
is perfect. We denote by Cdg.Bop˝LA/lpe the dg category of locally perfect .Bop˝L

A/-modules over B, and put

rep.B;A/D Cdg.Bop˝L A/lpe\Ddg.Bop˝L A/:

Note that H0.rep.B;A// is canonically equivalent to the full triangulated subcat-
egory of D.Bop ˝L A/ spanned by the locally perfect .Bop ˝L A/-modules over
B.
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Remark 2.14 For any dg category A, the Yoneda embedding h W A! perf.A/ is a
derived Morita equivalence, and perf.A/ is Morita fibrant. This construction thus
provides us a canonical fibrant replacement functor for the Morita model structure.

Theorem 2.15 (Toën) Given small dg categories B and A, we have a natural
bijection

HomHmo.B;A/' IsoH0.rep.B;A//
(where IsoC stands for the set of isomorphism classes of objects in C). Moreover,
given small dg categories A1, A2, and A3, the composition in Hmo corresponds to
the derived tensor product of bimodules :

IsoH0.rep.A1;A2//� IsoH0.rep.A2;A3// �! IsoH0.rep.A1;A3//
.ŒX�;ŒY �/ 7�! ŒX ˝L

A2 Y �:

Proof: See [50, Corollary 4.8] and [44, Remarque 5.11].

Theorem 2.16 (Toën) The derived tensor product � ˝L � on Hmo admits the
bifunctor

rep.�;�/ W Hmoop �Hmo �! Hmo

as an internal Hom-functor.

Proof: See [50, Theorem 6.1] and [44, Remarque 5.11].

Corollary 2.17 Given small dg categories A1, A2 and A3, we have a natural
isomorphism in Ho.sSet/

Map.A1˝L A2;A3/'Map.A1;rep.A2;A3//: (2.4.2)

Proof: See [50, Corollary 6.4] and [44, Remarque 5.11].

Remark 2.18 Observe that, when B D k, the dg category Bop˝L A identifies with
A, which gives a natural isomorphism in Hmo :

rep.k;A/' perf.A/: (2.4.3)

2.5. Flat dg categories

Definition 2.19 A complex of k-modules M is called k-flat if for any acyclic
complex N , the complex M ˝ N is also acyclic. A dg category is called k-flat
if for each ordered pair of objects .x;y/ in A, the complex A.x;y/ is k-flat.

Remark 2.20 Note that if f W N1 ! N2 is a quasi-isomorphism of complexes and
M is k-flat, then the morphism f ˝ idM W N1 ˝M ! N2 ˝M is also a quasi-
isomorphism.
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Notation 2.21 We denote by dgcatflat the full subcategory of dgcat consisting of the
k-flat dg categories.

Since complexes of k-flat modules are stable under tensor product, the symmet-
ric monoidal structure on dgcat (see §2.4) restricts to dgcatflat. Moreover, we have
the following important result.

Proposition 2.22 The tensor product

�˝� W dgcatflat � dgcatflat �! dgcatflat

preserves derived Morita equivalences (in both variables).

Proof: Let A, B and C be k-flat dg categories and F W A ! B a derived Morita
equivalence. We need to show that the dg functor F ˝ id W A˝ C ! B˝ C is also
a derived Morita equivalence. By [31, Lemma 3.10] this is equivalent to verify the
following two conditions:

(i) for each ordered pair of objects .x;y/ in A and each ordered pair .z;w/ of
objects in C, the following morphism in C.k/ is a quasi-isomorphism

.F ˝ id/..x;z/;.y;w// W .A˝C/..x;z/;.y;w// �! .B˝C/..F x;z/;.Fy;w//:
(2.5.1)

(ii) the .B˝C/-modules h..F x;z// WD .B˝C/.�;.F x;z//, with x 2 obj.A/ and
z 2 obj.C/, form a set of (compact) generators of D.B˝ C/.

By hypothesis, F is a derived Morita equivalence and so for each ordered pair of
objects .x;y/ in A we have a quasi-isomorphism F.x;y/ W A.x;y/! B.F x;Fy/.
Moreover, C is a k-flat dg category, which implies that the complex C.z;w/ is k-
flat. Condition (i) follows then from Remark 2.20 and from the fact that the above
morphism (2.5.1) identifies with the morphism F.x;y/˝ idC.z;w/.

Now, let M be a .B˝ C/-module. In order to show condition (ii) we need to
prove that if by hypothesis

HomD.B˝C/.h..F x;z//Œn�;M/D 0 (2.5.2)

for every n 2 Z, x 2 obj.A/, and z 2 obj.C/, then the .B˝ C/-module M is trivial.
For each z 2 obj.C/ we have a natural dg functor

id˝iz W B ' B˝ k �! B˝ C x 7! .x;z/

and the associated (derived) restriction/extension of scalars adjunction

D.B˝ C/
.id˝iz/�

D.B/:

L.id˝iz/Š
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Moreover, since L.id˝iz/Š.h.F x/Œn�/' h..F x;z//Œn�, we obtain the equivalence

HomD.B˝C/.h..F x;z//Œn�;M/' HomD.B/.h.F x/Œn�;.id˝iz/�.M//:

Hence, if (2.5.2) holds, we conclude that

HomD.B/.h.F x/Œn�;.id˝iz/�.M//D 0

for every n 2 Z and every x 2 obj.A/. Since by hypothesis F is a derived Morita
equivalence, the B-modules h.F x/, with x 2 obj.A/, form a set of (compact)
generators of D.B/ which implies that .id˝iz/�.M/ D 0. The proof now follows
from the fact that the family of functors .id˝iz/�, z 2 obj.C/, is conservative, i.e. a
.B˝C/-module M is trivial in D.B˝C/ if and only if the B-module .id˝iz/�.M/

is trivial in D.B/ for every z 2 obj.C/.

3. Monoidal structure on the derivator of dg categories

In this section we endow the derivator associated to the Morita model structure on
dg categories with a symmetric monoidal structure. This result is the starting point
of the article, since it will allow us to introduce the notion of a symmetric monoidal
localizing invariant; see Definition 8.6. Recall from §2.4 that the Morita model
structure is not a monoidal model structure and so we cannot apply the general
Proposition A.2. We sidestep this difficulty using the notion of flat dg category
introduced in subsection 2.5.

Notation 3.1 We denote by HO.dgcat/ the derivator associated to the Morita model
structure on dg categories; see Theorem 2.9.

Theorem 3.2 The derivator HO.dgcat/ carries a symmetric monoidal structure
� ˝L �; see §A.5. Moreover, the induced symmetric monoidal structure on
HO.dgcat/.e/D Hmo coincides with the one described in Remark 2.12.

Proof: Let HO.dgcatflat/ D dgcatflatŒMor�1� be the prederivator associated to the
class Mor of derived Morita equivalences in dgcatflat; see §A.1. Since dgcatflat is a
symmetric monoidal category, and the tensor product preserves the class Mor , i.e.
Mor ˝Mor �Mor , the prederivator HO.dgcatflat/ carries a natural symmetric
monoidal structure; see §A.5. Now, choose a functorial Morita cofibrant resolution
functor

Q W dgcat �! dgcat Q) Id:

Thanks to [50, Proposition 2.3(3)] every cofibrant dg category is k-flat, and so we
obtain functors

i W dgcatflat ,! dgcat Q W dgcat �! dgcatflat
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and natural transformations

i ıQ) Id Q ı i) Id: (3.0.3)

Since the functors i and Q preserve derived Morita equivalences and the above
natural transformations (3.0.3) are objectwise derived Morita equivalences, we
obtain by 2-functoriality (see §A.1) morphisms of derivators

i W HO.dgcatflat/ �! HO.dgcat/ Q W HO.dgcat/ �! HO.dgcatflat/

which are quasi-inverse to each other. Using this equivalence of derivators, we
transport the monoidal structure from HO.dgcatflat/ to HO.dgcat/. The fact that
the induced monoidal structure on HO.dgcat/.e/ D Hmo coincides with the one
described in Remark 2.12 is now clear.

Proposition 3.3 The tensor product on HO.dgcat/ of Theorem 3.2 preserves
homotopy colimits in each variable.

Proof: This follows immediately from Corollary 2.17.

4. Homotopically finitely presented dg categories

In this section we give a new characterization of homotopically finitely presented
dg categories; see Theorem 4.3. Using this new characterization we show that
homotopically finitely presented dg categories are stable under derived tensor
product; see Theorem 4.4. This stability result will play a key role in the
construction of a symmetric monoidal model structure on the category of non-
commutative motives; see Section 8.

Proposition 4.1 For any small dg category A and n 2 Z, we have natural
isomorphisms in Hmo

S.n/op˝A' S.n/op˝L A' rep.S.n/;A/:

Proof: Since S.n/ ' S.n/op is cofibrant, we obtain the following isomorphism in
Hmo

S.n/op˝L A' S.n/op˝A:

By construction, the dg category S.n/ is also locally perfect, i.e. its complexes of
morphisms are perfect complexes of k-modules; see [53, Definition 2.4(1)]. We
obtain then by [53, Lemma 2.8] the following inclusion

S.n/op˝A' perf.S.n/op˝L A/� rep.S.n/;A/:
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Let us now prove the converse inclusion. Observe that we have two natural dg
functors

i1 WA �! S.n/op˝A
x 7�! .1;x/

i2 WA �! S.n/op˝A
x 7�! .2;x/

;

and the category of .S.n/op˝A/-modules identifies with the category of morphisms
of degree n in C.A/, i.e. to the category of triples .M;M 0;f /, where M and M 0

are A-modules, and f W M �! M 0Œn� is a morphism of A-modules. Under this
identification, we obtain the following extension of scalars functors (see §2.2) :

.i1/Š W C.A/ �! C.S.n/op˝A/ M 7�! .M;MŒ�n�;1M /

.i2/Š W C.A/ �! C.S.n/op˝A/ M 7�! .0;M;0/:

Now, let X be an object in rep.S.n/;A/. Note that X corresponds to a cofibration

f WM M 0Œn�

in C.A/ between cofibrant and perfect A-modules (see Definition 2.13). Consider
the following short exact sequence of morphisms of A-modules

.MŒ�n�/Œn�DM
f

M 0Œn� coker.f /D .coker.f /Œ�n�/Œn�

M

1M

M

f

0

(4.0.4)
where coker.f / denotes the cokernel of f in the category C.A/. Since M and
M 0Œn� are cofibrant and perfect A-modules, and f is a cofibration, the A-module
coker.f / is also cofibrant and perfect. Perfect modules are stable under suspension,
and so coker.f /Œ�n� is a perfect (and cofibrant) A-module. We have natural
isomorphisms :

.i1/Š.M/' .M;MŒ�n�;1M / and .i2/Š.coker.f /Œ�n�/' .0;coker.f /Œ�n�;0/:

Since the extension of scalars functors L.i1/Š and L.i2/Š preserve perfect modules,
these two objects are perfect. Finally, since perf.S.n/op ˝ A/ is stable under
extensions in Ddg.S.n/op ˝A/, and in the above short exact sequence (4.0.4) the
left and right vertical morphisms belong to perf.S.n/op˝A/, we conclude that the
object X also belongs to perf.S.n/op˝A/.
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Definition 4.2 ([53, Definition 2.1(3)]) Let M be a Quillen model category. An
object X in M is called homotopically finitely presented if for any filtered system
of objects fYj gj2J in M, the induced map

hocolim
j2J

Map.X;Yj / �!Map.X;hocolim
j2J

Yj /

is an isomorphism in Ho.sSet/.

Theorem 4.3 Let B be a small dg category. In the Morita model structure (see
Theorem 2.9) the following conditions are equivalent :

(1) The dg category B is homotopically finitely presented;

(2) The dg category B is a retract in Hmo of a finite dg cell (see Definition 2.5);

(3) For any filtered system fAj gj2J of dg categories, the induced morphism

hocolim
j2J

rep.B;Aj /
�
�! rep.B;hocolim

j2J
Aj / (4.0.5)

is an isomorphism in Hmo.

Proof: .1/, .2/ : It follows from [43, Example 5.1 and Proposition 5.2].

