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Abstract

We define a theory of étale motives over a noetherian scheme. This provides a system
of categories of complexes of motivic sheaves with integral coefficients which is closed
under the six operations of Grothendieck. The rational part of these categories coincides
with the triangulated categories of Beilinson motives (and is thus strongly related to
algebraic K-theory). We extend the rigidity theorem of Suslin and Voevodsky over a
general base scheme. This can be reformulated by saying that torsion étale motives
essentially coincide with the usual complexes of torsion étale sheaves (at least if we
restrict ourselves to torsion prime to the residue characteristics). As a consequence, we
obtain the expected results of absolute purity, of finiteness, and of Grothendieck duality
for étale motives with integral coefficients, by putting together their counterparts for
Beilinson motives and for torsion étale sheaves. Following Thomason’s insights, this also
provides a conceptual and convenient construction of the `-adic realization of motives,
as the homotopy `-completion functor.
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Introduction

The theory of mixed motives, or mixed motivic complexes as conjecturally described by Beilinson,
has evolved a lot in the last twenty years, according to the fundamental work of Voevodsky. One
of the main recent evolutions is the extension of the stable homotopy theory of schemes of
Morel and Voevodsky to a complete formalism of Grothendieck’s six operations, as in the case
of étale coefficients (SGA4, SGA5). This was made possible, following an initial idea of Voevodsky
[Del01], by the work of Ayoub [Ayo07]. The stable homotopy categories of Morel and Voevodsky
define the universal system of triangulated categories satisfying the formalism of Grothendieck’s
six operations. The triangulated categories of mixed motives should be the universal system
of triangulated categories satisfying the formalism of Grothendieck’s six operations and which
is oriented with additive formal group law (i.e. with a theory of Chern classes behaving as in
ordinary intersection theory). While such a theory already exists with rational coefficients (see
[CD12] for the construction and comparison of various candidates), the construction of a version
with integral coefficients is sill problematic: we can only check all the expected properties (such
as proper base change formulas, finiteness theorems and duality theorems, as well as the universal
property formulated above) in equal characteristics, and at the price of inverting the exponential
characteristic of the ground field in the coefficients; see [CD15]. This difficulty can be explained
by the fact that the usual realization functors do not define a conservative family, so that, even
conjecturally, there is no hope to describe integral mixed motives in a concrete way (e.g. using
the language of representations of groups). On the other hand, the strong relationship of mixed
motives with classical Chow groups makes them play a central role in the understanding of
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intersection theory. Another feature which makes them interesting is that they admit a theory
of weights à la Deligne with integral coefficients (such a construction is initiated by Bondarko in
[Bon13]).

The aim of the present article is to study the theory of mixed motivic complexes over a
general base locally for the étale topology, leading to triangulated categories of étale mixed
motives. These do form the universal system of triangulated categories satisfying the formalism of
Grothendieck’s six operations which is oriented with additive formal group law and which satisfies
étale descent. Étale mixed motives are interesting in themselves because, at least conjecturally,
they fit in a tannakian picture with integral coefficients: there should exist (perverse) motivic
t-structures on triangulated categories of (constructible) étale mixed motives, which, in the case
of a field, should define tannakian categories defined over Z (note that Voevodsky has shown
that there is no motivic t-structure on the triangulated category of mixed motives DMgm(k)
with integral coefficients; see [VSF00, Proposition 4.8]). This is related to the fact, pointed
out by Rosenschon and Srinivas [RS14], that integral versions of the Hodge conjecture and of
the Tate conjecture are reasonable if we consider étale versions of Chow groups. Similarly, the
triangulated category of étale mixed motives over a scheme of finite type over C is expected to
be equivalent to the bounded derived category of the abelian category of Nori’s motives. On the
other hand, there is no theory of weights for étale motives with integral coefficients.1 But with
rational coefficients, these two notions of motives must coincide, so that, conjecturally, Q-linear
mixed motives should have all the advantages of these two theories (e.g. relation with classical
Chow groups, weights, and motivic t-structures).

More explicitly, and in a less speculative way, over a field, Voevodsky’s triangulated category
of mixed motives DM(k) comes with its étale counterpart DMét(k) (see [VSF00]). These two
categories coincide with Q-coefficients, which means, for instance, that DMét(k,Q) can be used
to understand algebraic K-theory up to torsion. On the other hand, as far as torsion coefficients
are involved, the category DMét(k) is much closer to the topological world. Indeed, the rigidity
theorem of Suslin and Voevodsky [SV96] means that for any positive integer n, prime to the
characteristic of k, DMét(k,Z/nZ) is equivalent to the derived category of Z/nZ-linear Galois
modules. This is why one should expect that, over general base schemes, the use of the étale
topology will make the situation better. The underlying principle which we will use repeatedly is
that to prove properties of étale motives with integral coefficients, one should reduce to the case of
rational coefficients, and then to the case of torsion coefficients (the latter being well understood
since it belongs to the well-established realm of étale cohomology). Still it remains to find the
good framework in which to define a category of étale motives with integral coefficients.2

There are several directions to do so. Interestingly enough, the first construction of
triangulated categories of (effective) mixed motives over an arbitrary (noetherian) base goes back
to 1992, in the PhD thesis of Voevodsky (see [Voe96]). It is defined in terms of A1-homotopy
theory of complexes of sheaves with respect to the h-topology (i.e. considering étale descent
together with proper descent), and, as pointed out at that time by Voevodsky himself, is
a serious candidate for a theory of étale motives. Still following Voevodsky’s path, there is a
second possible construction using the A1-homotopy theory of complexes of étale sheaves with
transfers (based on the theory of relative cycles by Suslin and Voevodsky; see [VSF00, ch. 2],
[CD12, §§ 8 and 9]). Finally, following Morel’s insights, a third possibility consists in considering
the A1-homotopy theory of complexes of étale sheaves. The latter construction is studied by

1 See Remark 7.2.26 for explicit obstructions.
2 Recall this problem was originally suggested by Lichtenbaum in [Lic84].
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Ayoub [Ayo14]. In this article, we will focus on the first two constructions, and will then, using
Ayoub’s results, compare these with the third.

We now turn to the contributions of this article. We first consider the version of étale
motives, over a general noetherian scheme X with coefficients in a ring R, defined as the category
DMét(X,R), obtained by the A1-localization and P1-stabilization of the category of complexes
of étale sheaves of R-modules with transfers over the smooth-étale site of X. If R is of positive
characteristic n, we are able to establish all the expected properties.

• Localization (Theorem 4.3.1). Given a closed immersion i : Z→X with open complement
j : U → X, for any étale motive M over X, there is a canonical distinguished triangle of the
form

j!j
∗(M)→M → i∗i

∗(M)→ j!j
∗(M)[1].

• Absolute purity (Theorem 4.6.1). Given a closed immersion of codimension c between
regular schemes i : Z → X, for any étale motive M over X, there is a natural isomorphism

i!(M) ' i∗(M)(−c)[−2c].

• Rigidity (Theorem 4.5.2). When n is invertible on X, DMét(X,R) is canonically
equivalent to D(Xét, R), the (unbounded) derived category of étale sheaves of R-modules on
the small étale site of X.

In fact, with torsion coefficients we even get the strong form of the cancellation theorem for
étale motives, namely that the Tate twist in the effective category DMeff

ét (X,R) (obtained before
applying the P1-stabilization process) is already invertible. The last property of the one listed
above is called the rigidity property as it generalizes the original rigidity theorem of Suslin
and Voevodsky (in the form of [VSF00, ch. 5, 3.3.3]). Moreover, in the context of sheaves with
transfers we can give to this theorem a more concrete form, closer to the original result of Suslin
and Voevodsky [VSF00, ch. 3, Theorem 5.25].

Theorem (see Corollary 4.5.4). Assume that R is of positive characteristic n, and consider a
noetherian scheme X with residue characteristics prime to n. For an étale sheaf with transfers
of R-modules F over X, the following conditions are equivalent.

(i) The functor F is A1-local: for any smooth X-scheme Y , H∗ét(Y ;F )→ H∗ét(A
1
Y ;F ) is an

isomorphism.

(ii) The functor F comes from the small étale site of X: for any smooth morphism p : Y →X,
the transition maps p∗(F |Xét

)→ F |Yét
are isomorphisms.

We also derive some pretty consequences of our work for the classical étale theory: first, we
extend the main theorems, proper and smooth base changes, to the unbounded derived category
(see § 1) and we also extend the theory of traces to the case of more general finite morphisms
(see § 6.1 for more details).

However, to treat the integral case, we fall on the problem that, with rational coefficients,
the étale and Nisnevich topologies give the same answer, and thus suffer the same defect.
In particular, we only know that DMét(X,Q) is well behaved when X is quasi-excellent and
geometrically unibranch (according to [CD12, Theorem 16.1.4]).

This leads us to the second possibility mentioned above, the setting of the h-topology
introduced by Voevodsky at the very beginning of his theory of motives. The category
DMh(X,R), is the category obtained from the derived category of h-sheaves of R-modules after
A1-localization and P1-stabilization. We then consider the category DMh(X,R), defined as the
smallest thick subcategory of DMh(X,R) closed under small sums and containing Tate twists
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of motives of smooth X-schemes. When R is a Q-vector space, it is known to coincide with all

the various notions of Q-linear mixed motives which have the expected properties (mainly, the

expected relation with the graded piece of algebraic K-theory with respect to the γ-filtration,

good behavior with respect to the six operations of Grothendieck, and absolute purity): this

is the subject of [CD12], in which we prove that five possible constructions of Q-linear mixed

motives are equivalent, the category DMh(X,Q) being one of them.3 In fact, the effective version

(before P1-stabilization) of DMh(X,R) was the very first construction of a triangulated category

of motives considered by Voevodsky; see [Voe96]. In this article, we will see that for any ring R

of positive characteristic, DMh(X,R) coincides with DMét(X,R) (Theorem 5.5.3), and thus, in

the case where the characteristic of R is invertible in OX , and according to the rigidity property

mentioned above, with the derived category D(Xét, R). Note that, while all these equivalences

of categories appear in the work of Suslin and Voevodsky in the case where X is the spectrum of

a field, the proofs we give here do not rely on these particular cases.4 The consequence of these

comparison theorems, respectively with rational coefficients and with torsion coefficients, and

together with a little game with the Artin–Schreier short exact sequence, is that h-motives, with

any coefficients, are well behaved with respect to the six operations, and in fact gives a common

framework to the étale torsion coefficients of SGA4 and rational mixed motives. Moreover, the

absolute purity theorem holds with integral coefficients for h-motives (Theorem 5.6.2).

In order to get duality properties on h-motives, a finiteness condition is needed on the

objects of DMh(X,R). The category DMh,c(X,R) of constructible h-motives is defined as

the smallest thick subcategory containing Tate twists of motives of separated smooth X-schemes

(see, more precisely, Definition 5.1.3). This notion was first introduced by Voevodsky as the

finite type (effective) h-motives in [Voe96] and recast by Ayoub in the axiomatic treatment of

[Ayo07]. This notion of constructibility (which we already considered in our work on motives

with rational coefficients [CD12]) is good enough for most of our purposes (one can prove its

compatibility with the six operations), but suffers little drawbacks: it is not local with respect to

the étale topology, and, in the case of torsion coefficients, does not always coincide through the

equivalence D(Xét, R) ' DMh(X,R) with the notions of constructibility which are traditionally

used in the context of (torsion) étale sheaves. This is why we also study the triangulated categories

DMh,lc(X,R) of locally constructible motives (i.e. of h-motives which are locally constructible in

the above sense, with respect to the étale topology); see Definition 6.3.1. Let us summarize the

main properties of (locally) constructible h-motives over noetherian schemes of finite dimension

that we prove here.

• With rational coefficients, both notions of constructible h-motives and of locally

constructible h-motives coincide and are also equivalent to the purely categorical notion of

compact object (Theorem 5.2.2); this remains true with integral coefficients if the base scheme

is of finite type over a strictly henselian noetherian scheme, or, more generally, if the étale

cohomological dimension of its residue fields is uniformly bounded (Theorem 5.2.4).

3 However, in [CD12], we prove that the categories DMh(X,Q) are well behaved (i.e. are suitably related to
(homotopy) K-theory, and are closed under the six operations) only when X is quasi-excellent, noetherian, and
of finite dimension. In these notes, we extend this result to the case of noetherian schemes of finite dimension; see
Theorem 5.2.2.
4 It is noteworthy that the proofs of Suslin and Voevodsky involve resolution of singularities (at least under the
form of de Jong alterations), while we do not need anything like this to prove these comparison theorems in full
generality.
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• Both constructible and locally constructible h-motives with integral coefficients are stable
with respect to the six operations for quasi-excellent schemes (Corollaries 6.2.14 and 6.3.15).

• Both constructible and locally constructible h-motives are compatible with projective
limits in the base schemes with integral coefficients, the property that we called continuity in
[CD12, 4.3] (see Theorems 6.3.9 and 6.3.12, respectively).

• Under a mild assumption on the base scheme, there exists a dualizing object
for constructible h-motives with integral coefficients satisfying the expected properties of
Grothendieck–Verdier duality (Theorem 6.2.17), and this duality extends to locally constructible
h-motives (Corollary 6.3.15).

• For any surjective morphism of finite type f : X → S between noetherian schemes of
finite dimension, and for any object M of DMh(S,Z), if f∗(M) is locally constructible, then so is
M ; and if S is quasi-excellent, the same is true if we replace f∗(M) by f !(M) (Proposition 6.3.18).

• For any noetherian ring of coefficients R, whose characteristic is invertible in OX , we have
a canonical identification of locally constructible h-motives over X with bounded complexes
of sheaves of R-modules on the small étale site of X which are of finite Tor-dimension and
have constructible cohomology sheaves in the sense of SGA4: Db

ctf(Xét, R) ' DMh,lc(X,R)
(Theorem 6.3.11). This correspondence is compatible with the six operations.

For further explanations concerning (locally) constructible motives, the reader may have
a look at Remarks 5.4.10 and 5.5.11 (about the abundance of non-compact constructible
h-motives), and at Remark 6.3.2 (for a digression on the meaning of locally constructible
h-motives). An alternative characterization of locally constructible h-motives with integral
coefficients is given by Theorem 6.3.26.

Among the applications of this formalism, we study the étale motivic cohomology (also known
as the Lichtenbaum motivic cohomology) of X, understood here as the usual extension groups
computed in DMh(X,Z):

Hr,n
ét (X) = HomDMh(X)(ZX ,ZX(n)[r]).

First, we recall that, when X is a scheme of finite type over a field k, up to inverting the
exponential characteristic of k, it coincides with the étale hypercohomology of the Bloch cycle
complex (Theorem 7.1.2). Secondly, when X is a regular noetherian scheme of finite dimension,
we construct the cycle class map with values in étale motivic cohomology

CHn(X)→ H2n,n
ét (X),

and show it is an isomorphism after inverting all primes, or if n= 1 after inverting the set N of the
exponential characteristics of the residue fields of X; we also show it is a monomorphism if n = 2
after inverting N (Theorem 7.1.11). This is achieved via a study of the coniveau spectral sequence
of étale motivic cohomology, which uses the absolute purity theorem for h-motives with integral
coefficients, as well as the validity of the Bloch–Kato conjecture. The regularity assumption on X
can be avoided if we replace étale motivic cohomology by étale motivic Borel–Moore homology.

The main interest of the formalism described above is to provide an integral part to the torsion
étale theory of [SGA4]. We exploit this fact, for any prime number `, by considering the `-adic
completion of DMh(X,Z) from a homotopical (or derived) perspective. The immediate advantage
of this construction is that the resulting category, denoted by DMh(X, Ẑ`) in Definition 7.2.1,
readily has all the advantage of its integral model: six operations, and absolute purity.

We exhibit two natural notions of finiteness for these `-adic h-motives: constructibility and
geometricity (Definition 7.2.13). Both notions are stable by the six operations (Remark 7.2.15
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and Theorem 7.2.16). Using our comparison theorem in the case of torsion coefficients, we
show that, when restricted to schemes of residue characteristics prime to `, the category of
constructible `-adic h-motives not only extends the classical definitions of Deligne [BBD82]
(whenever that makes sense, see Proposition 7.2.19) but in fact coincides in full generality with
the constructible `-adic systems defined by Ekedahl in [Eke90] (see Proposition 7.2.21), in a
compatible way with the six operations (for Ekedahl’s `-adic systems, all this remains true for
non-necessarily constructible objects). This has various nice consequences such as showing that
Ekedahl constructible `-adic systems are stable by the six operations over any quasi-excellent
schemes, and giving a t-structure on `-adic constructible h-motives.

Finally, the crux is reached as `-adic systems are in fact h-motives: for any noetherian
Spec(Z[`−1])-scheme of finite dimension, they form a full triangulated subcategory of DMh(X,Z),
and the inclusion functor has a symmetric monoidal left adjoint,

ρ̂∗` : DMh(X,Z)→ DMh(X, Ẑ`) ' D(X,Z`),

see (7.2.4.a). This is the `-adic realization functor: it commutes with all of the six operations
(including for non-necessarily constructible objects), and sends (locally) constructible h-motives
to constructible `-adic systems.

On the homotopy level, `-adic realization is the same thing as homotopy `-completion (see
Proposition 7.2.8); with a little abuse of notations, we have

ρ̂∗` (M) = R lim
←−
r

M/`r.

We cannot resist to give here an analogy with the situation of the derived category of abelian
groups: it is easy to prove that the homotopy `-adic completion is conservative rationally, once
restricted to perfect complexes of abelian groups. This gives a new light on the conservativity
conjecture of Beilinson which can be stated as the hope that, for any noetherian scheme of finite
dimension, the functor

ρ̂∗` ⊗Q : DMh,c(X,Q)→ Db
c(X,Q`)

is conservative [Bei87, § 5.10, end of A]. This conjecture would imply another one, which is also
natural if we think of motives as a generalization of abelian groups: for any noetherian scheme of
finite dimension, the family of integral `-adic realization functors below, indexed by all prime `,

DMh,lc(X,Z)
restriction−−−−−−→ DMh,lc(X × Spec Z[`−1],Z)

ρ̂∗`−−→ Db
c(X × Spec Z[`−1],Z`),

should form a conservative family. Equivalently, this would mean that, for an object M of
DMh(X,Z), if, for any prime `, the `-adic completion R lim

←−rM/`r vanishes, then M ' 0. In

other words we expect that Q-linear h-motives cannot be (locally) constructible when seen in
DMh(X,Z).

To be complete, we give a comparison statement (Corollary 5.5.7) between the approach of
this article and the one of [Ayo14]: for any noetherian scheme of finite dimension X and any ring
R such that either X is of characteristic zero or that 2 is invertible in R, the canonical functor

DA1,ét(X,R)→ DMh(X,R)

is an equivalence of triangulated categories (which is compatible with the six operations), where
the left-hand side is the homotopy category of the P1-localization of the A1-localization of the
model category of complexes of sheaves of R-modules on the smooth-étale site of X. The reason
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why we think 2-torsion is problematic in the whole article [Ayo14] (except if we restrict ourselves
to schemes of characteristic zero) is explained in Remark 5.5.8, in which we also explain why
the recent work of Morel should allow us to solve this puzzle. We also emphasize that Ayoub
always works with a ring of coefficients R such that any prime number p is invertible either in
R or in the structural sheaf of the base scheme, so that he never considers étale motives with
integral coefficients in mixed characteristic. Note that Ayoub also considers the comparison of
DA1,ét(X,R) with its counterparts with transfers DMét(X,R), but, even in the case when R is
of positive characteristic, he only does it for X normal (and, if X is not of characteristic zero,
there is also the problem with 2-torsion as above). Finally, for theorems about the stability
of constructible objects under the six operations and duality theorems in DA1,ét(X,R), Ayoub
always makes the assumption that the étale cohomological dimension of the residue fields of X
with R-linear coefficients is uniformly bounded (this means that he always works in a context
where constructible objects precisely are the compact objects). In particular, and a little bit
ironically, for schemes of finite type over Q, one still needs to avoid 2-torsion to apply the full
strength of Ayoub’s article.

As for the organization of this article, we will use the language we are the most familiar
with: the one of [CD12]. A little recollection is given in the Appendix A, in which one can find
some complements about the notion of absolute purity and about the effect of the Artin–Schreier
exact sequence in étale A1-homotopy theory, as well as a few remarks on idempotent completion
and localization of coefficients in abstract triangulated categories.

The first section of this paper consists in formulating classical results of étale cohomology
(such as the proper base change theorem, the smooth base change theorem, or cohomological
descent) in terms of unbounded complexes for arbitrary noetherian schemes. Except for the
proper base change formula, this extension to unbounded complexes uses non-trivial results of
Gabber on the étale cohomological dimension; however, if one is only interested in excellent
schemes of characteristic zero or in schemes of finite type over an excellent schemes of dimension
less than or equal to 1, one can rely on more classical results from SGA4 (see Remark 1.1.6).
Part of the results of this section are abstract because we will need such a level of generality
later on, to deal with the problem of cohomological descent with unbounded complexes without
any assumptions on the cohomological dimension.

These classical results are then used in §§ 2–4 to study the triangulated categories DMét(X,
R): in § 2, we recall the theory of étale sheaves with transfers over general bases with coefficients
in an arbitrary ring R. Its effective version was first introduced over fields of finite cohomological
dimension by Voevodsky. We establish all the good properties of these sheaves using the
framework of [CD12, part 3], without assuming finite cohomological dimension of the base
scheme: namely, it forms an abelian premotivic category (see Appendix A.1 for recall on that
later notion), and moreover satisfies a weak form of the localization property (Proposition 2.3.5).
This leads in particular to the effective (respectively stable) A1-derived category of sheaves with
transfers DMeff

ét (−, R) (respectively DMét(−, R)); see § 2.2.4.
In § 3, we begin to investigate the link between étale sheaves of R-modules on the small site

and sheaves with transfers. The main result is that, for any ring R and over any base, these
sheaves uniquely admits transfers (Proposition 3.1.4). When R is of positive characteristic n,
and n is invertible on X, we deduce an embedding of the derived category of such sheaves to
DMeff

ét (−, R) (Proposition 3.1.7).
Using all these preparatory results, the crux is reached in § 4 with the first version of the

rigidity theorem: the equivalence between the categories DMeff
ét (X,R) and D(Xét, R) for a ring

R of positive characteristic invertible on X (Theorem 4.5.2). Beside classical properties of étale
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cohomology, the main point here is that, with this constraint on the coefficient ring R, we prove

in § 4.3 the localization property (recall Definition A.1.12) for DMét(X,R). In the theory of

sheaves with transfers, and more generally in the study of algebraic cycles, this property is a

crucial point, as shown for example by the difficulty of proving that Bloch higher Chow groups

have a localization long exact sequence, which is still open in the unequal characteristic case.

So far, with integral coefficients, this property is unknown for the Nisnevich topology, and for

non-geometrically unibranch schemes for the étale topology.5

Section 5, is devoted to the study of the triangulated categories of h-motives DMh(X,R). It is

organized as follows. Section 5.1 is devoted to the basic definitions of h-motives. The comparison

of h-motives and Beilinson motives was proved in [CD12] for quasi-excellent schemes, and § 5.2

is devoted to the proof that we can remove this assumption, and get a comparison theorem for

noetherian schemes of finite dimension (Theorem 5.2.2). In § 5.3, we extend the proper descent

theorem in torsion étale cohomology to unbounded complexes with the help of the results of the

first section, but also of a non-trivial result of Goodwillie and Lichtenbaum on the coho-

mological dimension for the h-topology. Section 5.4 contains basic results on the effect of changing

the coefficient ring R. In § 5.5, we prove a comparison theorem relating h-motives with torsion

coefficients with the étale version that we have studied in §§ 2–4. This is also where we compare

h-motives with DA1,ét(X,R). We explain how to use this, together with the results of § 5.2,

to understand the behavior of direct image functors with small sums and arbitrary change of

coefficients. In § 5.6, we show that h-motives with an arbitrary ring of coefficients satisfy the

complete six functors formalism (at least over noetherian schemes of finite dimension).

Section 6.1 contains preliminary results for the study of constructible h-motives, on the

existence of rather general trace maps, which correspond to the structure of presheaf with

transfers, for h-motives. In § 6.2, constructible h-motives are studied thoroughly: the main point

is the fact f∗ respects constructibility (Theorem 6.2.13), which yields the same property for

all of the six functors, and the duality Theorem 6.2.17. Most of the proof of this non-trivial

property is an adaptation of arguments and results of Gabber. Section 6.3 is devoted to the

compatibility of constructible h-motives with projective limits of schemes (continuity) as well as

to the study of locally constructible h-motives: stability under the six operations, and comparison

with Db
ctf(Xét, R).

Section 7.1 is devoted to étale motivic cohomology (defined as extension groups in DMh)

and to its relation with classical (possibly higher) Chow groups (as already mentioned above).

Finally, § 7.2 studies (derived) `-adic completion of h-motives, its link with `-adic systems and

`-adic realization.

Conventions

Unless stated otherwise, all schemes are assumed to be noetherian. In particular, premotivic

categories in the text (recall in Appendix A.1) are assumed to be fibered over the category of

noetherian schemes. When dealing with rational or integral coefficients, we will need to restrict

ourselves to schemes which are in addition finite dimensional. This will always be indicated.

Unless stated otherwise, the word ‘smooth’ (respectively ‘étale’) means smooth (respectively

étale) and separated of finite type. We will consider the following classes of morphisms of schemes:

5 For the étale topology, the case of geometrically unibranch scheme is a consequence of Corollary 5.5.5 and
Theorem 5.6.2.
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• Ét for the class of étale morphisms;

• Sm for the class of smooth morphisms;

• S ft for the class of morphisms of finite type.

Given a base scheme S, we let Xét (respectively SmS , S ft
S ) be the category of (noetherian)

S-schemes whose structural morphism is in Ét (respectively Sm, S ft).

The dimension of a smooth morphism (respectively codimension of a regular immersion) will

be understood as the corresponding Zariski locally constant function d (respectively c) on the

source scheme. The twist by d (respectively c) will be the obvious sum of twists obtained by

additivity.

Given any adjunction (F,G) of categories, we will denote generically by

ad(F,G) : 1→ GF and ad′(F,G) : FG → 1

the unit and counit of the given adjunction, respectively.

The letter R will denote a commutative ring which will serve as a ring of coefficients for all

our sheaves. In § 4 only, it will be implicitly assumed to be of positive characteristic n.

The letter Λ will denote a localization of Z which will serve as a ring of coefficients for all

our cycles. We assume that R is a Λ-algebra.

We will freely use results on triangulated categories from Neeman’s book [Nee01], without

warning. We simply recall that, in a given triangulated category T , a family of objectsG generates

T is, for any object M of T , if HomT (X,M [n]) ' 0 for any X in G and any integer n, then

M ' 0.

1. Unbounded derived categories of étale sheaves

In this section we give a reminder of the properties of étale cohomology, as developed by

Grothendieck and Artin in [SGA4]. There is nothing new, except some little complements about

unbounded derived categories of étale sheaves. This section is the only one of this paper in which

schemes are not supposed to be noetherian.

1.1 Cohomological dimension

1.1.1. Let X be a scheme. We denote by Xét the topos of sheaves on the small étale site of X.

Given a ring R, we write Sh(Xét, R) for the category of sheaves of R-modules on Xét. We will

denote by D(Xét, R) the unbounded derived category of the abelian category Sh(Xét, R). Given

an étale scheme U over X, we will write R(U) for the sheaf representing evaluation at U (i.e.

the étale sheaf associated with the presheaf R〈HomX(−, U)〉).
Definition 1.1.2. Let R be a ring of coefficients. A scheme X is of finite étale cohomological

dimension with R-linear coefficients if there exists an integer n such that H i
ét(X,F ) = 0 for any

sheaf of R-modules F over Xét and any integer i > n. In the case where R = Z, we will simply

say that X is of finite étale cohomological dimension.

Let ` be a prime number.

A scheme X is of finite `-cohomological dimension if there exists an integer n such that

H i
ét(X,F ) = 0 for any sheaf of Z/`Z-modules F over Xét and any integer i > n. We denote by

cd`(X) the smallest integer n with the property above.

A field k is of finite `-cohomological dimension if Spec(k) has this property.
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Theorem 1.1.3 (Gabber). Let X be a strictly local noetherian scheme of dimension d > 0, and
` a prime which is distinct of the residue characteristic of X. Then, for any open subscheme
U ⊂ X, we have cd`(U) 6 2d− 1.

For a proof, see [ILO14, Exposé XVIIIA, Theorem 1.1].

Lemma 1.1.4. Let X be a noetherian scheme of dimension d. Then, for any sheaf of Q-vector
spaces F over Xét, we have H i

ét(X,F ) = 0 for i > d.

Proof. Nisnevich cohomology and étale cohomology with coefficients in étale sheaves of Q-vector
spaces coincide, and Nisnevich cohomological dimension is bounded by the dimension, which
proves this assertion. 2

Theorem 1.1.5 (Gabber). Let S be a strictly local noetherian scheme and X a S-scheme of
finite type. Then X is of finite étale cohomological dimension, and the residue fields of X are
uniformly of finite étale cohomological dimension.

Proof. An easy Mayer–Vietoris argument shows that it is sufficient to prove the theorem in the
case where X is affine. For a point x ∈ X with image s ∈ S, we write d(x) for the degree of
transcendence of the residue field κ(x) over κ(s). Note that, for any prime ` which is invertible
in κ(x), we have cd`(κ(x)) 6 d(x) + cd`(κ(s)); see [SGA4, Exposé X, Théorème 2.1]. Therefore,
by virtue of Gabber’s Theorem 1.1.3, we have cd`(κ(x)) 6 d(x) + 2 dim(S)− 1. Let us define

N = max{dim(X), supx∈X(2 dim(S) + 1 + d(x) + 2 codim(x))}.