.3/) .1/ W Let fAj gj2J be a filtered system of dg categories. By hypothesis,
we have an induced isomorphism in Hmo

hocolim
j2J

rep.B;Aj /
�
�! rep.B;hocolim

j2J
Aj /: (4.0.6)

Thanks to Corollary 2.17 we have, for any dg category A, natural isomorphisms in
Ho.sSet/ :

Map.B;A/'Map.k˝L B;A/'Map.k;rep.B;A//:

The dg category k is a finite dg cell, and so using equivalence .1/, .2/we conclude
that k is homotopically finitely presented. Therefore, by applying the functor

Map.k;�/ W Hmo �! Ho.sSet/

to the above isomorphism (4.0.6), we obtain an induced isomorphism in Ho.sSet/

hocolim
j2J

Map.B;Aj /
�
�!Map.B;hocolim

j2J
Aj /:

This shows that B is homotopically finitely presented.
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.2/) .3/ W The class of objects in Hmo which satisfy condition (3) is clearly
stable under retracts. Moreover, given a small dg category A, the functor

rep.�;A/ W Hmoop �! Hmo

sends homotopy colimits to homotopy limits. Since by construction homotopy
pullbacks in Hmo commute with filtered homotopy colimits, we conclude that the
class of objects in Hmo which satisfy condition (3) is also stable under homotopy
pushouts. Therefore, it is enough to verify condition (3) for the domains and
codomains of the elements of the set I ; see Notation 2.4. If B D ; this is clear.
The case where B D k was proved in [53, Lemma 2.10]. If B D D.n/, n 2 Z, we
have a natural derived Morita equivalence

kqL
; k ' kq k

�
�!D.n/:

Therefore, it remains to prove the case where B D S.n/, n 2 Z. Since by
Proposition 3.3 the derived tensor product preserves homotopy colimits, this case
follows automatically from Proposition 4.1.

Theorem 4.4 Let B1 and B2 be homotopically finitely presented dg categories.
Then B1˝L B2 is a homotopically finitely presented dg category.

Proof: Let fAj gj2J be a filtered system of dg categories. The proof is a
consequence of the following weak equivalences :

Map.B1˝L B2;hocolim
j2J

Aj /'Map.B1;rep.B2;hocolim
j2J

Aj // (4.0.7)

'Map.B1;hocolim
j2J

rep.B2;Aj // (4.0.8)

' hocolim
j2J

Map.B1;rep.B2;Aj // (4.0.9)

' hocolim
j2J

Map.B1˝L B2;Aj /: (4.0.10)

Equivalences (4.0.7) and (4.0.10) follow from Corollary 2.17, Equivalence (4.0.8)
follows from Theorem 4.3, and Equivalence (4.0.9) follows from Definition 4.2.

5. Saturated dg categories

In this section we introduce Kontsevich’s notion of saturated dg category. Following
Toën’s work, we characterize these dg categories as the dualizable objects in the
Morita homotopy category; see Theorem 5.8. This conceptual characterization will
play an important role in our applications; see Section 9.
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Definition 5.1 (Kontsevich) ([34, 36, 37])

- A small dg category A is called smooth if the right dg .Aop˝L A/-module

A.�;�/ WA˝L Aop �! Cdg.k/ .x;y/ 7!A.y;x/ (5.0.11)

is perfect; see Definition 2.13.

- A small dg category A is called proper if for each ordered pair of objects
.x;y/ in A, the complex of k-modules A.x;y/ is perfect.

- A small dg category A is called saturated if it is smooth and proper.

Remark 5.2 Given a dg functor F W B!A, we have a natural .Bop˝L A/-module

B˝L Aop �! Cdg.k/ .x;y/ 7!A.y;F x/;

which belongs to rep.B;A/ (see Definition 2.13). The above .Aop ˝L A/-module
A.�;�/ (5.0.11) is obtained by taking B DA and F the identity dg functor.

Notation 5.3 Note that the class of smooth (resp. proper) dg categories is invariant
under derived Morita equivalences (see Definition 2.8). We denote by Hmosat the
full subcategory of Hmo (see Notation 2.10) whose objects are the saturated dg
categories.

Example 5.4 Consider the dg categories S.n/;n� 0, from §2.1(ii). By construction
these dg categories are proper. Thanks to Proposition 4.1, we have a natural
isomorphism S.n/op ˝L S.n/ ' rep.S.n/;S.n// in Hmo. Since the .S.n/op ˝L

S.n//-module S.n/.�;�/ belongs to rep.S.n/;S.n// (see Remark 5.2) and we have
a natural derived Morita equivalence S.n/op˝L S.n/! perf.S.n/op˝L S.n// (see
Remark 2.14), we conclude that the dg categories S.n/ are also smooth. Therefore,
they are saturated.

Example 5.5 (i) Let X be a quasi-compact and separated k-scheme. Consider
the category C.QCoh.X// of (unbounded) complexes of quasi-coherent
sheaves on X . Thanks to [27], C.QCoh.X// is a model category with
monomorphisms as cofibrations and quasi-isomorphisms as weak equiva-
lences. Moreover, when endowed with its natural C.k/-enrichment,
C.QCoh.X// becomes a C.k/-model category in the sense of [25, Def-
inition 4.2.18]. Let Lqcoh.X/ be the dg category of fibrant objects in
C.QCoh.X//. Note that H0.Lqcoh.X// is naturally equivalent to the (un-
bounded) derived category Dqcoh.X/ of quasi-coherent sheaves on X . Fi-
nally, let perf.X/ be the full dg subcategory of Lqcoh.X/ whose objects
are the perfect complexes. Note that H0.perf.X// is naturally equivalent to
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the category of compact objects in Dqcoh.X/. Thanks to Toën (see [53,
Lemma 3.27]), when X is a smooth and proper k-scheme, perf.X/ is a
saturated dg category.

(ii) Let A be a k-algebra, which is projective of finite rank as a k-module, and
of finite global cohomological dimension. Then, the dg category of perfect
complexes of A-modules is a saturated dg category.

(iii) For examples coming from deformation quantization, we invite the reader to
consult [34].

Definition 5.6 Let C be a symmetric monoidal category with monoidal product ˝
and unit object 1. An object X in C is called dualizable (or rigid) if there exists an
object X_ in C, and maps ev W X ˝X_ ! 1 and ı W 1 ! X_ ˝ X such that the
composites

X 'X ˝ 1
id˝ı
�! X ˝X_˝X

ev˝id
�! 1˝X 'X (5.0.12)

and
X_ ' 1˝X_

ı˝id
�!X_˝X ˝X_

id˝ev
�! X_˝ 1'X_ (5.0.13)

are identities. The object X_ is called the dual of X , the map ev is called the
evaluation map, and the map ı is called the co-evaluation map.

Remark 5.7 (i) Given ..X_/1;ev1;ı1/ and ..X_/2;ev2;ı2/ as in Definition 5.6,
there is a unique isomorphism .X_/1

�
! .X_/2 making the natural diagrams

commute. Therefore, the dual of X , together with the evaluation and the co-
evaluation maps, is well-defined up to unique isomorphism.

(ii) Let X be a dualizable object in C. Thanks to Equations (5.0.12) and (5.0.13),
the evaluation and co-evaluation maps give rise to an adjunction :

C
X_˝�

C
�˝X

(5.0.14)

In fact, an object X of C is dualizable if and only if there exists an object X 0,
together with a functorial isomorphism

HomC.Y ˝X;Z/' HomC.Y;X
0˝Z/

for any objects Y and Z in C (and of course such an X 0 is a dual of X). In
other words, X is dualizable with dual X_ if and only if, for any object Z of
C, X_˝Z is the internal Hom object from X to Z.



224 D.-C. CISINSKI & G. TABUADA

(iii) Let X and Y be dualizable objects in C. Then X ˝ Y is also a dualizable
object with dual Y _˝X_.

(iv) Let F W C ! C0 be a symmetric monoidal functor. Then, if X is a dualizable
object in C, F.X/ is a dualizable object in C0 with dual F.X_/.

We are now ready to state the following folklore result:

Theorem 5.8 The dualizable objects in the Morita homotopy category Hmo (see
§2.4) are the saturated dg categories. Moreover, the dual of a saturated dg category
A is its opposite dg category Aop.

Proof: Let us start by introducing the category DGCAT. Its objects are the small dg
categories. Given small dg categories B and A, the set of morphisms from B to A is
the set of isomorphism classes in D.Bop˝L A/. Given small dg categories A1, A2,
and A3, the composition corresponds to the derived tensor product of bimodules :

IsoD.Aop
1 ˝

L A2/� IsoD.Aop
2 ˝

L A3/ �! IsoD.Aop
1 ˝

L A3/
.ŒX�;ŒY �/ 7! ŒX ˝L

A2 Y �:

As in the case of Hmo, the derived tensor product of dg categories gives rise to
a symmetric monoidal structure on DGCAT, with unit object the dg category k.
The key property of DGCAT is that all its objects are dualizable: given a small
dg category A, take for dual its opposite dg category Aop, for evaluation map the
isomorphism class in D..A˝L Aop/op ˝L k/ ' D.Aop ˝A/ of the .Aop ˝L A/-
module

A.�;�/ WA˝L Aop �! Cdg.k/ .x;y/ 7!A.y;x/; (5.0.15)

and for co-evaluation map the isomorphism class in D.kop ˝L .Aop ˝L A// '
D.Aop ˝ A/ of the same .Aop ˝L A/-module (5.0.15). With this choices, both
composites (5.0.12) and (5.0.13) are identities. Note also that, by construction of
DGCAT, and by Theorem 2.15, we have a natural symmetric monoidal functor

Hmo �! DGCAT A 7!A; (5.0.16)

which is faithful but not full.
Let A be a dualizable object in Hmo, with dual A_, evaluation map ev W A˝L

A_! k and co-evaluation map ı W k!A_˝LA. Since the above functor (5.0.16)
is symmetric monoidal, Remark 5.7(iv) implies that A is dualizable in DGCAT.
By unicity of duals (see Remark 5.7(i)), A_ is the opposite dg category Aop, and
ev and ı are the isomorphism class in D.Aop ˝L A/ of the above .Aop ˝L A/-
module A.�;�/ (see 5.0.15). The morphism ev belongs to Hmo, and so A.�;�/
takes values in perfect complexes of k-modules. We conclude then that A is proper.
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Similarly, since ı is a morphism in Hmo, A.�;�/ belongs to perf.Aop ˝L A/. In
this case we conclude that A is smooth. In sum, we have shown that A is saturated
and that A_ DAop.

Now, let A be a saturated dg category. Since A is proper A.�;�/ takes values
in perfect complexes of k-modules. Similarly, since A is smooth A.�;�/ belongs
to perf.Aop˝LA/. We conclude that the evaluation and co-evaluation maps of A in
DGCAT belong to the subcategory Hmo. This implies that A is dualizable in Hmo.

We finish this section with a comparison between saturated and homotopically
finitely presented dg categories (see §4).

Lemma 5.9 Let B be a saturated dg category. Then, for every dg category A, we
have a functorial isomorphism in Hmo

Bop˝L A' rep.B;A/:

Proof: Since B_ D Bop, the general theory of dualizable objects implies the claim;
see Remark 5.7 (iii).

Proposition 5.10 Every saturated dg category is homotopically finitely presented.

Proof: Let B be a saturated dg category. Since the derived tensor product of
dg categories preserves homotopy colimits in each variable (see Proposition 3.3),
Lemma 5.9 implies that the functor rep.B;�/ commutes with homotopy colimits.
Using condition (3) of Theorem 4.3 the proof is achieved.

Remark 5.11 The converse of Proposition 5.10 is false. A simple counterexample
can be described as follows: consider the following pushout diagram of dg
categories

S.1/
�.2/

F

y

k

D.2/ B ;
where F is the unique dg functor which sends the objects 1 and 2 to �; see §2.1.
Since k is clearly a finite dg cell (see Definition 2.5) so it is the dg category
B. Hence, making use of condition (2) of Theorem 4.3 we conclude that B is
homotopically finitely presented. Now, a simple inspection of the above pushout
diagram shows that B has a single object � and that its dg algebra of endomorphisms
is the k-algebra of polynomials kŒt � in one variable (concentrated in degree zero).
Since the underlying complex of the k-algebra kŒt � is

L1
iD0k (where each copy of

k is concentrated in degree zero), we conclude that the dg category B is not proper
and hence not saturated.
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6. Simplicial presheaves

In this section we present a general theory of symmetric monoidal structures on
simplicial presheaves. These general results will be used in the construction of an
explicit symmetric monoidal structure on the category of non-commutative motives;
see Section 8.

Starting from a small symmetric monoidal category C, we recall that the tensor
product of C extends to simplicial presheaves on C; see §6.4. Then, we prove that
this symmetric monoidal structure is compatible with the projective model structure;
see Theorem 6.2. Finally, we study its behavior under left Bousfield localizations.
We describe in particular a “minimal” compatibility condition between the tensor
product and a localizing set; see Theorem 6.8.

6.1. Notations

Throughout this section C will denote a (fixed) small category.

(i) We denote bybC the category of presheaves of sets on C, i.e. the category of
contravariant functors from C to Set.

(ii) Given an object ˛ in C, we still denote by ˛ the presheaf represented by ˛

˛ W Cop �! Set; ˇ 7! HomC.ˇ;˛/

(i.e. we consider the Yoneda embedding as a full inclusion).

(iii) Let� be the category of simplices, i.e. the full subcategory of the category of
ordered sets spanned by the sets �Œn�D f0;:::;ng for n� 0. We set

sSetD b�:
(iv) We denote by sbC ' 1�� C the category of simplicial objects in bC, i.e. the

category of contravariant functors from � tobC.

(v) Finally, we considerbC as a full subcategory of sbC. A presheaf of sets on C is
identified with a simplicially constant object of sbC.

6.2. Simplicial structure

Recall that we have a bifunctor

�˝� WbC �Set �!bC
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defined by

X ˝K D
a
k2K

X :

This defines an action of the category Set on bC. This construction extends to
simplicial objects

sbC � sSet �! sbC .F;K/ 7! F ˝K;

where for n� 0 :

.F ˝K/n D Fn˝Kn :

This makes sbC into a simplicial category; see for instance [21, §II Definition 2.1].

6.3. Quillen Model structure

The generating cofibrations of the classical cofibrantly generated Quillen model
structure on sSet are the boundary inclusions

in W @�Œn� �!�Œn� n� 0

and the generating trivial cofibrations are the horn inclusions

j kn WƒŒk;n� �!�Œn� 0� k � n; n� 1:

We have the projective model structure on sbC: the weak equivalences are the
termwise simplicial weak equivalences, and the fibrations are the termwise Kan
fibrations; see for instance [7, page 314] or [24, Theorem 11.6.1]. The projective
model structure is proper and cellular/combinatorial. In particular, it is cofibrantly
generated, with generating cofibrations

1˛˝ in W ˛˝ @�Œn� �! ˛˝�Œn� ; ˛ 2 C; n� 0;

and generating trivial cofibrations

1˛˝ j
k
n W ˛˝ƒŒk;n� �! ˛˝�Œn� ; ˛ 2 C; 0� k � n; n� 1:

In particular, observe that representable presheaves are cofibrant in sbC.
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6.4. Day’s convolution product

Throughout this subsection, and until the end of Section 6, we will assume that
our (fixed) small category C carries a symmetric monoidal structure, with tensor
product ˝ and unit object 1. Under this assumption, the general theory of left Kan
extensions in categories of presheaves implies formally that bC is endowed with a
unique closed symmetric monoidal structure which makes the Yoneda embedding
a symmetric monoidal functor. We will also denote by ˝ the corresponding tensor
product onbC; the reader who enjoys explicit formulas is invited to consult [14, §3].

This monoidal structure extends to the category sbC in an obvious way: given
two simplicial presheaves F and G on C, we define F ˝G by the formula

.F ˝G/n D Fn˝Gn ; n� 0:

The functor
sSet �! sbC ; K 7�! 1˝K

is naturally endowed with a structure of symmetric monoidal functor (where sSet is
considered as a symmetric monoidal category with the cartesian product as tensor
product).

Definition 6.1 ([25, Definition 4.2.1] ) Given maps f W X ! Y and g W A! B in
a symmetric monoidal category (with tensor product ˝), the pushout product map
f�g of f and g is given by :

f�g WX ˝B
a
X˝A

Y ˝A �! Y ˝B:

Theorem 6.2 The category sbC, endowed with the projective model category
structure is a symmetric monoidal model category (see [25, Definition 4.2.6]).

Proof: As the model category of simplicial sets is a symmetric monoidal model
category (with the cartesian product as tensor product), the result follows from the
explicit description of the generating cofibrations and generating trivial cofibrations
of sbC: given two objects ˛ and ˛0 in C and two maps i WK! L and i 0 WK 0! L0 in
sSet, we have

.1˛˝ i/�.1˛0 ˝ i 0/' 1˛˝˛0 ˝ .i�i 0/:

Since for any object ˛ in C, the functor K 7! ˛˝K is a left Quillen functor from
sSet to sbC, the proof is finished.

Let sbC� be the category of pointed simplicial presheaves on C. The forgetful
functor U W sbC�! sbC has a left adjoint

sbC �! sbC� ; F 7�! FC ; (6.4.1)
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where FC denotes the pointed simplicial presheaf F q ?, with ? the terminal
object of sbC. The category sbC� is then canonically a cofibrantly generated model
category, in such a way that the functor (6.4.1) is a left Quillen functor; see [25,
Proposition 1.1.8 and Lemma 2.1.21].

Furthermore, there is a unique symmetric monoidal structure on sbC� making the
functor (6.4.1) symmetric monoidal. The unit object is 1C, and the tensor product
˝� is defined as follows: for two pointed simplicial presheaves F and G, their
tensor product is given by the following pushout in the category sbC of unpointed
simplicial presheaves :

.F ˝?/q .?˝G/ F ˝G

? F ˝�G

In particular, for two simplicial presheaves F and G, we have

.F ˝G/C ' FC˝�GC : (6.4.2)

Proposition 6.3 With the above definition, the model category sbC� is a symmetric
monoidal model category.

Proof: The generating cofibrations (resp. generating trivial cofibrations) of sbC� are
the maps of shape AC! BC for A! B a generating cofibration (resp. generating
trivial cofibration) of sbC. As the functor (6.4.1) is a left Quillen functor, the result
follows immediately from Formula (6.4.2) and from Theorem 6.2.

Remark 6.4 In practice, we shall refer to the pointed tensor product ˝� as
the canonical tensor product on sbC� associated to the monoidal structure on C.
Whenever there is no ambiguity, we denote the pointed tensor product simply by
˝.

6.5. Left Bousfield localization

Definition 6.5 ([24, Definition 3.1.4]) Let M be a model category and S a set of
morphisms in M. An object X in M is called S-local if it is fibrant and for every
element s W A! B of the set S , the induced map of homotopy function complexes

s� WMap.B;X/ �!Map.A;X/

is a weak equivalence. A map g W X ! Y in M is called a S-local equivalence if
for every S-local object W , the induced map of homotopy function complexes

g� WMap.Y;W / �!Map.X;W /



230 D.-C. CISINSKI & G. TABUADA

is a weak equivalence
Recall that, if M is cellular (or combinatorial) and left proper, the left Bousfield

localization of M is the model category LSM whose underlying category is M,
whose cofibrations are those of M, and whose weak equivalences are the S-local
weak equivalences; see [24, Definition 9.3.1(1)]. The fibrant objects of LSM are
then the objects of M which are both fibrant and S-local, and the fibrations between
fibrant objects in LSM are the fibrations of M.

Proposition 6.6 Let M be a left proper, cellular (or combinatorial), symmetric
monoidal model category (with tensor product˝), and S a set of morphisms in M.
Assume that the following conditions hold :

(i) M admits generating sets of cofibrations and of trivial cofibrations consisting
of maps between cofibrant objects;

(ii) every element of S is a map between cofibrant objects;

(iii) given a cofibrant object X , the functor X ˝ .�/ sends the element of S to
S-local weak equivalences.

(iv) the unit object of the monoidal structure on M is cofibrant.

Then the left Bousfield localization LSM of M with respect to the set S is a
symmetric monoidal model category.

Proof: The left Bousfield localization LSM of M with respect to the set S is
cofibrantly generated (see [24, Theorem 4.1.1(3)]) and thanks to condition (iv) the
unit object is cofibrant. Therefore, by [25, Lemma 4.2.7] it is enough to verify the
pushout product axiom on the sets of generating (trivial) cofibrations. The class
of cofibrations in LSM and in M is the same, and so half of the pushout product
axiom is automatically verified. Now, let g W A B be a generating cofibration

in LSM and f WX
�

Y a generating trivial cofibration in LSM. By condition
(i), we may assume, that the objects X , Y , A and B are cofibrant. Moreover,
condition (iii) implies that tensoring by a cofibrant object preserves S-local weak
equivalences. Consider the following commutative diagram :

A˝X

g˝idX

idA˝f
A˝Y

g˝idY

i.A˝Y /

B˝X q
A˝X

A˝Y
f�g

B˝X

i.B˝X/

idB˝f
B˝Y :
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Using the two-out-of-three property for S-local weak equivalences, we conclude
that f�g is an S-local equivalence.

Remark 6.7 A variant of Proposition 6.6 may be found in [1, Proposition 4.47]. In
loc. cit. the author proves a stronger result which requires some extra assumptions.

Theorem 6.8 Let S be a set of morphisms between cofibrant objects in sbC. Assume
that the following condition holds :

(C) given an object ˛ in C and a mapG!H in S , the morphism ˛˝G! ˛˝H

is an S-local equivalence.

Then the left Bousfield localization LS sbC of sbC with respect to the set S , is a
symmetric monoidal model category.

Proof: We shall apply Proposition 6.6. It is sufficient to prove condition (iii) of
loc. cit. In other words, we need to prove that for any object F of sbC and any map
G!H in S , the map

F ˝LG �! F ˝LH

in Ho.sbC/ is sent to an isomorphism in Ho.LS sbC/. Thanks to Condition (C) this
is the case when F is representable. As the functors .�/ ˝L F commute with
homotopy colimits, the general case follows from the fact that the functor Ho.sbC/!
Ho.LS sbC/ commutes with homotopy colimits, and that any simplicial presheaf is a
homotopy colimit of representable presheaves (see for instance [16, Proposition 2.9]
or [9, Proposition 3.4.34]).

Corollary 6.9 Assume that S is a set of maps in C which is closed under tensor
product in C (up to isomorphism). Then, by considering S as a set of maps in sbC via
the Yoneda embedding, the left Bousfield localization LS sbC is a symmetric monoidal
model category.

Proof: Condition (C) of the Theorem 6.8 is trivially satisfied.

7. Monoidal stabilization

In this section we relate the general theory of spectra with the general theory of
symmetric spectra; see Theorem 7.1. This will be used in the construction of an
explicit symmetric monoidal structure on the category of non-commutative motives;
see Section 8.

Let M be a cellular (or combinatorial) pointed simplicial left proper model
category. There is then a natural action of the category of pointed simplicial sets

M� sSet� �!M ; .X;K/ 7�!X ˝K
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(in the literature, X ˝K is usually denoted by X ^K). We denote by SpN.M/

the stable model category of S1-spectra on M, where S1 D �Œ1�=@�Œ1� is the
simplicial circle, seen as endofunctor X 7!X ˝S1 of M; see [26, §1].

Assume that M is a symmetric monoidal model category with cofibrant unit
object 1. We write Sp†.M/ for the stable symmetric monoidal model category of
symmetric S1˝1-spectra on M; see [26, §7]. In this situation we have a symmetric
monoidal left Quillen functor

†1 WM �! Sp†.M/:

Theorem 7.1 Under the above assumptions, the model categories SpN.M/ and
Sp†.M/ are canonically Quillen equivalent.

Proof: By applying [26, Theorem 10.3 and Corollary 10.4], it is sufficient to prove
that S1˝ 1 is symmetric in Ho.M/, i.e. that the permutation .1;2;3/ acts trivially
on .S1 ˝ 1/˝3. Using [10, Corollaire 6.8], we see that .S1 ˝ 1/˝3 ' S3 ˝ 1 in
Ho.M/, and that it is sufficient to check this condition in the case where M is the
model category of pointed simplicial sets. Finally, in this particular case, the result
is well known; see for instance [25, Lemma 6.6.2].

8. Symmetric monoidal structure

In this section we motivate, state and prove our main result: the localizing motivator
carries a canonical symmetric monoidal structure; see Theorem 8.5.

Definition 8.1 A sequence of triangulated categories

R I
�! S P

�! T

is called exact if the composition is zero, the functor I is fully-faithful and the
induced functor from the Verdier quotient S=R to T is cofinal, i.e. it is fully-faithful
and every object in T is a direct summand of an object of S=R; see [40, §2] for
details. A sequence of dg categories

A F
�! B G

�! C

is called exact if the induced sequence of triangulated categories (see §2.2)

D.A/ LFŠ
�!D.B/ LGŠ

�!D.C/

is exact.

Recall from [43, §10] the construction of the universal localizing invariant.
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Theorem 8.2 ([43, Theorem 10.5]) There exists a morphism of derivators

U loc
dg W HO.dgcat/ �!Motloc

dg ;

with values in a strong triangulated derivator (see §A.3), which has the following
properties :

flt) U loc
dg preserves filtered homotopy colimits;

p) U loc
dg preserves the terminal object;

loc) U loc
dg satisfies localization, i.e. sends exact sequence of dg categories

A �! B �! C

to distinguished triangles in Motloc
dg .e/

U loc
dg .A/ �! U loc

dg .B/ �! U loc
dg .C/ �! U loc

dg .A/Œ1�:

Moreover, U loc
dg is universal with respect to these properties, i.e. given any strong

triangulated derivator D, we have an induced equivalence of categories

.U loc
dg /
� W HomŠ.Motloc

dg ;D/
�
�! Homloc.HO.dgcat/;D/;

where the left-hand side stands for the category of homotopy colimit preserving
morphisms of derivators, while the right-hand side stands for the full subcategory
of Hom.HO.dgcat/;D/ spanned by the morphisms of derivators which verify the
three conditions above.