We will prove that H i
ét(X,F ) = 0 for any sheaf F over Xét and any i > N . As X is quasi-

compact and quasi-separated, the functors H i
ét(X,−) commute with filtered colimits; see [SGA4,

Exposé VII, Proposition 3.3]. Therefore, we may assume that F is constructible; see [SGA4,
Exposé IX, Corollaire 2.7.2]. We have an exact sequence of the form

0→ T → F → C → 0

where T is torsion and C is without torsion (in particular, C is flat over Z). Therefore, we may
assume that F = T or F = C. We also have a short exact sequence

0→ C → C ⊗Q→ C ⊗Q/Z→ 0

from which we deduce that

H i
ét(X,C ⊗Q/Z) ' lim−→

n

H i
ét(X,C ⊗ Z/nZ)

for all i. Lemma 1.1.4 thus shows that it is sufficient to consider the case where F is the form
T or C ⊗ Z/nZ. But, as T is torsion and constructible, it is a Z/nZ-module for some integer
n > 1. We are reduced to the case where F is a constructible sheaf of Z/nZ-modules for some
integer n > 1. We can find a finite filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fk = F

such that Fj+1/Fj is a Z/`jZ-module for any j, with `j a prime number: this follows from the
fact such a filtration exists in the category of finite abelian groups, using [SGA4, Exposé IX,
Proposition 2.14]. Therefore, we may assume that n = ` is a prime number.
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We will prove that, for any sheaf of Z/`Z-modules F over Xét, we have Ha
ét(X,F ) = 0 for

a > N . Let Z = Spec(Z/`Z)×X and U = X − Z. We have a closed immersion i : Z → X and
its open complement j : U → X, which gives rise to a distinguished triangle

i∗Ri
!(F )→ F → Rj∗j

∗(F )→ i∗Ri
!(F )[1]

and thus to an exact sequence

0→ i∗i
!(F )→ F → j∗j

∗(F )→ i∗R
1i!(F )→ 0

together with isomorphisms

Rbj∗j
∗(F ) ' i∗Rb+1i!(F ) for b > 1.

On the other hand, we have, for any étale X-scheme V

Hb
ét(U ×X V, j∗(F )) = 0 for any integer b > δ = supx∈U (cd`(k(x)) + 2 codim(x))

(see [ILO14, Exposé XVIIIA, Lemma 2.2] and [SGA4, Exposé IX, Corollaire 4.3]). Therefore,
we have Rbj∗j

∗(F ) = 0 for b > δ. Hence Rbi!(F ) = 0 for b > δ + 1. By virtue of [SGA4,
Exposé X, Théorème 5.1], as Z is affine, we also have H i

ét(Z,G) = 0 for i > 1 and for any sheaf
of Z/`Z-modules G. The spectral sequence

Ha
ét(Z,R

bi!(F ))⇒ Ha+b
ét (Z,Ri!(F ))

thus implies that Ha
ét(Z,Ri

!(F )) = 0 for a > δ + 2. In conclusion, the long exact sequence

Ha
ét(Z,Ri

!(F ))→ Ha
ét(X,F )→ Ha

ét(U, j
∗(F ))→ Ha+1

ét (Z,Ri!(F ))

gives Ha
ét(X,F ) = 0 for a > δ + 2. 2

Remark 1.1.6. Gabber also proved the affine Lefschetz theorem: if X is an excellent strictly
local scheme of dimension d, for any open subscheme U ⊂ X, we have cd`(U) 6 d; see [ILO14,
Exposé XV, Corollaire 1.2.4]. In the case of excellent schemes of characteristic zero, this had
been proved by Artin, using Hironaka’s resolution of singularities; see [SGA4, Exposé XIX,
Corollaire 6.3]. The case of a scheme of finite type over an excellent scheme of dimension less
than or equal to 1 was also known (this follows easily from [SGA4, Exposé X, Proposition 3.2]).

Lemma 1.1.7. Let A be a Grothendieck abelian category. We also consider a left exact functor

F : A → Z-Mod,

and we denote by
RF : D(A )→ D(Z-Mod)

its total right derived functor. We suppose that the functor

A → Z-Mod, A 7→ RnF (A)

commutes with small filtered colimits for any integer n > 0.
Then, the following conditions are equivalent.

(i) The functor
C(A )→ Z-Mod, K 7→ H0RF (K)

commutes with small filtered colimits.
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(ii) The functor RF commutes with small sums.

(iii) The functor RF commutes with countable sums.

(iv) For any degree-wise F -acyclic complex K, the natural map F (K) → RF (K) is an
isomorphism in D(Z-Mod).

Moreover, the four conditions above are verified whenever the functor F is of finite cohomological
dimension.

Proof. It is clear that (i)⇒(ii)⇒(iii). It is also easy to see that property (iv) implies property (i).
Indeed, our assumption on F implies that the class of F -acyclic objects is closed under filtered
colimits, which implies that the class of degree-wise F -acyclic complexes has the same property.
On the other hand, property (iv) implies that the functor RF may be constructed using
resolutions by degree-wise F -acyclic complexes, from which property (i) follows immediately.

Let us show that condition (iii) implies condition (iv). Consider a sequence of morphisms of
complexes of A :

K0→ K1→ · · ·→ Kn→ Kn+1→ · · · , n > 0.

We then have a map

1− d :
⊕
n

Kn→

⊕
Kn,

where d is the morphism induced by the maps Kn → Kn+1. The cone of 1 − d (the cokernel
of 1− d, respectively) is the homotopy colimit (the colimit, respectively) of the diagram {Kn}.
Moreover, as filtered colimits are exact in A , the canonical map

Llim−→
n

Kn→ lim−→
n

K

is an isomorphism in D(A ). As a consequence, it follows from condition (iii) that, if K belongs
to C(A ), we have a natural long exact sequence of shape

· · ·→
⊕
n

H iRF (Kn)
1−d
→

⊕
n

H iRF (Kn)→ H iRF (lim−→
n

Kn)→ · · · .

It is easy to deduce from this that, assuming condition (iii), the natural map

lim−→
n

H0RF (Kn)→ H0RF (lim−→
n

Kn)

is always invertible.
For an integer n, let us write σ>n(K) for the ‘troncation bête’, defined as σ>n(K)i = Ki if

i > n and σ>n(K)i = 0 otherwise. We can then write

lim−→
n

σ>m(K) ' K.

Suppose furthermore that the complex K is degree-wise F -acyclic. Then σ>n(K) has the same
property and has moreover the good taste of being bounded below. Therefore, the map

F (σ>n(K))→ RF (σ>n(K))

is an isomorphism for any integer n. As both the functors H0F and H0RF commutes with lim−→n
,

we conclude that property (iv) is verified.

568
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The fact that property (iv) is true whenever F is of finite cohomological dimension is well
known (it is already in the book of Cartan and Eilenberg in the case where A is a category of
modules over some ring, and a general argument may be found for instance in [SV00a, Lemma
0.4.1]). 2

1.1.8. Given a topos T and a ring R, we will write Sh(T,R) for the category of R-modules in
T (or, equivalently, the category of sheaves of R-modules over T ). If G is a generating family
of T , the category C(Sh(T,R)) is endowed with the projective model category structure with
respect to G (see [CD09, Example 2.3, Theorem 2.5, Corollary 5.5]): the weak equivalences are
the quasi-isomorphisms, while the fibrant objects are the complexes of sheaves of R-modules K
such that, for any object U in G , the natural map

Hn(Γ(U,K))→ Hn(U,K)

is an isomorphism for any integer n (where Hn(U,K) denotes the hypercohomology groups of U
with coefficients in K). The fibrations (trivial fibrations) are the morphisms of shape p : K → L
with the following properties.

(i) For any object U in G , the map p : Γ(U,K)→ Γ(U,L) is degree-wise surjective.

(ii) The kernel of p is fibrant (the complex Γ(U, ker(p)) is acyclic for any U in G , respectively).

Moreover, for any object U in G , the object R(U) (the free sheaf of R-modules generated by
U), seen as a complex concentrated in degree zero, is cofibrant. We will write D(T,R) for the
(unbounded) derived category of Sh(T,R).

If a topos T is canonically constructed as the category of sheaves on a Grothendieck site,
the class of representable sheaves is a generating family of T , and, unless we explicitly specify
another choice, the projective model structures on the categories of sheaves of R-modules over
T will be considered with respect this generating family. For instance, for a scheme X, we will
always understand the topos Xét as the category of sheaves over the small étale site of X, so that
its canonical generating family is given by the collection of all étale schemes of finite presentation
over X.

Proposition 1.1.9. Consider a topos T and a ring R. We suppose that T is endowed with a
generating family G such that any U ∈ G is coherent and of finite cohomological dimension for
R-linear coefficients. Then, for any U ∈ G , the functor

C(Sh(T,R))→ R-Mod, K 7→ HomD(T,R)(R(U),K) = H0(U,K)

preserves small filtered colimits.
In particular, the family {R(U) | U ∈ G } form a family of compact generators of the

triangulated category D(T,R).

Proof. This is a direct consequence of Lemma 1.1.7. 2

Lemma 1.1.10. Let T be a topos and U a coherent object of T . Consider a localization R of the
ring of integers Z. For any sheaf of abelian groups F over T , the natural map

H i(U,F )⊗R→ H i(U,F ⊗R)

is invertible for any integer i. In particular, tensoring with R preserves Γ(U,−)-acyclic sheaves
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over T . If moreover U is of finite cohomological dimension with rational coefficients, then, for
any complex of sheaves of abelian groups K over T , the canonical map

H i(U,K)⊗R→ H i(U,K ⊗R)

is bijective for any integer i.

Proof. The first assertion immediately follows from the fact that the functor H i(U,−) preserves
filtering colimits of sheaves. The second assertion is an immediate consequence of the first.
Finally, in the case where R = Q, the last assertion is a direct consequence of Lemma 1.1.7. To
prove the general case, it is sufficient to check that the natural map

RΓ(X,K)⊗R→ RΓ(X,K ⊗R)

is an isomorphism in the derived category of R-modules. As it is invertible after tensorization by
Q, it is sufficient to check that it becomes invertible after we apply the functor C 7→ C⊗L Z/pZ
for any prime number p. But such an operation commutes with the derived global section functor,
and this proves the last assertion in full generality. 2

Proposition 1.1.11. Let X be a noetherian scheme of finite dimension, and R be a localization
of Z. For any complex of étale sheaves of abelian groups K over X, the natural map

H i
ét(X,K)⊗R→ H i

ét(X,K ⊗R)

is bijective for any integer i.

Proof. By virtue of Lemma 1.1.4, this obviously is a particular case of the preceding lemma. 2

The following lemma is the main tool to extend results about unbounded complexes of
sheaves which are known under a global finite cohomological dimension hypothesis to contexts
where finite cohomological dimension is only assumed point-wise (in the topos theoretic sense).
This will be used to extend to unbounded complexes of étale sheaves the smooth base change
formula as well as the proper cohomological descent theorem. We will freely use the language
and the results of [SGA4, Exposé VII] about coherent topoi and filtering limits of these.

Lemma 1.1.12. Consider a ring of coefficients R and an essentially small cofiltering category I
as well as a fibered topos S→ I. For each index i we consider a given generating family Gi of the
topos Si. We write T = lim

←−I S for the limit topos, and πi : T → Si for the canonical projections.

We then have a canonical generating family G of T , which consists of objects of the form π∗i (Xi),
where Xi is an element of the class Gi. Given a map f : i→ j in I and a sheaf Fj over Sj , we
will write Fi for the sheaf over Si obtained by applying the pullback functor f∗ : Sj → Si to Fj .
We will assume that the following properties are satisfied.

(i) For each index i, any object in Gi is coherent (in particular, the topos Si is coherent).

(ii) For any map f : i→ j in I, the corresponding pullback functor f∗ : Sj → Si sends any
object in Gj to an object isomorphic to an element of Gi (in particular, the morphism of topoi
Si→ Sj is coherent).

(iii) For any map f : i→ j in I, the pullback functor f∗ : Sj→ Si has a left adjoint f] : Si→ Sj
which sends any object in Gi to an object isomorphic to an element of Gj .

(iv) Any object in G , has finite cohomological dimension with respect to sheaf cohomology
of R-modules.
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Then, for any index i0, the pullback functor π∗i0 : C(Sh(Si0 , R)) → C(Sh(T,R)) preserves the
fibrations of the projective model structures. Moreover, for any object Ui0 of Gi0 , and for any
complex Ki0 of Sh(Si0 , R), if U = π∗i0(Ui0) and K = π∗i0(Ki0), then the canonical map

lim−→
i→i0

Hn(Ui,Ki)→ Hn(U,K) (1.1.12.a)

is bijective for any integer n.

Proof. Note that (1.1.12.a) is known to hold whenever Ki0 is concentrated in degree zero and
n = 0; see [SGA4, Exposé VII, Corollaire 8.5.7]. This shows that condition (i) of Paragraph 1.1.8
is preserved by the functor π∗i0 . Therefore, in order to prove that the functor π∗i0 preserves
fibrations, it is sufficient to prove that it preserves fibrant objects. Let Ki0 be a fibrant object
of C(Sh(Si0 , R)). We have to prove that the natural map

Hn(Γ(U,K))→ Hn(U,K) (1.1.12.b)

is an isomorphism for any object U in G . For any map f : i → j in I, condition (iii) above
implies that the functor f∗ preserves fibrations as well as trivial fibrations (whence it preserves
fibrant objects as well). Possibly up to the replacement of i0 by some other index above it, we
may assume that U is the pullback of an object Ui0 in Gi0 . Formula (1.1.12.a) in the case of
complexes concentrated in degree zero then gives us a canonical isomorphism

Hn(Γ(U,K)) ' lim−→
i→i0

Hn(Γ(Ui,Ki)). (1.1.12.c)

As Ki is fibrant for any map i→ i0, we thus get a natural identification

Hn(Γ(U,K)) ' lim−→
i→i0

Hn(Ui,Ki). (1.1.12.d)

In other words, we must prove that the natural map (1.1.12.a) is invertible for any (fibrant)
unbounded complex of sheaves Ki0 and any object Ui0 in Gi0 .

For this purpose, we will work with the injective model category structure on C(Sh(Si0 , R))
(see [CD09, 2.1]), whose weak equivalences are the quasi-isomorphisms, and whose cofibrations
are the monomorphisms: as any object of a model category has a fibrant resolution, it is sufficient
to prove that (1.1.12.a) is invertible whenever Ki0 is fibrant for the injective model structure. In
this case, the complex Ki0 is degree-wise an injective object of Sh(Si0 , R). This implies that its
image by the functor π∗i0 is a complex of Γ(U,−)-acyclic sheaves; see [SGA4, Exposé VII, Lemme
8.7.2]. Therefore, using Lemma 1.1.7 and assumption (iv), the map (1.1.12.b) is invertible for
such a complex K, from which we immediately deduce that (1.1.12.a) is invertible. 2

Remark 1.1.13. With the same assumptions as in the preceding lemma, in the case R = Q, for
any complex of sheaves of abelian groups Ki0 over Si0 and any object Ui0 in Gi0 , the natural
maps

lim−→
i→i0

Hn(Ui,Ki)⊗Q→ Hn(U,K ⊗Q)

are isomorphism. Indeed, we know from Lemma 1.1.10 that tensoring with Q preserves Γ(U,−)-
acyclic sheaves of abelian groups over T for any object U in G . Therefore, as we may assume that
Ki0 is fibrant for the injective model structure, which implies, by [SGA4, Exposé VII, Lemme
8.7.2], that K is degree-wise Γ(U,−)-acyclic, the complex K ⊗Q has the same property. As the
functors Γ(V,−) commute with (−) ⊗ Q for any coherent sheaf of sets V , we conclude as in
the proof of the preceding lemma.
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Theorem 1.1.14. Consider a cartesian square of locally noetherian schemes

X ′
h //

f ′

��

X

f

��
S′

g // S

with the following properties.

(a) The scheme S′ is the limit of a projective system of étale schemes of finite type over S, with
affine transition morphisms.

(b) The morphism f is of finite type.

Then, for any object K of D(Xét,Z), the base change map

g∗Rf∗(K)→ Rf ′∗ h
∗(K)

is an isomorphism in D(S′ét,Z).

Proof. Let us first prove the theorem under the additional assumption that the scheme S′ is
strictly local. By virtue of Theorem 1.1.5, any scheme of finite type over S′ is of finite étale
cohomological dimension. If S′ = lim

←−i Si, where {Si} is a projective system of étale S-schemes

with affine transition maps, then the topos S′ét is canonically equivalent to the projective limit
of topoi lim

←−i Si,ét; see [SGA4, Exposé VII, Theorem 5.7]. Similarly, if we write Xi = Si×S X, we

have X ′ ' lim
←−iXi and X ′ ' lim

←−iXi,ét. Note that, for any étale map u : T ′ → T , the pullback

functor u∗ : Tét→ T ′ét has a left adjoint (because the category T ′ét is naturally equivalent to the
category Tét/T

′, where T ′ is seen as a sheaf over Tét), and that any map between étale schemes
is itself étale, from which one deduces that condition (iii) of Lemma 1.1.12 is satisfied for both
projective systems {Si} and {Xi}. As the other assumptions of this lemma are also verified, we
see that the functors g∗ and h∗ preserve finite limits, weak equivalences, as well as fibrations
of the projective model structures. On the other hand, the functors f∗ and f ′∗ are always right
Quillen functors for the projective model structures. We deduce from this that we have natural
isomorphism as the level of total right derived functors:

R(g∗ f∗) ' Rg∗Rf∗ = g∗Rf∗ and R(f ′∗ h
∗) ' Rf ′∗Rh∗ = Rf ′∗ h

∗.

As the natural map g∗ f∗(F )→ f ′∗ h
∗(F ) is an isomorphism for any sheaf F over Xét (one checks

this by first replacing S′ by each of the Si’s and X ′ by the Xi’s, and then proceed to the limit),
this proves that, under our additional assumptions, the natural transformation g∗Rf∗→Rf ′∗ h

∗

is invertible.
The general case can now be proven as follows. It is sufficient to prove that, for any geometric

point ξ′ of S′, if S′′ denotes the spectrum of the strict henselization of the local ring OS′,ξ′ , and
if g′ : S′′→ S′ is the natural map, then the morphism

g′ ∗ g∗Rf∗(K)→ g′ ∗Rf ′∗ h
∗(K)

is invertible for any object K of D(Xét,Z). We then have the following pullback squares.

X ′′
h′ //

f ′′

��

X ′
h //

f ′

��

X

f

��
S′′

g′ // S′
g // S
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Therefore, applying twice the first part of this proof, we obtain two canonical isomorphisms

g′ ∗Rf ′∗ h
∗(K)→ Rf ′′∗ h

′ ∗ h∗(K) and g′ ∗ g∗Rf∗(K)→ Rf ′′∗ h
′ ∗ h∗(K).

As we have a commutative triangle

g′ ∗ g∗Rf∗(K) //

' ((

g′ ∗Rf ′∗ h
∗(K)

'vv
Rf ′′∗ h

′ ∗ h∗(K)

this shows that the map g∗Rf∗(K)→ Rf ′∗ h
∗(K) is invertible. 2

Corollary 1.1.15. Let f : X → S be a morphism between locally noetherian schemes. We
assume that, either f is of finite type, or X is the projective limit of quasi-finite S-schemes with
affine transition maps. Then the induced derived direct image functor

Rf∗ : D(Xét,Z)→ D(Sét,Z)

preserves small sums.

Proof. By virtue of the preceding theorem, we may assume that S is strictly local. Then, any
quasi-compact separated étale scheme over X or S is of finite étale cohomological dimension:
in the case where f is of finite type, this follows from Theorem 1.1.5. Otherwise, the proof of
Theorem 1.1.5 shows that the étale cohomological dimension of quasi-finite affine S-schemes is
uniformly bounded, so that, by an easy limit argument, we see that any quasi-compact quasi-finite
separated X-scheme if of finite étale cohomological dimension. In any case, Proposition 1.1.9
tells us that both D(Sét,Z) and D(Xét,Z) are compactly generated triangulated categories (with
canonical families of compact generators given by sheaves of shape Z(U) for U quasi-compact,
separated, and étale over the base). Therefore, the functor f∗ : D(Sét,Z)→ D(Xét,Z) preserves
compact objects (because it sends a generating family of compact objects into another). This
immediately implies that its right adjoint Rf∗ commutes with small sums. 2

1.2 Proper base change isomorphism
Theorem 1.2.1. Consider a cartesian square of schemes

X ′
h //

f ′

��

X

f

��
S′

g // S

with f proper. Then, for any ring R of positive characteristic, and for any object K of D(Xét, R),
the canonical map

g∗Rf∗(K)→ Rf ′∗ h
∗(K)

is an isomorphism in D(S′ét, R).

Corollary 1.2.2. Let f : X → S be a proper morphism of schemes, and let ξ be a geometric
point of S. Let us denote by Xξ the fiber of X over ξ. Then, for any ring R of positive
characteristic, and for any object K of D(Xét, R), the natural map

Rf∗(K)ξ → RΓ(Xξ,K|Xξ)
is an isomorphism in the derived category of the category of R-modules.
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Let us see that Corollary 1.2.2 implies Theorem 1.2.1.

In order to prove that the map g∗Rf∗(K)→ Rf ′∗ h
∗(K) is invertible, it is sufficient to prove

that, for any geometric point ξ′ of S′, if we write ξ = g(ξ′), the induced map

(g∗Rf∗(K))ξ′ = Rf∗(K)ξ → Rf ′∗(h
∗(K))ξ′

is an isomorphism. If Xξ and X ′ξ′ denote the fiber of X over ξ and of X ′ over ξ′ respectively,

as the commutative square of Theorem 1.2.1 is cartesian, the natural map X ′ξ′ → Xξ is an

isomorphism. Moreover, applying twice Corollary 1.2.2 gives canonical isomorphisms

Rf∗(K)ξ ' RΓ(Xξ,K|Xξ) and Rf ′∗(h
∗(K))ξ′ ' RΓ(X ′ξ′ , h

∗(K)|X′
ξ′

).

As the square

Rf∗(K)ξ //

o
��

Rf ′∗(h
∗(K))ξ′

o
��

RΓ(Xξ,K|Xξ)
∼ // RΓ(X ′ξ′ , h

∗(K)|X′
ξ′

)

commutes, this proves the theorem.

Proof of Corollary 1.2.2. By virtue of [SGA4, Exposé XII, Corollaire 5.2], we already know this

corollary is true whenever K is actually a sheaf of R-modules over Xét, from which we easily

deduce that this is an isomorphism for K a bounded complex of sheaves of R-modules. Note

that Xξ is of finite cohomological dimension (by Theorem 1.1.5, although this is here much more

elementary, as this readily follows from [SGA4, Exposé X, 4.3 and 5.2]). Moreover, as the fiber

functor

Sh(Sét, R)→ R-Mod, F 7→ Fξ

is exact, the functor K 7→Rf∗(K)ξ is the total right derived functor of the left exact functor F 7→
f∗(F )ξ ' Γ(Xξ, F |Xξ), which is thus of finite cohomological dimension; see [SGA4, Exposé XII,

5.2 and 5.3]. Therefore, by virtue of Lemma 1.1.7, the map H i(Rf∗(K)ξ)→ H i
ét(Xξ,K|Xξ) is a

natural transformation between functors which preserve small filtering colimits of complexes of

sheaves. As any complex is a filtered colimit of bounded complexes, this ends the proof. 2

Corollary 1.2.3. For any proper morphism f : X → S, and for any ring R of positive

characteristic, the functor

Rf∗ : D(Xét, R)→ D(Sét, R)

has a right adjoint

f ! : D(Sét, R)→ D(Xét, R).

Proof. By virtue of the Brown representability theorem, it is sufficient to prove that Rf∗
preserves small sums. For this purpose, it is sufficient to prove that, for any geometric point

ξ of S, the functor Rf∗(−)ξ : D(Xét, R)→ D(R-Mod) preserves small sums. This readily follows

from Corollaries 1.2.2 and 1.1.15. 2
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1.3 Smooth base change isomorphism and homotopy invariance
Theorem 1.3.1. Consider the cartesian square of locally noetherian schemes below, with g a
smooth morphism, and f of finite type.

X ′
h //

f ′

��

X

f

��
S′

g // S

Consider a ring R of positive characteristic which is prime to the residue characteristics of S.
Then, for any object K of D(Xét, R), the map

g∗Rf∗(K)→ Rf ′∗ h
∗(K)

is an isomorphism in D(S′ét, R).

Proof. The smallest triangulated full subcategory of D(Xét, R) which is closed under small sums,
and which contains sheaves of R-modules over Xét, is the whole category D(Xét, R). Therefore,
by virtue of Corollary 1.1.15, it is sufficient to prove that, for any sheaf of R-modules F over
Xét, the map

g∗Rf∗(F )→ Rf ′∗ h
∗(F )

is an isomorphism. This follows from [SGA4, Exposé XVI, Corollaire 1.2]. 2

Theorem 1.3.2. Let S be a locally noetherian scheme and p : V → S be a vector bundle.
Consider a ring R of positive characteristic which is prime to the residue characteristics of S.
Then the pullback functor p∗ : D(Sét, R)→ D(Vét, R) is fully faithful.

Proof. The property that p∗ is fully faithful is local over S for the Zariski topology, so that
may assume that V = An

S , and even that n = 1. We have to check that, for any complex K of
sheaves of R-modules over Sét, the unit map K → Rp∗p

∗(K) is an isomorphism in D(Sét, R).
By Corollary 1.1.15, the functor Rp∗ preserves small sums, so that we may assume that K is
concentrated in degree zero (by the same argument as in the preceding proof). This follows then
from [SGA4, Exposé XV, Corollaire 2.2]. 2

2. The premotivic étale category

The category SmS of smooth (and separated of finite type) S-schemes, endowed with the étale
topology, is called the smooth-étale site. We denote by Shét(S,R) the category of sheaves of
R-modules on this site (this has to be distinguished from the category of sheaves on the small
site; see Paragraph 1.1.1).

2.1 Étale sheaves with transfers
2.1.1. We recall here the theory of finite correspondences and of sheaves with transfers introduced
by Suslin and Voevodsky [SV00b]. The precise definitions and conventions can be found in [CD12,
§ 9].

Given any S-scheme X, we denote by

c0(X/S)
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the module of cycles α in X with coefficients in Λ such that α is finite and Λ-universal over S
(i.e. the support of α is finite over S and α/S satisfies the definition [CD12, 9.1.1]).

Given any S-schemes X and Y , we put

cS(X,Y ) := c0(X ×S Y/X)

and call its elements the finite S-correspondences from X to Y (cf. [CD12, 9.1.2]). Beware that
the coefficients ring of cycles do not appear in our notation, contrary to the case of [CD12, 9.1.2].
Indeed, we will always assume (relative) cycles and finite correspondences have coefficients in Λ
so that we can allow this abuse of notation.

These correspondences can be composed and we denote by Smcor
Λ,S the category whose objects

are smooth S-schemes and morphisms are finite S-correspondences (see [CD12, 9.1.8] for P the
class of smooth separated morphisms of finite type).

We can define a functor
γS : SmS → Smcor

Λ,S (2.1.1.a)

which is the identity on objects and associates with an S-morphism its graph seen as a finite
S-correspondence [CD12, 9.1.8.1].

Definition 2.1.2 (see [CD12, 10.1.1 and 10.2.1]). An R-presheaf with transfers over S is an
additive presheaf of R-modules on Smcor

S . We denote by PShtr(S,R) the corresponding category.
An étale R-sheaf with transfers over S is an R-presheaf with transfers F such that F ◦ γS

is a sheaf for the étale topology. We denote by Shtr
ét(S,R) the corresponding full subcategory of

PShtr(S,R).

Thus, by definition, we have an obvious functor:

γ∗ : Shtr
ét(S,R)→ Shét(S,R), F 7→ F ◦ γ. (2.1.2.a)

2.1.3. Given any S-scheme X, we let Rtr
S (X) be the following R-presheaf with transfers:

Y 7→ cS(Y,X)⊗Λ R.

Proposition 2.1.4. The presheaf Rtr
S (X) is an étale R-sheaf with transfers.

Proof. In the case whereR= Λ this is [CD12, Proposition 10.2.4]. For the general case, we observe
that for any smooth S-scheme Y , cS(Y,X) is a free Λ-module. Indeed, it is a sub-Λ-module of
the free Λ-module of cycles in Y ×S X. Thus, we have

Tor1
Λ(cS(Y,X), R) = 0, (2.1.4.a)

and the general case follows from the case R = Λ. 2

2.1.5. Let Y• be a simplicial S-scheme. If we apply Rtr
S point-wise, we obtain a simplicial object

of the additive category Shtr
ét(S,R). We denote by Rtr

S (Y•) the complex associated with this
simplicial object. This is obviously functorial in Y•.

The following proposition is the main technical point of this section.

Proposition 2.1.6. Let p : Y•→ X be an étale hypercover of X in the category of S-schemes.
Then the induced map

p∗ : γ∗R
tr
S (Y•)→ γ∗R

tr
S (X)

is a quasi-isomorphism of complexes of étale R-sheaves.
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Proof. The general case follows from the case R = Λ: use the argument (2.1.4.a). In the
proof, a geometric point will mean a point with coefficients in an algebraically closed field,
not only separably closed.6 We will use the Λ-module c0(Z/S) defined for any S-scheme Z in
Paragraph 2.1.1. Remember that it is covariantly functorial in Z; see [CD12, 9.1.1].

First step. We reduce to the case where S is strictly local and to prove that the canonical map
of complexes of Λ-modules

p∗ : c0(Y•/S)→ c0(X/S) (2.1.6.a)

is a quasi-isomorphism.
Indeed, to check that p∗ is a quasi-isomorphism, it is sufficient to look at fibers over a point

of the smooth-étale site. Such a point corresponds to a smooth S-scheme T with a geometric
point t̄; we have to show that the map of complexes of Λ-modules,

lim−→
V ∈Vt̄(T )

cS(V, Y•)→ lim−→
V ∈Vt̄(T )

cS(V,X),

is a quasi-isomorphism.
Let T0 be the strict local scheme of T at t̄. By virtue of [CD12, 8.3.9], for any smooth

S-scheme W , the canonical map,

lim−→
V ∈Vt̄(T )

cS(V,W )→ c0(Z ×S T0/T0) = cT0(T0,W ×S T0),

is an isomorphism. This completes the first step as we may replace S by T0 as well as p by
p×S T0.

Second step. We reduce to prove that (2.1.6.a) is a quasi-isomorphism in the case where X is
connected and finite over S.

Let Z be the set of closed subschemes Z of X which are finite over S, ordered by inclusion.
Given such a Z, we consider the canonical immersion i : Z → X and the pullback square.

Z ×S Y•
pZ //

k
��

Z

i

��
Y•

p // X

We thus obtain a commutative diagram.

c0(Z ×X Y•/S)

��

pZ∗ // c0(Z/S)

��
c0(Y•/S)

p∗ // c0(X/S)

In this diagram, the vertical maps are injective and we can check that p∗ is the colimit of the
morphism pZ∗ as Z runs over Z . In fact, taking any cycle α in c0(Yn/S), its support T is finite
over S; as pn : Yn → X is separated, Z = pn(T ) is a closed subscheme of X which is finite over
S. Obviously, α belongs to c0(Z ×X Yn/S).