Definition 8.3 The objects of the category Homloc.HO.dgcat/;D/ are called local-
izing invariants and U loc

dg is called the universal localizing invariant. Because of its
universal property, which is a reminiscence of motives, Motloc

dg is called the localizing
motivator. Its base category Motloc

dg .e/ is a triangulated category and is morally what
we would like to consider as the category of non-commutative motives.

Example 8.4 Examples of localizing invariants include Hochschild homology and
cyclic homology (see [43, Theorem 10.7]), non-connective algebraic K-theory (see
[43, Theorem 10.9]), and even topological Hochschild homology and topological
cyclic homology (see [3, Theorem 6.1] and [46, §8]).

In this section we introduce a new ingredient in Theorem 8.2: symmetric
monoidal structures. As shown in Theorem 3.2 the derivator HO.dgcat/ carries
a symmetric monoidal structure. It is therefore natural to consider localizing
invariants which are symmetric monoidal; see Examples 8.9-8.11. Our main result
is the following.
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Theorem 8.5 The localizing motivator Motloc
dg carries a canonical symmetric mo-

noidal structure �˝L �, making the universal localizing invariant U loc
dg symmetric

monoidal (see §A.5). Moreover, this tensor product preserves homotopy colimits in
each variable, and is characterized by the following universal property: given any
strong triangulated derivator D (see §A.3), endowed with a symmetric monoidal
structure which preserves homotopy colimits in each variable, we have an induced
equivalence of categories

.U loc
dg /
� W Hom˝

Š
.Motloc

dg ;D/
�
�! Hom˝loc.HO.dgcat/;D/;

where the left-hand side stands for the category of symmetric monoidal homotopy
colimit preserving morphisms of derivators, while the right-hand side stands for
the category of symmetric monoidal morphisms of derivators which belong to the
category Homloc.HO.dgcat/;D/. Furthermore, Motloc

dg admits an explicit symmetric
monoidal Quillen model.

Definition 8.6 The objects of the category Hom˝loc.HO.dgcat/;D/ are called sym-
metric monoidal localizing invariants.

Corollary 8.7 Any dualizable object of Motloc
dg .e/ is compact; see Definition 5.6

and §1.2. In particular, given any saturated dg category A (see Definition 5.1), the
object U loc

dg .A/ is compact.

Proof: LetM be a dualizable object of Motloc
dg .e/. We need to prove that the functor

Hom.M;�/ commutes with arbitrary sums. Since M is dualizable, this functor is
isomorphic to Hom.U loc

dg .k/;M
_ ˝L �/. The unit object U loc

dg .k/ is known to be
compact (see [12, Theorem 7.16]), and so the first assertion is proven. The second
assertion follows from the fact that U loc

dg is symmetric monoidal, and that U loc
dg .A/ is

dualizable for any saturated dg category A (see Remark 5.7 (iv) and Theorem 5.8).

Remark 8.8 Although we do not know if the triangulated category Motloc
dg .e/

is compactly generated, Corollary 8.7 implies that the localizing triangulated
subcategory of Motloc

dg .e/ generated by dualizable objects is compactly generated.

Before proving Theorem 8.5, let us give some examples of symmetric monoidal
localizing invariants.

Example 8.9 (Hochschild homology) Let A be a small k-flat dg category; see
Definition 2.19. We can associate to A a simplicial object in C.k/, i.e. a
contravariant functor from � to C.k/ : its nth term is given byM

.x0;:::;xn/

A.xn;x0/˝A.xn�1;xn/˝ ���˝A.x0;x1/;
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where .x0;:::;xn/ is an ordered sequence of objects in A. The face maps are given
by

di .fn;:::;fi ;fi�1;:::;f0/D

�
.fn;:::;fi ıfi�1;:::;f0/ if i > 0

.�1/.nC�/.f0 ıfn;:::;f1/ if i D 0

where � D .degf0/.degf1C :::C degfn�1/, and the degenerancies maps are given
by

sj .fn;:::;fj ;fj�1;:::;f0/D .fn;:::;fj ;idxj ;fj�1;:::;f0/:

Associated to this simplicial object we have a chain complex in C.k/ (by the Dold-
Kan equivalence), and so a bicomplex of k-modules. The Hochschild homology
complex HH.A/ of A is the sum-total complex associated to this bicomplex. We
obtain then a functor HH W dgcatflat! C.k/ and an induced morphism of derivators

HH W HO.dgcatflat/ �! HO.C.k//: (8.0.1)

Given small k-flat dg categories A and B, we have a functorial quasi-isomorphism

sh W HH.A/˝HH.B/ �! HH.A˝B/

given by the shuffle product map; see [39, §4.2.3]. The morphism (8.0.1), endowed
with the shuffle product map, becomes then symmetric monoidal.

Now, recall that if A is an arbitrary dg category, its Hochschild complex is
obtained by first taking a k-flat (e.g. cofibrant) resolution of A. This construction
furnishes us a functor HH W dgcat �! C.k/, which by [43, Theorem 10.7], gives
rise to a localizing invariant

HH W HO.dgcat/ �! HO.C.k//: (8.0.2)

Note that (8.0.2) can be expressed as the following composition

HH W HO.dgcat/
Q
�! HO.dgcatflat/

(8.0.1)
�! HO.C.k//;

where Q is the symmetric monoidal equivalence described in the proof of Theo-
rem 3.2. The above arguments allow us then to conclude that (8.0.2) is a symmetric
monoidal localizing invariant.

Example 8.10 (Mixed complexes) Following Kassel [30, §1] we denote by ƒ the
dg algebra kŒ��=�2, where � is of degree �1 and d.�/ D 0. Under this notation, a
mixed complex is a right dg ƒ-module (see Definition 2.6).

Let A be a small dg category. The Hochschild complex HH.A/ of A (see
Example 8.9), endowed with the cyclic operator

tn.fn�1;:::;f0/D .�1/
nC� .f0;fn�1;fn�2;:::;f1/;
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gives rise to a mixed complex C.A/; see [32, §1.3]. The assignment A 7! C.A/
yields a localizing invariant

C W HO.dgcat/ �! HO.C.ƒ// (8.0.3)

with values in the derivator associated to right dg ƒ-modules; see [43, Theo-
rem 10.7]. Recall from [30, §1] that the category C.ƒ/ carries a natural symmetric
monoidal structure whose unit object is k: given two mixed complexes there
is a canonical mixed complex structure on the tensor product of the underlying
complexes. Moreover, this symmetric monoidal structure is compatible with the
projective model structure (see §2.2). Thanks to [30, Theorem 2.4] the localizing
invariant (8.0.3) becomes then a symmetric monoidal localizing invariant.

This example will be used in the construction of a canonical Chern character
map from non-connective algebraic K-theory to negative cyclic homology; see
Example 9.10.

Example 8.11 (Periodic complexes) In this example we assume that our base ring
k is a field. Let kŒu� be the cocommutative Hopf algebra of polynomials in one
variable u of degree 2; see [30, §1]. Consider the symmetric monoidal model
category kŒu�-Comod of kŒu�-comodules; see [25, Theorem 2.5.17]. The monoidal
structure is given by the cotensor product ��kŒu�� of comodules, with unit kŒu�.

Given a mixed complex M (see Example 8.10) we denote by P.M/ the kŒu�-
comodule, whose underlying complex is M ˝L

ƒ k, obtained by iteration of the map

.M ˝L
ƒ k/Œ�2�

S
�!M ˝L

ƒ k;

see [30, Proposition 1.4]. Using [30, Theorem 1.7] and [20, Proposition 9.2], we
conclude that we have a symmetric monoidal morphism of derivators

P W HO.C.ƒ// �! HO.kŒu�-Comod/:

By composing P with the localizing invariant (8.0.3) we obtain then a symmetric
monoidal localizing invariant

.P ıC/ W HO.dgcat/ �! HO.kŒu�-Comod/:

This example will be used in the construction of a canonical Chern character
map from non-connective algebraic K-theory to periodic cyclic homology; see
Example 9.11.
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8.1. Proof of Theorem 8.5

We will use freely the theory of derivators which is recalled and developed in the
appendix. Recall from [43, §10] that U loc

dg is obtained by the following composition :

HO.dgcat/
Rh
�! L†Hotdgcatf

ˆ
�! L†;PHotdgcatf

stab
�! St.L†;PHotdgcatf/

�
�!Motloc

dg :

The morphism stab corresponds to a stabilization procedure (see §A.8) and the
morphism 	 to a left Bousfield localization procedure (see §A.7). Since these
procedures commute (see Proposition A.12), we can also obtain U loc

dg by the
following composition

HO.dgcat/
Rh
�! L†Hotdgcatf

ˆ
�! L†;PHotdgcatf

�
�!Motuloc

dg
stab
�!Motloc

dg ; (8.1.1)

where Motuloc
dg is the unstable analogue of the localizing motivator.

The proof of Theorem 8.5 will consist on the concatenation of Proposi-
tions 8.12-8.16 followed by Remark 8.18. In each one of these propositions we
construct an explicit symmetric monoidal Quillen model for the corresponding
(intermediate) derivator of the composition (8.1.1).

We start by fixing on dgcat a fibrant resolution functor R, a cofibrant resolution
functor Q, a left framing 
� (i.e. a well-behaved cosimplicial resolution functor;
see [25, Definition 5.2.7 and Theorem 5.2.8]), as well as a small full subcategory
dgcatf of dgcat, satisfying the following properties :

(a) any finite dg cell (see Definition 2.5) is in dgcatf;

(b) any object in dgcatf is homotopically finitely presented (see Definition 4.2);

(c) given any object A in dgcatf, Q.R.A// and Q.A/ belong to dgcatf;

(d) for any cofibrant object A of dgcatf, if 
�.A/ denotes the given cosimplicial
frame of A, then 
n.A/ belongs to dgcatf for all n� 0.

We let † be the set of derived Morita equivalences in dgcatf. The derivator
L†Hotdgcatf is simply the derivator HO.L†s1dgcatf/ associated to the left Bousfield
localization of the projective model structure on s1dgcatf (see §6.3), with respect
to the set †. Note that, up to Quillen equivalence, this construction does not
depend on the choice of the category dgcatf but only on the Dwyer-Kan localization
of dgcatf by † (see [19]). The above stability properties imply that the Dwyer-
Kan localization of dgcatf by † is simply (equivalent to) the full simplicial
subcategory of the Dwyer-Kan localization of the model category dgcat spanned
by the homotopically finitely presented dg categories. Now, recall from [50,
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Proposition 2.3(3)] that any cofibrant dg category is k-flat, and that any cosimplicial
frame of a cofibrant object is termwise cofibrant. Therefore, in order to obtain
a symmetric monoidal structure, we have then the freedom to add the following
properties to dgcatf :

(e) any dg category in dgcatf is k-flat (see Definition 2.19);

(f) given any dg categories A and B in dgcatf, A ˝ B belongs to dgcatf (this
makes sense because of Theorem 4.4).

In the sequel, we assume that a small full subcategory dgcatf of dgcat satisfying all
the above properties (a)–(f) has been chosen; for instance, one might consider the
smallest one relatively to R, Q and 
�. The morphism

Rh W HO.dgcat/ �! L†Hotdgcatf D HO.L†s1dgcatf/

is induced by the functor
h W dgcat �! s1dgcatf ;

which associates to any dg category A the simplicial presheaf on dgcatf :

Rh.A/ W B 7�!Map.B;A/D Hom.
�.Q.B//;R.A//:

Proposition 8.12 The tensor product of dg categories in dgcatf extends uniquelly to
a closed symmetric monoidal structure on the category of simplicial presheaves
on dgcatf, making L†s1dgcatf into a symmetric monoidal model category. As a
consequence, the derivator L†Hotdgcatf carries a symmetric monoidal structure,
making the morphism Rh symmetric monoidal. Moreover, given any derivator D,
the category of filtered homotopy colimit preserving symmetric monoidal morphisms
from HO.dgcat/ to D is canonically equivalent to the category of homotopy colimit
preserving symmetric monoidal morphisms from L†Hotdgcatf to D.

Proof: As derived Morita equivalences are stable under derived tensor product, it
follows immediately from Corollary 6.9 that L†s1dgcatf is a symmetric monoidal
model category.