6 In the proof, we will only use the fact that any surjective family of geometric points on a scheme X gives a
conservative family of points of the small étale site of X; see [SGA4, VIII, 3.5].
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Because Z is a filtering ordered set, it is sufficient to consider the case where p is pZ and
X is Z. Because c0(Z/S) is additive with respect to Z, we can assume in addition that Z is
connected, which finishes the reduction of the second step.

Final step. Now, S is strictly local and X is finite and connected over S. In particular, X is a
strictly local scheme. Let x and s be the closed points of X and S, respectively. Under these
assumptions, we have the following lemma (whose proof is given below).

Lemma 2.1.7. For any S-scheme U and any étale S-morphism f : U → X, the canonical
morphism

ϕU : Z〈HomX(X,U)〉 ⊗ c0(X/S) −→ c0(U/S)

(i : X → U)⊗ β 7−→ i∗(β)

is an isomorphism.

Thus, according to the lemma above, the map (2.1.6.a) is isomorphic to

p∗ : Z〈HomX(X,Y•)〉 ⊗ c0(X/S)→ Z〈HomX(X,X)〉 ⊗ c0(X/S).

As p is an étale hypercovering and X is a strictly local scheme, the simplicial set HomX(X,Y•)
is contractible. This readily implies that p∗ is a chain homotopy equivalence, which achieves the
proof of the proposition. 2

Proof of Lemma 2.1.7. We construct an inverse ψU to ϕU . Because c0(−/S) is additive, the
(free) Λ-module c0(U/S) is generated by cycles α whose support is connected. Thus it is enough
to define ψU on cycles α ∈ c0(U/S) whose support T is connected.

By definition, T is finite over S. As f is separated, f(T ) is closed in X and the induced map
T → f(T ) is finite. In particular, the closed point x of X belongs to f(T ): we fix a point t ∈ T
such that f(t) = x. Then the residual extension κ(t)/κ(x) is finite. This implies κ(t) ' κ(x) as
κ(x) is algebraically closed (according to convention at the beginning of the proof). In particular,
t is a κ(x)-section of the special fiber Ux of U at x. As U/Z is étale, this section can be extended
uniquely to a section i : X → U of U/X. Then i(X) is a connected component, meeting T at
least at t. This implies T ⊂ i(X) as T is connected. Thus α ∈ c0(U/S) corresponds to an element
αi in c0(i(X)/S) ' c0(X/S). We put ψU (α) = i⊗αi. The map ψU is obviously an inverse to ϕU ,
and this completes the proof of the lemma. 2

Remark 2.1.8. This proposition fills out a gap in the theory of motivic complexes of Voevodsky
which was left open in [VSF00, ch. 5, § 3.3]: Voevodsky restricted himself to the case of a field
of finite cohomological dimension.

Note also the following corollary of Lemma 2.1.7.

Corollary 2.1.9. Let X be a scheme and V an étale X-scheme. Let RX(V ) be the étale R-sheaf
on SmX represented by V . Then the map

RX(V )→ Rtr
X(V )

induced by the graph functor is an isomorphism.

Proof. As in the proof above, it is sufficient to treat the case R = Λ. Moreover, by looking at
the toposic fibers of the above map, and by using the arguments of the first step of the proof,
we are reduced to check that the map

Λ〈HomX(X,V )〉→ c0(V/X)
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is an isomorphism when X is strictly local with algebraically closed residue field. Then, this

follows from the preceding lemma, and from the fact that, when X is connected, we have

c0(X/X) = Λ; see [CD12, Lemma 10.2.6]. 2

In [CD12, Proposition 10.3.3], we proved the preceding proposition in the particular case of

a Čech hypercovering, i.e. the coskeleton of an étale cover. With the extension obtained in the

above proposition, we can apply [CD12, Proposition 9.3.9] and get the following.

Proposition 2.1.10. The category of étale sheaves with transfers has the following properties.

(1) The forgetful functor

Otr
ét : Shtr

ét(S,R)→ PShtr(S,R)

admits an exact left adjoint atr
ét such that the following diagram commutes, where aét denotes

the usual sheafification functor.

PShtr(S,R)

γ̂∗
��

atr
ét // Shtr

ét(S,R)

γ∗

��
PSh(S,R)

aét // Shét(S,R)

(2) The category Shtr
ét(S,R) is a Grothendieck abelian category generated by the sheaves of

shape Rtr
S (X), for any smooth S-scheme X.

(3) The functor γ∗ is conservative and commutes with every small limits and colimits.

2.1.11. We deduce immediately from that proposition that the functor γ∗ admits a left adjoint

γ∗.

As in [CD12, Corollary 10.3.11], we get the following corollary of the above proposition; see

§A.1 for explanation on premotivic categories which where defined in [CD09].

Corollary 2.1.12. The category Shtr
ét(−, R) has a canonical structure of an abelian premotivic

category. Moreover, the adjunction,

γ∗ : Shét(−, R)� Shtr
ét(−, R) : γ∗, (2.1.12.a)

is an adjunction of abelian premotivic categories.

2.1.13. Remember that the category of (Nisnevich) sheaves with transfers Shtr
Nis(S,R) is defined

as the category of presheaves with transfers F over S such that F ◦ γ is a sheaf; see [CD12,

10.4.1]. Then Shtr
Nis(−, R) is a fibered category which is an abelian premotivic category according

to [CD12, 10.4.1].

We will denote by τ the comparison functor between the Nisnevich and the étale topology

on the site SmS . Thus, we denote by τ∗ : Shtr
ét(S,R) → Shtr

Nis(S,R) the obvious fully faithful

functor. Then the functor atr
ét : PShtr(S,R)→ Shtr

ét(S,R) obviously induces a left adjoint τ∗ to

the functor τ∗. Moreover, this defines an adjunction of premotivic abelian categories:

τ∗ : Shtr
Nis(−, R)� Shtr

ét(−, R) : τ∗. (2.1.13.a)
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2.2 Derived categories

2.2.1. In [CD12, § 5], we established a theory to study derived categories such as D(Shtr
ét(S,R)).

This category has to satisfy the technical conditions of [CD12, Definitions 5.1.3 and 5.1.9]. Let

us make explicit this definition in our particular case.

Definition 2.2.2. Let K be a complex of étale R-sheaves with transfers.

(1) The complex K is said to be local with respect to the étale topology if, for any smooth

S-scheme X and any integer n ∈ Z, the canonical morphism

HomK(Shtr
ét(S,R))(R

tr
S (X)[n],K)→ HomD(Shtr

ét(S,R))(R
tr
S (X)[n],K)

is an isomorphism.

(2) The complex K is said to be étale-flasque if for any étale hypercover Y• → X in SmS

and any integer n ∈ Z, the canonical morphism

HomK(Shtr
ét(S,R))(R

tr
S (X)[n],K)→ HomK(Shtr

ét(S,R))(R
tr
S (Y•)[n],K)

is an isomorphism.

Proposition 2.2.3. A complex of étale sheaves with transfers is étale-flasque if and only if

it is local with respect to the étale topology. Moreover, for any complex of étale R-sheaves

with transfers K over S, any smooth S-scheme X, and any integer n ∈ Z, we have a natural

identification:

HomD(Shtr
ét(X,R))(R

tr
S (X),K[n]) = Hn

ét(X,K).

Proof. Note that the analogous statement is known to be true for complexes of étale sheaves

without transfers (see for instance [CD09]). Therefore, the first assertion of the proposition

follows from the second one, which we will now prove. Let S be a base scheme.

We consider the projective model category structure on the category C(Shét(S,R)), that is

the analog of the model structure defined in Paragraph 1.1.8: the weak equivalences are the

quasi-isomorphisms, while the fibrations are the morphisms of complexes whose restriction to

each of the small sites Xét is a fibration in the sense of Paragraph 1.1.8 for any smooth S-scheme

X. On the other hand, as the category Shtr
ét(S,R) is an abelian Grothendieck category, the

category C(Shtr
ét(S,R)) is endowed with the injective model category structure; see [CD09, 2.1].

By virtue of [CD09, 2.14], Proposition 2.1.6 and the last assertion of Proposition 2.1.10 imply

that the functor

γ∗ : C(Shét(S,R))→ C(Shtr
ét(S,R))

is a left Quillen functor. As its right adjoint γ∗ preserves weak equivalences, we thus get an

adjunction

Lγ∗ : D(Shét(S,R))� D(Shtr
ét(S,R)) : γ∗.

Note that, for any smooth S-scheme X, we have a natural isomorphism

Lγ∗RS(X) ' Rtr
S (X)

because RS(X) is cofibrant. Therefore, for any smooth S-scheme X and for any complex of étale
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sheaves with transfers K, we have the following identifications (compare with [VSF00, ch. 5,
3.1.9]):

HomD(Shtr
ét(X,R))(R

tr
S (X),K[n]) ' HomD(Shtr

ét(X,R))(Lγ
∗(RS(X)),K[n])

' HomD(Shét(X,R))(RS(X), γ∗(K)[n])

= Hn
ét(X,K).

This proves the second assertion of the proposition, and thus achieves its proof. 2

2.2.4. Propositions 2.1.6 and 2.2.3 assert precisely that the premotivic abelian category
Shtr

ét(−, R) is compatible with the étale topology in the sense of [CD12, Definition 5.1.9].
We can therefore apply the general machinery of [CD12, Definition 5.1.9] to the abelian

premotivic category Shtr
ét(−, R). In particular, we get triangulated premotivic categories (again,

see §A.1 for basic definitions on premotivic categories):

• [CD12, Definition 5.1.17], the associated derived category, D(Shtr
ét(−, R)) whose fiber over

a scheme S is D(Shtr
ét(S,R));

• [CD12, Definition 5.2.16], the associated effective A1-derived category,

DMeff
ét (−, R) := Deff

A1(Shtr
ét(−, R))

whose fiber over a scheme S is the A1-localization of the derived category D(Shtr
ét(S,R)).

• [CD12, Definition 5.3.22], the associated (stable) A1-derived category,

DMét(−, R) = DA1(Shtr
ét(−, R))

whose fiber over a scheme S is obtained from Deff
A1(Shtr

ét(S,R)) by ⊗-inverting the Tate object

Rtr
S (1) := R̃tr

S (P1
S ,∞)[−2] (in the sense of model categories).

By construction, these categories are related by the following morphisms of premotivic
triangulated categories:

D(Shtr
ét(S,R))

πA1−−→ DMeff
ét (S,R)

Σ∞−−→ DMét(S,R). (2.2.4.a)

Recall that the right adjoint to the functor πA1 is fully faithful with essential image made by
the A1-local complexes, in the sense of the next definition.

Remark 2.2.5. In the terminology of Voevodsky, [VSF00], the category DMeff
ét (X,R) should be

called the category of étale motivic complexes over X.
With a wider view, DMét(X,R) could be called the category of étale motives. However,

we think it deserves that name only when R has positive characteristic n invertible on X (see
Theorem 5.5.3) or when X is geometrically unibranch (see Corollary 5.5.5).

Definition 2.2.6. Let K be a complex of R-sheaves with transfers over a scheme S. For any
smooth S-scheme X and any integer n ∈ Z, we simply denote by Hn

ét(X,K) the cohomology of
K seen as a complex of R-sheaves over Xét.

We say that K is A1-local if for any smooth S-scheme X and any integer n ∈ Z, the map
induced by the canonical projection

Hn
ét(X,K)→ Hn

ét(A
1
X ,K)

is an isomorphism.
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2.2.7. According to [CD12, 5.1.23, 5.2.19, 5.3.28], the adjunction of abelian premotivic categories

(2.1.12.a) can be derived, and it induces, over a scheme S, a commutative diagram.

D(Shét(S,R))

Lγ∗

��

// Deff
A1(Shét(S,R))

��

// DA1(Shét(S,R))

��
D(Shtr

ét(S,R)) // DMeff
ét (S,R) // DMét(S,R)

(2.2.7.a)

Note that all the vertical maps are obtained by deriving (on the left) the functor γ∗. We will

simply denote these maps by Lγ∗. By definition, they admit a right adjoint that we denote by

Rγ∗. In fact, we will often write Rγ∗ = γ∗ because of the following simple result.

Proposition 2.2.8. The exact functor γ∗ : C(Shtr
ét(S,R)) → C(Shét(S,R)) preserves A1-

equivalences.

Proof. This follows from [CD12, Proposition 5.2.24]. 2

2.2.9. Applying again [CD12, 5.1.23, 5.2.19, 5.3.28] to the adjunction (2.1.13.a), we get a

commutative diagram of left derived functors

D(Shtr
Nis(S,R))

Lτ∗

��

// DMeff(S,R)

��

// DM(S,R)

��
D(Shtr

ét(S,R)) // DMeff
ét (S,R) // DMét(S,R)

(2.2.9.a)

where DMeff(S,R) (respectively DM(S,R)) stands for the effective category (respectively stable

category) of Nisnevich motives as defined in [CD12, Definition 11.1.1].

The following proposition is a generalization of [VSF00, ch. 5, 4.1.12].

Proposition 2.2.10. Assume R is a Q-algebra. Then the adjunction (2.1.13.a) is an equivalence

of categories. In particular, all the vertical maps of the diagram (2.2.9.a) are equivalences of

categories.

Proof. We first prove that the right adjoint τ∗ of (2.1.13.a) is exact. Using the analog of

Proposition 2.2.3 for the Nisnevich topology, one reduces to show that for any étale R-sheaf with

transfers F over S and any local henselian scheme X over S, the cohomology group H1
ét(X,F )

vanishes. But, as F is rational, this last group is isomorphic to H1
Nis(X,F ); this is well known

(see for example [CD12, 10.5.9]), and this group is zero.

Note also τ∗ obviously commutes with filtered colimits. Being also exact, it thus commutes

with arbitrary colimits.

Obviously, τ∗ is fully faithful. It only remains to prove that its left adjoint τ∗ is fully faithful

as well. Thus, we have to prove that for any Nisnevich R-sheaf with transfers over S, the

adjunction map F → Fét = τ∗τ∗(F ) is an isomorphism. As τ∗τ∗ commutes with colimits, it

is sufficient to prove this for F = Rtr
S (X) when X is an arbitrary smooth S-scheme. This is

precisely Proposition 2.1.4. 2
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2.3 A weak localization property
Lemma 2.3.1. Let f : Y → X be a finite morphism. Then the functor

f∗ : C(Shtr
ét(Y,R))→ C(Shtr

ét(X,R))

preserves colimits and A1-equivalences.

Proof. We first check that f∗ preserves colimits. By definition, γ∗f∗ = f∗γ∗. According to point
(3) of Proposition 2.1.10, we thus are reduced to prove the functor f∗ : Sh(Y,R) → Sh(X,R)
commutes with colimits. This is well known, boiling down to the fact a finite scheme over a
strictly local scheme is a sum of strictly local schemes. The remaining assertion now follows from
[CD12, Proposition 5.2.24]. 2

Proposition 2.3.2. Let f : Y → X be a finite morphism. Then the functor

f∗ = Rf∗ : DMeff
ét (Y,R)→ DMeff

ét (X,R)

preserves small sums, and thus, has a right adjoint f !.

Proof. The fact that the functor f∗ preserves small sums follows formally from the preceding
lemma and from the fact that A1-equivalences are closed under filtered colimits; see [CD09,
Proposition 4.6]. The existence of the right adjoint f ! follows from the Brown representability
theorem.7 2

2.3.3. Let i : Z → S be a closed immersion and j : U → S the complementary open immersion.
Let K be a complex of étale sheaves with transfers over S. Note that the composite of the

obvious adjunction maps

j]j
∗(K)→ K → i∗i

∗(K) (2.3.3.a)

is always 0. We will say that this sequence is homotopy exact in DMeff
ét (S,R) if for any cofibrant

resolution K ′→ K of K the canonical map

Cone(j]j
∗(K ′)→ K ′)→ i∗i

∗(K ′)

is an A1-equivalence.
Note that given a smooth S-scheme X, K = Rtr

S (X) is cofibrant by definition and the cone
appearing above is quasi-isomorphic to the cokernel of the map

Rtr
S (X −XZ)

j∗−→ Rtr
S (X),

which we will denote by Rtr
S (X/X −XZ). Here, we put XZ = X ×S Z.

We recall the following proposition from [CD12, Corollary 2.3.17].

Proposition 2.3.4. Consider the notations above. The following conditions are equivalent.

(i) The functor i∗ is fully faithful and the pair of functors (i∗, j∗) is conservative for the
premotivic category DMeff

ét (−, R).

7 One can see the existence of a right adjoint of Rf∗ in a slightly more constructive way as follows. Lemma 2.3.1
implies that the functor f ! already exists at the level of étale sheaves with transfers. One can see easily from the
same lemma that f∗ is a left Quillen functor with respect to the A1-localizations of the injective model category
structures, which ensures the existence of f ! at the level of the homotopy categories, namely as the total right
derived functor of its analog at the level of sheaves.
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(ii) For any complex K, the sequence (2.3.3.a) is homotopy exact in DMeff
ét (S,R).

(iii) The functor i∗ commutes with twists and for any smooth S-scheme X, the canonical map

Rtr
S (X/X −XZ)→ i∗(R

tr
Z (XZ))

is an isomorphism in DMeff
ét (S,R).

Moreover, when these conditions are fulfilled, for any complex K, the exchange trans-
formation

(i∗(RZ))⊗K → i∗i
∗(K) (2.3.4.a)

is an isomorphism.

The equivalent conditions of the above proposition are called the localization property with
respect to i for the premotivic triangulated category DMeff

ét (−, R); see §A.1.11.

Proposition 2.3.5. Let i : Z → S be a closed immersion which admits a smooth retraction
p : S → Z. Then DMeff

ét (−, R) satisfies the localization property with respect to i.

The proof of this proposition is the same than the analogous fact for the Nisnevich topology;
see [CD12, Proposition 6.3.14]. As this statement plays an important role in the sequel of these
notes, we will recall the essential steps of the proof. One of the main ingredients of the proof
uses the following result, proved in [Ayo07, 4.5.44].

Theorem 2.3.6. The premotivic category Deff
A1(Shét(−, R)) satisfies localization (with respect

to any closed immersion).

Lemma 2.3.7. For any open immersion j : U → S, the exchange transformation

Lj] γ∗→ γ∗ Lj]

is an isomorphism in Deff
A1(Shét(S,R)).

Proof. We first prove that, for any étale sheaf with transfers F over U , the map

j]γ∗(F )→ γ∗j](F )

is an isomorphism of étale sheaves. Indeed, both in the case of étale sheaves or of étale sheaves
with transfers, the sheaf j](F ) is obtained as the sheaf associated with the presheaf

V 7→
{
F (V ) if V is supported over U (i.e. if V ×S U ' V ),

0 otherwise.

In particular, the functors j] are exact, and they preserve A1-equivalences because of the
projection formula A⊗j](B) ' j](j∗(A)⊗B) (for any sheaves A and B). Using Proposition 2.2.8,
this implies the lemma. 2

Lemma 2.3.8. Let i : Z→ S be a closed immersion which admits a smooth retraction. Then the
exchange transformation

Lγ∗i∗→ i∗Lγ
∗

is an isomorphism in DMeff
ét (S,R).
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Proof. Let p : S → Z be a smooth morphism such that pi = 1Z , and denote by j : U → S the
complement of i in S. For any object M in DMeff

ét (Z,R), we have a natural homotopy cofiber
sequence of shape

Lj]j
∗p∗M → p∗M → i∗M (2.3.8.a)

(note that i∗M = i∗i
∗p∗M because pi = 1Z). Indeed, as the functor γ∗ is conservative, it is

sufficient to check this after applying γ∗. As the functor γ∗ commutes with Lj] (by the previous
lemma) as well as with the functors j∗, p∗ and i∗ (because its left adjoint Lγ∗ commutes with
the functors Lj], Lp] and Li∗), it is sufficient to see that the analog of (2.3.8.a) is an homotopy
cofiber sequence for any object M of Deff

A1(Shét(Z,R)). But this latter property is a particular
case of the localization property with respect to the closed immersions, which is known to hold
by Theorem 2.3.6. The characterization of the functor i∗ by the homotopy cofiber sequence
(2.3.8.a) implies the lemma because the functor Lγ∗ is known to commute with the functors Lj],
j∗ and p∗. 2

Proof of Proposition 2.3.5. Now, the proposition can easily be deduced from the above lemma
and from Theorem 2.3.6, using the fact that the functor γ∗ is conservative; see the proof of
[CD12, Proposition 6.3.14] for more details. 2

3. The embedding theorem

3.1 Locally constant sheaves and transfers
3.1.1. Let X be a noetherian scheme.

Recall that we denote by Sh(Xét, R) the category of R-sheaves over the small étale site Xét.
On the other hand, we also have the category Shét(X,R) of R-sheaves over the smooth-étale site
SmX,ét. It is made by smooth X-schemes. The obvious inclusion of sites ρ : Xét→ SmX,ét gives
an adjunction of categories:

ρ] : Sh(Xét, R)� Shét(X,R) : ρ∗ (3.1.1.a)

where ρ∗(F ) = F ◦ ρ. The following lemma is well known (see [SGA4, VII, 4.0, 4.1]).

Lemma 3.1.2. With the above notations, the following properties hold.

(1) The functor ρ∗ commutes with arbitrary limits and colimits.

(2) The functor ρ] is exact and fully faithful.

(3) The functor ρ] is monoidal and commutes with operations f∗ for any morphism of schemes
f , and with f], when f is étale.

Note that point (3) can be rephrased by saying that (3.1.1.a) is an adjunction of étale-
premotivic abelian categories (Definition A.1.7).

By definition, ρ] sends the R-sheaf on Xét represented by an étale X-scheme V to the R-sheaf
represented by V on SmX . We will denote by RX(V ) both the sheaves on the small étale and
on the smooth-étale site of X; the confusion here is harmless.

3.1.3. Let us denote by D(Xét, R) the derived category of Sh(Xét, R). As both functors ρ], ρ
∗ are

exact, they can be derived trivially. In particular, we get a derived adjunction

ρ] : D(Xét, R)� D(Shét(X,R)) : ρ∗ (3.1.3.a)

in which the functor ρ] is still fully faithful.
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Proposition 3.1.4. The composite functor

Sh(Xét, R)
ρ]−→ Shét(X,R)

γ∗−→ Shtr
ét(X,R)

is exact and fully faithful.

Proof. As ρ] is fully faithful and γ∗ is exact and conservative, it is sufficient to prove that, for
any R-sheaf F on Xét, the map induced by adjunction,

ρ](F )→ γ∗γ
∗ρ](F ),

is an isomorphism of étale sheaves. Moreover, all the involved functors commute with colimits
(applying in particular Proposition 2.1.10). Thus, it is sufficient to prove this in the case where
F = RX(V ) is representable by an étale X-scheme V . Then, the result is just a reformulation of
Corollary 2.1.9. 2

Corollary 3.1.5. The functor

Lγ∗ ρ] = γ∗ρ] : D(Xét, R)→ D(Shtr
ét(X,R))

is fully faithful.

3.1.6. We have a composite functor

ρ! : D(Xét, R)→ D(Shtr
ét(X,R))→ DMeff

ét (X,R) (3.1.6.a)

Proposition 3.1.7. Assume that the ring R is of positive characteristic n and that the residue
characteristics of X are prime to n. Then the composed functor (3.1.6.a) is fully faithful.

Proof. Recall that the functor πA1 : D(Shtr
ét(X,R)) → DMeff

ét (X,R) has a fully faithful right
adjoint whose essential image consists of A1-local objects (see Definition 2.2.6). Therefore, by
virtue of Proposition 2.2.3 and of Corollary 3.1.5, it is sufficient to prove that, for any complex
K in D(Xét, R), and for any étale X-scheme V , the map

H i
ét(V,K)→ H i

ét(A
1 × V,K)

is bijective for all i, which is Theorem 1.3.2. 2

3.2 Étale motivic Tate twist
Recall from [SGA4, IX, 3.2] that, for any scheme X such that n is invertible in OX , the group
scheme µn,X of nth roots of unity fits in the Kummer short exact sequence in Shét(S,Z):

0→ µn→ Gm,X → Gm,X → 0. (3.2.0.a)

This induces a canonical isomorphism in the derived category:

Gm,X [−1]⊗L Z/nZ ' µn,X . (3.2.0.b)

3.2.1. For any scheme S and any ring R, the Tate motive RS(1) is defined in DMeff
ét (S,R) as the

cokernel of the split monomorphism Rtr
S (S)[−1]→ Rtr

S (Gm,S)[−1] induced by the unit section.
As Gm,S has a natural structure of étale sheaf with transfers, there is a canonical map

Ztr
S (Gm,S)→ Gm,S

586
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which factor through ZS(1)[1]. This gives a natural morphism in DMeff(S,R):

RS(1)[1]→ Gm,S ⊗L R. (3.2.1.a)

In the case where R is of positive characteristic n, with n invertible in OS , the isomorphism

(3.2.0.b) identifies the map (3.2.1.a) shifted by [−1] with a morphism of shape

RS(1)→ µn,S ⊗Z/nZ R, (3.2.1.b)

where the locally constant étale sheaf µn,S is considered as a sheaf with transfers (according to

Proposition 3.1.7). Note also that µn,S⊗L
Z/nZR ' µn,S⊗Z/nZR because µn is a locally free sheaf

of Z/nZ-modules.

Proposition 3.2.2. The morphism (3.2.1.a) is an isomorphism in DMeff
ét (S,R) whenever S is

regular.

Proof. The case where R = Z follows immediately from [CD12, Proposition 11.2.11]. In the

general case, the result follows by applying the derived functor (−)⊗L R. 2

Proposition 3.2.3. If the ring R is of positive characteristic n, with n invertible in OS , then

the morphism (3.2.1.b) is an isomorphism in DMeff
ét (S,R).

Proof. By virtue of the preceding proposition, this is true for S regular, and thus in the case

where S = Spec Z[1/n]. Now, consider a morphism of schemes f : X → S, with S regular (e.g.

S = Spec Z[1/n]). The natural map Lf∗(RS(1))→ RX(1) is obviously an isomorphism, and, as

the étale sheaf µn is locally constant, the canonical map Lf∗(µn,S ⊗Z/nZ R)→ µn,X ⊗Z/nZ R is

invertible as well, from which we deduce the general case. 2

Corollary 3.2.4. For any scheme X, if n is invertible in OX , we have a canonical identification:

HomDMeff
ét (X,Z/nZ)((Z/nZ)X , (Z/nZ)X(1)[i]) = H i−1

ét (X,µn).

Proof. This is an immediate consequence of Propositions 3.1.7 and 3.2.3. 2

Corollary 3.2.5. If the ring R is of positive characteristic n, with n prime to the residue

characteristics of X, then the Tate twist RX(1) is ⊗-invertible in DMeff
ét (X,R). Therefore, the

infinite suspension functor (2.2.4.a)

Σ∞ : DMeff
ét (X,R)→ DMét(X,R)

is then an equivalence of categories.

Proof. The sheaf µn,X is locally constant: there exists an étale cover f : Y → X such that

f∗(µn,X) = (Z/nZ)Y . This implies that the sheaf µn,X ⊗ R is ⊗-invertible in the derived

category D(Xét, R). As the canonical functor D(Xét, R)→ DMeff
ét (X,R) is symmetric monoidal,

this implies that µn,X ⊗ R is ⊗-invertible in DMeff
ét (X,R). The first assertion follows then from

Proposition 3.2.3. The second follows from the first by the general properties of the stabilization

of model categories; see [Hov01]. 2
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4. Torsion étale motives

In all this section, R is assumed to be a ring of positive characteristic n.
The aim of this section is to show that the premotivic triangulated category of R-linear étale

motives DMeff
ét (−, R) defined previously satisfies the Grothendieck’s six functors formalism as

well as the absolute purity property (see respectively Definitions A.1.10 and A.2.9). Then we
deduce the extension of the Suslin–Voevodsky rigidity theorem [VSF00, ch. 5, 3.3.3] to arbitrary
bases.

To simplify notations, we will cancel the letters L and R in front of the derived functors used
in this section. Note also that we will show in Proposition 4.1.1 that

Σ∞ : DMeff
ét (−, R)→ DMét(−, R)

is an equivalence of categories. Thus we will use the simpler notation DMét(−, R) from § 4.2 on.

4.1 Stability and orientation
We first show that in Corollary 3.2.5 one can drop the restriction on the characteristic of the
schemes we consider.

Proposition 4.1.1. For any scheme S the Tate motive RS(1) in ⊗-invertible and the natural
map RS(1)[1]→ Gm,S ⊗L R (3.2.1.a) is an isomorphism in DMeff

ét (S,R).

Proof. As the change of scalars functor

DMeff
ét (S,Z/nZ)→ DMeff

ét (S,R), M 7→ R⊗L
Z/nZ M

is symmetric monoidal, it is sufficient to prove this for R = Z/nZ. By a simple dévissage,
we may assume that n = pα is some power of a prime number p. Let S[1/p] be the product
S × Spec(Z[1/p]), and let j : S[1/p] → S be the canonical open immersion. By virtue of
Proposition A.3.4, the functor

j∗ : DMeff
ét (S,R)→ DMeff

ét (S[1/p], R)

is an equivalence of triangulated monoidal categories. Therefore, we may also assume that n is
invertible in OS . We are thus reduced to Corollary 3.2.5. 2

Corollary 4.1.2. For any scheme S the infinite suspension functor

Σ∞ : DMeff
ét (S,R)→ DMét(S,R)

is an equivalence of categories.

4.1.3. As a direct consequence of the preceding proposition, we have, for any scheme S, a
functorial morphism of abelian groups

cét
1 : Pic(S) = HomD(Shtr

ét(S,Z))(ZS ,Gm,S [1])→ HomDMeff(S,R)(RS , RS(1)[2])

which is simply induced by the canonical morphism Gm,S → Gm,S ⊗L R and the isomorphism
RS(1)[1] ' Gm,S ⊗L R.

Definition 4.1.4. We call the map cét
1 the étale motivic Chern class.

We will consider this map as the canonical orientation of the triangulated premotivic category
DMeff

ét (−, R).
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4.2 Purity (smooth projective case)
4.2.1. We need to simplify some of our notations which will often appear below. Given any
morphism f and any smooth morphism p, we will consider the following unit and counit maps
of the relevant adjunctions in DMét(−, R):

1
αf−→ f∗f

∗, f∗f∗
α′f−→ 1,

1
βp−→ p∗p], p]p

∗ β′p−→ 1.

(4.2.1.a)

Remark 4.2.2. Consider a cartesian square of schemes

Y

g

��

q //

∆

X

f

��
T

p // S

such that p is smooth. According to property (5) of Definition A.1.1, applied to DMét(−, R), we
associate with the square ∆ the base change isomorphism

Ex(∆∗] ) : q]g
∗
→ f∗p].