Let us now show that the morphism Rh is symmetric monoidal. Recall from
[43, §5] that the morphism Rh preserves filtered homotopy colimits and that we
have a commutative diagram

dgcatfŒ†
�1�

i HO.dgcat/

Rh

L†Hotdgcatf ;

(8.1.2)
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where dgcatf stands for the prederivator represented by dgcatf, and dgcatfŒ†
�1� for

its formal localization by †. By construction, the left vertical morphism in the
above diagram (8.1.2) is symmetric monoidal and the symmetric monoidal structure
on L†Hotdgcatf preserves homotopy colimits in each variable. Moreover, thanks to
Proposition 3.3, the symmetric monoidal structure on HO.dgcat/ preserves filtered
homotopy colimits.

Now, recall the universal property of HO.dgcat/ : it is the free completion of
the prederivator dgcatfŒ†

�1� by filtered homotopy colimits. In other words, given
any derivator D, the category of filtered homotopy colimit preserving morphisms
from HO.dgcat/ to D is canonically equivalent to the category of morphisms
from dgcatfŒ†

�1� to D; see [43, §5]. Replacing D by the derivator of filtered
homotopy colimit preserving morphisms from HO.dgcat/ to D, we deduce that the
category of morphisms from HO.dgcat/ � HO.dgcat/ to D which preserve filtered
homotopy colimits in each variable is equivalent to the category of morphisms from
dgcatfŒ†

�1� � dgcatfŒ†
�1� to D. By induction, we prove similarly that, for any

n � 0, the category of morphisms from HO.dgcat/n to D which preserve filtered
homotopy colimits in each variable is equivalent to the category of morphisms from
dgcatfŒ†

�1�n to D. As the morphism i in the above diagram (8.1.2) is symmetric
monoidal, this implies that the morphism Rh is symmetric monoidal as well.
Similarly, we see that, given any derivator D, the category of symmetric monoidal
morphisms from dgcatfŒ†

�1� to D is equivalent to the category of filtered homotopy
colimit preserving symmetric monoidal morphisms from HO.dgcat/ to D. The last
assertion of this proposition thus follows from Theorem A.3 and Proposition A.9.

Let h W dgcatf �! s1dgcatf be the Yoneda embedding. We denote by P W

¿ �! h.¿/ the canonical map. Then, the derivator L†;PHotdgcatf is simply the
left Bousfield localization of L†Hotdgcatf by P . Thus, it can be described as

L†;PHotdgcatf D HO.L†;P s1dgcatf/;

where L†;P s1dgcatf is the left Bousfield localization of the model category L†s1dgcatf
by the map P .

Proposition 8.13 The model category L†;P s1dgcatf is symmetric monoidal, and the
localization functor

L†s1dgcatf �! L†;P s1dgcatf

is a symmetric monoidal left Quillen functor. In particular, the derivator
L†;PHotdgcatf is symmetric monoidal, and the localization morphism

ˆ W L†Hotdgcatf �! L†;PHotdgcatf
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is symmetric monoidal.

Proof: For any dg category A, we have A˝¿ ' ¿. We deduce easily from this
formula that condition (C) of Theorem 6.8 (with M D L†s1dgcatf) is satisfied, and
so the proof is finished.

Let s1dgcatf;� be the model category of pointed simplicial presheaves on s1dgcatf.
By virtue of Proposition 6.3, this is a symmetric monoidal model category, and the
functor

s1dgcatf �! s1dgcatf;� ; F 7�! FC

is a symmetric monoidal left Quillen functor. We define the pointed model category
L†;P s1dgcatf;� as the left Bousfield localization of s1dgcatf;� with respect to the set
of maps †C[fPCg.

Proposition 8.14 The model category L†;P s1dgcatf;� is symmetric monoidal, and
the symmetric monoidal left Quillen functor

L†;P s1dgcatf �! L†;P s1dgcatf;�

is a Quillen equivalence. In particular, we have a canonical equivalence of
symmetric monoidal derivators

L†;PHotdgcatf ' HO.L†;P s1dgcatf;�/:

Proof: The first assertion is a direct application of Theorem 6.8, while the second
one follows from [43, Remark 8.2].

Note that the initial and terminal dg categories are Morita equivalent. This
implies that the dg category 0 is sent to the point (up to weak equivalence) in
L†;P s1dgcatf;�. Let E be the set of morphisms of L†;P s1dgcatf;� of shape

coneŒRh.A/ �!Rh.B/� �!Rh.C/;

associated to each exact sequence of dg categories

A �! B �! C ;

with B in dgcatf (where cone means homotopy cofiber). We define Motuloc
dg as the

left Bousfield localization of L†;P s1dgcatf;� by E . The derivator Motuloc
dg is defined as

Motuloc
dg D HO.Motuloc

dg /:
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Proposition 8.15 The model category Motuloc
dg is symmetric monoidal, in such a

way that the left Quillen functor

L†;P s1dgcatf;� �!Motuloc
dg

is symmetric monoidal. Under the identification of Proposition 8.13, the induced
morphism of derivators

	 W L†;PHotdgcatf �!Motuloc
dg

is symmetric monoidal.

Proof: As tensoring by a k-flat dg category preserves exact sequences of dg
categories (see [17, Proposition 1.6.3]), and as Rh is symmetric monoidal (see
Proposition 8.12), the proof follows from Theorem 6.8.

Finally, since by construction the model category Motuloc
dg is symmetric

monoidal and simplicially enriched, we can consider its stabilization Mot loc
dg , i.e.

the stable model category of symmetric spectra in Motuloc
dg (see §7) :

Mot loc
dg D Sp†.Motuloc

dg /:

The derivator Motloc
dg is defined as

Motloc
dg D HO.Mot loc

dg /:

Proposition 8.16 The model category Mot loc
dg is symmetric monoidal, and the left

Quillen functor
†1 WMotuloc

dg �!Mot loc
dg

is symmetric monoidal. The induced morphism of derivators

stabD L†1 WMotuloc
dg �!Motloc

dg

is symmetric monoidal.

Proof: This is true by construction (see Proposition A.2).

Remark 8.17 In the construction of Motloc
dg given in [43], the definition of Motloc

dg

was HO.SpN.Motuloc
dg //, i.e. it used non-symmetric spectra. However, thanks to

Theorem 7.1, both definitions agree up to a canonical equivalence of derivators.

Remark 8.18 The concatenation of Propositions 8.12-8.16 show us that the local-
izing motivator Motloc

dg carries a symmetric monoidal structure �˝L �, making the
universal localizing invariant U loc

dg symmetric monoidal. By Proposition A.2 the
associated symmetric monoidal structure preserves homotopy colimits. Therefore,
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in order to conclude the proof of Theorem 8.5, it remains to show the universal
property. Let D be a strong triangulated derivator endowed with a symmetric
monoidal structure which preserves homotopy colimits in each variable. Thanks
to Theorem 8.2, we have an induced equivalence of categories

.U loc
dg /
� W HomŠ.Motloc

dg ;D/
�
�! Homloc.HO.dgcat/;D/:

This implies that the induced functor

.U loc
dg /
� W Hom˝

Š
.Motloc

dg ;D/ �! Hom˝loc.HO.dgcat/;D/: (8.1.3)

is faithful. More precisely, by Proposition 8.12, the category of filtered homotopy
colimit preserving symmetric monoidal morphisms from HO.dgcat/ to D is equiva-
lent to the category of homotopy colimit preserving symmetric monoidal morphisms
from L†s1dgcatf to D. Using the universal properties of Bousfield localization and
stabilization in the setting of derivators (see Theorem A.4 and Corollary A.13),
we can apply Proposition A.9, and Theorem A.15 to conclude, by construction of
Motloc

dg , that (8.1.3) is an equivalence of categories. This ends the proof of Theorem
8.5.

9. Applications

In this section we describe several applications of Theorem 8.5.

9.1. Non-connective K-theory

Recall from Example 8.4 that non-connective algebraicK-theory is an example of a
localizing invariant of dg categories. In [12] the authors proved that this localizing
invariant becomes co-representable in the category Motloc

dg .e/ of non-commutative
motives (see Definition 8.3).

Theorem 9.1 ([12, Theorem 7.16]) For every small dg category A, we have a
natural isomorphism in the stable homotopy category of spectra

RHom.U loc
dg .k/;U loc

dg .A//' IK.A/:

Here, k denotes the dg category with one object � such that k.�;�/ D k in degree
zero (see §2.1(i)), and IK.A/ the non-connective algebraic K-theory spectrum of
A. In particular, we obtain isomorphisms of abelian groups

Hom.U loc
dg .k/Œn�;U loc

dg .A//' IKn.A/ n 2 Z:
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A fundamental problem of the theory of non-commutatives motives is the
computation of the (spectra of) morphisms between two object in the localizing
motivator. Using Theorem 8.5 we give a partial solution to this fundamental
problem.

Theorem 9.2 Let B be a saturated dg category; see Definition 5.1. For every small
dg category A, we have a natural isomorphism in the stable homotopy category of
spectra

RHom.U loc
dg .B/;U loc

dg .A//' IK.rep.B;A//:
Here rep.�;�/ denotes the internal Hom-functor in Hmo; see Theorem 2.16. In
particular, we obtain isomorphisms of abelian groups

Hom.U loc
dg .B/Œn�;U loc

dg .A//' IKn.rep.B;A// n 2 Z:

Proof: The proof is a consequence of the following weak equivalences :

RHom.U loc
dg .B/;U loc

dg .A//'RHom.U loc
dg .k/˝

L U loc
dg .B/;U loc

dg .A// (9.1.1)

'RHom.U loc
dg .k/;U loc

dg .B/_˝L U loc
dg .A// (9.1.2)

'RHom.U loc
dg .k/;U loc

dg .Bop˝L A// (9.1.3)

'RHom.U loc
dg .k/;U loc

dg .rep.B;A/// (9.1.4)

' IK.rep.B;A//: (9.1.5)

Equivalence (9.1.1) follows from the fact that U loc
dg .k/ is the unit object in Motloc

dg .e/;
see Remark 2.12 and Theorems 3.2 and 8.5. Since B is a saturated dg category,
Theorem 5.8 implies that B is a dualizable object in Hmo. Therefore, Equivalence
(9.1.2) follows from the fact that U loc

dg .B/ is a dualizable object in Motloc
dg .e/ (see

Remark 5.7(iv) and Theorem 8.5) and from the adjunction (5.0.14) of Remark 5.7(ii)
(see §A.9 for its spectral enrichment). Equivalence (9.1.3) follows from Re-
mark 5.7(iv), from Theorem 5.8, and from the fact that the universal localizing
invariant is symmetric monoidal. Equivalence (9.1.4) follows from Lemma 5.9.
Finally, Equivalence (9.1.5) follows from Theorem 9.1.

Proposition 9.3 Let X and Y be smooth and proper k-schemes. Then, we have a
natural isomorphism in the stable homotopy category of spectra

RHom.U loc
dg .perf.X//;U loc

dg .perf.Y ///' IK.X �Y /:

Here, IK.X � Y / denotes the non-connective algebraic K-theory spectrum of X �
Y (see [42, §8]), and perf.�/ the dg category constructed in Example 5.5(i). In
particular, we obtain isomorphisms of abelian groups

Hom.U loc
dg .perf.X//Œn�;U loc

dg .perf.Y ///' IKn.X �Y / n 2 Z:
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Proof: Since X and Y are smooth and proper k-schemes, [53, Lemma 3.27]
implies that perf.X/ and perf.Y / are saturated dg categories. Therefore, by
Theorem 9.2 we have a natural isomorphism in the stable homotopy category of
spectra

RHom.U loc
dg .perf.X//;U loc

dg .perf.Y ///' IK.rep.perf.X/;perf.Y ///:

Moreover, by [50, Theorem 8.9] we have a natural isomorphism

perf.X �Y /' rep.perf.X/;perf.Y //

in Hmo. Finally, thanks to [42, §8 Theorem 5] we have a natural isomorphism

IK.perf.X �Y //' IK.X �Y /

and so the proof is finished.

Remark 9.4 Let Z be a noetherian regular scheme. Thanks to [2, Exp. I, Cor. 5.9
and Exp. II, Cor. 2.2.2.1] we have a derived Morita equivalence

perf.Z/
�
�!Dbdg.Coh.Z//;

where the left-hand side is the saturated dg category of Example 5.5(i) and the
right-hand side is the bounded derived (dg) category of coherent sheaves on Z.
Since Coh.Z/ is a noetherian abelian category (see [42, §10.1]), we conclude by
[42, §10.1 Theorem 7] that

IKn.Z/D IKn.perf.Z//D 0 n < 0:

In particular, if in Proposition 9.3 the base ring k is regular and noetherian, the
negative stable homotopy groups of the spectrum IK.X �Y / vanish.

9.2. Kontsevich’s non-commutative mixed motives

Kontsevich introduced in [34, 35, 36] the category of non-commutative mixed
motives. His construction decomposes in three steps :

(1) First, consider the following category KPMk , enriched over symmetric
spectra: the objects are the dualizable dg categories (see Definition 5.1);
given saturated dg categories A and B, the symmetric spectrum of morphisms
from A to B is the non-connective K-theory spectrum IK.Aop ˝L B/; the
composition corresponds to the derived tensor product of bimodules2.

2This category is the non-commutative (and derived) analogue of Grothendieck’s category of pure
motives : PM stands for Pure Motives, while K stands for both Kontsevich and K-theory.
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(2) Then, take the formal triangulated envelope tri.KPMk/ of KPMk . Objects in
this new category are formal finite extensions of formal shifts of objects in
KPMk .

(3) Finally, add formal direct summands for projectors in tri.KPMk/. The
resulting category KMMk is what Kontsevich named the category of non-
commutative mixed motives3.

A precise way to perform these constructions consists on seeing KMMk as the
spectral category of perfect KPMk-modules (KMMk is the Morita completion of
KPMk; see [47, §5.2] for a precise exposition of these constructions).

Thanks to Theorem 9.2, we are now able to construct a fully-faithful embedding
of KMMk into our category Motloc

dg .e/ of non-commutative motives, i.e. the base
category of the localizing motivator. Note that, in contrast with Kontsevich’s ad hoc
definition, our category of non-commutative motives is defined purely in terms of
precise universal properties.

Let Mot loc
dg be the model category underlying the derivator Motloc

dg . As, by
construction, Mot loc

dg is a left Bousfield localization of a category of presheaves
of symmetric spectra over some small category, this model category is canonically
enriched over symmetric spectra. We can thus consider the category Motloc

dg .e/ as
a category enriched over symmetric spectra (by considering fibrant and cofibrant
objects in Mot loc

dg ).

Proposition 9.5 There is a natural fully-faithful embedding (enriched over sym-
metric spectra) of Kontsevich’s category of non-commutative motives KMMk into
the category Motloc

dg .e/. The essential image is the thick triangulated subcategory
spanned by motives of saturated dg categories.

Proof: Given saturated dg categories A and B, Lemma 5.9 implies that we have a
natural isomorphism in Hmo

Aop˝L B ' rep.A;B/:

Therefore, using Theorem 9.2 we obtain a natural fully-faithful spectral functor

KPMk �!Motloc
dg .e/ A 7! U loc

dg .A/:

By construction of KMMk , [47, Proposition 5.3.1] implies that this functor extends
(uniquely) to a spectral functor

KMMk �!Motloc
dg .e/:

3MM stands for Mixed Motives, while K stands for both Kontsevich and K-theory.
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In order to show that this functor is (homotopically) fully-faithful, it is sufficient to
prove that its restriction to a generating family of KMMk is fully faithful, which
holds by construction.

9.3. Chern characters

In [12] the authors used the co-representability Theorem 9.1 to classify all natural
transformations out of non-connective K-theory. More precisely, they proved in
[12, Theorem 8.1] that given a localizing invariant L, with values in the derivators
of spectra, the data of a natural transformation IK.�/) L.�/ is equivalent to the
datum of a single class in the stable homotopy group �0L.k/. From this result they
obtained higher Chern characters (resp. higher trace maps), from non-connective
K-theory to (topological) cyclic homology (resp. to (topological) Hochschild
homology); see [12, Theorem 8.4].

However, negative cyclic homology HC� and periodic cyclic homology HP
do not preserve filtered homotopy colimits since they are defined using infinite
products; see [39, §5.1]. Therefore, they are not examples of localizing invariants
and so the theory developed in [12] is not directly applicable in these cases.
Nevertheless, we shall explain below why and how negative cyclic homology and
periodic cyclic homology fit naturally in our framework; see Examples 9.10 and
9.11.

Let D be a strong triangulated derivator endowed with a symmetric monoidal
structure (with unit 1) which preserves homotopy colimits in each variable (see
§A.5), and

E W HO.dgcat/ �!D

a symmetric monoidal localizing invariant (see Definition 8.6). Thanks to The-
orem 8.5 there is a (unique) symmetric monoidal homotopy colimit preserving
morphism of derivators Egm which makes the diagram

HO.dgcat/ E

U loc
dg

D

Motloc
dg

Egm

commute (up to unique 2-isomorphism).

Definition 9.6 The morphism Egm is called the geometric realization of E. Since
by hypothesis D is triangulated, we have a natural morphism of derivators

RHom.1;�/ WD �! HO.SpN/ .see�A:9/:
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The composed morphism

Eabs WDRHom.1;Egm.�// WMotloc
dg �! HO.SpN/

is called the absolute realization of E.

Given a symmetric monoidal localizing invariant E, we have two objects
associated to a non-commutative motive M 2 Motloc

dg .e/ : its geometric realization
Egm.M/ and its absolute realization Eabs.M/. Although the morphism Egm always
preserves homotopy colimits, this is not always the case for the morphism Eabs; a
sufficient (and almost necessary) condition for Eabs to preserve homotopy colimits
is that the unit 1 of D is a compact object.

Proposition 9.7 The geometric realization of E induces a canonical Chern charac-
ter

IK.�/)RHom.1;E.�//' Eabs.U loc
dg .�//:

Here, IK.�/ and Eabs.U loc
dg .�// are two morphisms of derivators defined on

HO.dgcat/.

Proof: The geometric realization of E is symmetric monoidal and so it sends the
unit object U loc

dg .k/ to 1 2 D. Therefore, given a small dg category A, we obtain an
induced map

IK.A/'RHomMotloc
dg
.U loc

dg .k/;U loc
dg .A//

�!RHomD.1;Egm.U loc
dg .A///D Eabs.U loc

dg .A//;

where the left-hand side equivalence follows from Theorem 9.1. Since this induced
map is functorial in A, the proof is finished.

Let us now give some examples which illustrate Proposition 9.7.

Example 9.8 (Non-connective K-theory) The tautological version of the situation
above is: forE D U loc

dg , Egm is by definition the identity of Motloc
dg (see Theorem 8.5),

whileEabs D IK is non-connectiveK-theory (see Theorem 9.1). The corresponding
Chern character is the identity, and this is in this precise sense that non-connective
K-theory is initial among absolute homology theories.

Example 9.9 (Hochschild homology) Take for E the symmetric monoidal localizing
invariant

HH W HO.dgcat/ �! HO.C.k//

of Example 8.9. In this case, there is no difference (up to the Dold-Kan correspon-
dance relating complexes of k-modules and spectra) between the geometric and
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the absolute realization: if we consider HO.C.k// as enriched over itself, then the
morphism

RHom.k;�/ W HO.C.k// �! HO.C.k//

is (isomorphic to) the identity. Therefore by Proposition 9.7, we obtain a canonical
Chern character

IK.�/) HH.�/:

Example 9.10 (Negative cyclic homology) Take for E the symmetric monoidal
localizing invariant

C W HO.dgcat/ �! HO.C.ƒ//

of Example 8.10. Given a small dg category A, we have an equivalence

Cabs.U loc
dg .A//DRHom.k;C.A//' HC�.A/;

where HC�.A/ denotes the negative cyclic homology complex of A; see [33, §2.2].
Therefore by Proposition 9.7, we obtain a canonical Chern character

IK.�/) HC�.�/:

Example 9.11 (Periodic cyclic homology) Take for E the symmetric monoidal
localizing invariant

.P ıC/ W HO.dgcat/ �! HO.kŒu�-Comod/

of Example 8.11. Assuming that the ground ring k is a field, for any small dg
category A, we have a natural identification

.P ıC/abs.U loc
dg .A//DRHom.kŒu�;.P ıC/.A//' HP.A/;

where HP.A/ denotes the periodic cyclic homology complex of A. This can be seen
as follows. Given a mixed complex M (see Example 8.10), a map kŒu�! P.M/ in
kŒu�-Comod corresponds to a collection of maps k! .M ˝L

ƒ k/Œ2n�, n� 0, in C.k/
which are compatible with the operator S . In other words, these data correspond to
a map in C.k/ from k to the tower

���
S
�! .M ˝L

ƒ k/Œ�2n�
S
�! .M ˝L

ƒ k/Œ�2nC2�
S
�! ���

S
�! .M˝L

ƒk/Œ�2�
S
�!M˝L

ƒk:

In other words, we have :

RHom.kŒu�;P.M//' holim
n

.M ˝L
ƒ k/Œ�2n�:
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The Milnor short exact sequence [25, Proposition 7.3.2] applied to this homotopy
limit corresponds to the short exact sequence

0 �! lim
 �
n

1HiC2n�1.M ˝
L
ƒ k/

�! Hom.kŒu�;P.M/Œ�i �/ �! lim
 �
n

HiC2n.M ˝
L
ƒ k/ �! 0:

Now, let A be a small dg category. The above arguments, with M D C.A/, allow
us to deduce the formula

RHom.kŒu�;.P ıC/.A//' holim
n

.C.A/˝L
ƒ k/Œ�2n�' HP.A/:

Therefore, by Proposition 9.7, we obtain a canonical Chern character

IK.�/) HP.�/:

9.4. Toën’s secondary K-theory

Toën introduced in [51, 52] a “categorified” version of algebraic K-theory named
secondary K-theory; see [54] for a survey article.

Definition 9.12 ([51, §5.4]) Given a commutative ring k, let ZŒHmosat;k� be the free
abelian group on the isomorphism classes of objects in Hmosat;k (see Notation 5.3).
The secondary K-theory group K.2/0 .k/ of k is the quotient of ZŒHmosat;k� by the
relations ŒB�D ŒA�C ŒC� associated to exact sequences (see Definition 8.1)

A �! B �! C

of saturated dg categories.

Remark 9.13 (i) Thanks to Theorem 5.8 the category Hmosat;k coincides with
the category of dualizable objects in Hmok . Therefore, by Remark 5.7(iii),
the derived tensor product in Hmok restricts to a bifunctor

�˝L� W Hmosat;k �Hmosat;k �! Hmosat;k :

By [17, Proposition 1.6.3] the derived tensor product preserves exact se-
quences (in both variables), and so we obtain a commutative ring structure
on K.2/0 .k/.

(ii) Given a ring homomorphism k! k0, we have a derived base change functor

�˝L
k k
0 W Hmok �! Hmok0 A 7!A˝L

k k
0 :



250 D.-C. CISINSKI & G. TABUADA

This functor preserves exact sequences and is symmetric monoidal. There-
fore, by Theorem 5.8 and Remark 5.7(iv), we obtain a ring homomorphism

K
.2/
0 .k/ �!K

.2/
0 .k0/:

In conclusion, secondary K-theory is a functor K.2/0 .�/ from the category of
commutative rings to itself.

One of the motivations for the study of this secondary K-theory was its
expected connection with an hypothetical Grothendieck ring of motives in the non-
commutative setting; see [52, page 1]. Thanks to Theorem 8.5, we are now able to
make this connection precise; see Remarks 9.17-9.19. We shall use the following
well known property of dualizable objects in a triangulated category.

Proposition 9.14 Let C be a closed symmetric monoidal triangulated category.
Then, the category C_ of dualizable objects in C (see Definition 5.6) is a symmetric
monoidal thick triangulated subcategory of C.

Proof: The fact that dualizable objects are stable under tensor product is clear; see
Remark 5.7(iii). For an object X in C, set X_ D Hom.X;1/. Given two objects X
and Y in C, we have a canonical map

uX;Y WX
_˝Y �! Hom.X;Y /

which corresponds by adjunction to the mapX_˝X˝Y ! Y obtained by tensoring
Y with the evaluation map X ˝X_! 1. The object X is dualizable if and only if
the map uX;Y is invertible for any object Y . Since for any fixed object Y the map
uX;Y is a natural transformation of triangulated functors, we conclude that C_ is a
thick triangulated subcategory of C.

Notation 9.15 Thanks to Theorem 8.5 the localizing motivator carries a symmetric
monoidal structure, and so its base category Motloc

dg;k.e/ is a symmetric monoidal
triangulated category. Therefore by Proposition 9.14, the category Motloc

dg;k.e/
_

of dualizable objects is a symmetric monoidal thick triangulated subcategory of
Motloc

dg;k.e/.
Let KMMk be Kontsevich’s category of non-commutative mixed motives.

Thanks to Proposition 9.5, we can identify it with the thick triangulated subcategory
of Motloc

dg;k.e/
_ generated by objects of shape U loc

dg .A/, where A runs over the family
of saturated dg categories over k. Therefore, KMMk is naturally a rigid symmetric
monoidal triangulated category.