In what follows, the square ∆ will be clear and we will put simply: Ex∗] := Ex(∆∗] )
−1.

Recall also that we associate with the square ∆ another exchange transformation as the
following composite (see [CD12, 1.1.15]):

Ex]∗ : p]g∗
αf−→ f∗f

∗p]g∗
Ex∗]−−→ f∗q]g

∗g∗
α′g−→ f∗q]. (4.2.2.a)

4.2.3. Proposition 4.1.1, and the existence of the map cét
1 defined in Definition 4.1.4, show that

the category DMét(S,R) satisfies all the assumptions of [Dég07, § 2.1]. Thus, the results of this
article can be applied to that latter category. In particular, according to [Dég07, Proposition 4.3],
we get the following.

Proposition 4.2.4. Let f :X→ S be a smooth morphism of pure dimension d and s : S→X be
a section of f . Then, using the notation of Paragraph 2.3.3, there exists a canonical isomorphism
in DMét(S,R):

p′f,s : Rtr
S (X/X − S)→ RS(d)[2d].

In particular, for any motive K in DMét(S,R), we get a canonical isomorphism:

pf,s :

{
f]s∗(K) = f]s∗(s

∗f∗(K)⊗RS)
∼−−→ K ⊗ f]s∗(RS)

= K ⊗Rtr
S (X/X − S)

p′f,s−−→ K(d)[2d]

which is natural in K. The first isomorphism uses the projection formulas respectively for
the smooth morphism f (see point (5) of Definition A.1.1) and for the immersion s (i.e. the
isomorphism (2.3.4.a)).

4.2.5. Assume now that f : X → S is smooth and projective of dimension d. We consider the
following diagram

X
δ // X ×S X

f ′

��

f ′′ //

Θ

X

f

��
X f // S

where Θ is the obvious cartesian square and δ is the diagonal embedding.
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As in [CD12, 2.4.39], we introduce the following natural transformation:

pf : f] = f]f
′′
∗ δ∗

Ex]∗−−−→ f∗f
′
]δ∗

pf ′,δ−−→ f∗(d)[2d] (4.2.5.a)

with the notation of Remark 4.2.2 with respect to the square Θ.

Theorem 4.2.6. Under the above assumptions, the map pf is an isomorphism.

Proof. In this proof, we put τ(K) = K(d)[2d]. Note that, according to the basic properties of a
premotivic category, we get the following identification of functors for DMét(−, R):

f∗τ = τf∗, f]τ = τf]. (4.2.6.a)

Moreover, we can define a natural exchange transformation:

Exτ : τf∗
αf−→ f∗f

∗τf∗ = f∗τf
∗f∗

α′f−→ f∗τ (4.2.6.b)

with the notations of Paragraph 4.2.1. Using the fact τ is an equivalence of categories according
to Proposition 4.1.1, we deduce easily from the identification (4.2.6.a) that τf is an isomorphism.

The key point of the proof is the following lemma inspired by a proof of Ayoub (see the proof
of [Ayo07, 1.7.14, 1.7.15]).

Lemma 4.2.7. To check that pf is an isomorphism, it is sufficient to prove that the natural
transformation

pf .f
∗ : f]f

∗
→ f∗τf

∗

is an isomorphism.

To prove the lemma we construct a right inverse φ1 and a left inverse φ2 to the morphism
pf as the following composite maps:

φ1 : f∗τ
αf−→ f∗f

∗f∗τ
Ex−1

τ−−−→ f∗f
∗τf∗ = f∗τf

∗f∗
(pf .f

∗f∗)−1

−−−−−−−→ f]f
∗f∗

α′f−→ f]

φ2 : f∗τ
βf−→ f∗τf

∗f]
(pf .f

∗f])
−1

−−−−−−−→ f]f
∗f]

β′f−→ f].

Let us check that pf ◦ φ1 = 1. To prove this relation, we prove that the following diagram is
commutative.

f∗τ
αf // f∗f

∗f∗τ
Ex−1

τ // f∗τf
∗f∗

(pff
∗f∗)−1

// f]f
∗f∗

α′f //

(1)

f]
pf // f∗τ

f∗τf
∗f∗

(pff
∗f∗)−1

//

(2)

f]f
∗f∗

pff
∗f∗ // f∗τff∗

α′f // f∗τ

f∗f
∗f∗τ

Ex−1
τ //

(3)

f∗τf
∗f∗ α′f // f∗τ

f∗τ
αf // f∗f

∗f∗τ α′f // f∗τ

The commutativity of (1) and (2) is obvious and the commutativity of (3) follows from (4.2.6.b)
defining Exτ . Then the result follows from the usual formula between the unit and counit of an
adjunction. The relation φ2 ◦ pf = 1 is proved using the same kind of computations.

The end of the proof now relies on the following lemma. It relies itself on [Dég07, Theorem
5.23], which can be applied thanks to Paragraph 4.2.3.
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Lemma 4.2.8. Let f : X→ S be smooth projective of dimension d as above, and δ : X→X×SX
the diagonal embedding. Then the following holds.

• The étale motive Rtr
S (X) is strongly dualizable in DMét(S,R).

• Consider the morphism µ defined by the following composition:

Rtr
S (X)⊗S Rtr

S (X) = Rtr
S (X ×S X)

π−→ Rtr
S (X ×S X/X ×S X − δ(X))

p′
f ′,δ−−→ Rtr

S (X)(d)[2d]
f∗−→ RS(d)[2d]. (4.2.8.a)

where π is the canonical map and p′f ′,δ is the purity isomorphism of Proposition 4.2.4. Then µ
induces by adjunction an isomorphism of endofunctors of DMét(S,R):

(Rtr
S (X)⊗S −)

dX/S−−−−→ Hom(Rtr
S (X),−(d)[2d]).

To finish the proof, we now check that the map

f]f
∗ pff

∗

−−−→ f∗τf
∗ = f∗f

∗τ

is an isomorphism. Recall that, according to the smooth projection formula for the premotivic
category DMét, we get an identification of functors:

f]f
∗ = (Rtr

S (X)⊗−).

Thus the right adjoint f∗f
∗ is identified with Hom(Rtr

S (X),−). According to the above theorem,
it is sufficient to prove that the map pff

∗ above coincide through these identifications with the
isomorphism dX/S above.

According to the above definition of µ, the natural transformation of functors (µ ⊗ −) can
be described as the following composite:

f]f
∗f]f

∗ Ex∗]−−→ f]f
′
]f
′′∗f∗ = g]g

∗ αδ−→ g]δ∗δ
∗g∗

= f]f
′
]δ∗f

∗ pf ′,δ−−→ f]τf
∗ = f]f

∗τ
β′f−→ τ

where g = f◦f ′′ = f◦f ′ is the projectionX×SX→ S. Indeed the base change map Ex∗] associated
with the square Θ corresponds to the first identification in (4.2.8.a) and the adjunction map αδ
corresponds to the canonical map π.

Thus, we have to prove the preceding composite map is equal to the following one, obtained
by adjunction from pf :

f]f
∗f]f

∗ = f]f
∗f]f

′′
∗ δ∗f

∗ Ex]∗−−−→ f]f
∗f∗f

′
]δ∗f

∗

pf ′,δ−−→ f]f
∗f∗τf

∗ = f]f
∗f∗f

∗τ
α′f−→ f]f

∗τ
β′f−→ τ.

One can check after some easy cancellation that this amounts to prove the commutativity of the
following diagram.

f∗f]

Ex∗]
��

f∗f]f
′′
∗ δ∗

Ex]∗ // f∗f∗f
′′
] δ∗

α′f
��

f ′]f
′′∗ αδ // f ′]δ∗δ

∗f ′′∗ f ′]δ∗
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Using (4.2.2.a), we can divide this diagram into the following pieces.

f∗f]

Ex∗]
��

f∗f]f
′′
∗ δ∗

αf //

Ex∗]
��

f∗f∗f
∗f]f

′′
∗ δ∗

Ex∗] // f∗f∗f
′
]f
′′∗f ′′∗ δ∗

α′
f ′′ //

α′f
��

f∗f∗f
′′
] δ∗

α′f
��

f ′]f
′′∗ f ′]f

′′∗f ′′∗ δ∗

αf

33

f ′]f
′′∗f ′′∗ δ∗

α′
f ′′ // f ′]δ∗

f ′]f
′′∗ αδ //

(∗)

f ′]δ∗

Every part of this diagram is obviously commutative except for part (∗). As f ′′δ = 1, the axioms
of a 2-functors (for f∗ and f∗ say) implies that the unit map

f ′]f
′′∗ αf ′′δ−−−→ f ′]f

′′∗(f ′′δ)∗(f
′′δ)∗

is the canonical identification that we get using 1∗ = 1 and 1∗ = 1. We can consider the following
diagram

f ′]f
′′∗ αf ′′δ

f ′]f
′′∗(f ′′δ)∗(f

′′δ)∗ f ′]f
′′∗f ′′∗ δ∗

α′
f ′′

��

f ′]f
′′∗ αf ′′ // f ′]f

′′∗f ′′] f
′′∗ αδ //

α′
f ′′
��

f ′]f
′′∗(f ′′δ)∗(f

′′δ)∗

α′
f ′′
��

f ′]f
′′∗ f ′]f

′′∗ αδ // f ′]δ∗δ
∗f ′′∗ f ′]δ∗

for which each part is obviously commutative. This completes the proof. 2

This theorem will be generalized later on (see Corollary 4.3.2, point (3)). The important fact
for the time being is the following corollary.

Corollary 4.2.9. Under the hypothesis of Remark 4.2.2, if we assume that p is projective and
smooth, the morphism Ex]∗ : p]g∗→ f∗q] is an isomorphism.

In fact, putting τ(K) = K(d)[2d] where d is the dimension of p, one checks easily that the
following diagram is commutative

p]g∗

pp

��

Ex] ∗ // f∗q]

pq
��

p∗τg∗ p∗g∗τ
Exτoo f∗q∗τ

where we use formula (4.2.6.b) for the isomorphism Exτ .

4.3 Localization

Theorem 4.3.1. For any ring of positive characteristic R, the triangulated premotivic category
DMét(−, R) satisfies the localization property (see Definition A.1.12).
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Proof. We will prove that condition (iii) of Proposition 2.3.4 is satisfied. Note that, according

to Proposition 4.1.1, i∗ commutes with twists.8 Thus it remains to prove that for any smooth

S-scheme X, the canonical morphism

εX/S : Rtr
S (X/X −XZ)→ i∗R

tr
Z (XZ)

is an isomorphism in DMét(S,R) (recall that i∗ = Ri∗ according to Lemma 2.3.1).

Let us first consider the case where X is étale. Then according to Corollary 2.1.9, the sequence

of sheaves with transfers

0→ Rtr
S (X −XZ)

j∗−→ Rtr
S (X)

i∗−→ i∗R
tr
Z (XZ)→ 0 (4.3.1.a)

is isomorphic after applying the functor γ∗ to the sequence

0→ RS(X −XZ)
j∗−→ RS(X)

i∗−→ i∗RZ(XZ)→ 0.

This sequence of sheaves is obviously exact (we can easily check this on the fibers). As γ∗ is

conservative and exact, the sequence (4.3.1.a) is exact. Thus the canonical map

Rtr
S (X/X −XZ) := coker(j∗)→ i∗R

tr
Z (XZ)

is an isomorphism in Shtr
ét(X,R) and a fortiori in DMét(S,R).

We now turn to the general case. For any open cover X = U ∪ V , we easily get the usual

Mayer–Vietoris short exact sequence in Shtr
ét(S,R):

0→ Rtr
S (U ∩ V )→ Rtr

S (U)⊕Rtr
S (V )→ Rtr

S (X)→ 0.

Thus the assertion is local on X for the Zariski topology. In particular, as X/S is smooth, we can

assume there exists an étale map X → An
S . Therefore, by composing with any open immersion

An
S → Pn

S , we get an étale S-morphism f : X → Pn
S . Consider the following cartesian square

Pn
Z

q ��

k // Pn
S

p��
Z

i // S

where p is the canonical projection. If we consider the notations of Paragraph 4.2.1 and

Remark 4.2.2 relative to this square, then the following diagram

p]
p](αk)

// p]k∗k
∗

Ex]∗
��

p]
αi // i∗i

∗p]
Ex∗] // i∗q]k

∗

is commutative; this can be easily checked using (4.2.2.a).

8 Essentially because it is true for its left adjoint i∗. This fact was already remarked at the beginning of the proof
of Theorem 4.2.6.
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If we apply the preceding commutative diagram to the object Rtr
S (X/X − XZ), we get the

following commutative diagram in DMét(S,R).

p]R
tr
PnS

(X/X −XZ)
p](εX/Pn

S
)

// p]k∗R
tr
PnZ

(XZ)

Ex]∗
��

Rtr
S (X/X −XZ)

εX/S // i∗q]R
tr
Z (XZ) i∗q]R

tr
PnZ

(XZ)

The conclusion follows from the case treated above and from Corollary 4.2.9. 2

As the premotivic triangulated category DMét(−, R) satisfies the stability property
(Proposition 4.1.1) and the weak purity property (Theorem 4.2.6) the previous result allows
to apply Theorem A.1.13 to DMét(−, R).

Corollary 4.3.2. For any ring R of positive characteristic, the oriented triangulated premotivic
category DMét(−, R) satisfies Grothendieck’s six functors formalism (Definition A.1.10).

In other words, DMét(−, R) is an oriented motivic triangulated category over the category
of noetherian schemes.

4.4 Compatibility with direct image

4.4.1. According to Example A.1.3, the categories D(Xét, R) are the fibers of an Ét-premotivic
triangulated category over the category of noetherian schemes.

Recall that the derived tensor product ⊗L is essentially characterized by the property that
for any étale X-schemes U and V , RX(U)⊗L RX(V ) = RX(U ×X V ) in D(Xét, R).

Similarly, for any étale morphism p : V → X, the operation Lp] is characterized by the
property that for any étale V -scheme W , Lp](RV (W )) = RX(W ).

4.4.2. (Following the abuse of this section we drop again the letters L and R in front of derived
functors to simplify notations.) Due to the properties of the functors involved in the construction
of

ρ! : D(−ét, R)→ DMeff
ét (−, R)

we get the following compatibility properties.

(1) The functor ρ! is monoidal.

(2) For any morphism f : Y → X of schemes, there exists a canonical isomorphism:

Ex(f∗, ρ!) : f∗ρ!→ ρ!f
∗.

(3) For any étale morphism p : V → X, there exists a canonical isomorphism:

ρ!p]→ p]ρ!.

Assume that R is of positive characteristic n, and consider now a proper morphism f : Y → X
between schemes whose residue characteristics are prime to n. Then, we can form the following
natural transformation:

Ex(ρ!, f∗) : ρ!f∗
αf−→ f∗f

∗ρ!f∗
Ex(f∗,ρ!)−−−−−→ f∗ρ!f

∗f∗
α′f−→ f∗ρ!.
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Proposition 4.4.3. Using the assumptions and notations above, the map

Ex(ρ!, f∗) : ρ!f∗(K)→ f∗ρ!(K)

is an isomorphism for any object K of D(Yét, R).

Proof. Recall the triangulated category DMét(X,R) = DMeff
ét (X,R) is generated by objects of

the form Rtr
X(W ) = p](1W ) where p : W → X is a smooth morphism. Thus, we have to prove

that for any integer n ∈ Z, the induced map

HomDMeff
ét (X,R)(p](RW )[n], ρ!f∗(K))→ HomDMeff

ét (X,R)(p](RW )[n], f∗ρ!(K)) (4.4.3.a)

is invertible. Consider the following cartesian square.

W ′

g

��

q // Y

f

��
W

p // X

Then we get canonical isomorphisms

Ex∗∗ : p∗f∗→ g∗q
∗

both in D(−ét, R) and in the premotivic triangulated category DMét(−, R), by the proper base
change theorem; see Theorem 1.2.1 and respectively Corollary 4.3.2, Definition A.1.10(4).

On the other hand, the following diagram is commutative.

p∗ρ!f∗

Ex(p∗,ρ!)
��

Ex(ρ!,f∗) // p∗f∗ρ!

Ex∗∗
��

ρ!p
∗f∗

Ex∗∗
��

g∗q
∗ρ!

Ex(q∗,ρ!)
��

ρ!g∗q
∗ Ex(ρ!,g∗) // g∗ρ!q

∗

Thus, using the adjunction (p], p
∗) and replacing K by g∗(K)[−n], we reduce to prove that the

map (4.4.3.a) is an isomorphism for any complex K when p = 1X and n = 0. We have to prove
that the map

Ex(ρ!, f∗)∗ : HomDMeff
ét (X,R)(RX , ρ!f∗(K))→ HomDMeff

ét (X,R)(RX , f∗ρ!(K))

is an isomorphism.
However, using the fact ρ!(RX) = RX , Proposition 3.1.7, as well as the adjunction (f∗, f∗),

the source and target of this map can be identified to H0
ét(Y,K) and this completes the proof.

For the cautious reader, let us say more precisely that this follows from the commutativity of
the following diagram.

Hom(RX , f∗(K))

ρ!

��

adj. // Hom(f∗(RX),K)

ρ!

��
Hom(ρ!(RX), ρ!f∗(K)) Hom(ρ!f

∗(RX), ρ!(K))
Ex(f∗,ρ!)

∗
// Hom(f∗ρ!(RX), ρ!(K))

adj.
��

Hom(ρ!(RX), ρ!f∗(K))
Ex(ρ!,f∗)∗ // Hom(ρ!(RX), f∗ρ!(K))

2
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4.5 The rigidity theorem

Proposition 4.5.1. The category DMét(X,R) is the localizing subcategory of the triangulated

category DMét(X,R) generated by objects of the form f∗(RY )(n) for any projective morphism

f : Y → X and any integer n ∈ Z.

Proof. The category DMét(X,R) is the localizing subcategory of DMét(X,R) generated by

objects of the form RX(Y )(n) for any smooth X-scheme Y and any integer n ∈ Z. But such

objects belong to the thick subcategory generated by objects of the form f∗(RY )(n) for any

projective morphism f : Y → X and any integer n ∈ Z: see [Ayo07, Lemma 2.2.23] or [CD12,

Proposition 4.2.13], which is meaningful thanks to Theorem 4.3.1 above. 2

The following theorem is a generalization of the rigidity theorem of Suslin and Voevodsky

([Voe96, 4.1.9] or [VSF00, ch. 5, 3.3.3]) when the base is of positive dimension.

Theorem 4.5.2. Assume that R is a ring of positive characteristic n, and consider a noetherian

Z[1/n]-scheme X. Then the functor

ρ! : D(Xét, R)→ DMeff
ét (X,R) ' DMét(X,R)

is an equivalence of symmetric monoidal triangulated categories, whose quasi-inverse is induced

by the restriction functor on the small étale site (for A1-local complexes of étale sheaves with

transfers).

Proof. The fully faithfulness of the functor ρ! has been established in Proposition 3.1.7. As

the functor ρ! commutes with small sums, it identifies D(Xét, R) with a localizing subcategory

of DMét(X,R). Therefore, the essential surjectivity of the functor ρ! readily follows from

Propositions 4.4.3 and 4.5.1. 2

We can extend these results in the case of p-torsion coefficients as follows.

Corollary 4.5.3. Assume that R is of characteristic pr for a prime p and an integer r > 1.

Let X be any noetherian scheme, and X[1/p] = X × Spec(Z[1/p]). Then there is a canonical

equivalence of categories

DMét(X,R) ' D(X[1/p]ét, R).

Proof. This follows from Theorem 4.5.2 and from Proposition A.3.4. 2

Corollary 4.5.4. Under the assumptions of Theorem 4.5.2, for any complex of étale sheaves

with transfers of R-modules C over X, the following conditions are equivalent.

(i) The complex C is A1-local.

(ii) For any integer n, the étale sheaf Hn(C) (seen as a complex concentrated in degree zero)

is A1-local.

(iii) The map ρ!ρ
∗C → C is a quasi-isomorphism of complexes of étale sheaves.

(iv) For any integer n, the map ρ!ρ
∗Hn(C)→ Hn(C) is invertible.

Proof. The equivalence between conditions (i) and (iii) follows immediately from Theorem 4.5.2,

from which we deduce the equivalence between conditions (ii) and (iv). The equivalence between

conditions (iii) and (iv) comes from the fact that both ρ! and ρ∗ are exact functors. 2
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4.6 Absolute purity with torsion coefficients
Theorem 4.6.1. The oriented triangulated premotivic category DMét(−, R) satisfies the
absolute purity property (Definition A.2.9).

This means in particular that for any closed immersion i : Z → S between regular schemes,
one has a canonical isomorphism in DMét(S,R):

ηX(Z) : RZ → i!(RS)(c)[2c].

Proof. For any closed immersion i : Z → S, we define a complex of R-modules using the dg-
enrichment of DMét(S,R):

RΓZ(X) = RHom(i∗(RZ), RS).

This complex is contravariant in (X,Z); see §A.2.1 for morphisms of closed pairs. We have
to prove that whenever S and R are regular, the maps induced by the deformation diagram
(A.2.7.a),

RΓZ(X)
d∗1
←− RΓA1

Z
(DZX)

d∗0−→ RΓZ(NZX)

are quasi-isomorphisms. We may assume that R = Z/nZ for some natural number n > 0. By
a simple dévissage, we may as well assume that n is a power of some prime p. By virtue of
Corollary 4.5.3, we see that all this is a reformulation of the analogous property in the setting
of classical étale cohomology, with coefficients prime to the residue characteristics. We conclude
with Gabber’s absolute purity theorem (see [Fuj02]). 2

5. Motives and h-descent

5.1 h-Motives
5.1.1. Recall that Voevodsky has defined the h-topology on the category of noetherian schemes as
the topology whose covers are the universal topological epimorphisms; see [Voe96, 3.1.2]. Given a
noetherian scheme S as well as a ring R, we will denote by Shh(S,R) the category of h-sheaves of
R-modules on the category S ft

S . Given any S-scheme X of finite type, we will denote by Rh
S(X)

the free h-sheaf or R-modules represented by X. As proved in [CD12, Example 5.1.4], the Sch-
fibered category Shh(−, R) is an abelian S ft-premotivic category in the sense of Definition A.1.1.

The following definition, although using the theory of [CD12] for the existence of derived
functors, follows the original idea of Voevodsky in [Voe96].

Definition 5.1.2. Using the notations above, we define the S ft-premotivic category of effective
h-motives (respectively of h-motives) with R-linear coefficients

DMeff
h (−, R) (respectively DMh(−, R))

as the A1-derived category (respectively stable A1-derived category) associated with the fibered
category Shh(−, R) over noetherian schemes.

In other words, the triangulated monoidal category DMeff
h (S,R) is the A1-localization of the

derived category D(Shh(S,R)); this is precisely the original definition of Voevodsky [Voe96, § 4].
This category is completely analogous to the case of the étale topology (2.2.4). Similarly, the
category DMh(S,R) is obtained from DMeff

h (S,R) by ⊗-inverting the Tate h-motive in the sense
of model categories. We get functors as in (2.2.4.a):

D(Shh(S,R))
πA1−−→ DMeff

h (S,R)
Σ∞−−→ DMh(S,R). (5.1.2.a)
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Note however that the category DMeff
h (S,R) (DMh(S,R)) is generated by objects of the form

Rh
S(X) (Σ∞Rh

S(X)(n) ) for any S-scheme of finite type X (for any S-scheme of finite type X
and any integer n ∈,Z, respectively). These categories are too big to satisfy the six functors
formalism (the drawback is about the localization property with respect to closed immersions,
which means that there is no good theory of support).

This is why we introduce the following definition (following [CD12, Example 5.3.31]).

Definition 5.1.3. The category of effective h-motives (respectively of h-motives)

DMeff
h (X,R) (respectively DMh(X,R))

is the smallest full subcategory of DMeff
h (S,R) (respectively of DMh(X,R)) closed under arbitrary

small sums and containing the objects of the form Rh
S(X) (respectively Σ∞Rh

S(X)(n)) for X/S
smooth (respectively for X/S smooth and n ∈ Z).

The category of constructible effective (respectively of constructible) h-motives of geometric
origin

DMeff
h,c(X,R) (respectively DMh,c(X,R))

is the thick triangulated subcategory of DMeff
h (S,R) (respectively DMh(X,R)) generated by

objects of the form Rh
S(X)(respectively Σ∞Rh

S(X)(n)) for X/S smooth (respectively for X/S
smooth and n ∈ Z).

We will sometimes simplify the notations and write R(X) := Σ∞Rh
S(X), as an object of

DMh(X,R) (for a smooth S-scheme X).

Remark 5.1.4. The objects of DMh,c(X,R) will often simply be called constructible following the
terminology of [Ayo07, CD12]. However, it should be pointed out that this finiteness assumption
corresponds rather to what is usually called ‘geometric’ or ‘of geometric origin’ in the theories
of Galois representations, or D-modules (this fits well with the terminology ‘geometric’ chosen
by Voevodsky for motivic complexes in [VSF00, ch. 5]).

Moreover, if R is a ring of positive characteristic n, with n invertible in OX , we will see later
(Corollary 5.5.4) that we have a canonical equivalence of categories: D(Xét, R) ' DMh(X,R).
There is two classical finiteness conditions on the left-hand side, given by the subcategories:

• Db
c(Xét, R), complexes with bounded and constructible cohomology sheaves;

• Db
ctf(Xét, R), complexes in Db

c(Xét, R) which have of finite Tor-dimension (or,
equivalently, by virtue of [SGA41

2 , Rapport, 4.6], which are isomorphic in D(Xét, R) to bounded

complexes whose components are flat and constructible).

Then through the previous equivalence of categories, constructible h-motives of geometric
origin forms a full subcategory of Db

ctf(Xét, R) (see again Corollary 5.5.4).
These issues will be thoroughly studied in § 6.3. In particular, we will see in Proposition 6.3.10

that constructible h-motives are equivalent to the whole of Db
ctf(Xét, R) whenever the étale

R-cohomological dimension of the residue fields of X is uniformly bounded (in which case they
are also characterized by the property of being compact). In general, we will characterize the
objects of Db

ctf(Xét, R) by introducing a stronger version of constructibility for h-motives: see
Theorem 6.3.11.

It is obvious that the subcategory DMh(−, R) is stable by the operations f∗ for any morphism
f , by the operation f] for any smooth morphism f , and by the operation ⊗L. The Brown
representability theorem implies that the inclusion functor ν] admits a right adjoint ν∗, so that
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DMh(−, R) is in fact a premotivic triangulated category, and we get an enlargement of premotivic
triangulated category,

ν] : DMh(X,R)� DMh(S,R) : ν∗ (5.1.4.a)

(see [CD12, Example 5.3.31(2)]). More precisely, for any morphism of schemes f : X → Y , the
functor

Lf∗ : DMh(Y,R)→ DMh(X,R)

admits a right adjoint

Rf∗ : DMh(X,R)→ DMh(Y,R)

defined by the formula

Rf∗(M) = ν∗(Rf∗(ν](M))).

Similarly, the (derived) internal Hom of DMh(X,R) is defined by the formula

RHomR(M,N) = ν∗(RHomR(ν](M), ν](N))).

We will sometimes write RHomR(M,N) = RHom(M,N) when the coefficients are understood
from the context. Also, when it is clear that we work with derived functors only, it might happen
that we drop the thick letters L and R from the notations. The unit object of the monoidal
category DMh(X,R) will be written 1X or RX , depending on the emphasis we want to put on
the coefficients.

Remark 5.1.5. The category DMeff
h (X,Z) is nothing else than the category introduced by

Voevodsky in [Voe96] under the notation DM(S). The fact it corresponds to the ‘étale version
of mixed motives’ is clearly envisioned in [Voe96] (see the end of the introduction of [Voe96]).

5.2 Comparison with Beilinson motives
5.2.1. Recall from [CD12, Paragraph 14.2.20] the category DMB(X) of Beilinson motives. The
following theorem was proved in [CD12, Theorem 16.1.2] in the case of quasi-excellent schemes.

Theorem 5.2.2. There exists a canonical equivalence

DMB ' DMh(−,Q)

of premotivic triangulated categories over the category of noetherian finite-dimensional schemes.
In particular, given such a scheme X, assuming in addition it is regular, we have a canonical
isomorphism

HomDMh(X,Q)(QX ,QX(p)[q]) ' Grpγ K2p−q(X)⊗Q, (5.2.2.a)

where the second term stands for the graded pieces of algebraic K-theory with respect to the
γ-filtration.9

The proof of this theorem is the main goal of this section. It will be by reduction to the case
of separated schemes of finite type over Z. This will require a few intermediate steps which will
also be useful later on.

Remark 5.2.3. Note that this theorem obviously extends to the case of coefficients in an arbitrary
Q-algebra R where the left-hand side is defined in [CD12, Paragraph 14.2.20].

9 Recall that, according to [Cis13] and [CD12, 14.1.1], the regularity assumption can be dropped if we replace
K-theory by its homotopy invariant version in the sense of Weibel.
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Theorem 5.2.4. Consider a noetherian scheme X of finite dimension. Assume that the étale
cohomological dimension of any residue field of X is uniformly bounded for R-linear coefficients.
Then, for an object M of DMh(X,R), the following conditions are equivalent.

(a) The motive M is constructible.

(b) There exists an étale covering {ui : Xi→ X}i∈I such that, for any i ∈ I, the object u∗i (M)
is constructible.

(c) The motive M is a compact object of DMh(X,R).

(d) The functor RHom(M,−) : DMh(X,R)→ DMh(X,R) commutes with small sums.

Proof. We first prove that conditions (a) and (c) are equivalent. Under our assumptions, by
virtue of the Goodwillie and Lichtenbaum Theorem [GL01b], any X-scheme of finite type is of
finite cohomological dimension with respect to the h-topology for R-linear coefficients. Therefore,
Proposition 1.1.9 shows that, for any scheme Y of finite type over X, the representable sheaf
Rh
X(Y ) is a compact object of the derived category of h-sheaves of R-modules over X. As

this class of h-sheaves is closed by (derived) tensor product, this implies that the functor
RHomR(Rh

X(Y ),−) preserves small sums in the derived category of h-sheaves of R-modules
over X. It is easy to deduce from this property (by inspection of the definition) that the class of
A1-local objects is closed under small sums and that Ω-spectra are closed under small sums in
the derived category of Tate spectra in the category of h-sheaves of R-modules (in the sense of
[CD12, Definitions 5.5.16 and 5.3.24]). Thus the objects of the form R(Y )(n), for Y of finite over
X and any integer n, form a generating family of compact generators in DMh(X,R). Therefore,
the family of objects R(Y )(n), for Y smooth of finite over X and any integer n, form a generating
family of compact generators of DMh(X,R). This implies that the subcategory of compact objects
of DMh(X,R) is precisely DMh,c(X,R).