Definition 9.16 Let k be a commutative ring. The Grothendieck ring K0.k/ of
non-commutative motives over k is the Grothendieck ring K0.KMMk/.
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Remark 9.17 (Non-triviality) Recall from Example 8.9 the construction of the
symmetric monoidal localizing invariant

HH W HO.dgcat/ �! HO.C.k//:

By restricting its geometric realization (see Definition 9.6) to the base category, we
obtain a symmetric monoidal triangulated functor

HHgm.e/ WMotloc
dg;k.e/ �! HO.C.k//.e/DD.k/:

Recall that the dualizable objects in D.k/ are precisely the perfect complexes of
k-modules. Therefore, by Remark 5.7 (iv), HHgm.e/ sends dualizable objects to
perfect complexes and so it induces a ring homomorphism

rK0 WK0.k/DK0.KMMk/ �!K0.Dc.k//DK0.k/: (9.4.1)

Finally, since K0.k/ is non-trivial we conclude that K0.k/ is also non-trivial.

Remark 9.18 (Functoriality) Given a ring homomorphism k ! k0, we have a base
change functor

�˝k k
0 W dgcatk �! dgcatk0 A 7!A˝k k0 :

This functor gives rise to a morphism of derivators

�˝L
k k
0 W HO.dgcatk/ �! HO.dgcatk0/;

which is symmetric monoidal, preserves homotopy colimits (and the point), and
satisfies localization; see Theorem 8.2. Therefore, the composition

HO.dgcatk/
�˝L

k
k0

�! HO.dgcatk0/
U loc

dg
�!Motloc

dg;k0

is a symmetric monoidal localizing invariant; see 8.6. Using Theorem 8.5, we obtain
a (unique) symmetric monoidal morphism, which we still denoted by � ˝L

k
k0,

making the diagram

HO.dgcatk/

U loc
dg

�˝L
k
k0

HO.dgcatk0/

U loc
dg

Motloc
dg;k �˝L

k
k0

Motloc
dg;k0

(9.4.2)
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commute (up to 2-isomorphism). By restricting ourselves to the base categories, we
have a symmetric monoidal triangulated functor

�˝L
k k
0 WMotloc

dg;k.e/ �!Motloc
dg;k0.e/:

As the (derived) change of scalars functor preserves saturated dg categories, we
obtain then an induced ring homomorphism

K0.k/ �!K0.k0/:

In conclusion, the Grothendieck ring of non-commutative motives is a functor
K0.�/ from the category of commutative rings to itself.

Remark 9.19 (Connection) Thanks to Theorem 8.5, the functor

U loc
dg W Hmok �!Motloc

dg;k.e/

is symmetric monoidal. By construction it sends exact sequences to distinguished
triangles, and so it induces a ring homomorphism

ˆ.k/ WK
.2/
0 .k/ �!K0.k/: (9.4.3)

Note that this ring homomorphism is not necessarily surjective because of step
(3) in the construction of KMMk . However, the image of ˆ.k/ can be described
as the Grothendieck group of the triangulated category tri.KPMk/ : by cofinality
the Grothendieck ring K0.tri.KPMk// is a subring of K0.k/ and by dévissage
ˆ.k/ surjects on K0.tri.KPMk//. Moreover, the above (up to 2-isomorphism)
commutative square (9.4.2) shows us that the ring homomorphism (9.4.3) gives rise
to a natural transformation of functors

K
.2/
0 .�/)K0.�/; k 7!ˆ.k/:

Now, let R be a commutative ring and l W K.2/0 .k/! R a realization of K.2/0 .k/,
i.e. a ring homomorphism. Note that if there exists a symmetric monoidal localizing
invariant

HO.dgcatk/ �!D ;

whose induced ring homomorphism (see Proposition 9.14)

K
.2/
0 .k/ �!K0.D.e/

_/

identifies with l , then l factors through ˆ.k/. An interesting example is proved by
Toën’s rank map (see [51, §5.4])

rk0 WK
.2/
0 �!K0.k/:
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Thanks to [51, §5.4 Lemma 3] this rank map is induced from the symmetric
monoidal localizing invariant

HH W HO.dgcatk/ �! HO.C.k//

of Example 8.9. Therefore, it corresponds to the following composition

K
.2/
0 .k/

ˆ.k/
�! K0.k/

rK0
�!K0.k/;

where rK0 is the ring homomorphism (9.4.1) of Remark 9.17.

9.5. Euler characteristic

Definition 9.20 Let C be a symmetric monoidal category with monoidal product˝
and unit object 1. Given a dualizable object X in C (see Definition 5.6) its Euler
characteristic �.X/ is the following composition

�.X/ W 1
ı
�!X_˝X

�
�!X ˝X_

ev
�! 1;

where 
 denotes the symmetry isomorphism.

Remark 9.21 Let C is a well behaved symmetric monoidal triangulated category;
e.g. C DD.e/ for some symmetric monoidal triangulated derivator D. Then, thanks
to [38, Theorem 1.9], the Euler characteristic gives rise to a ring homomorphism

� WK0.C_/ �! HomC.1;1/:

Proposition 9.22 Let A be a saturated dg category. Then its Euler characteristic
�.A/ in Hmo is the isomorphism class of Dc.k/ which is associated to the (perfect)
Hochschild homology complex HH.A/ of A (see Example 8.9).

Proof: >From Theorem 5.8 (and its proof) we see that the dual of A is its opposite
dg category Aop, and that the following composition in Hmo

�.A/ W k ŒA.�;�/��! Aop˝L A �
�!A˝L Aop ŒA.�;�/��! k

corresponds to the complex

A.�;�/
LO

Aop˝LA

A.�;�/:

By [39, Proposition 1.1.13] this complex of k-modules computes Hochschild
homology of A (with coefficients in itself), which achieves the proof.
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Proposition 9.23 Let F W C ! C0 be a symmetric monoidal functor between
symmetric monoidal categories with unit objects 1 and 10. Then, given a dualizable
object X in C, the Euler characteristic �.F.X// of F.X/ agrees with F.�.X// on
10 ' F.1/.
Proof: It is a straightforward consequence of the definitions. The details are left as
an exercise for the reader.

Proposition 9.24 Let A be a saturated dg category. Then, �.U loc
dg .A// is the element

of the Grothendieck group K0.k/ which is associated to the (perfect) Hochschild
homology complex HH.A/ of A.

Proof: Thanks to Theorem 8.5, the universal localizing invariant U loc
dg is symmetric

monoidal. Using Theorem 9.1, we see that the map

U loc
dg .e/ W IsoDc.k/' HomHmo.k;k/ �! Hom.U loc

dg .k/;U loc
dg .k//'K0.k/

sends an element in IsoDc.k/ to the corresponding class in the Grothendieck group
K0.Dc.k// ' K0.k/. Hence, Theorem 5.8 and Proposition 9.23 achieve the proof.

Example 9.25 Recall from Example 5.5 that, given a smooth and proper k-scheme
X , we have a saturated dg category perf.X/which enhances the category of compact
objects in Dqcoh.X/. Thanks to Keller [32, 33] the Hochschild homology of perf.X/
(see Example 8.9) agrees with the Hochschild homology of X in the sense of
Weibel [56]. Therefore, by Proposition 9.24 the Euler characteristic of U loc

dg .perf.X//
is the element of the Grothendieck group K0.k/ which is associated to the (perfect)
Hochschild homology complex HH.X/ of X .

When k is the field of complex numbers, the Grothendieck ring K0.C/ is
naturally isomorphic to Z and the Hochschild homology of X agrees with the
Hodge cohomology H�.X;��X / of X . Therefore, when we work over C, the Euler
characteristic of U loc

dg .perf.X// is the classical Euler characteristic of X .

A. Grothendieck derivators

The original reference for the theory of derivators is Grothendieck’s manuscript [29]
and Heller’s monograph [22]. See also [8, 10, 13, 43].

A.1. Prederivators

A prederivator D consists of a strict contravariant 2-functor from the 2-category of
small categories to the 2-category of categories

D W Catop �! CAT:
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Prederivators organize themselves naturally in a 2-category: the 1-morphisms
(usually called morphisms) are the pseudo natural transformations and the 2-
morphisms are the modifications; see [13, §5] for details. Given prederivators D

and D0, we denote by Hom.D;D0/ the category of morphisms.
Given a category M, we denote by M the prederivator defined for every small

category X by
M.X/ WD Fun.Xop;M/;

where Fun.Xop;M/ is the category of presheaves on X with values in M. If W
is a class of morphisms in M, we denote by MŒW�1� the prederivator defined for
every small category X by

MŒW�1�.X/ WD Fun.Xop;M/ŒW�1�:

Here Fun.Xop;M/ŒW�1� is the localization of Fun.Xop;M/ with respect to the
class of morphism which belong termwise to W . Note that the assignment
.M;W/ 7!MŒW�1� is 2-functorial, i.e. given a natural transformation

.M;W/

F

G

+ .N ;V/

between functors, such that F.W/ � .V/ and G.W/ � .V/, we obtain an induced
2-morphism

MŒW�1�
F

G

+ N ŒV�1�

of prederivators.

A.2. Derivators

A derivator is a prederivator which is subject to certain conditions, the main ones
being that for any functor u W X ! Y between small categories, the inverse image
functor

u� DD.u/ WD.Y / �!D.X/

has a left adjoint, called the homological direct image functor,

uŠ WD.X/ �!D.Y /;

as well as right adjoint, called the cohomological direct image functor

u� WD.X/ �!D.Y /:
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See [8] for details. Similarly to the case of prederivators, derivators organize
themselves in a 2-category. Given derivators D and D0, we denote by Homflt.D;D

0/

the category of morphisms of derivators which preserve filtered homotopy colimits,
and by HomŠ.D;D

0/ the category of morphisms of derivators which commute with
all homotopy colimits; see [8, 10].

The essential example of a derivator to keep in mind is the derivator D D

HO.M/ associated to a (complete and cocomplete) Quillen model category M (see
[8, Theorem 6.11]), which is defined for every small category X by

HO.M/.X/ WD Ho
�
Fun.Xop;M/

�
:

In this case, any colimit (resp. limit) preserving left (resp. right) Quillen functor
induces a morphism of derivators which preserves homotopy colimits (resp. limits);
see [8, Proposition 6.12].

Finally, we denote by e the 1-point category with one object and one (identity)
morphism. Heuristically, the category D.e/ is the basic “derived" category under
consideration in the derivator D. For instance, if D D HO.M/ then D.e/D Ho.M/

is the usual homotopy category of M.

A.3. Properties

(i) A derivator D is called strong if for every finite free category X and every
small category Y , the natural functor D.X � Y / ! Fun.Xop;D.Y // is full
and essentially surjective.

(ii) A derivator D is called regular if sequential homotopy colimits commute with
finite products and homotopy pullbacks.

(iii) A derivator D is called pointed if for any closed immersion i W Z ! X

in Cat the cohomological direct image functor i� W D.Z/ ! D.X/ has
a right adjoint, and if, dually, for any open immersion j W U ! X the
homological direct image functor jŠ W D.U / ! D.X/ has a left adjoint;
see [13, Definition 1.13].

(iv) A derivator D is called triangulated or stable if it is pointed and if every
global commutative square is cartesian exactly when it is cocartesian; see [13,
Definition 1.15].

A strong derivator is the same thing as a small homotopy theory in the sense of
Heller [23]. Thanks to [11, Proposition 2.15], if M is a Quillen model category
its associated derivator HO.M/ is strong. Moreover, if sequential homotopy
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colimits commute with finite products and homotopy pullbacks in M, the associated
derivator HO.M/ is regular. Notice that if M is pointed, then the derivator HO.M/

is pointed. Finally, a pointed Quillen model category M is stable if and only if its
associated derivator HO.M/ is triangulated.

A.4. Kan extensions

Given a small category A, we denote by HotA D HO.sbA/ the derivator associated
to the projective model category structure on the category of simplicial presehaves.
We then have a Yoneda embedding

h W A �! HotA : (A.4.1)

Let D be a derivator. A 2-functorial version of the Yoneda lemma gives a canonical
equivalence of categories

Hom.A;D/'D.Aop/:

Theorem A.1 The morphism of prederivators (A.4.1) is the universal morphism
from A to a derivator. In other words, given any derivator D, the induced functor

h� W HomŠ.HotA;D/
�
�! Hom.A;D/

is an equivalence of categories.

Proof: See [10, Corollaire 3.26].

A.5. Monoidal structures

Thanks to [10, Proposition 5.2] the 2-category of prederivators form a closed
symmetric monoidal 2-category with respect to the cartesian product. Given two
prederivators D and D0, we denote by Hom.D;D0/ the corresponding internal Hom;
see [10, §5.1].