The fact that conditions (c) and (d) are equivalent readily follows from formula

RHom(R(Y )(n)⊗L
RM,N) ' RHom(R(Y )(n),RHomR(M,N))

(for any object N), and the fact that R(Y )(n) is always compact in DMh(X,R) (with Y smooth
over X and n ∈ Z).

It is now sufficient to check that condition (b) implies condition (d). Let {ui : Xi→X}i∈I be
an étale covering such that, for any i ∈ I, the object u∗i (M) is constructible. As the functors u∗i
form a conservative family of functors which preserve small sums (by étale descent, see [CD12,
Proposition 3.2.8], and because they have right adjoints, respectively), formula

u∗i (RHomR(M,N)) ' RHomR(u∗i (M), u∗i (N))

readily implies that M satisfies condition (d). 2

Proposition 5.2.5. Here, all schemes are assumed to be noetherian of finite dimension. Consider
a scheme X which is the limit of a projective system {Xi}i∈I with affine transition maps. Let
{Mi} and {Ni}i∈I be two cartesian sections of the fibered category DMh(−,Q) over the diagram
of schemes {Xi}i∈I , and denote by M and N the respective pullback of Mi and Ni along the
projection X → Xi. If each Mi is constructible, then the canonical map

lim−→
i

HomDMh(Xi,Q)(Mi, Ni)→ HomDMh(X,Q)(M,N)

is an isomorphism.
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Proof. It is sufficient to prove the analogous property in DMh(X,Q). The property of continuity
is known to hold if we replace DMh(X,Q) by the triangulated category D(Shh(X,Q)) (because
the representable sheaves are of finite cohomological dimension with respect to the h-topology
with Q-linear coefficients, so that we are essentially reduced to classical formulas such as [SGA4,
Exposé VII, Corollaire 8.5.7]). On the other hand, we have a canonical adjunction for any
(diagram of) scheme(s) S

a∗ : D(Shh(X,Q))� DMh(S,Q) : a∗ (5.2.5.a)

in which a∗ is the composition of the A1-localization functor and of the infinity loop space functor
Σ∞.

By virtue of Lemma 1.1.4, the proof of the preceding theorem ensures that, for any scheme
S, the family of h-motives Q(U)(n), for U separated of finite type over S and n any integer,
form a family of compact generators of the triangulated category DMh(S,Q). This implies that
the functor a∗ commutes with small sums (whence with arbitrary small homotopy colimits) and
that the family of functors E 7→ a∗(E(n)), n > 0, is conservative. This description of compact
objects also implies the following computation. An object E of DMh(X,Q) is a collection of
complexes of h-sheaves of Q-vector spaces En, n > 0, together with maps En(1)→ En+1. One
then has this canonical identification:

a∗(E(n)) ' Llim−→
i>0

RHomQ(Q(i), En+i) (5.2.5.b)

(here the internal Hom HomQ is the one of DMeff
h (X,Q), but it can be understood as the one of

D(Shh(X,Q)) whenever each En is A1-local as an object of D(Shh(X,Q))). We want to prove
that, the map

Llim−→
i

RHomDMh(Xi,Q)(Mi, Ni)→ RHomDMh(X,Q)(M,N) (5.2.5.c)

is an isomorphism in the derived category of Q-vector spaces. We can replace the indexing
category I by {i > j} for an arbitrary index j ∈ I, and, as Q(U) is compact in DMh(Xj ,Q) for
any separated Xj-scheme of finite type U , we easily see that it is equivalent to prove that the
canonical map

Llim−→
i>j

Rpi,∗RHomQ(Mi, Ni)→ Rp∗RHomQ(M,N) (5.2.5.d)

is an isomorphism in DMh(Xj ,Q), where pj : Xi→ Xj and X → Xj denote the structural maps
for i > j. Moreover, we may assume that Mj = Q(U). Replacing Xj by U (and each Xi as well
as X by their pullbacks along the structural map U → Xj), we may assume that Mj = Q is the
unit object, so that the map (5.2.5.d) now has the following form:

Llim−→
i>j

Rpi,∗(Ni)→ Rp∗(N). (5.2.5.e)

Remark that the functor Rq∗ preserves small homotopy colimits for any morphism of schemes q
because its left adjoint Lq∗ preserves compact objects. Formula (5.2.5.b) thus implies that the
image of the map (5.2.5.e) by a∗ is isomorphic to an homotopy colimit of images by the functors
HomQ(Q(i),−) of analogous maps in D(Shh(X,Q)). Therefore, we are reduced to prove the
analog of this proposition in the premotivic category D(Shh(−,Q)) instead of DMh(−,Q), and
this ends the proof. 2
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Proof of Theorem 5.2.2. We first remark that the premotivic category DMh(−,Q) is oriented in
the sense of Definition A.1.5(3): this follows from [Voe96, Theorem 4.2.5 and Definition 4.2.1]
which implies that for any noetherian finite-dimensional scheme X, there is a map:

Pic(X) ' H1
ét(X,Gm)→ HomDMh(X)(QX ,QX(1)[2]).

Therefore, the spectrum a∗(QX) is orientable: according to [CD12, 14.2.16], it admits a unique
structure of HB-algebra, where HB denotes the Beilinson motivic cohomology spectrum [CD12,
14.1.2]. In particular, the image of the weakly monoidal functor a∗ of (5.2.5.a) is contained in
the category of HB-modules, which coincide with the category DMB(X) applying again [CD12,
14.2.16]. This implies that the premotivic adjunction (5.2.5.a) induces a unique premotivic
adjunction (X varying in the category of noetherian finite-dimensional schemes):

α∗ : DMB(X)� DMh(X,Q) : α∗

such that α∗(HB⊗M) = a∗(M) for any object M of DA1(X,Q). In particular, the functor α∗ is
conservative and preserves small sums: it is the composition of the functor a∗ (which commutes
with small sums and is conservative, as recalled in the proof of Proposition 5.2.5) and of the
forgetful functor from DMB(X) to DA1(X,Q) (which commutes with small sums as well and is
fully faithful: this readily follows from [CD12, Proposition 14.2.3 and Corollary 14.2.16]).

It is sufficient to prove that the functor α∗ is fully faithful on compact objects for any
noetherian scheme of finite dimension X. Indeed, if this is the case, then the class of objects M
such that the unit M → α∗ α

∗(M) is invertible forms a localizing subcategory of the compactly
generated triangulated category DMB(X) which contains all compact objects, hence is the class
of all the Beilinson motives. But then, the functor α∗ is fully faithful with conservative right
adjoint, hence an equivalence of categories.

It is sufficient to prove that the functor α∗ is fully faithful on constructible objects when X
is affine. Indeed, we have to prove that the unit map M → α∗ α

∗(M) is invertible whenever M
is a compact object of DMB(X). As both operations α∗ and α∗ commute with functors of the
form j∗ for any open immersion j, a simple descent argument (namely [CD12, Proposition 8.2.8
and Theorem 14.3.4 (1)]) shows that we are looking at a property which is local on X for the
Zariski topology. In other words, we may assume that X is the limit of a projective system {Xi}
of schemes of finite type over Z, with affine transition maps. Using [CD12, Proposition 15.1.6]
as well as Proposition 5.2.5, we are thus reduced to prove this proposition in the case where
X is of finite type over Z, whence excellent, in which case this is already known; see [CD12,
Theorem 16.1.2]. 2

5.3 h-Descent for torsion étale sheaves
5.3.1. Given any noetherian scheme S and any ring R, proceeding as in Paragraph 3.1.1, there
is an exact fully faithful embedding of the category Sh(Sét, R) in the category of étale sheaves
of R-modules over the big étale site of S-schemes of finite type. Composing this embedding with
the h-sheafification functor leads to an exact functor

α∗ : Sh(Sét, R)→ Shh(S,R), F 7→ α∗(F ) = Fh. (5.3.1.a)

This functor has a right adjoint

α∗ : Shh(S,R)→ Sh(Sét, R). (5.3.1.b)
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Étale motives

which is defined by α∗(F ) = F |Sét
. The functor (5.3.1.a) induces a functor

α∗ : D(Sét, R)→ D(Shh(S,R)). (5.3.1.c)

which has a right adjoint
Rα∗ : D(Shh(S,R))→ D(Sét, R). (5.3.1.d)

Lemma 5.3.2. For any ring R and any noetherian scheme S, the derived restriction functor
(5.3.1.d) preserves small sums.

Proof. Let us prove first the lemma in the case where S is of finite dimension and where all the
residue fields of S are uniformly of finite étale cohomological dimension. Then any S-scheme of
finite type has the same property; see [SGA4, Exposé X, Théorème 2.1]. Moreover, by virtue
of a theorem of Goodwillie and Lichtenbaum [GL01b], any S-scheme of finite type has finite
h-cohomological dimension as well. For a complex C of h-sheaves of R-modules over S, the sheaf
cohomology H i(Rα∗(C)) is the étale sheaf associated with the presheaf

V 7→ H i
h(V,C).

It follows from Proposition 1.1.9 that the functors H i
h(V,−) preserve small sums, which implies

that the functor Rα∗ has the same property.
We now can deal with the general case as follows. Let ξ be a geometric point of S, and

write u : Sξ → S for the canonical map from the strict henselization of S at ξ. Then Sξ is of
finite dimension and its residue fields are uniformly of finite étale cohomological dimension; see
Theorem 1.1.5. We then have pullback functors

u∗ : D(Sét, R)→ D(Sξ,ét, R) and u∗ : D(Shh(S,R))→ D(Shh(Sξ, R)).

The family of functors u∗ form a conservative family of functors which commutes with sums
(when ξ runs over all geometric points of S). Therefore, it is sufficient to prove that the functor
u∗Rα∗ commutes with sums. Let V be an affine étale scheme over Sξ. There exists a projective
system of étale S-schemes {Vi} with affine transition maps such that V = lim

←−i Vi. Note that any

Sξ-scheme of finite type is of finite étale cohomological dimension (see Gabber’s theorem 1.1.5),
so that, by virtue of Lemma 1.1.12, for any complex of sheaves of R-modules K over Sét, one
has

lim−→
i

Hn
ét(Vi,K) ' Hn

ét(V, u
∗(K)).

Similarly, applying Lemma 1.1.12 to the h-sites, for any complex of h-sheaves of R-modules L
over S, we have

lim−→
i

Hn
h (Vi, L) ' Hn

h (V, u∗(L)).

Note that, for any étale map w : W → S, the natural map w∗Rα∗(C)→Rα∗w
∗(C) is invertible.

Therefore, for any complex of h-sheaves of R-modules C over S, we have natural isomorphisms

Hn
ét(V, u

∗Rα∗(C)) ' lim−→
i

Hn
ét(Vi,Rα∗(C))

' lim−→
i

Hn
h (Vi, C)

' Hn
h (V, u∗(C))

' Hn
ét(V,Rα∗u

∗(C)).

In other words, the natural map u∗Rα∗ → Rα∗u
∗ is invertible, and, as we already know that

the functor Rα∗ commutes with small sums over Sξ, this achieves the proof of the lemma. 2
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Proposition 5.3.3. Let R be a ring of positive characteristic, and S be a noetherian scheme.
The functor (5.3.1.c) is fully faithful. In other words, for any complex C of sheaves of R-modules
over Sét, and for any morphism of finite type f : X → S, the natural map

H i
ét(X, f

∗C)→ H i
h(X,α∗C)

is invertible for any integer i.

Proof. We must prove that, for any complex of sheaves of R-modules C over Sét, the natural
map

C → Rα∗Lα
∗(C)

is invertible in D(Shh(S,R)). The functor Rα∗ preserves small sums (Lemma 5.3.2). Therefore,
it is sufficient restrict ourselves to the case of bounded complexes. Then, by virtue of [SGA4,
Exposé Vbis, 3.3.3], it is sufficient to prove that any h-cover is a morphism of universal
cohomological 1-descent (with respect to the fibered category of étale sheaves of R-modules).
The h-topology is the minimal Grothendieck topology generated by open coverings as well as by
coverings of shape {p : Y → X} with p proper and surjective; see [Voe96, 1.3.9] in the context of
excellent schemes, and [Ryd10, 8.4] in general. We know that the class of morphisms of universal
cohomological 1-descent form a pretopology on the category of schemes; see [SGA4, Exposé Vbis,
3.3.2]. To conclude the proof, it is thus sufficient to note that any étale surjective morphism (any
proper surjective morphism, respectively) is a morphism of universal cohomological 1-descent;
see [SGA4, Exposé Vbis, 4.3.5 and 4.3.2]. 2

5.4 Basic change of coefficients
5.4.1. Let R′ be an R-algebra and S be a base scheme. We associate with R′/R the classical
adjunction

ρ∗ : Shh(S,R)� Shh(S,R′) : ρ∗ (5.4.1.a)

such that ρ∗(F ) is the h-sheaf associated with the presheaf X 7→ F (X)⊗R R′. The functor ρ∗ is
faithful, exact and commutes with arbitrary direct sums. Note also the formula

ρ∗ρ
∗(F ) = F ⊗R R′ (5.4.1.b)

where R′ is seen as the constant h-sheaf associated with the R-module R′.
Note that the adjunction (5.4.1.a) is an adjunction of S ft-premotivic abelian categories. As

such, it can be derived and induces a S ft-premotivic adjunction

Lρ∗ : DMh(−, R)� DMh(−, R′) : Rρ∗

which restricts, according to Definition 5.1.3, to a premotivic adjunction

Lρ∗ : DMh(−, R)� DMh(−, R′) : Rρ∗. (5.4.1.c)

Recall that the stable category of h-motives over S is a localization of the derived category
of symmetric Tate spectra of h-sheaves over S.10 Here we will simply denote this category by
Spth(S,R) and call its objects spectra. The adjunction (5.4.1.a) can be extended to an adjunction
of S ft-premotivic abelian categories:

ρ∗ : Spth(−, R)� Spth(−, R′) : ρ∗. (5.4.1.d)

10 See [CD12], Definition 5.3.16 for symmetric Tate spectra and Definition 5.3.22 for the stable A1-derived category.
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Again, ρ∗ is faithful, exact and commutes with arbitrary sums. Note that the model category
structure on Spth(−, R′) is a particular instance of a general construction (see [CD12, 7.2.1 and
Theorem 7.2.2]), from which we immediately get the following useful result (which is not difficult
to prove directly though).

Lemma 5.4.2. The functor ρ∗ : C(Spth(S,R′)) → C(Spth(S,R)) preserves and detects stable
weak A1-equivalences.

As a corollary, we get the following proposition.

Proposition 5.4.3. Consider the notations of Paragraph 5.4.1. The functors Rρ∗ = ρ∗ is
conservative and admits a right adjoint:

ρ! : DMh(S,R)→ DMh(S,R′).

For any h-motive M over S, the following computations hold:

ρ∗Lρ
∗(M) = M ⊗L

R R
′,

ρ∗ρ
!(M) = RHomR(R′,M).

5.4.4. We consider the particular case of the discussion above when R = Z and R′ = Z/nZ for
a positive integer n. For any h-motive M over S, we put

M/n := M ⊗L Z/nZ. (5.4.4.a)

Then the short exact sequence

0→ Z
n−−→ Z −→ Z/nZ→ 0

induces a canonical distinguished triangle in DMh(S,Z):

M
n−−→M −→M/n−→. (5.4.4.b)

In the next statement, we will use the fact that DMh(S,R) is a dg-category (see [CD12,
Remark 5.1.19]). We denote the enriched Hom by RHom.

Proposition 5.4.5. Consider the previous notations. Let S be a scheme and f : X → S be a
morphism of Sch, M and N be h-motives over X. Then the natural exchange transformations,

(1) Rf∗(N)/n −→ Rf∗(N/n),

(2) RHom(M,N)/n −→ RHomZ/nZ(M/n,N/n),

(3) RHom(M,N)/n −→ RHomZ/nZ(M/n,N/n),

are isomorphisms.

Proof. In each case, this follows from the distinguished triangle (5.4.4.b); or its analog in the
derived category of abelian groups. 2

5.4.6. Next we consider the case of Q-localization.

Proposition 5.4.7. Let S be a noetherian scheme of finite dimension. Then S is of finite
cohomological dimension for Q-linear coefficients with respect to the h-topology. In particular,
for any complex of h-sheaves K over S, for any S-scheme of finite type, and for any localization
R of Z, we have a canonical isomorphism

H0
h(X,K)⊗R ' H0

h(X,K ⊗R).
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Proof. Any field is of cohomological dimension zero for Q-linear coefficients with respect to the
étale topology, and thus any noetherian scheme of finite dimension is of finite cohomological
dimension for Q-linear coefficients with respect to the h-topology (see [GL01b]). The last
assertion of the proposition is then a direct application of Lemma 1.1.10. 2

For the next corollaries, let us write simply DMh(S) (respectively DMh(S)) for DMh(S,Z)
(respectively DMh(S,Z)). As an immediate corollary of the previous theorem, we get the
following corollary.

Corollary 5.4.8. Let R be a localization of Z. For any noetherian scheme S of finite dimension,
tensoring by R preserves fibrant symmetric Tate spectra. Furthermore, for any S-scheme of finite
type X, and for any object M of DMh(S), we have

HomDMh(S)(Z
h
S(X),M)⊗R ' HomDM(S)(ZS(X),M ⊗R).

Proof. The previous proposition shows that tensoring with R preserves the property of
cohomological h-descent, while it obviously preserves the properties of being homotopy invariant
and of being an Ω-spectrum. This proves the first assertion. The second one, is a direct translation
of the first. 2

Corollary 5.4.9. Consider a noetherian scheme S of finite dimension and any localization R
of Z. For any objects M and N of DMh(S), if M is constructible, then

HomDMh(S)(M,N)⊗R ' HomDMh(S)(M,N ⊗R).

Proof. We may assume that M = Z(U)(n) for some smooth scheme U over S and some integer n.
Replacing N by N(−n), we may assume that n = 0, and we deduce from the preceding corollary
that it is equivalent to show that the functor

ν∗ : DMh(S)→ DMh(S)

commutes with R-linearization (where, for an object E of DMh(S), one defines E ⊗ R = ν∗

(ν](E)⊗R)). Let N be any object of DMh(S), and X be a smooth separated S-scheme of finite
type. Then we have

HomDMh(S)(Z(X), ν∗(N)⊗R) ' HomDMh(S)(Z(X), ν](ν
∗(N))⊗R)

' HomDMh(S)(Z(X), ν](ν
∗(N)))⊗R

' HomDMh(S)(Z(X), ν∗(N))⊗R
' HomDMh(S)(Z(X), N)⊗R
' HomDMh(S,R)(R(X), N ⊗R)

' HomDMh(S,R)(R(X), ν∗(N ⊗R))

' HomDMh(S)(Z(X), ν∗(N ⊗R)).

As both functors ν] and ν∗ preserve Tate twists, this implies that the canonical map ν∗(N)⊗R→
ν∗(N ⊗R) is invertible for any N . 2

Remark 5.4.10. This corollary says in particular that the category DMh,c(S,R ⊗ Q) of
constructible h-motives with R ⊗ Q-coefficients is the pseudo-abelian envelope of the naive
Q-localization of the triangulated category DMh,c(S,R). This is not an obvious fact as the
category DMh(S,R) is not compactly generated for general base schemes S and ring of
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coefficients R. To find examples, it is sufficient to know that the unbounded derived category

D(Sét, R) may not be compactly generated. Indeed, it is easy to see that if DMh(S,Z) is

compactly generated, then so is DMh(S,R) for any ring of coefficients R. For a noetherian

scheme S and any prime number ` which is invertible in OS , we will see later that DMh(S,Z/`Z)

is canonically equivalent to D(Sét,Z/`Z) (see Corollary 5.5.4 below). Therefore, if the unbounded

derived category D(Sét,Z/`Z), of sheaves of Z/`Z-modules on the small étale site of S, is not

compactly generated for some ` as above, then DMh(S,Z) is not compactly generated. This may

happen if S is the spectrum of a field with non-discrete absolute Galois group, and with infinite

`-cohomological dimension.

Even worse, it may happen that the category DMh(X,R) is compactly generated while

DMh,c(X,R) contains objects which are not compact. For instance, this is the case for X =

Spec(R): the constant h-motive Z is not compact in DMh(Spec (R),Z). Indeed, if this were

the case, then its reduction modulo 2 would be a compact object as well, and, in particular, the

constant motive Z/2Z would be compact in the category DMh(Spec (R),Z/2Z). But the latter

is nothing else than D(Spec(R)ét,Z/2Z), which, in turns is the unbounded derived category of

the category of Z/2Z-linear representations of the group with two elements G = Gal(C/R).

It is well known that the cohomology of the group G with Z/2Z-coefficients is non-trivial in

infinitely many degrees. On the other hand, for any ring of coefficients R, the unbounded derived

category D(G,R) of the category of R-linear right representations of G is compactly generated:

a generating family of compact objects is given by the single representation R(G) (obtained as

the free R-module on the underlying set of G, the action being induced by right translations).

The functor

RHom(R(G),−) : D(G,R)→ D(R)

is canonically isomorphic to the functor which consists to forget the action of G. Therefore,

the complex of R-modules RHom(M,R) is perfect for any compact object M of D(G,R). But

RHom(R,R) is the complex which computes the cohomology of the group G with coefficients in

R, so that it cannot be perfect for R = Z/2Z.

As a corollary, we get the following analog of Proposition 5.4.5.

Corollary 5.4.11. Let S be a noetherian scheme of finite dimension, and f : X → S be a

morphism of finite type, M and N be h-motives with R-coefficients over X, with M constructible.

Then the natural exchange transformations below are isomorphisms:

(1) Rf∗(N)⊗Q −→ Rf∗(N ⊗Q),

(2) RHomR(M,N)⊗Q −→ RHomR⊗Q(M ⊗Q, N ⊗Q),

(3) RHomR(M,N)⊗Q −→ RHomR⊗Q(M ⊗Q, N ⊗Q).

Proof. To prove (1), it is sufficient to check this after applying the functor RHomR(P,−),

when P runs over a generating family of constructible objects. In particular, we may assume

that P = R ⊗L U for some constructible object U of DMh(S,Z), in which case we have

RHomR(P,−) = RHomZ(U,−). for any constructible h-motive P with coefficients in R. Then

the result follows from Corollary 5.4.9. Similarly, to prove (3), it is sufficient to consider the case

where M is the R-linearization of a constructible object of DMh(X), and we conclude again with

Corollary 5.4.9. It is easy to see that (3) implies (2). 2

As a notable application of the results proved so far, we get the following proposition.
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Proposition 5.4.12. Let P be the set of prime integers and S be a noetherian scheme of finite
dimension. If R is flat over Z, then the family of change of coefficients functors,

ρ∗ : DMh(S,R)→ DMh(S,R⊗Q),

ρ∗p : DMh(S,R)→ DMh(S,R/p), p ∈P,

defined above is conservative.

Proof. Let K be an h-motive over S with coefficients in R such that ρ∗(K) = 0 and ρ∗p(K) = 0
for all p ∈P.

It is sufficient to prove that for any constructible h-motive M , Hom(M,K) = 0. Given
any prime p, the fact ρ∗p(K) = 0 together with the distinguished triangle (5.4.4.b) implies that
the abelian group Hom(M,K) is uniquely p-divisible. As this is true for any prime p, we get:
Hom(M,K) = Hom(M,K) ⊗ Q. But, as M is constructible, Corollary 5.4.9 implies the later
group is isomorphic to Hom(ρ∗(M), ρ∗(K)) which is zero by assumption on K. 2

5.5 Comparison with étales motives
5.5.1. Recall Λ is a sub-ring of Q and R is a Λ-algebra. As it appears already in Paragraph 2.1.1,
finite S-correspondences with coefficients in Λ are defined for separated S-schemes of finite type.
According to [CD12, Definition 9.1.8], they define a category which we will denote by S cor

Λ,S .

Given any S-scheme X, we denote by Rtr
S (X) the presheaf of R-modules on S cor

Λ,S represented

by X. Moreover the graph functor induces a canonical morphism of presheaves on S ft
S :

RS(X)→ Rtr
S (X). (5.5.1.a)

Recall the following result of Suslin and Voevodsky (see [VSF00, ch. 2, 4.2.7 and 4.2.12]).

Proposition 5.5.2. The map (5.5.1.a) induces an isomorphism after h-sheafification.
Furthermore, if S is a noetherian Z[1/n]-scheme and if any integer prime to n is invertible
in R, then, for any S-scheme X of finite type, the presheaf Rtr

S (X) is a qfh-sheaf, and the
morphism (5.5.1.a) induces an isomorphism of qfh-sheaves:

RqfhS (X)→ Rtr
S (X).

This implies in particular that any h-sheaf F over S defines by restriction an étale sheaf with
transfers ψ∗(F ), on Smcor

S (without any restriction on the characteristic). This gives a canonical
functor

ψ∗ : Shh(S,R)→ Shtr
ét(S,R)

which preserves small limits as well as small filtering colimits. Using the argument of the proof
of [CD12, Theorem 10.5.14], one can show this functor admits a left adjoint ψ! uniquely defined
by the property that ψ!(R

tr
S (X)) = Rh

S(X) for any smooth S-scheme X.
Thus, we have defined an adjunction of abelian premotivic categories over Sch:

ψ! : Shtr
ét(−, R)� Shh(−, R) : ψ∗. (5.5.2.a)

According to [CD12, 5.2.19], these functors can be derived and induce an adjunction of premotivic
categories over Sch:

Lψ! : DMeff
ét (−, R)� DMeff

h (−, R) : Rψ∗.

As a consequence of the rigidity Theorem 4.5.2 and of the cohomological h-descent property
for étale topology Proposition 5.3.3, we get the following theorem.
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Theorem 5.5.3. Assume that the ring R is of positive characteristic. For any noetherian scheme
S, the functor Lψ! : DMeff

ét (S,R)→ DMeff
h (S,R) is fully faithful and induces an equivalence of

triangulated categories

DMeff
ét (S,R)

∼−→ DMeff
h (S,R)

∼−→ DMh(S,R).

Proof. The equivalence DMeff
ét (S,R) ' DMeff

h (S,R) follows from the first assertion: the essential
image of Lψ! is obviously included in DMeff

h (S,R) because Lψ!(R
tr
S (X)) = Rh

S(X) for any smooth
S-scheme. Let n be the characteristic of R. As R is a Z/nZ-algebra, to prove that the functor
Lψ! is fully faithful, it is sufficient to consider the case where R = Z/nZ. Decomposing n into
its prime factors, we are thus reduced to prove that Lψ! is fully faithful in the case where n = pa

with p a prime and a > 1. Furthermore, by virtue of Proposition A.3.4, we may assume that n
is invertible in the residue fields of S. In this case, we know that the composite functor

ρ̃! : D(Sét, R)
ρ!−→ DMeff

ét (S,R)
Lψ!−−→ DMeff

h (S,R)

is fully faithful (Proposition 5.3.3) and that the functor ρ! is an equivalence of categories (by the
rigidity Theorem 4.5.2). This obviously implies that the functor Lψ! is fully faithful.

For the last equivalence, we simply notice that, for any ring of positive characteristic R,
the premotivic triangulated category DMeff

h (S,R) satisfies the stability property with respect
to the Tate object R(1), so that we get a canonical equivalence of categories

DMeff
h (S,R) ' DMh(S,R).

This induce an equivalence of categories DMeff
h (S,R) ' DMh(S,R). 2

Using the preceding theorem, together with Theorem 4.5.2, we finally get the following
theorem.

Corollary 5.5.4. Assume R is a ring of positive characteristic n. Then for any noetherian
scheme X, with n invertible in the residue fields of X, there are canonical equivalences of
triangulated monoidal categories

D(Xét, R) ' DMh(X,R).

These equivalences of categories are functorial in the precise sense that they induce an equivalence
of premotivic triangulated categories over the category of Z[1/n]-schemes:

D((−)ét, R) ' DMh(−, R).

Finally, if R is noetherian, these equivalences induce fully faithful monoidal triangulated functors

DMh,c(X,R)→ Db
ctf(Xét, R).

Proof. The only thing that remains to be checked is the last assertion (when R is noetherian). To
prove that the object C of D(Xét, R) corresponding to some constructible objectM of DMh(X,R)
belongs to Db

ctf(Xét, R), it is sufficient to consider the case of M = f∗(R) with f : Y → X
projective; see [Ayo07, Lemma 2.2.23]. The fact that such an object belongs to Db

ctf(Xét, R) is
well known; see [SGA41

2 , Rapport, Theorem 4.9], for instance. 2

Combining Theorem 5.5.3 together with the comparison theorems of [CD12, Theorem 16.1.2,
16.1.4], one gets the following generalization of [VSF00, ch. 5, 4.1.12].
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Corollary 5.5.5 (R is any commutative ring). (1) Let S be a quasi-excellent geometrically
unibranch noetherian scheme of finite dimension.

Then the adjunction (5.5.2.a) induces an equivalence of triangulated monoidal categories:

Lψ! : DMét(S,R)� DMh(S,R) : Rψ∗.

(2) Let k be any field. Then the following composite functor

DMeff
ét (k,R)

Σ∞−−→ DMét(k,R)
Lψ!−−→ DMh(k,R)

is fully faithful.

Proof. Consider point (1). By definition, DMh(S,R) is exactly the image of Lψ! in DMh(S,R).
Thus we have only to prove that Lψ! is fully faithful.

Taking any étale motive M in DMét(S,R), we prove that the canonical adjunction map

M → Rψ∗ Lψ!(M)

is an isomorphism in DMét(S,R). Applying Proposition 5.4.12, it is sufficient to prove that the
image of this map is an isomorphism after applying one of the functor ρ∗ or ρ∗p for a prime p.

Note the functors of the type ρ∗ (Q-localization of the coefficients) and ρ∗p (reduction
modulo p of the coefficients) are also defined for the triangulated category DMét(S,R) (see
[CD12, 10.5.a]). According to the preceding theorem (respectively to [CD12, Theorems 16.1.2
and 16.1.4]), it is sufficient to prove that the functor ρ∗p (respectively ρ∗) commutes with Lψ!

and Rψ∗.
This last assertion, in the case of ρ∗p, follows easily using the distinguished triangle (5.4.4.b);

and its analog version in DMét(−, R). In the case of ρ∗, it follows as in the proof of Corollary 5.4.11
from Corollary 5.4.9 and its analog in DMét(S,R); the proof is the same using in particular
Proposition 2.2.3.

Consider point (2). We have to show that for any object K of DMeff
ét (k,R), the adjunction

map
α : K → Σ∞Ω∞(K)

is an isomorphism. Let us denote abusively by ρ∗p (respectively ρ∗) the change of coefficients
functors

DMeff
ét (k,R)

ρ∗p−→ DMeff
ét (k,R/p),DMét(k,R)

ρ∗p−→ DMét(k,R/p),

(respectively DMeff
ét (k,R)

ρ∗−→ DMeff
ét (k,RQ),DMét(k,R)

ρ∗−→ DMét(k,RQ)).

As for point (1), it is sufficient to check that the map α is an isomorphism after applying ρ∗p of
ρ∗; by the obvious analog of Proposition 5.4.12.

The case of the functor ρ∗p is easily reduced to Corollary 4.1.2.
Next, we consider the case of the functor ρ∗. We can see that the functors Σ∞ and Ω∞

commute with tensor product by Q: for the first one, this is obvious, while for Ω∞, this follows
from the fact that tensoring by Q preserves the properties of being A1-homotopy invariant,
of satisfying étale decent, and of being an Ω-spectrum (which readily follows from the Yoneda
lemma and from a repeated use of Proposition 1.1.11). Using the same arguments as in the end
of point (1), we deduce that ρ∗ commutes with Ω∞. The case of the functor Σ∞ is obvious.
Thus, we are finally reduced to the case where R is a Q-algebra. Then, for any inseparable
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extension of fields k′/k, the associated pullback functor defines an equivalence of categories
DMeff

ét (k,R) ' DMeff
ét (k′, R). Therefore, it is sufficient to consider the case of a perfect field.

Furthermore, as the Q-linear categories of Nisnevich sheaves with transfers and of étale sheaves
with transfers are equivalent, we have canonical equivalences of triangulated categories

DMeff(k,R) ' DMeff
ét (k,R) and DM(k,R) ' DMét(k,R).

We easily conclude with Voevodsky’s cancellation theorem. 2

5.5.6. Recall from [CD12, 5.3.31] the triangulated category

DA1,ét(X,R) = DA1(Shét(X,R))

obtained as the stabilization of the A1-derived category of étale sheaves on the smooth-étale site
of X. The category DA1,ét(X,R) is taken in Ayoub’s paper [Ayo14] as a model for étale motives.

Corollary 5.5.7. Let X be a noetherian scheme of finite dimension. We also assume that,
either X is of characteristic zero or that 2 is invertible in R. Then the canonical functor

DA1,ét(X,R)→ DMh(X,R)

is an equivalence of triangulated categories (and is part of an equivalence of premotivic
triangulated categories as we let X vary).

Proof. We only sketch the proof. We see that it is sufficient to consider the cases where R = Q
or R = Z/pZ, with p a prime. The case where R = Q is already known: this follows right
away from Theorem 5.2.2 and from [CD12, Theorem 16.2.18]. The case of torsion coefficients
follows from the fact that we may assume that p is prime to the residue characteristics of X (by
Proposition A.3.4), and that we have a commutative diagram of the form

D(Xét,Z/pZ)

vv ((
DA1,ét(X,Z/pZ) // DMh(X,Z/pZ)

in which the non-horizontal functors are equivalences of categories (see [Ayo14, Theorem 4.1]
and the preceding corollary, respectively). 2

Remark 5.5.8. If the reader believes [Ayo14, Theorem 4.1], she or he can drop the constraint
that ‘X is of characteristic zero or that 2 is invertible in R’ in the statement of Corollary 5.5.7.
The reason why we put this extra assumption is that the proof of Ayoub’s result [Ayo14,
Theorem 4.1] used above relies on the fact that the 2-functor DA1,ét(−, R) is separated (this
is [Ayo14, Theorem 3.9]). On the other hand, the proof of [Ayo14, Theorem 3.9] relies on the
assumption that a certain property (SS)p (see [Ayo14, p. 7]) is satisfied by DA1,ét(X,R) whenever
p is a prime number which is not invertible in R (and invertible in OX). In the case where ‘X
is of characteristic zero or that 2 is invertible in R’, this property (SS)p is provided by [Ayo14,
Theorem 2.8], whose proof we understand. If X not of characteristic zero and if p = 2, the
property (SS)p is discussed in [Ayo14, Appendix C]. The problem (at least for us) is that we
think the proof of [Ayo14, Theorem C.1] is incomplete. To be more precise, what is presented as
a proof of [Ayo14, Lemma C.9] is far from being convincing: it consists to make the reader believe
(without even an heuristic explanation) that a large amount of constructions and computations
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done by Morel over a perfect field are meaningful for an arbitrary base field (Morel makes this
perfectness assumption pervasively for the simple but essential reason that he needs to know
that field extensions of finite type have smooth models).

On the other hand, it is very plausible that Ayoub’s property (SS)p is true in full generality.
In fact, it can be derived from [Ayo14, Theorem 4.1], and the main difficulty to prove the latter
consists to justify that we have a canonical isomorphism Z/`Z(1) ' µ` in DA1,ét(X,Z/`Z) for
any prime ` invertible in OX (one may then essentially reproduce the proof of Theorem 4.5.2,
or, even more easily, prove that the triangulated categories DA1,ét(X,R) and DMét(X,R) are
canonically equivalent for any ring of positive characteristic R, and then use Theorem 4.5.2).
It is easy to see that the case where X is the spectrum of a (perfect, or even prime) field is
sufficient, and the establishment of such an isomorphism Z/`Z(1) ' µ` is then one of the main
points in the work of Morel on the Friedlander–Milnor conjecture; see [Mor11, Corollary 4.12].
Therefore, Morel’s work should justify that the results of Ayoub’s paper are all true with the
claimed level of generality, and thus that Corollary 5.5.7 is true without any assumption on the
ring of coefficients.

Remark 5.5.9. Once we are able to compare DA1,ét(X,R) and DMh(X,R) as in Corollary 5.5.7,
we can use Corollary 5.5.5 to compare DA1,ét(X,R) and DMét(X,R). The equivalence

DA1,ét(X,R) ' DMét(X,R)

is also proved by Ayoub in [Ayo14, Theorem B.1] under the assumption that any prime number
is invertible in OX or in R, and that X is normal and universally Japanese (and requiring that X
is of characteristic zero or that 2 is invertible in R, because his proof relies again on the validity of
[Ayo14, Theorem 3.9]: see the preceding remark). The main point in the proof of [Ayo14, Theorem
B.1] consists to reduce to the case where R is a Q-algebra (in which case this is a variant of
[CD12, Theorems 16.1.2 and 16.1.4]) and to the case where R is of positive characteristic n, with n
invertible in OX . In the latter case, Ayoub proves that we have an equivalence for normal schemes
(combining [Ayo14, Proposition B.13 and Lemma B.15]), but this is far from being optimal: for
torsion coefficients, combining [Ayo14, Theorem 4.1], Theorem 4.5.2 and Proposition A.3.4, we
have an equivalence of triangulated categories DA1,ét(X,R) ' DMét(X,R) for any noetherian
(and possibly non-normal) scheme X of finite dimension for any ring R of positive characteristic
(with the constraint that X is of characteristic zero or that 2 is invertible in R, for the reason
explained in Remark 5.5.8).

Proposition 5.5.10. Let f : X → Y a morphism between noetherian schemes of finite
dimension. Assume that, either f is of finite type, or that X is the projective limit of a projective
system of quasi-finite Y -schemes with affine transition maps. Then the functor

Rf∗ : DMh(X,R)→ DMh(Y,R)

preserves small sums. In particular, this functor has a right adjoint. In the case where f is proper,
we will denote by f ! the right adjoint to Rf∗.

Proof. As the forgetful functors DMh(X,R)→ DMh(X,Z) are conservatives and commute with
operations of type Rf∗, it is sufficient to prove this for R = Z. Hence, using Proposition 5.4.5
and Corollary 5.4.11, we see that it is sufficient to prove the result in the case where R = Q
or R = Z/pZ for some prime p. For R = Q and any noetherian scheme of finite dimension
S, the triangulated category DMh(S,Q) is compactly generated and the functor Lf∗ preserves
compact objects (this follows from Theorem 5.2.4 with R = Q, which makes sense thanks to

612
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Lemma 1.1.4). and this implies the claim. For R = Z/pZ, if p is invertible in the residue fields

of Y , we conclude with Corollary 1.1.15 and Theorem 5.5.3. The general case follows from

Proposition A.3.4. The existence of a right adjoint of Rf∗ is a direct consequence of the Brown

representability theorem. 2

Remark 5.5.11. Note that a sufficient condition for a triangulated functor between triangulated

categories to preserve compact objects is that it has a right adjoint which preserves small sums.

The preceding proposition implies that, for any morphism f : X→ Y between noetherian scheme

of finite dimension, the functor Lf∗ preserves compact objects in DMh(−, R). Therefore, one

can interpret the last part of Remark 5.4.10 as follows: for any noetherian scheme X of finite

dimension which admits a real point, if 2 is not invertible in R, then the constant motive RX is

not compact in DMh(X,R).

Corollary 5.5.12. Let f : X → Y be a morphism between noetherian schemes of finite

dimension. For any object M of DMh(X,R) and any R-algebra R′, there is a canonical

isomorphism

R′ ⊗L
R Rf∗(M)→ Rf∗(R

′ ⊗L
RM).

Proof. Given a complex of R-modules C, we still denote by C the object of DMh(X,R) defined

as the free Tate spectrum associated with the constant sheaf of complexes C. This defines a left

Quillen functor from the projective model category on the category of complexes of R-modules

(with quasi-isomorphisms as weak equivalences, and degree-wise surjective maps as fibrations)

to the model category of Tate spectra. Therefore, we have a triangulated functor

D(R-Mod)→ DMh(S,R), C 7→ C

which preserves small sums and is symmetric monoidal. By virtue of the preceding proposition,

for any fixed M , we thus have a natural transformation between triangulated functors which

preserve small sums:

C ⊗L
R Rf∗(M)→ Rf∗(C ⊗L

RM).

To prove that the map above is an isomorphism for any complex of R-modules C, as the derived

category of R is compactly generated by R (seen as a complex concentrated in degree zero), it

is sufficient to consider the case where C = R, which is trivial. 2

Corollary 5.5.13. Let X be a noetherian scheme of finite dimension. Then, for any

constructible motive M in DMh(X,R), the functor HomR(M,−) preserves small sums.

Furthermore, for any R-algebra R′, we have canonical isomorphisms

RHomR(M,N)⊗L
R R

′ ' RHomR(M,N ⊗L
R R

′)

for any object N in DMh(X,R).

Proof. It is sufficient to prove this in the case where M is of the form M = Lf](1Y ) for a

separated smooth morphism of finite type f : Y → X. But then, we have

RHomR(M,N) ' Rf∗f
∗(N).

This corollary is thus a reformulation of Proposition 5.5.10 and Corollary 5.5.12. 2
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Corollary 5.5.14. For any separated morphism of finite type f : X → Y between noetherian
schemes of finite dimension, the functor

f ! : DMh(Y,R)→ DMh(X,R)

preserves small sums, and, for any R-algebra R′, there is a canonical isomorphism

f !(M)⊗L
R R

′ ' f !(M ⊗L
R R

′).

Proof. For any constructible object C in DMh(X,R), we have

Rf∗RHomR(C, f !(M)) ' RHomR(f!(C),M).

Using that the functor f! preserves constructible objects (see [CD12, Corollary 4.2.12]), we deduce
from Proposition 5.5.10 and Corollary 5.5.13 the following computation, for any small family of
objects Mi in DMh(Y,R):

Hom

(
C,
⊕
i

f !(Mi)

)
' Hom

(
1Y ,RHomR

(
C,
⊕
i

f !(Mi)

))
' Hom

(
1Y ,

⊕
i

RHomR

(
C,
⊕
i

f !(Mi)

))
' Hom

(
1X ,Rf∗

⊕
i

RHomR(C, f !(Mi))

)
' Hom

(
1Y ,

⊕
i

Rf∗RHomR(C, f !(Mi))

)
' Hom

(
1Y ,

⊕
i

RHomR(f!(C),Mi)

)
' Hom

(
1Y ,RHomR

(
f!(C),

⊕
i

Mi

))
' Hom

(
f !(C),

⊕
i

Mi

)
' Hom

(
C, f !

(⊕
i

Mi

))
.

The change of coefficients formula is proved similarly (or with the same argument as in the proof
of Corollary 5.5.12). 2

5.6 h-Motives and Grothendieck’s six functors
5.6.1. Let R be any commutative ring. Recall from [Voe96, Theorem 4.2.5] that we get a canonical
isomorphism in DMeff

h (S,R):
1S(1) ' R⊗L Gm[−1]

where Gm is identified with the h-sheaf of abelian groups over S represented by the scheme Gm.
This gives a canonical morphism of groups

c1 : Pic(S) = H1
Zar(S,Gm)→ HomDMeff

h (S,R)(1S , 1S(1)[2])

→ HomDMh(S,R)(1S ,1S(1)[2])

so that the premotivic triangulated category DMh(S,R) is oriented in the sense of Definition A.1.5.
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Moreover, as a corollary of the results obtained above, we get the following theorem.

Theorem 5.6.2. The triangulated premotivic category DMh(−, R) satisfies the formalism of the
Grothendieck six functors for noetherian schemes of finite dimension (Definition A.1.10) as well
as the absolute purity property (Definition A.2.9).

Proof. Taking into account Corollaries 5.5.12–5.5.14, we see that we may assume R = Z at will.
Consider the first assertion. Taking into account Theorem A.1.13, we have only to prove

the localization property for DMh(−, R). Fix a closed immersion i : Z → S. The analog of
Proposition 2.3.4 for the h-topology obviously holds. This means we have to prove that for
any smooth S-scheme X, if RS(X/X −XZ) denotes the (infinite suspension) of the quotient of
representable h-sheaves RS(X)/RS(X − Z), then the canonical map

RS(X/X −XZ)→ i∗RZ(XZ)

is an isomorphism in DMh(X,R). According to Proposition 5.4.12, together with Proposition 5.4.5
and Corollary 5.4.11, we are reduced to check this when R = Q or R = Z/pZ. In the first case, it
follows from Theorem 5.2.2 and the localization property for Beilinson motives DMB. The latter
property is part of the statement of [CD12, Corollary 14.2.11]. In the second case, it follows from
Theorem 5.5.3 and Theorem 4.3.1.

Concerning the second assertion, the absolute purity for DMh(−,Z), we use the same
argument as in the proof of Theorem 4.6.1: using Theorem A.2.8, we can apply Proposition 5.4.12,
together with Proposition 5.4.5 and Corollary 5.4.11 to reduced to the case where R = Q or
R = Z/pZ. The first case follows from Theorem 5.2.2 and [CD12, Theorem 14.4.1]; the second
one follows from Theorems 5.5.3 and 4.6.1. 2

6. Finiteness theorems

6.1 Transfers and traces
6.1.1 (Transfers). Consider the notations of Paragraph 5.5.1. Let X and Y be proper S-schemes
and α ∈ cS(X,Y )Λ a finite S-correspondence. According to Proposition 5.5.2, we get a morphism
of h-sheaves on S ft

S

α∗ : RS(X)→ RS(Y ) (6.1.1.a)

which induces a morphism in DMh(S,R):

α∗ : Σ∞RS(X)→ Σ∞RS(Y ).

Let p and q be the respective structural morphisms of the S-schemes X and Y . Applying the
functor Hom(−, 1S) to this map, we get a morphism in DMh(S,R):

α∗ : q∗(1X)→ p∗(1Y ).

Then we can apply to this functor the right adjoint ν∗ of the adjunction (5.1.4.a) and, because
it commutes with p∗ and q∗ and we have the isomorphism ν∗1 = 1, the above morphism can be
seen in DMh(S,R).

Given moreover any h-motive E over S, and using the projection formula, cf. Definition A.1.10,
(2) and (5), applied to the proper morphisms p and q, we obtain finally a canonical morphism

q∗q
∗(E) = q∗(1X)⊗ E α∗⊗IdE−−−−−→ p∗(1Y )⊗ E = p∗p

∗(E)

which is natural in E.
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Definition 6.1.2. Consider the notations above. The following natural transformation of
endofunctors of DMh(S,R)

α? : q∗q
∗
→ p∗p

∗ (6.1.2.a)

is called the cohomological h-transfer along the finite S-correspondence α.

The following results are easily derived from this definition.

Proposition 6.1.3. Consider the above definition.

(1) Normalization. Consider a commutative diagram of schemes

X
f //

p   

Y

q��
S

such that p and q are proper. Let α be the finite S-correspondence associated with the graph of
f . Then the natural transformation α? is equal to the composite,

q∗q
∗ ad(f∗,f∗)−−−−−→ q∗f∗f

∗q∗ ' p∗p∗.

(2) Composition. For composable finite S-correspondences α ∈ cS(X,Y )Λ, β ∈ cS(Y, Z)Λ

with X, Y , Z proper over S, one has α?β? = (β ◦ α)?.

(3) Base change. Let f : T → S be a morphism of schemes, α ∈ cS(X,Y )Λ a finite S-
correspondence between proper S-schemes and put αT = f∗(α) obtained using the premotivic
structure on S cor

Λ . Let p (respectively q, p′, q′) be the structural morphism of X/S (respectively
Y/S, X ×S T/T , Y ×S T/T ), f ′ = f ×S T . Then the following diagram commutes

f∗q∗q
∗ f∗.α? //

Ex(f∗,q∗) ∼
��

f∗p∗p
∗

Ex(f∗,p∗)∼
��

q′∗f
′∗q∗ q′∗q

′∗ α?T // p′∗p
′∗ p′∗p

′∗q∗

where the vertical maps are the proper base change isomorphisms: Definition A.1.10(4).

(4) Restriction. Let π : S → T be a proper morphism of schemes. Consider a finite
S-correspondence α ∈ cS(X,Y )Λ between proper schemes and put α|T = π](α) using the
S ft-premotivic structure on S cor

ΛS
. Let p (respectively q) be the structural morphism of X/S

(respectively Y/S), and put p′ = π ◦ p, q′ = π ◦ q. Then the following diagram is commutative.

π∗q∗q
∗π∗

π∗.α?.π∗ // π∗p∗p
∗π∗

q′∗q
′∗ (α|T )? // p′∗p

′∗

Proof. Properties (1) and (2) are clear as they are obviously true for the morphism α∗ of (6.1.1.a).
Similarly, property (3) (respectively (4)) follows from the fact the morphism (5.5.1.a) is

compatible with the functor f∗ (respectively the functor π]). This boils down to the fact that
the graph functor11 γ : S ft

→S cor
Λ is a morphism of S ft-fibered category: see [CD12, 9.4.1]. 2

11 Recall that it is the identity on objects and it associates with a morphism of separated S-schemes of finite type
its S-graph seen as a finite S-correspondence.
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6.1.4. Let f : Y → X be a morphism of schemes. Recall we say that f is Λ-universal if the
fundamental cycle associated with Y is Λ-universal over X (Def. [CD12, 8.1.48]).

Let us denote by tf the cycle associated with the graph of f over X seen as a subscheme of
X ×X Y . Then, by the very definition, the following conditions are equivalent.

(i) The morphism f is finite Λ-universal.

(ii) The cycle tf is a finite X-correspondence from X to Y .

For matching the existing literature, we introduce, the following definition, redundant with the
previous one.

Definition 6.1.5. Let f : Y → X be a finite Λ-universal morphism of schemes. Using the
preceding notations, we define the trace of f as the natural transformation of endofunctors of
DMh(X,R):

Trf := (tf)? : f∗f
∗
→ Id .

Remark 6.1.6. We will say that a morphism of schemes is pseudo-dominant if it sends any
generic point to a generic point. Recall that a finite Λ-universal f : Y → X is in particular
pseudo-dominant.

Let us recall the following example of finite Λ-universal morphisms of schemes:

(1) finite flat;

(2) finite pseudo-dominant morphisms whose aim is regular;

(3) finite pseudo-dominant morphisms whose aim is geometrically unibranch and has residue
fields whose exponential characteristic is invertible in Λ.

6.1.7. One readily obtain from Proposition 6.1.3 that our trace maps are compatible with
composition.

Recall that given a finite Λ-universal morphism f : Y → X and a generic point x of X, we
can define an integer degx(f), the degree of f at x, by choosing any generic point y of Y such
that f(y) = x and putting

degx(f) := [κ(y) : κ(x)]

(see [CD12, 9.1.13]). We will say that f has constant degree d if for any generic point x ∈ X,
degx(f) = d.

Applying Proposition 6.1.3 to the particular case of traces, one gets the following formulas.

Proposition 6.1.8. Consider the above definition.

(1) Normalization. Let f : Y → X be a finite étale morphism. Then the following diagram
commutes

f∗f
∗ Trf //

αf .p
′
f ∼��

Id

f!f
!

ad(f!,f
!)

::

where αf and p′f are the isomorphisms from Definition A.1.10(2),(3).

(2) Composition. Let Z
g−→ Y

f−→ X be finite Λ-universal morphisms. Then the following
diagram commutes.

f∗g∗g
∗f∗

f∗ Trg .f∗ // f∗f
∗ Trf // Id

(fg)∗(fg)∗
Trfg // Id
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(3) Base change. Consider a pullback square of schemes

Y ′
f ′ //

π′

��

X ′

π

��
Y

f // X

such that f is a finite flat morphism. Then, the following diagram is commutative

π∗f∗f
∗ π∗.Trf //

Ex(π∗,p∗) ∼
��

π∗

f ′∗π
′∗f∗ f ′∗f

′∗π∗
Trf ′ .π

∗
// π∗

where the left vertical map is the proper base change isomorphism.

(4) Degree formula. Let f : Y → X be a finite Λ-universal morphism of constant degree d,
the following composite

f∗f
∗ Trf−−−→ Id

ad(f∗,f∗)−−−−−→ f∗f
∗

is equal to d · Id .

Proof. Point (1) follows from the fact that, in the category Shh(S,R), the representable sheaf
RX(Y ) is strongly dualizable with itself as a dual and with duality pairings:

RX(Y )⊗RX(Y ) = RX(Y ×X Y )
(tδ)∗−−−→ RX(Y )

f∗−→ RX(X)

RX(X)
(tf)∗−−−→ RX(Y )

δ∗−→ RX(Y ×X Y ) = RX(Y )⊗RX(Y ).

where δ is diagonal embedding (which is open and closed).
Point (2) is obtained from Proposition 6.1.3, properties (2) and (4). Point (3) is a special

case of Proposition 6.1.3(3), given the fact that π∗(tf) = tf ′ as f is flat; see property (P3)
of the tensor product of relative cycles in [CD12, Paragraph 8.1.34]. Point (4) follows from
Proposition 6.1.3(1), (2) and the formula of [CD12, Proposition 9.1.13]. 2

Remark 6.1.9. According to Corollary 5.5.4, this notion of trace generalizes the one introduced
in [SGA4, XVII, § 6.2] in the case of finite morphisms, taking into account Remark 6.1.6.

Let us consider the more general case of a quasi-finite separated morphism f : Y → X.
According to the theorem of Nagata [Con07], there exists a factorization, f = f̄ ◦ j, such that f̄
is proper, thus finite according to Zariski’s main theorem, and j is an open immersion.

We will say that f is strongly Λ-universal if there exists such a factorization such that in
addition f̄ is Λ-universal.12

In this condition, one checks easily using Proposition 6.1.8, properties (1) and (2), that the
following composite is independent of the chosen factorization of f :

Trf : f!f
∗ = f̄!j!j

∗f̄∗
f̄!.ad(j!,j

∗).f̄∗−−−−−−−−→ f!f
∗ = f∗f

∗ Trf̄−−→ Id . (6.1.9.a)

This composition is called the trace of f

12 This implies in particular that f is Λ-universal according to [CD12, Corollary 8.2.6]. The converse is not true.
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Properties (1), (2), (3) of the preceding proposition immediately extend to this notion of
trace.

However, this construction is not optimal as it is not clear that a flat quasi-finite separated
morphism is strongly Λ-universal.

In particular, it only partially generalizes the construction of [SGA4, Theorem 6.2.3] when
R = Z/nZ and X has residual characteristics prime to n. However, in the case where X is
geometrically unibranch, and has residual characteristics prime to n, any quasi-finite separated
pseudo-dominant morphism is strongly Λ-universal (cf. Remark 6.1.6). Thus, in this case, our
notion does generalize the finer notion of trace introduced in [SGA4, 6.2.5, 6.2.6].

6.2 Constructible h-motives
In this subsection, devoted to the study of constructible h-motives (5.1.3), we will simplify
the notations by dropping the symbols L and R; in other words, by default, all the functors will
be the derived ones. We will prove the main theorems about constructible h-motives: their
stability by the six operations (Theorem 6.2.13 and its corollary) and the duality theorem
(Theorem 6.2.17).

6.2.1. Let S be a noetherian scheme. For any prime ideal p of Z, we have a fully faithful functor

(DMh,c(S,Z)p)
]
→ (DMh(S,Z)p)

], (6.2.1.a)

where, for a triangulated category T , T ] denotes its idempotent completion and Tp its Zp-
linearization; see Appendix B.

Definition 6.2.2. An object M of DMh(S,Z) will be called p-constructible if its image in
(DMh(S,Z)p)

] lies in the essential image of the functor (6.2.1.a).

Let us state explicitly the proposition that we will use below.

Proposition 6.2.3. Let S be a noetherian scheme and M be an object of DMh(S,Z). Then the
following conditions are equivalent.

(i) The h-motive M is constructible.

(ii) For any maximal ideal p ∈ Spec(Z), M is p-constructible.

Proof. We just apply the abstract Proposition B.1.7 (from the Appendix A) to the Z-linear
category T = DMh(S,Z) and its thick subcategory U = DMh,c(S,Z). 2

Proposition 6.2.4. Let p be a prime number and X a noetherian scheme of characteristic p.
An object M of DMh(X,Z) is (p)-constructible if and only if it is (0)-constructible.

Proof. The Artin–Schreier short exact sequence (see the proof of Proposition A.3.1) implies that
the category DMh(S,Z) is Z[1/p]-linear, so that we have

DMh(X,Z)(p) = DMh(X,Z)⊗Q,

and similarly for DMh,c(X,Z). 2

Remark 6.2.5. When p = (0), the functor ρ∗p which appears in this corollary coincide on
constructible objects with the functor ρ∗ of Paragraph 5.4.1 in the case R = Z and R′ = Q
(this is the meaning of Corollary 5.4.9).

The proof of the stability of constructible h-motives by direct image (Theorem 6.2.13), which
is based on an argument of Gabber, is intricate. We divide it with the help of the following two
results. The first one is due to Ayoub.
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Proposition 6.2.6 (Ayoub). Let X be a noetherian scheme. The category DMh,c(X,R) is the
smallest thick triangulated subcategory of the triangulated category DMh(X,R) which contains
the objects of the form f∗(RX′(n)) where f : X ′→ X is a projective morphism and n ∈ Z.

In fact, if X is a noetherian schemes having an ample family of line bundles, this is
[Ayo07, Lemma 2.2.23] but it is easy to check that this assumption is not used in the proof of
[Ayo07, Lemma 2.2.23].

The second result used in the proof of the forthcoming Theorem 6.2.13 is a variation on an
argument of Gabber, used in the étale torsion case (see [ILO14, XIII, § 3]).

Lemma 6.2.7 (Gabber’s lemma). Let X be a quasi-excellent noetherian scheme, and p a prime
ideal of Z. Assume that, for any point x of X, the exponent characteristic of the residue field κ(x)
is not in p. Then, for any dense open immersion j : U →X, the h-motive j∗(1U ) is p-constructible.

Proof. We will use the following geometrical consequence of the local uniformization theorem
prime to p of Gabber (see [ILO14, VII, 1.1 and IX, 1.1]).

Lemma 6.2.8. Let j : U → X be a dense open immersion such that X is reduced and quasi-
excellent, and p a prime ideal of Z. Assume that, for any point x of X, the exponent characteristic
of the residue field κ(x) is not in p. Then, there exists the following data:

(i) a finite h-cover {fi : Yi→ X}i∈I such that for all i in I, fi is a morphism of finite type,
the scheme Yi is regular, and f−1

i (U) is either Yi itself or the complement of a strict normal
crossing divisor in Yi (we shall write

f : Y =
∐
i∈I

Yi→ X

for the induced global h-cover);

(ii) a commutative diagram

X ′′′
g //

q
��

Y

f
��

X ′′
u // X ′

p // X

(6.2.8.a)

in which p is a proper birational morphism, u is a Nisnevich cover, and q is a flat finite surjective
morphism of degree not in p.

Let T (respectively T ′) be a closed subscheme of X (respectively X ′) and assume that for any
irreducible component T0 of T , the following inequality is satisfied:

codimX′(T
′) > codimX(T0).

Then, possibly after shrinking X in an open neighborhood of the generic points of T in X, one
can replace X ′′ by an open cover and X ′′′ by its pullback along this cover, in such a way that
we have in addition the following properties.

(iii) One has the inclusion p(T ′) ⊂ T and the induced map T ′ → T is finite and sends any
generic point to a generic point.

(iv) If we write T ′′ = u−1(T ′), the induced map T ′′→ T ′ is an isomorphism.

Points (i) and (ii) are proved in [ILO14, Exp. XIII, part 3.2.1]. Then points (iii) and (iv) are
proved in [CD12, proof of Lemma 4.2.14].
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6.2.9. We introduce the following notations: for any scheme Y , we let T0(Y ) be the subcategory

of DMh(Y,Z) made of p-constructible objects K. Then T0 becomes a fibered subcategory of

DMh(−,Z) and we can moreover check the following properties.

(a) For any scheme Y in Sch, T0(Y ) is a triangulated thick subcategory of the triangulated

category DMh(Y,Z) which contains the objects of the form 1Y (n), n ∈ Z.

(b) For any separated morphism of finite type f : Y ′→ Y in Sch, T0 is stable under f!.

(c) For any dense open immersion j : V → Y , with Y regular, which is the complement of a

strict normal crossing divisor, j∗(1V ) is in T0(V ).

Indeed, (a) is obvious, (b) follows from the fact the functor f! preserves constructible motives,

while (c) comes from the absolute purity property for DMh(−,Z); see Theorem 5.6.2. With this

notation, we have to prove that j∗(1U ) is in T0.

We now return to the proof of Lemma 6.2.7. Following the argument of [ILO14, XIII, 3.1.3],

we may assume that X is reduced, and it is sufficient to prove by induction on c > 0 that here

exists a closed subscheme T ⊂ X of codimension greater than c such that the restriction of

j∗(1U ) to (X − T ) is in T0.