Given a prederivator D, by a symmetric monoidal structure on D we mean
a structure of symmetric pseudo monoid on D. In other words, for every small
category X , D.X/ is a symmetric monoidal category, and for every functor u WX !
Y between small categories, the inverse image functor

u� WD.u/ WD.Y / �!D.X/

is symmetric monoidal; see [10, §5.4]. A symmetric monoidal prederivator is
a prederivator endowed with a symmetric monoidal structure. Given symmetric
monoidal prederivators D and D0, we denote by Hom˝.D;D0/ the category of
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symmetric monoidal morphisms; see [10, §5.11] for details. A symmetric monoidal
derivator is a symmetric monoidal prederivator D which is also a derivator, and
such that the tensor product preserves homotopy colimits in each variable, i.e. sucht
that, for any object X 2D.e/ the induced morphism

X ˝� WD �!D

preserves homotopy colimits.
Given symmetric monoidal derivators D and D0, we denote by Hom˝

Š
.D;D0/ the

category of symmetric monoidal morphisms which preserve homotopy colimits.
A basic example of a symmetric monoidal prederivator is given as follows : let

M be a symmetric monoidal category (with monoidal product � ˝ �) and W a
class of morphisms in M. If the monoidal product preserves the class W , i.e. if
we have an inclusion W ˝W 	 W , then the prederivator MŒW�1� of §A.1 is
naturally a symmetric monoidal prederivator. Moreover, if F W .M;W/! .N ;V/
is a symmetric monoidal functor such that F.W/� V , then the induced morphism

MŒW�1� �!N ŒV�1�

is symmetric monoidal.
As for examples of symmetric monoidal derivators, most of them are obtained

from symmetric monoidal model categories [25, Definition 4.2.6].

Proposition A.2 Let M be a symmetric monoidal model category. Then its
associated derivator HO.M/ carries a symmetric monoidal structure. Moreover,
any symmetric monoidal left Quillen functor between symmetric monoidal model
categories induces a symmetric monoidal morphism between the associated deriva-
tors.

Proof: See [10, Proposition 6.1].

A.6. Derived Day convolution product

Let A be a small symmetric monoidal category. Then A is a symmetric monoidal
prederivator. Moreover, as sbA is then a symmetric monoidal model category (see
Theorem 6.2), the derivator HotA is then a symmetric monoidal derivator, in such
a way that the Yoneda embedding (A.4.1) is a symmetric monoidal morphism of
prederivators. Given a symmetric monoidal derivator D, we thus have an induced
functor

h� W Hom˝
Š
.HotA;D/ �! Hom˝.A;D/: (A.6.1)

Theorem A.3 The functor (A.6.1) is an equivalence of categories.
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Proof: This is simply a variation on Theorem A.1. Given two derivators D0 and
D00, the derivator HomŠ.D

0;D00/ is defined by

HomŠ.D
0;D00/.A/D HomŠ.D

0;D00A/;

where D00A is in turn the derivator of “presheaves on A with values in A”, i.e. the
derivator defined by

D00A.X/DD00.A�X/:

For a third derivator D, the data of a morphism of prederivators

D�D0 �!D00

which preserves homotopy colimits in each variable is equivalent to the data of an
object in HomŠ.D;HomŠ.D

0;D00//; see [10, Lemme 5.18]. Moreover, when D0 is of
the form HotB , with B a small category, it follows immediately from Theorem A.1
that we have equivalences of derivators

HomŠ.HotB ;D00/'Hom.B;D00/'D00Bop :

Hence, if A is another small category, we obtain canonical equivalences of
categories :

HomŠ.HotA;HomŠ.HotB ;D00//' Hom.A;HomŠ.HotB ;D00//

' Hom.A;Hom.B;D00//
' Hom.A�B;D00/DD00.Aop �Bop/:

For A D B and D00 D HotA, we note that the tensor product on HotA corresponds,
under these equivalences of categories, to the tensor product ˝ W A � A �! A

composed with the Yoneda embeding (A.4.1).
More generally, we obtain (by induction on n � 0) that for any n-tuple of

small categories .A1;:::;An/, the category of morphisms HotA1�����HotAn �!D00

which preserve homotopy colimits in each variable is canonically equivalent to the
category of morphisms A1 � ��� �An �! D00. This fact implies that the symmetric
monoidal structure on A extends uniquely to a symmetric monoidal structure on the
derivator HotA. Moreover, the category of symmetric monoidal morphisms from
HotA to D00, which preserve homotopy colimits, is canonically equivalent to the
category of symmetric monoidal morphisms from A to D00.
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A.7. Left Bousfield localization

Let D be a derivator and S a class of morphisms in the base category D.e/. We say
that the derivator D admits a left Bousfield localization with respect to the class S ,
if there exists a morphism of derivators

	 WD �! LSD ;

which commutes with homotopy colimits, sends the elements of S to isomorphisms
in LSD.e/, and satisfies the following universal property : given any derivator D0,
the morphism 	 induces an equivalence of categories

	� W HomŠ.LSD;D0/
�
�! HomŠ;S .D;D

0/;

where HomŠ;S .D;D
0/ denotes the category of morphisms of derivators which

commute with homotopy colimits and send the elements of S to isomorphisms in
D0.e/.

Theorem A.4 Let M be a left proper cellular model category and S a set of maps in
the homotopy category Ho.M/ of M. Consider the left Bousfield localization LSM
of M with respect to the set S , i.e. to perform the localization we choose in M a
representative for each element of S . Then, the induced morphism of derivators
HO.M/! HO.LSM/ is a left Bousfield localization of the derivator HO.M/ with
respect to the set S . Moreover, we have a natural adjunction of derivators :

HO.M/

HO.LSM/:

Proof: See [43, Theorem 4.4].

Remark A.5 If the domains and codomains of the elements of the set S are
homotopically finitely presented (see Definition 4.2), the morphism HO.LSM/!

HO.M/ (right adjoint to the localizing functor) preserves filtered homotopy colim-
its. Therefore, under these hypothesis, if HO.M/ is regular so it is HO.LSM/.

By [43, Lemma 4.3], the Bousfield localization LSD of a triangulated derivator
D remains triangulated as long as S is stable under the loop space functor. For more
general S , to remain in the world of triangulated derivators, one has to localize with
respect to the set �.S/ generated by S and loops, as follows.

Proposition A.6 Let D be a triangulated derivator and S a class of morphisms
in D.e/. Let us denote by �.S/ the smallest class of morphisms in D.e/ which
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contains S and is stable under the loop space functor � W D.e/! D.e/. Then for
any triangulated derivator T , we have an equality of categories

HomŠ;�.S/.D;T /D HomŠ;S .D;T /:

As a consequence, whenever L�.S/D exists, this is the triangulated left Bousfied
localization of D with respect to S .

Proof: For F an element of HomŠ.D;T /, the functor F.e/ W D.e/ ! T .e/

commutes with homotopy colimits, hence it commutes in particular with the
suspension functor. Since both D and T are triangulated, suspension and loop space
functors are inverse to each other. Hence F.e/ also commutes with �. It is then
obvious that F.e/ sends S to isomorphisms if and only if it does so with�.S/.

Theorem A.7 (Dugger) Let M be a combinatorial model category. Then, there
exists a small category A and a small set of maps S in HotA.e/D Ho.sbA/, such that
HO.M/ is equivalent to LSHotA.

Proof: This follows from [15, Proposition 3.3] and from Theorem A.4 applied to
the projective model structure on the category of simplicial presheaves of a small
category.

Remark A.8 It follows immediately from Theorem A.7 that the statement of The-
orem A.4 holds also for left proper combinatoriel model categories. In particular,
any derivator which is equivalent to a derivator associated to a combinatorial model
category admits a left Bousfield localization with respect to any small set of maps.

Proposition A.9 Let D be a symmetric monoidal derivator, and S a class of maps
in D.e/. Assume that S is closed under tensor product in D, and that the left
Bousfield localization of D by S exists. Then, LSD is symmetric monoidal, and
the localization morphism 	 W D �! LSD is symmetric monoidal. Moreover, given
any symmetric monoidal derivator D0, the induced functor

	� W Hom˝Š .LSD;D0/ �! Hom˝Š .D;D
0/

is fully-faithful, and its essential image consists of the symmetric monoidal homo-
topy colimit preserving morphisms which send S to isomorphisms.

Proof: This is an immediate consequence of the universal property of LSD. The
details are left as an exercise for the reader.

A.8. Stabilization

Let D be a derivator. Then there is a universal pointed derivator D ! D� : given
any pointed derivator D0, the induced functor

HomŠ.D�;D
0/
�
�! HomŠ.D;D

0/
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is an equivalence of categories; see [10, Corollaire 4.19]. Using the explicit
construction of D� (see [10, §4.5]) it is easy to see that when D� is strong (resp.
regular) so is D. If D D HO.M/ for some model category M, then D� is equivalent
to HO.M�/, where M� denotes the model category of pointed objects in M; see
[25, Proposition 1.1.8].

Let D be a pointed derivator. A stabilization of D is a homotopy colimit
preserving morphism stab W D! St.D/, with St.D/ a triangulated strong derivator,
which is universal for these properties : given any triangulated strong derivator T ,
the induced functor

stab� W HomŠ.St.D/;T /
�
�! HomŠ.D;T /:

is an equivalence of categories.

Theorem A.10 (Heller [23]) Any pointed regular strong derivator admits a stabi-
lization.

Given a pointed simplicial model category M, the second named author
compared in [43, §8] the derivator associated to the model category SpN.M/ of
S1-spectra on M with the stabilization of the derivator associated to the model
category M.

Proposition A.11 Let M be a pointed, simplicial, left proper, cellular model
category. Assume that sequential homotopy colimits commute with finite products
and homotopy pullbacks. Then, the induced morphism of triangulated strong
derivators

St.HO.M//
�
�! HO.SpN.M//

is an equivalence.

Proof: See [43, Theorem 8.7].

Let D be a pointed strong derivator (see §A.3) and S be a class of morphisms
in D.e/. Assume that D admits a left Bousfield localization LSD with respect to S ;
see §A.7. Assume also that the stablization St.D/ of D exists.

We then have two homotopy colimit preserving morphisms :

LSD
�
 ��D

stab
��! St.D/:

By examining the relevant universal properties, we obtain the following result.

Proposition A.12 Under the above assumptions, the derivator L�.stab.S//St.D/
exists if and only if the derivator St.LSD/ exists. Moreover, if this is the case, then
L�.stab.S//St.D/' St.LSD/ under D.
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Corollary A.13 Let M be a pointed left proper combinatorial model category.
Then the stabilization St.HO.M// of HO.M/ exists and is equivalent to the
derivator associated to a stable combinatorial model category.

Proof: Thanks to Theorem A.7 we may assume that HO.M/ ' LSHotA;�. Using
Proposition A.12 and Theorem A.4, we see it is sufficient to treat the case where S
is the empty set. Proposition A.11 allow us then to conclude the proof.

Remark A.14 A careful analysis of the proof of the Corollary A.13 will lead to
a proof of Proposition A.11 for any simplicial combinatorial model category M.
Note that since any combinatorial model category is equivalent to a simplicial
one, we conclude the existence of stabilizations for any derivator associated to a
combinatorial model category; however, we will not need this level of generality.

Theorem A.15 Let A be a small symmetric monoidal category. Then there is
a unique symmetric monoidal structure on the triangulated derivator St.HotA;�/
whose tensor product preserves homotopy colimits in each variables, such that the
composed morphism

A �! HotA �! St.HotA;�/

is symmetric monoidal. Moreover, given any strong triangulated derivator D, the
induced functor

Hom˝
Š
.St.HotA;�/;D/

�
�! Hom˝.A;D/

is an equivalence of categories.

Proof: It follows immediately from Theorem A.1 and from the universal property
of St.HotA;�/ that, for any small category A and any strong triangulated derivator D,
we have canonical equivalences of categories:

HomŠ.St.HotA;�/;D/' Hom.A;D/'D.Aop/:

Starting from this point on, the proof of Theorem A.3 holds here mutatis mutandis.

Remark A.16 The derivator St.HotA;�/ is equivalent to the derivator associated
to the model category of symmetric spectra in the category of pointed simplicial
presheaves on A. This equivalence defines a symmetric monoidal structure on
St.HotA;�/, making the morphism

A �! HotA �! St.HotA;�/

symmetric monoidal; see Proposition 6.3, Theorem 7.1, and Proposition A.11.
This monoidal structure coincides with the one of Theorem A.15, thanks to the
uniqueness of the latter.
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A.9. Spectral enrichment

Recall from [12, Appendix A.3] that any triangulated derivator D is canonically
enriched over spectra, i.e. we have a morphism of derivators

RHom.�;�/ WDop �D �! HO.SpN/:

Moreover, this enrichment over spectra is compatible with adjunctions : given an
adjunction

D0

‰

D

ˆ

we have a canonical isomorphism in the stable homotopy category of spectra :

RHomD0.ˆX;Y /'RHomD.X;‰Y / X 2D; Y 2D0 :
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