Indeed, if this is the case, let us chose a closed subset Tc of X satisfying the condition above

with respect to an arbitrary integer c > 0. As X is noetherian, we get that X is covered by the

family of open subschemes (X − Tc) indexed by c > 0. Moreover, X is quasi-compact so that

only a finite number of these open subschemes are sufficient to cover X. Thus we can conclude

that j∗(1U ) is in T0 iteratively using the Mayer–Vietoris exact triangle and property (a) of

Paragraph 6.2.9.

The case where c = 0 is clear: we can choose T such that (X −T ) = U . If c > 0, we choose a

closed subscheme T of X, of codimension greater than c− 1, such that the restriction of j∗(1U )

to (X − T ) is in T0. It is then sufficient to find a dense open subscheme V of X, which contains

all the generic points of T , and such that the restriction of j∗(1U ) to V is in T0: for such a

V , we shall obtain that the restriction of j∗(1U ) to V ∪ (X − T ) is in T0, the complement of

V ∪ (X − T ) being the support of a closed subscheme of codimension greater than c in X. In

particular, using the smooth base change isomorphism (for open immersions), we can always

replace X by a generic neighborhood of T . It is sufficient to prove that, possibly after shrinking

X as above, the pullback of j∗(1U ) along T → X is in T0 (as we already know that its restriction

to (X − T ) is in T0).

We may assume that T is purely of codimension c. We may assume that we have data as in

points (i) and (ii) of Lemma 6.2.8. We let j′ : U ′→X ′ denote the pullback of j along p : X ′→X.

Then, we can find, by induction on c, a closed subscheme T ′ in X ′, of codimension greater than

c− 1, such that the restriction of j′∗(1U ′) to (X ′ − T ′) is in T0. By shrinking X, we may assume

that conditions (iii) and (iv) of Lemma 6.2.8 are fulfilled as well.

Given any morphism i : Z → W of X-schemes, we consider the following commutative

diagram

Z
i //

π   

W

��

WU

��

jWoo

X U
joo

where the right-hand square is cartesian, and we define the following h-motive of DMh(X,R):

ϕ(W,Z) := π∗ i
∗ jW,∗(1WU

).
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This notation is slightly abusive but it will most of the time be used when i is the immersion
of a closed subscheme. This construction is contravariantly functorial: given any commutative
diagram of X-schemes

Z ′ //

i′ ��

Z
i��

W ′ //W

we get a natural map ϕ(W,Z)→ ϕ(W ′, Z ′). Remember that we want to prove that ϕ(X,T ) is
in T0. This will be done via the following lemmas (which hold assuming all the conditions stated
in Lemma 6.2.8 as well as our inductive assumptions).

Lemma 6.2.10. The cone of the map ϕ(X,T )→ ϕ(X ′, T ′) is in T0.

The map ϕ(X,T )→ ϕ(X ′, T ′) factors as

ϕ(X,T )→ ϕ(X ′, p−1(T ))→ ϕ(X ′, T ′).

By the octahedral axiom, it is sufficient to prove that each of these two maps has a cone in T0.
We shall prove first that the cone of the map ϕ(X ′, p−1(T ))→ ϕ(X ′, T ′) is in T0. Given an

immersion a : S → X ′, we shall write

MS = a! a
∗(M).

We then have distinguished triangles

Mp−1(T )−T ′ →Mp−1(T )→MT ′ →Mp−1(T )−T ′ [1].

For M = j′∗(1U ′) (recall j′ is the pullback of j along p) the image of this triangle by p∗ gives a
distinguished triangle

p∗(Mp−1(T )−T ′)→ ϕ(X ′, p−1(T ))→ ϕ(X ′, T ′)→ p∗(Mp−1(T )−T ′)[1].

As the restriction of M = j′∗(1U ′) to X ′−T ′ is in T0 by assumption on T ′, the object Mp−1(T )−T ′
is in T0 as well (by property (b) of Paragraph 6.2.9), from which we deduce that p∗(Mp−1(T )−T ′)
is in T0 (using the condition (iii) of Lemma 6.2.8 and property (b) of Paragraph 6.2.9).

Let V be a dense open subscheme of X such that p−1(V ) → V is an isomorphism. We
may assume that V ⊂ U , and write i : Z → U for the complement closed immersion. Let
pU : U ′ = p−1(U)→ U be the pullback of p along j, and let Z̄ be the reduced closure of Z in X.
We thus get the commutative squares of immersions below

Z
k //

i
��

Z̄

l
��

U
j
// X

and

Z ′
k′ //

i′

��

Z̄ ′

l′

��
U ′

j′
// X ′

where the square on the right is obtained from the one on the left by pulling back along p : X ′→
X. Recall that the triangulated motivic category DMh(−,Z) satisfies cdh-descent (see [CD12,
Proposition 3.3.10]). Thus, as p is an isomorphism over V , we get the homotopy cartesian square
below.

1U //

��

pU,∗(1U ′)

��
i∗ i
∗(1Z) // i∗ i

∗ pU,∗(1U ′)
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If a : T → X denotes the inclusion, applying the functor a∗ a
∗ j∗ to the commutative square

above, we see from the proper base change formula and from the identification j∗ i∗ ' l∗ k∗ that
we get a commutative square isomorphic to the following one

ϕ(X,T ) //

��

ϕ(X ′, p−1(T ))

��
ϕ(Z̄, Z̄ ∩ T ) // ϕ(Z̄ ′, p−1(Z̄ ∩ T ))

which is thus homotopy cartesian as well. It is sufficient to prove that the two objects ϕ(Z̄, Z̄∩T )
and ϕ(Z̄ ′, p−1(Z̄ ∩ T )) are in T0. It follows from the proper base change formula that the object
ϕ(Z̄, Z̄ ∩ T ) is canonically isomorphic to the restriction to T of l∗ k∗(1Z). As dim Z̄ < dimX,
we know that the object k∗(1Z) is in T0. By property (b) of Paragraph 6.2.9, we obtain that
ϕ(Z̄, Z̄ ∩ T ) is in T0. Similarly, the object ϕ(Z̄ ′, p−1(Z̄ ∩ T )) is canonically isomorphic to the
restriction of p∗ l

′
∗ k
′
∗(1Z′) to T , and, as dim Z̄ ′ < dimX ′ (because, p being an isomorphism over

the dense open subscheme V of X, Z̄ ′ does not contain any generic point of X ′), k′∗(1Z′) is in
T0. We deduce again from property (b) of Paragraph 6.2.9 that ϕ(Z̄ ′, p−1(Z̄ ∩ T )) is in T0 as
well, which achieves the proof of the lemma.

Lemma 6.2.11. The map ϕ(X ′, T ′)→ ϕ(X ′′, T ′′) is an isomorphism in DMh(X,Z).

Condition (iv) of Lemma 6.2.8 can be reformulated by saying that we have the Nisnevich
distinguished square below.

X ′′ − T ′′ //

��

X ′′

v

��
X ′ − T ′ // X ′

This lemma follows then by Nisnevich excision [CD12, 3.3.4] and smooth base change (for étale
maps).

In the next lemma, we call p-quasi-section of a morphism f : K → L in DMh(X,Z) any
morphism s : L→ K such that there exists an integer n, not in p, and such that f ◦ s = n · Id.

Lemma 6.2.12. Let T ′′′ be the pullback of T ′′ along the finite surjective morphism X ′′′ → X ′′.
The map ϕ(X ′′, T ′′)→ ϕ(X ′′′, T ′′′) admits a p-quasi-section.

We have the following pullback squares

T ′′′
t //

r

��

X ′′′

q

��

U ′′′
j′′′oo

qU
��

T ′′
s // X ′′ U ′

j′′oo

in which j′′ and j′′′ denote the pullback of j along pu and puq respectively, while s and t are the
inclusions. By the proper base change formula applied to the left-hand square, we see that
the map ϕ(X ′′, T ′′)→ ϕ(X ′′′, T ′′′) is isomorphic to the image of the map

j′′∗ (1U ′′)→ q∗ q
∗ j′′∗ (1U ′′)→ q∗ j

′′′
∗ (1U ′′′)

by f∗ s
∗, where f : T ′′ → T is the map induced by p (note that f is proper as T ′′ ' T ′ by

assumption). As q∗ j
′′′
∗ ' j′′∗ qU,∗, we are thus reduced to prove that the unit map

1U ′′ → qU,∗(1U ′′′)
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admits a p-quasi-section. By property (iii) of Lemma 6.2.8, qU is a flat finite surjective morphism
of degree n not in p. Thus the p-quasi-section is given by the trace map (Definition 6.1.5)
associated with qU , taking into account the degree formula of Proposition 6.1.8.

Now, we can finish the proof of Lemma 6.2.7. Let us apply the functoriality of the construction
ϕ with respect to the following commutative squares

T ′′′

t
��

T ′′′ //

a
��

T

��
X ′′′

g // Y
f // X

where T ′′′ = q−1u−1(T ′), t is the natural map and a = g ◦ t, we get the following commutative
diagram of DMh(X,Z).

ϕ(X,T )
(1) //

''

ϕ(X ′′′, T ′′′)

ϕ(Y, T ′′′)

66

We consider the image of that diagram through the functor

ρ̄ : DMh(X,Z)→ (DMh(X,Z)/DMh,c(X,Z))→ (DMh(X,Z)/DMh,c(X,Z))p.

By virtue of Proposition B.1.7, we have to show that the image of ϕ(X,T ) under ρ̄ is 0. According
to Lemmas 6.2.10, 6.2.12, and 6.2.11, the image of (1) under ρ̄ is a split monomorphism. Thus it
is sufficient to prove that this image is the zero map, and according to the commutativity of the
above diagram, this will follow if we prove that ρ̄(ϕ(Y, T ′′′)) = 0, which amounts to prove that
ϕ(Y, T ′′′) is p-constructible.

We come back to the definition of ϕ(Y, T ′′′): considering the following commutative diagram

T ′′′
a //

π !!

Y

f
��

YU

��

jYoo

X U
joo

we have ϕ(Y, T ′′′) = π∗ a
∗ jY,∗(1YU ). By assumption, the morphism π is finite; this follows more

precisely from the following conditions of Lemma 6.2.8: (ii) saying that q is finite, (iii) and
(iv). Thus by assumption on jY (see point (i) of Lemma 6.2.8), we obtain that ϕ(Y, T ′′′) is
p-constructible, according to properties (b) and (c) stated in Paragraph 6.2.9. This achieves the
proof of Gabber’s Lemma 6.2.7. 2

Theorem 6.2.13. Let f : Y → X be a morphism of finite type such that X is a quasi-excellent
noetherian scheme of finite dimension. Then for any constructible h-motive K of DMh(Y,R),
f∗(K) is constructible in DMh(X,R).

Proof. The case where f is proper is already known from [CD12, Proposition 4.2.11]. Then, a
well-known argument allows to reduce to prove that for any dense open immersion j : U → X,
the h-motive j∗(RU ) is constructible. Indeed, assume this is known. We want to prove that
f∗(K) is constructible whenever K is constructible. According to Proposition 6.2.6, and because
f∗ commutes with Tate twists, it is sufficient to consider the case K = 1Y . Moreover, we easily
conclude from Corollary 5.5.12 that we may assume that R = Z. Then, as this property is
assumed to be known for dense open immersions, by an easy Mayer–Vietoris argument, we see
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that the condition that f∗(1Y ) is constructible is local on Y and X with respect to the Zariski
topology. Therefore, we may assume that X and Y are affine, thus f is affine [EGA2, (1.6.2)]
and in particular quasi-projective [EGA2, (5.3.4)]: it can be factored as f = f̄ ◦ j where f is
projective and j is a dense open immersion. The case of f̄ being already known from [CD12,
Proposition 4.2.11], we may assume f = j.

Thus, as j∗ commutes with Tate twist, it is sufficient to prove that for any dense open
immersion j : U → X, with X a quasi-excellent, the h-motive j∗(1U ) is constructible. Applying
Proposition 6.2.3, it is sufficient to prove that, given any prime ideal p ∈ Spec(Z), the h-motive
j∗(1U ) is p-constructible.

The case where p = (0) directly follows from Gabber’s Lemma 6.2.7. Assume now that p = (p)
for a prime number p > 0. Let us consider the following cartesian square of schemes, in which
Xp = X × Spec(Z[1/p]).

Up
iU //

jp
��

U

j

��

U ′

j′

��

jUoo

Xp
iX // X X ′

jXoo

Then we can consider the following localization distinguished triangle

jX!j
∗
Xj∗(1U )→ j∗(1U )→ iX∗i

∗
Xj∗(1U )→ jX!j

∗
Xj∗(1U )[1]

so that it is sufficient to prove that the first and third motives in the above triangle are p-
constructible. Note that the functors jX! and iX∗ preserve, p-constructible objects, so that it is
sufficient to prove that i∗Xj∗(1U ) and j∗Xj∗(1U ) are p-constructible.

The object i∗Xj∗(1U ) being (0)-constructible, it is p-constructible, by virtue of Proposition
6.2.4. It remains to prove that the following h-motive is p-constructible:

j∗Xj∗(1U ) = j′∗(1U ′)

(for the isomorphism, we have used the smooth base change theorem, which is trivially true
in DMh, by construction). Thus, we are finally reduced to Gabber’s Lemma 6.2.7, and this
completes the proof. 2

Corollary 6.2.14. The six operations preserve constructibility in DMh(−, R) over quasi-
excellent noetherian schemes of finite dimension. In other words, we have the following stability
properties.

(a) For any quasi-excellent noetherian scheme of finite dimension X, any constructible
objects M and N in DMh(X,R), both M ⊗R N and HomR(M,N) are constructible.

(b) For any separated morphism of finite type between quasi-excellent noetherian schemes of
finite dimension f : X → Y , and for any constructible object M of DMh(X,R), the objects
f∗(M) and f!(M) are constructible, and for any constructible object N of DMh(Y,R), the
objects f∗(N) and f !(N) are constructible.

Proof. The fact that f∗ preserves constructibility is obvious. The case of f∗ follows from the
preceding theorem. The tensor product also preserves constructibility on the nose. To prove that
HomR(M,N) is constructible for any constructible objects M and N in DMh(X,R), we may
assume that M = f](1Y ) for a separated smooth morphism of finite type f : Y → X. In this
case, we have the isomorphism

HomR(M,N) ' f∗f∗(N),
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from which we get the expected property. The fact that the functors of the form f! preserve
constructibility is well known (see for instance [CD12, Corollary 4.2.12]). Let f : X → Y be a
separated morphism of finite type between quasi-excellent noetherian schemes of finite dimension.
The property that f ! preserves constructibility is local on X and on Y with respect to the Zariski
topology (see [CD12, Lemma 4.2.27]), so that we may assume that f is affine. From there, we see
that we may assume that f is an open immersion, or that f is the projection of the projective
space Pn

Y to the base, or that f is a closed immersion. The case of an open immersion is trivial.
In the case where f is a projective space of dimension n, the purity isomorphism f ! ' f∗(n)[2n]
allows to conclude. Finally, if f = i is a closed immersion with open complement j : U → Y ,
then we have distinguished triangles

i∗i
!(M)→M → j∗j

∗(M)→ i∗i
!(M)[1]

from which deduce that i∗i
!(M) is constructible, and thus that i!(M)' i∗i∗i!(M) is constructible,

whenever M has this property. 2

6.2.15. An object U of DMh(X,R) will be said to be dualizing if it has the following two
properties.

(i) The h-motive U is constructible.

(ii) For any constructible object M in DMh(X,R), the canonical morphism

M → HomR(HomR(M,U), U)

is an isomorphism.

Lemma 6.2.16. Let X be a quasi-excellent noetherian scheme of finite dimension.

(i) If an object U of DMh(X,Z) is dualizing, then, for any commutative ring R, the (derived)
tensor product R⊗ U is dualizing in DMh(X,R).

(ii) A constructible object U of DMh(X,R) is dualizing if an only if Q ⊗ U is dualizing in
DMh(X,Q) and, for any prime p, U/p is dualizing in DMh(X,Z/pZ).

Proof. Assume that the object U of DMh(X,Z) is dualizing. To prove that the canonical map

M → HomR(HomR(M,R⊗ U), R⊗ U)

is invertible for any constructible object M in DMh(X,R), we may assume that

M = f](RY ) ' R⊗ f](ZY )

for a separated smooth morphism of finite type f : Y → X. In particular, we may assume that
M = R⊗C for a constructible object C in DMh(X,Z). But then, by virtue of Corollary 5.5.13,
we have a canonical isomorphism

Hom(Hom(C,U), U)⊗R ' HomR(HomR(M,R⊗ U), R⊗ U),

from which we conclude that R ⊗ U is dualizing. The proof of the second assertion is similar.
Indeed, for any constructible object C of DMh(X,Z), by virtue of Corollary 5.4.11, we have
canonical isomorphisms

Hom(Hom(C,U), U)⊗Q ' HomQ(HomQ(Q⊗ C,Q⊗ U),Q⊗ U),

and, by Proposition 5.4.5, for any positive integer n, canonical isomorphisms

Hom(Hom(C,U), U)/n ' HomZ/nZ(HomZ/nZ(C/n,U/n), U/n).

By virtue of Proposition 5.4.12, this readily implies assertion (ii). 2
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Theorem 6.2.17. Let B be an excellent noetherian scheme of dimension less than or equal to 2
(or, more generally, which admits wide resolution of singularities up to quotient singularities in
the sense of [CD12, Definition 4.1.9]).

(a) For any regular B-scheme of finite type S, an object U of DMh(S,R) is dualizing if and
only if it is constructible and ⊗-invertible.

(b) For any separated morphism of B-schemes of finite type f : X → S, with S regular, and
for any dualizing object U in DMh(S,R), the object f !(U) is a dualizing object in DMh(X,R).

Proof. Consider separated morphism of B-schemes of finite type f :X→ S, with S regular. Then
we claim that the object f !(RS) is dualizing in DMh(X,R). Indeed, by virtue of Corollary 5.5.14
and Lemma 6.2.16, we may assume that R = Q or R = Z/pZ for some prime p. In the first case,
this is already known (see [CD12, Theorems 15.2.4 and 16.1.2]). If R = Z/pZ, as, for any open
immersion j, the functor j∗ is symmetric monoidal and preserves internal Hom’s, by virtue of
Corollaries 4.5.3 and 5.5.4, we may assume that p is invertible in the residue fields of S and that
we have equivalence of triangulated categories

D(Yét,Z/pZ) ' DMh(Y,Z/pZ)

for any S-scheme of finite type Y , in a functorial way with respect to the six operations. As,
by virtue of the last assertion of Corollary 5.5.4, this equivalence restricts to a monoidal full
embedding

DMh,c(X,Z/pZ) ⊂ Db
ctf(Xét,Z/pZ),

this property boils down to the analogous result in classical étale cohomology (which, at this
level of generality, has been proved by Gabber; see [ILO14, XVII, Theorem 0.2]).13 This implies
the theorem through classical and formal arguments; see [CD12, Proposition 4.4.22]. 2

6.3 Continuity and locally constructible h-motives
Definition 6.3.1. An object M of DMh(X,R) is locally constructible (with respect to the étale
topology) if there exists an étale covering {ui : Xi → X}i∈I such that, for any i ∈ I, the
object u∗i (M) is constructible (of geometric origin) in the sense of Definition 5.1.3. We denote by
DMh,lc(X,R) the full subcategory of DM(X,R) which consists of locally constructible objects.
We have embeddings

DMh,c(X,R) ⊂ DMh,lc(X,R) ⊂ DMh(X,R).

Remark 6.3.2. The heuristic reason why the notion of locally constructible object is a natural
one is the following. In a setting in which one has the six operations (e.g. a motivic triangulated
category in the sense of [CD12]), it is natural to look at the smallest subsystem generated by
the constant coefficient (i.e. the unit object of the monoidal structure) and closed under the six
operations. Finiteness theorems such as Corollary 6.2.14 mean that the notion of constructible
motive, as in Definition 5.1.3, gives such a thing. But, in practice (e.g. in this article), we
have more than a system of triangulated categories: we have a system of stable Quillen model
categories (or, in a more intrinsic language, of stable (∞, 1)-categories in the sense of Lurie),
and this extra structure is rich enough to speak of descent: we can speak of stacks (in an
adequate homotopical sense) for appropriate topologies (in the language of Lurie: sheaves of
(∞, 1)-categories). In fact the formalism of the six operations always ensures that we have

13 In Gabber’s theorem, the existence of a dualizing object is subject a dimension function, which, in our situation,
readily follows from [ILO14, XIV, Corollaries 2.4.4 and 2.5.2].
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descent for the Nisnevich topology. Therefore, whenever constructible objects are closed under
the six operations, they form a Nisnevich stack. But, in the case of DMh(−, R), we have a stack
with respect to the étale topology, and it is thus natural to ask for a notion of constructible
h-motives which also form a stack for the étale topology. Essentially by definition, the system
of locally constructible h-motives (expressed in the language of stable (∞, 1)-categories) is the
étale stack associated with the fibered (∞, 1)-category of constructible h-motives. Even though
we will not go very deep into such considerations about descent and higher categories, we
can say that much of the results of this section are devoted to the understanding of the étale
stack of locally constructible h-motives by understanding its stalks. This will be expressed by
continuity phenomena, and will have as consequences that we still have the formalism of the
six operations in this context. Note finally that, even though we will not develop this very far
here, locally constructible h-motives do form a stack for the h-topology. This is suggested by
Propositions 6.3.16 and 6.3.18 below, together with the proper base change formula.

Proposition 6.3.3. Let X be a noetherian scheme of finite dimension. For any Q-algebra R,
one has DMh,c(X,R) = DMh,lc(X,R).

Proof. This follows right away from Lemma 1.1.4 and from Theorem 5.2.4. 2

Proposition 6.3.4. Let X be a noetherian scheme of finite dimension. Consider a localization
A of Z, and a ring of coefficients R. For any objects M and N of DMh(X,R), if M is locally
constructible, then the natural map

HomDMh(X,R)(M,N)⊗A→ HomDMh(X,R⊗A)(M ⊗A,N ⊗A)

is bijective.

Proof. We must prove that the natural map

RHomDMh(X,R)(M,N)⊗A→ RHomDMh(X,R⊗A)(M ⊗A,N ⊗A)

is an isomorphism in the derived category of the category of A-modules. Let us consider the case
where M is constructible. We easily reduce the problem to the case where M = R(Y ) for some
smooth X-scheme Y . In particular, we may assume that M = R ⊗L M ′ for some constructible
object M ′ of DMh(X,Z). In other words, in the case where M is constructible, we may assume
that R = Z, in which case we already know this property to hold; see Corollary 5.4.9. To prove
the general case, note that, for any ring of coefficients R, and any objects E and F of DMh(X,R),
one can associate a presheaf of complexes C(E,F ;R) on the small étale site of X such that, for
any étale map u : U → X, we have canonical isomorphisms

H i(C(E,F ;R)(U)) ' H i
ét(U,C(E,F ;R)) ' HomDMh(U,R)(u

∗(E), u∗(F )[i])

(see [CD12, Paragraph 3.2.11 and Corollary 3.2.18] for a rigorous definition and construction of
such a C). Therefore, the complex C(M,N ;R⊗A) satisfies étale descent, and Proposition 1.1.11
implies that the complex C(M,N ;R) ⊗ A has the same property. Since, locally for the étale
topology over X, the canonical map

C(M,N ;R)⊗A→ C(M,N ;R⊗A)

is a quasi-isomorphism, its evaluation at X is a quasi-isomorphism, which is precisely what we
wanted to prove. 2
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Proposition 6.3.5. Let X be a noetherian scheme, and {Xi}i∈I a projective system of
noetherian schemes of finite dimension with affine transition maps. Let us consider a noetherian
ring of coefficients R. Then the canonical functors

2-lim−→
i

Db
c(Xi, R)→ Db

c(X,R) (6.3.5.a)

and
2-lim−→

i

Db
ctf(Xi, R)→ Db

ctf(X,R) (6.3.5.b)

are equivalences of triangulated categories.

Proof. The fact that (6.3.5.a) is an equivalence easily follows from [SGA4, Exp. IX,
Corollaries 2.7.3 and 2.7.4]. This readily implies that (6.3.5.b) is fully faithful. To prove the
essential surjectivity of the latter, we easily deduce from [SGA41

2 , Rapport, 4.6] that it is

sufficient to prove the following property: given some constructible sheaf of R-modules Fi on
some Xi whose pullback F along the projection X → Xi is flat, there exists an index j > i
such that the pullback Fj of Fi along the transition map Xj → Xi is flat. Choosing an adequate
stratification of Xi, we may assume that Fi is locally constant and that Xi is integral. By virtue
of [SGA4, Exp. IX, Proposition 2.11], is thus sufficient to prove that there exists a geometric
point xi of Xi such that the fiber of Fi at xi is a flat R-module. But, for any (geometric) point
x of X over xi, it is isomorphic to the fiber x∗(F ) = Fx, which is flat. 2

Definition 6.3.6. A commutative ring R will be said to be good enough if it is noetherian, and
if, for any prime number p, the localized ring R(p) = Z(p) ⊗ R has the property that p is either
nilpotent or is not a zero divisor.14 For instance, any noetherian ring which is flat over Z, or any
noetherian ring of positive characteristic is good enough.

Proposition 6.3.7. Assume that R is good enough. Let X be a noetherian scheme of finite
dimension, and {Xi}i∈I a projective system of noetherian schemes of finite dimension with affine
transition maps.

Consider an index i0 ∈ I and two locally constructible R-linear h-motives Mi0 , Ni0 over Xi0 .
We denote by M , N (respectively Mi, Ni) for the respective pullbacks of Mi0 , Ni0 along the
projection X → Xi0 (respectively transition map Xi→ Xi0 for a map i→ i0 in I).

Then we have a canonical isomorphism of R-modules

lim−→
i

HomDMh,lc(Xi,R)(Mi, Ni) ' HomDMh,lc(X,R)(M,N). (6.3.7.a)

Proof. We want to prove that the morphism

Llim−→
i

RHomDMh(Xi,R)(Mi, Ni) ' RHomDMh(X,R)(M,N) (6.3.7.b)

is an isomorphism in the derived category of R-modules. By virtue of Proposition 6.3.4, we
may assume that R is a Z(p)-algebra for some prime number p. Under these assumptions,

14 This notion is introduced as a possible constraint on the rings of coefficients. However, it is only a simplifying
hypothesis for the proof of Proposition 6.3.7 and, in an even less trivial way, of Theorem 6.3.11: in fact, this
proposition (as well as the theorem, but the latter is not used to prove anything else), and therefore, all the results
of this section, remain valid for arbitrary rings of coefficients (although one has to take the appropriate definition
of Db

ctf(X,R) for a non-noetherian ring R), but such level of generality demands either enough abnegation to do
ingrate computations or to present the theory into the more advanced language of higher categories.
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if R is furthermore a Q-algebra, the invertibility of the map (6.3.7.b) is a particular case of
Proposition 5.2.5. If R is a Z/nZ-algebra with n = pa a power of some prime number p, then,
by virtue of Proposition A.3.4, we may assume that all the schemes are of characteristic prime
to p, and thus, by virtue of the last assertion of Corollary 5.5.4, we can replace DMh,lc(X,R)
by Db

ctf(Xét, R) and use Proposition 6.3.5. For the general case when R is a Z(p)-algebra, we
may assume that R is of mixed characteristic and flat over Z. Using Proposition 5.4.5 and
Proposition 6.3.4, we deduce that the map (6.3.7.b) is an isomorphism after we tensor (in the
derived sense) by Z/pZ, or by Q. This implies that it is an isomorphism in the derived category
of R-modules. 2

Remark 6.3.8. In the previous proposition, if separated étale X-schemes of finite type are of
finite étale cohomological dimension (e.g. if X is of finite type over a strictly henselian scheme
(Theorem 1.1.5)), and if the transition maps of the projective system {Xi}i∈I are étale, then
we still have the isomorphism (6.3.7.a) without the assumption that the objects Ni are locally
constructible. The proof remains exactly the same, except that we use Lemma 1.1.12 (applied
to the adequate family of small étale topoi) instead of Proposition 6.3.5.

Theorem 6.3.9. Under the assumptions of Proposition 6.3.7, the canonical functor

2-lim−→
i

DMh,c(Xi, R)→ DMh,c(X,R) (6.3.9.a)

is an equivalence of triangulated categories. If, moreover, the étale cohomological dimension
of the residue fields of the scheme X is uniformly bounded (e.g. if X is of finite type over a
noetherian strictly henselian scheme), then the functor

2-lim−→
i

DMh,lc(Xi, R)→ DMh,lc(X,R) = DMh,c(X,R) (6.3.9.b)

is an equivalence of triangulated categories as well.

Proof. The isomorphism (6.3.7.a) implies that the functor (6.3.9.a) is fully faithful. Let us
prove that it is essentially surjective. As we already know that it is fully faithful, it identifies
the idempotent complete triangulated category 2-lim−→i

DMh,c(Xi, R) with a thick subcategory

of the triangulated category DMh,c(X,R). But, by definition of the latter, the smallest thick
subcategory of DMh,c(X,R) containing the objects of the form R(U)(n), with U a separated
smooth scheme of finite type over X and n ∈ Z, is the whole category DMh,c(X,R) itself.
Moreover, for any such U and any Zariski covering U = V ∪ W , we have a Mayer–Vietoris
distinguished triangle of the form

R(V ∩W )→ R(V )⊕R(W )→ R(U)→ R(V ∩W )[1].

Hence, to prove that R(U)(n) belongs to the essential image of (6.3.9.a), it is sufficient to prove
that R(V ), R(W ) and R(V ∩W ) have this property. In particular, it is sufficient to consider the
case where U is affine over X. Therefore, the fact that the functor (6.3.9.a) is essentially surjective
comes from the fact that any affine smooth scheme of finite type over X is the pullback of an
affine smooth scheme of finite type over Xi for some index i ∈ I; see [EGA4, Theorem 8.10.5,
Proposition 17.7.8].

Under our additional assumption, the proof that the functor (6.3.9.b) is an equivalence
of categories readily follows from there: it is fully faithful by Proposition 6.3.7, and it is
essentially surjective because the functor (6.3.9.a) is essentially surjective and because, by virtue
of Theorem 5.2.4, we have the equality DMh,lc(X,R) = DMh,c(X,R). 2
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Proposition 6.3.10. Let X be a noetherian scheme, and R a noetherian ring. Assume as
well that any separated quasi-finite X-scheme is of finite étale cohomological dimension with
R-linear coefficients. Then the triangulated category Db

ctf(Xét, R) is the full subcategory of
compact objects in the unbounded derived category D(Xét, R). If, moreover, X is of finite
dimension, R is of characteristic invertible in OX , and if the étale cohomological dimension
with R-linear coefficients of the residue fields of X is uniformly bounded, then the equivalence
of triangulated categories D(Xét, R) ' DMh(X,R) provided by Corollary 5.5.4 induces an
equivalence of categories

Db
ctf(Xét, R) ' DMh,c(X,R).

Proof. It follows from Proposition 1.1.9 that the family of representable sheaves R(U), where
U runs over the (separated) étale X-schemes of finite type, form a generating family of
compact objects of the triangulated category D(Xét, R). Therefore, the category D(Xét, R)c
of compact objects of D(Xét, R) can be described as the smallest thick subcategory of D(Xét, R)
which contains the sheaves R(U) as above. As these sheaves obviously belong to Db

ctf(Xét, R),
this proves that any compact object of D(Xét, R) belongs to Db

ctf(Xét, R). It remains to prove
the reverse inclusion. Note that, for any closed immersion i : Z → X with open complement
j : U → X, we have short exact sequences

0→ j!j
∗(F )→ F → i∗i

∗(F )→ 0

from which we deduce that D(Xét, R)c is stable by the operations j!, j
∗, i∗ and i∗. Proceeding

as in the proof of the equivalence (c)⇔ (d) of Theorem 5.2.4, we see that the property of being
compact in D(Xét, R) is local with respect to the étale topology: if there exists an étale surjective
map u : X ′→ X such that u∗(C) is compact in D(X ′ét, R), then C is compact.

Let C be an object of Db
ctf(Xét, R). To prove that C is compact, it is sufficient to prove that

there exists a stratification of X by locally closed subsets Xi such that the restriction Ci = C|Xi
is compact for any i. Moreover, it is sufficient to check that each Ci is compact after we pull
it back along an étale surjective map X ′i → Xi. By virtue of [SGA41

2 , Rapport, Lemma 4.5.1

and Proposition 4.6], we thus may assume that there exists a perfect complex of R-modules M
such that C is isomorphic in D(Xét, R) to the constant sheaf MX associated with M . On the
other hand, the functor M 7→MX being exact, the complexes of R-modules M such that MX is
compact form a thick subcategory of the derived category D(R) of the category of R-modules.
But the category of perfect complexes of R-modules is the smallest thick subcategory of D(R)
which contains R (seen as a complex of R-modules concentrated in degree zero). Therefore, we
may assume that C = RX , which is compact. This proves the equality D(Xét, R)c = Db

ctf(Xét, R).
As equivalences of categories preserve compact objects, the last assertion readily follows from

Theorem 5.2.4. 2

Theorem 6.3.11. Let X be a noetherian scheme of finite dimension, and consider a noetherian
ring of coefficients R, of positive characteristic prime to the residue characteristics of X. Then
the canonical equivalence of triangulated categories D(Xét, R) ' DMh(X,R) restricts to an
equivalence of triangulated categories

Db
ctf(Xét, R) ' DMh,lc(X,R).

Proof. The equivalence of categories D(Xét, R) ' DMh(X,R) are compatible with the six
operations and thus induce fully faithful functors

DMh,lc(X,R)→ Db
ctf(Xét, R)
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which are compatible with pullback functors; see Corollary 5.5.4. It is sufficient to prove the
essential surjectivity in the étale neighborhood of each geometric point x of X. On the other
hand, by virtue of Theorems 1.1.5 and 6.3.9 and of Propositions 6.3.10 and 6.3.5, all the functors
in the obvious commutative diagram below, in which V runs over the étale neighborhoods of x,

2-lim−→V
DMh,c(V,R) //

))

2-lim−→V
DMh,lc(V,R)

uu
2-lim−→V

Db
ctf(V,R)

are equivalences of categories, which implies our assertion. 2

We can now complete Theorem 6.3.9 as follows.

Theorem 6.3.12. Let R be a good enough ring of coefficients. All the schemes below are assumed
to be noetherian and of finite dimension. Assume that the scheme X is the limit of a projective
system of schemes {Xi}i∈I with affine transition maps. Then the canonical functor

2-lim−→
i

DMh,lc(Xi, R)→ DMh,lc(X,R) (6.3.12.a)

is an equivalence of categories.

Proof. We already know that this functor is fully faithful. Therefore, the left-hand side
of (6.3.12.a) can be seen as a thick subcategory of the right-hand side. As all the categories
involved here are idempotent complete, using Proposition 6.3.4 together with Proposition B.1.7
from the Appendix A, we see that we may assume R to be a Z(p)-algebra. This also means that,
to prove that an object of DMh,lc(X,R) is in the essential image of this functor, it is sufficient
to prove that it is a direct factor of an object in the essential image.

Henceforth, all integers prime to p are supposed to be invertible in R. If R is a Q-algebra,
Proposition 6.3.3, together with Theorem 6.3.9, show that the functor (6.3.12.a) is an equivalence
of categories. If R is of positive characteristic, we easily deduce from Theorem 6.3.11 and
Proposition A.3.4 that, for any scheme V , we have canonical equivalences of triangulated
categories

Db
ctf(Wét, R) ' DMh,lc(W,R) ' DMh,lc(V,R)

where W = V ×Spec (Z[1/p]). The fact that the functor (6.3.12.a) is an equivalence of categories
whenever R is of positive characteristic is now a reformulation of Proposition 6.3.5 and of
Theorem 6.3.11.

It remains to consider the case where R is a good enough Z(p)-algebra R of characteristic zero.
Using Proposition 6.3.4 (with M = N), what precedes implies that any object M of DMh,lc(X,R)
such that M ⊗ Q = 0 in DMh(X,R) belongs to the essential image of the functor (6.3.12.a):
indeed, this implies that, for ν > 0 big enough, M is a direct factor of M ⊗L Z/pνZ, which
belongs to the essential image, as it comes from DMh,lc(X,R⊗Z/pνZ). On the other hand, one
can interpret the conjunction of Propositions 6.3.3 and 6.3.4 as follows: the triangulated category
DMh,lc(X,R⊗Q) is the idempotent completion of the triangulated category DMh,c(X,R)⊗Q.
This means that, for any object M of DMh,lc(X,R), there exists M ′0 in DMh,lc(X,R ⊗Q) and
N in DMh,c(X,R) as well as an isomorphism

M ⊗Q⊕M ′0 ' N ⊗Q
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in DMh(X,R ⊗ Q). But Proposition 6.3.3 also tells us that the corresponding embedding
M ⊗Q→ N ⊗Q is defined over R: there is a map λ : M → N in DMh(X,R) which identifies
M ⊗ Q with a direct factor of N ⊗ Q. If M ′ denotes a cone of this map λ, there exists an
isomorphism M ′ ⊗Q 'M ′0. Hence, again by Proposition 6.3.4, there is a morphism

ϕ : M ⊕M ′→ N

in DMh,lc(X,R) such that ϕ⊗Q is invertible. Let C be a cone of ϕ. Then C⊗Q = 0. Therefore,
the locally constructible h-motive C is in the essential image of the functor (6.3.12.a). But
the h-motive N has the same property (because it is constructible, using the first part of
Theorem 6.3.9). Hence M ⊕ M ′ is in the essential image of the functor (6.3.12.a) and this
completes the proof as explained in the beginning of this proof. 2

Proposition 6.3.13. Let p : X → S be a morphism of finite type between noetherian schemes
of finite dimension. Consider a good enough ring of coefficients R. Then, for R-linear h-motives
over X, the property of local constructibility is local over S with respect to the étale topology.
In other words, for any object M of DMh,lc(X,R), there exists a cartesian square

X ′
u //

p′

��

X

p

��
S′

v // S

with v étale surjective and such that u∗(M) belongs to DMh,c(X
′, R).

Proof. For each geometric point s of S, we must find an étale neighborhood w : W → S of s
such that the pullback of M along the first projection of W ×S X on X is constructible. But
Theorems 6.3.9 and 1.1.5 imply that we have a canonical equivalence of categories

2-lim−→
W

DMh,c(W ×S X,R) ' 2-lim−→
W

DMh,lc(W ×S X,R),

whereW runs over the étale neighborhoods of s. The essential surjectivity of this functor precisely
expresses what we seek. 2

Corollary 6.3.14. Let f : X → S be a separated morphism of finite type with S noetherian
of finite dimension, and assume that the ring R is good enough. Then the functor f! : DMh(X,
R)→ DMh(S,R) preserves locally constructible objects.

Proof. Let M be a locally constructible object of DMh,lc(X,R). Then, by virtue of the preceding
proposition, one can form a cartesian square of schemes

X ′
u //

g

��

X

f

��
S′

v // S

in which v is a surjective separated étale morphism of finite type, such that u∗(M) is
constructible. The base change isomorphism v∗ f!(M) ' g! u

∗(M) thus shows that it is sufficient
to know that the functor g! preserves constructible objects. This is then a well-known consequence
of the formalism of the six operations (which makes sense here by Theorem 5.6.2); see [CD12,
Corollary 4.3.12]. 2
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Corollary 6.3.15. Let R be a good enough ring. The subcategories DMh,lc(X,R) are closed
under the six operations in DMh(X,R) for quasi-excellent noetherian schemes of finite dimension.

Furthermore, consider an excellent scheme B of dimension less than or equal to 2 as well as a
regular separatedB-scheme of finite type S, endowed with a locally constructible and⊗-invertible
object U in DMh(S,R). For any separated morphism of finite type f : X → S, define the duality
functor DX by the formula DX(M) = RHomR(M,f !(U)). Then, for any locally constructible
object M in DMh(X,R), the canonical map

M → DX(DX(M))

is an isomorphism.

Proof. Consider the first assertion. We already know it is true in the case for the subcategories
DMh,c(X,R) (Corollary 6.2.14). This will imply our claim as follows. The stability by operations
f∗ for any morphism f is obvious. If u : X ′→X is a surjective separated étale morphism of finite
type, the functor u∗ is conservative. As it is monoidal, this implies the stability of DMh,lc(X,R)
by the derived tensor product ⊗L

R. As u∗ commutes with the formation of the derived internal
Hom

u∗HomR(A,B) ' HomR(u∗A, u∗B),

we easily get the stability by the bifunctor HomR. The stability by the operation f! for f separated
and of finite type has already been considered in, Corollary 6.3.14, and the stability by the
operation f∗ for any morphism of finite type f is proved similarly.

The last assertion about duality follows from Theorem 6.2.17 and Proposition 6.3.13, using
again the stability of local constructibility by pullbacks and derived internal Hom. 2

Proposition 6.3.16. Let p : X → S be a surjective, integral and radicial morphism between
noetherian schemes of finite dimension. The pullback functor

p∗ : DMh(S,R)→ DMh(X,R)

is an equivalence of triangulated categories, and it restricts to an equivalence of categories

DMh,c(S,R) ' DMh,c(X,R).

In particular, its right adjoint p∗ preserves constructible objects.

Proof. It is sufficient to prove this proposition when R is good enough. Indeed, if p∗ is an
equivalence with integral coefficients and restricts to an equivalence on constructible objects,
then to prove that the unit and counit

M → p∗p
∗(M) and p∗p∗(N)→ N

are invertible for any M and N , as both functors p∗ and p∗ preserve small sums (see
Proposition 5.5.10 for the second one), it is sufficient to prove it when M and N run over a
generating family of DMh(S,R) and of DMh(X,R), respectively. This means that we may assume
that both M and N are R-linearization of integral h-motives, and we finish with Corollary 5.5.12.
The same kind of arguments show that p∗ preserves constructible objects.

Henceforth, we will thus assume that R is good enough. Let us first consider the particular
case where p is of finite type (and thus finite). For any finite surjective and radicial morphism
of noetherian schemes g : Y ′→ Y , the functor

g∗ : DMh(Y,R)→ DMh(Y ′, R)
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is conservative (by h-descent, because g is a covering for the h topology; see [Voe96,

Proposition 3.2.5]). This implies that the functor

p∗ : DMh(S,R)→ DMh(X,R)

is an equivalence of categories (see [CD12, Proposition 2.1.9]). Its restriction

p∗ : DMh,c(S,R)→ DMh,c(X,R)

is an equivalence of categories as well, for its right adjoint p! = p∗ preserves constructible objects.

If p is not of finite type, it is still affine and thus one can describe X as a limit of a projective

system of affine Y -schemes Xi such that the structural maps Xi → S are finite, surjective and

radicial. By continuity (Theorem 6.3.9), we see that the functor

p∗ : DMh,c(S,R)→ DMh,c(X,R)

is an equivalence of categories as a filtered 2-colimit of such things. As both functors p∗ and p∗
commute with small sums, this implies that p∗ is fully faithful on the whole category DMh(S).

This ends the proof, as what precedes exhibits the essential image of DMh(S) in DMh(X) as a

localizing subcategory containing a generating family of DMh(X). 2

Corollary 6.3.17. Under the assumptions of the preceding proposition, the functor p∗
preserves locally constructible objects, and the functor p∗ defines an equivalence of triangulated

categories

DMh,lc(S,R) ' DMh,lc(X,R).

Proof. Let M be an object of DMh,lc(X,R). We want to prove that N = p∗(M) is locally

constructible. By virtue of [SGA1, Exp. IX, Corollary 4.11], any surjective étale map u : X ′→X

is isomorphic to the pullback of a surjective étale map v : S′ → S along p. Therefore, there

exists an étale surjective morphism of finite type v : S′ → S such that the pullback of M

along the second projection u : X ′ = S′ ×S X → X is constructible. If q : X ′ → S′ denotes

the first projection, the base change map v∗(N) = v∗ p∗(M)→ q∗ u
∗(M) is invertible. Finally, the

morphism q is also surjective, integral and radicial, so that the functor q∗ preserves constructible

objects (Proposition 6.3.16); this proves that N is locally constructible. 2

Proposition 6.3.18. Let R be a good enough ring of coefficients, and consider a surjective

morphism of finite type between noetherian schemes of finite dimension f : X→ S. Then pulling

back along f detects locally constructible motives: if an object M of DMh(S,R) has the property

that f∗(M) is locally constructible, then it is locally constructible. If, furthermore, the scheme

S is quasi-excellent and if the morphism f is separated, then one can replace the functor f∗ by

f !: the local constructibility of f !(M) implies the same property for M .

Proof. Assume that f∗(M) (f !(M), respectively) is locally constructible (with S quasi-excellent

in the respective case). It is harmless to assume that f∗(M) (respectively f !(M)) is constructible

(in the respective case, we use that u∗ = u! for any separated étale morphism of finite type).
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As both constructible and locally constructible objects are stable under the operations f!

and f∗ (respectively f∗ and f !) for any separated morphism of finite type, using the localization
triangles

j!j
∗(M)→M → i!i

∗(M)→ j!j
∗(M)[1]

(i∗i
!(M)→M → j∗j

!(M)→ i∗i
!(M)[1], respectively),

for any closed immersion i with open complement j, we see that it is sufficient to prove that
there exists a stratification {Si} of S such that, if we denote by ji : Si → S the embedding of
each strata, each restriction j∗i (M) (respectively j!

i(M)) is constructible. By virtue of [EGA4,
17.16.4], we may thus assume that f = hg is the composition of a finite, faithfully flat and
radicial morphism g with a finite surjective étale map h. But the functor g∗ is an equivalence
of categories with right adjoint g! ' g∗ (Proposition 6.3.16), so that we get an isomorphism of
functors g∗ ' g!. This means that the h-motive g∗(M) ' g!(M) is locally constructible, and we
conclude with Corollary 6.3.17. 2

6.3.19. Recall that an object M of a closed symmetric monoidal category C is rigid if there exists
an object M∨ of C such that tensoring by M∨ is a right adjoint of the functor A 7→ A⊗M . One
checks easily that an object M of C is rigid if and only if, for any other object N , the canonical
map

Hom(M, 1)⊗N → Hom(M,N)

is an isomorphism, in which case we have a canonical isomorphism

M∨ ' Hom(M,1).

The latter characterization implies that, whenever C is a triangulated category, its rigid
objects form a thick subcategory. Moreover, if ever the unit object of C is compact, then all
the rigid objects are compact in C . For instance, given any ring R, the rigid objects of the
unbounded derived category of R-modules are precisely the perfect complexes of R-modules (up
to isomorphism in D(R)).

Lemma 6.3.20. The property of being rigid in DMh(X,R) is local for the étale topology: for an
object M of DMh(X,R), if there exists a surjective étale morphism u : X ′→ X such that u∗(M)
is a rigid object of DMh(X ′, R), then M is rigid.

Proof. As the formation of the internal Hom in DMh commutes with the functor u∗, this follows
right away from the fact that the functor u∗ is conservative. 2

A source of rigid objects is provided by the following proposition.

Proposition 6.3.21. Let f : X → S be a morphism between noetherian schemes of finite
dimension. Assume that f is the composition of a surjective finite radicial morphism g : T → S
with a smooth and proper morphism p : X → T . Then, for any integer n ∈ Z, the h-motive
f∗(RX)(n) is a rigid object in DMh(S,R).

Proof. By virtue of Proposition 6.3.16, the symmetric monoidal functor g∗ is an equivalence of
categories, with quasi-inverse g∗. It is thus sufficient to prove that p∗(RX) is a rigid object
of DMh(T,R), which follows from the general formalism of the six operations: see [CD12,
Proposition 2.4.31]. 2
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Definition 6.3.22. Let S be a noetherian scheme. An object of DMh(S,R) is said to be strictly
smooth if it belongs to the smallest thick subcategory generated by objects of the form f∗(RX)(n)
for f as in Proposition 6.3.21 and n ∈ Z. An object M of DMh(S,R) is smooth if there exists a
surjective étale morphism u : T → S such that u∗(M) is strictly smooth.

Lemma 6.3.23. Let S be the spectrum of a field k with finite étale cohomological dimension.
Then the category of locally constructible object of DMh(S,R) is the thick subcategory generated
by objects of the form f∗(RX)(n) with X smooth and projective over a purely inseparable finite
extension of k, with structural map f : X → S, and n ∈ Z.

Proof. Since the (locally) constructible h-motives over S precisely are the compact objects of
DMh(S,R) (see Theorem 5.2.4), it is sufficient to prove that the family of compact objects
of the form f∗(RX)(n), for f : X → S projective, X regular, and n ∈ Z, form a generating
family of DMh(S,R). Corollary 5.5.12 implies that it is sufficient to consider the case of R = Z.
Let M be an object of DMh(S,Z) such that, for any f and n as above, we have

RHom(f∗(ZX)(n),M) = 0.

We want to prove that M = 0. But then, we also have

RHom(f∗(ZX)(n),M ⊗Q) = RHom(f∗(ZX)(n),M)⊗Q = 0.

Since the property we seek is known for Q-linear coefficients (see [CD12, Corollary 4.4.3]), we see
that M⊗Q = 0. It is thus sufficient to prove that M/p = M⊗LZ/pZ vanishes in DMh(X,Z/pZ)
for any prime number p. If p is the characteristic of K, we conclude with Corollary A.3.3.
Otherwise, Corollary 5.5.4 implies that M = 0, because the objects of the form Z(X)/p '
f∗(ZX)/p, for f : X → S any Galois covering, do form a generating family of D(Sét,Z/pZ). 2

Definition 6.3.24. A property P of R-linear h-motives is said to be generic if it satisfies the
following conditions.

(g1) Given any noetherian scheme of finite dimension X, the objects of DMh(X,R) which
have property P form a thick subcategory, which we will denote by P(X).

(g2) For any morphism between noetherian schemes of finite dimension f : X → Y , the
pullback functor sends P(Y ) in P(X).

(g3) If S is the spectrum of a separably closed field, then any object of P(S) is locally
constructible.

(g4) For any integral noetherian scheme of finite dimension X with generic point η, if M and
N are two objects of P(X), then the canonical map

lim−→
v:V→X

HomDMh(V,R)(v
∗(M), v∗(N))→ HomDMh(η̄,R)(u

∗(M), u∗(N)) (6.3.24.a)

is an isomorphism of R-modules, where v : V → X runs over the étale neighborhoods of η, while
u : η̄→ X denotes a geometric point associated with η.

(g5) Any strictly smooth object has property P (over noetherian schemes of finite dimension).

Lemma 6.3.25. Let X be a noetherian scheme of finite dimension and R a good enough ring
of coefficients. Assume that a generic property P is defined. For any object M of DMh(X,R)
which has property P, there exists a dense open immersion j : U → X such that the restriction
M|U = j∗(M) is smooth.
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Proof. We may always assume that X is reduced, and replace X by any dense open subscheme
at will. It is thus sufficient to consider the case where X is integral. For a noetherian scheme of
finite dimension Y , let us write DMh,ss(Y,R) for the thick subcategory of strictly smooth objects
in DMh(Y,R). Conditions (g1), (g2), (g3) and (g5) of Definition 6.3.24 then imply that we have
the commutative triangle of triangulated functors below, in which v : V → X runs over the étale
neighborhoods of η, while u : η̄→ X denotes a generic geometric point (i.e. a separable closure
of the field of functions on X).

2-lim−→V
DMh,ss(V,R)

(1) //

(3) ))

2-lim−→V
P(V )

(2)ww
DMh,lc(η̄, R)

Condition (g4) ensures that (2) is fully faithful. As (1) obviously has the same property,
(3)=(2)◦(1) must be fully faithful as well. Using standard limit arguments [EGA4, Theorem 8.10.5,
Proposition 17.7.8] together with Lemma 6.3.23, we see that the thick subcategory generated
by the essential image of (3) is the whole category DMh,lc(η̄, R). Hence the functor (3) is an
equivalence of categories. Therefore, all the functors in the commutative triangle above are
equivalences of categories. In particular, the essential surjectivity of (1) tells us that, for any
object M of P(X), there exists a dense open subscheme U ⊂ X and a surjective étale morphism
v : V → U such that v∗(M|U ) is strictly smooth. 2

Theorem 6.3.26. Let X be a noetherian scheme of finite dimension, and R a good enough ring
of coefficients. For an object M of DMh(X,R), the following conditions are equivalent.

(i) The h-motive M is locally constructible in DMh(X,R).

(ii) There exists a stratification {Xi}i∈I by locally closed subschemes of X, such that the
restriction M|Xi

is smooth in DMh(Xi, R) for all i ∈ I.

(iii) There exists a stratification {Xi}i∈I by locally closed subschemes of X, such that the
restriction M|Xi

is rigid in DMh(Xi, R) for all i ∈ I.

Proof. The property of being locally constructible is generic (conditions (g1), (g2) and (g3)
of Definition 6.3.24 are obvious, while conditions (g4) and (g5) follow right away from
Proposition 6.3.7, and Corollary 6.3.14, respectively). Therefore, a suitable noetherian induction,
together with Lemma 6.3.25, shows that (i)⇒(ii). The implication (ii)⇒(i) follows from
Proposition 6.3.18. After Lemma 6.3.20 and Proposition 6.3.21, it is obvious that (ii)⇒(iii).

It remains to prove that (iii)⇒(i). By virtue of Proposition 6.3.18, this amounts to prove
that any rigid R-linear h-motive is locally constructible. Note that rigid objects are stable by
inverse image functors of the form f∗, because symmetric monoidal functors always preserve
rigid objects. Hence, using noetherian induction together with Lemma 6.3.25, we see that it is
sufficient to prove that the property of being rigid is generic. We already know that condition (g1)
of Definition 6.3.24 holds, and we have just seen why condition (g2) holds. To prove condition
(g3), we remark that, if S is the spectrum of a separably closed field, then the locally constructible
objects of DMh(S,R) are precisely the compact objects (by Theorems 1.1.5 and 5.2.4). Therefore,
it is sufficient to prove that any rigid object is compact in DMh(S,R), which readily follows from
the fact that the unit object RS is compact. Since condition (g5) is already known (Lemma 6.3.20
and Proposition 6.3.21), it remains to prove condition (g4). We will prove a slightly better
property. Let M and N be two rigid objects of DMh(X,R), and pick a point x in X. If we let

638
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v : V →X run over the family of étale neighborhoods of x, and if we let u : S = Spec(Osh
X,x)→X

denote the strict henselization at x, then the canonical map

lim−→
v:V→X

Hom(v∗(M), v∗(N))→ Hom(u∗(M), u∗(N)) (6.3.26.a)

is an isomorphism. Indeed, we have the canonical isomorphisms below:

lim−→
v:V→X

Hom(v∗(M), v∗(N)) ' lim−→
v:V→X

Hom(v∗(RX), v∗(M)∨ ⊗L
R v
∗(N))

' lim−→
v:V→X

Hom(v∗(RX), v∗(M∨ ⊗L
R N))

' Hom(u∗(RX), u∗(M∨ ⊗L
R N)) (see Remark 6.3.8)

' Hom(RS , u
∗(M)∨ ⊗L

R u
∗(N))

' Hom(u∗(M), u∗(N)).

This shows the invertibility of the map (6.3.24.a) in the case where X is integral and x is its
generic point. 2

Remark 6.3.27. Assume finally that R is of positive characteristic invertible in OX . Then D(Xét,
R) ' DMh(X,R) (Corollary 5.5.4), and this implies that any R-linear rigid h-motive is smooth.
This is because any rigid object of D(Xét, R) is locally isomorphic to a constant sheaf of complexes
associated with a perfect complex of R-modules. Although this certainly is a folkloric result, we
include a proof here. If S is a strictly henselian scheme with closed point s, then taking the fiber
of sheaves of R-modules at s is the same thing as taking the global sections. For two rigid objects
M and N of D(Sét, R), we thus have

RHomD(Sét,R)(M,N) ' (M∨ ⊗L
R N)s ' RHomD(R)(Ms, Ns),

from which we get

HomD(Sét,R)(M,N) ' HomD(R)(Ms, Ns).

For a geometric point x of X, the constant sheaf of complexes associated with a perfect complex
of R-modules is obviously rigid, while taking the fiber at x defines a symmetric monoidal functor
and thus sends rigid objects to perfect complexes of R-modules (because the latter are the rigid
objects of D(R)). Hence we deduce from what precedes and from the isomorphism (6.3.26.a)
that taking the fiber at x defines an equivalence of triangulated categories

2-lim−→
V

Drig(Vét, R) ' Dperf(R),

where V runs over the family of étale neighborhoods of x, Drig(Vét, R) denotes the thick
subcategory of rigid objects in D(Vét, R), and Dperf(R) is the triangulated category of perfect
complexes of R-modules. In particular, if two rigid objectsM andN in D(Xét, R) have isomorphic
fibers at x in D(R), then there exists an étale neighborhood v : V → X of x such that v∗(M)
and v∗(N) are isomorphic in D(Vét, R). This applies to any rigid object M , with N the constant
sheaf associated with the fiber of M at x.

We do not know if, for a general ring of coefficients R, any rigid h-motive is smooth or not
(except in the very particular situation of Lemma 6.3.23).
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7. Applications

7.1 Algebraic cycles in étale motivic cohomology
7.1.1. Let us fix an integer n > 0.

Consider a smooth k-scheme X of finite type. We let znX be the presheaf on Xét which with
an étale X-scheme U associates Bloch cycle complex zn(U, ∗)[−2n] (as in [GL01a, § 2.2]). On
the other hand, let ZSV (n) be Suslin–Voevodsky’s motivic complex of Nisnevich sheaves on
Smk. According to [Voe02, Theorem 1], there is a canonical quasi-isomorphism of complexes of
Nisnevich sheaves on the site of étale X-schemes:

znX
∼−−→ (ZSV (n))|Xét

.

Recall also that, by definition,

HomDMeff
ét (k,Z)(M(X),Z(n)[i]) ' H i

ét(X,LA1(ZSV (n)ét))

where LA1 is the A1-localization functor of effective étale motivic complexes. Thus, we deduce
from the previous corollary a canonical map

ρi,nX : H i
ét(X, z

n
X)→ HomDMh(k,Z)(Z(X),Z(n)[i])

which, up to the isomorphisms described previously, is induced by the canonical map:

ZSV (n)ét→ LA1(ZSV (n)ét).

We recall the following theorem.

Theorem 7.1.2. Consider the above notations and let p be the characteristic exponent of k.
then ρn,iX induce an isomorphism after tensorization by Z[1/p].

Proof. We want to show that the map

RΓ(Xét, z
n
X)[1/p] ' RΓ(X,ZSV (n)ét)[1/p]→ RHomDMh(k,Z)(Z(X),Z(n))

is an isomorphism in the derived category of abelian groups. It is sufficient to check that it
induces an isomorphism after we apply the functor C 7→ C⊗LR for R = Q or R = Z/`Z for prime
numbers ` 6= p. For R = Q, this readily follows from Voevodsky’s comparison theorem [Voe02]
(using Corollary 5.5.5(3), as well as the equivalence DMeff(k,Q) ' DMeff

ét (k,Q)). For R = Z/`Z,
it is sufficient to check that the map

ZSV (n)ét ⊗L Z/`Z→ LA1

(
ZSV (n)ét

)
⊗L Z/`Z

is a quasi-isomorphism. But this map is an A1-equivalence with A1-local codomain. It is thus
sufficient to check that the left-hand side is A1-local as well. By virtue of Corollary 4.5.4, it is
sufficient to prove that the cohomology sheaves of the tensor product ZSV (n)ét⊗LZ/`Z are locally
constant. But this readily follows from the rigidity theorem of Suslin and Voevodsky [SV96,
Theorem 4.4] (see [MVW06, Theorem 7.20]). 2

Remark 7.1.3. The preceding theorem and its proof are well known. For instance, using
Voevodsky’s comparison theorem [Voe02], one can find them in [MVW06, 10.2 and 14.27] under
the assumption that the field k is of finite cohomological dimension (the later assumption being
used to prove Corollary 4.5.4 in the case of X = Spec(k)).
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Remark 7.1.4. The source of ρn,iX is an important invariant. Let us mention in particular the
result [GL00, Theorem 8.3]: if p > 0, znX/p

r is isomorphic to the logarithmic De Rham Witt
sheaf νnr placed in degree n. This fact alone explains the failure of homotopy invariance of the
cohomology H∗ét(X, z

n
X), equivalent to the failure injectivity for ρn,iX .15 This can also be explained

by saying that the étale sheafification functor, which goes from Nisnevich complexes to étale
complexes of sheaves on Smk, does not preserve A1-local objects. In fact, in characteristic p > 0,
this functor does not even preserves A1-invariant sheaves because of the Artin–Schreier étale
covers of the affine line.

We will now explain the strong relationship of classical Chow groups with étale motivic
cohomology in weight n and degree 2n for regular schemes, by combining the absolute purity
theorem for étale motives and the fact that the Bloch–Kato conjecture is true; see Theorem 7.1.11
below.

7.1.5. The coniveau filtration and its associated spectral sequence is very well documented in
the literature, under an axiomatic treatment. However, the authors usually require a base field
in their axioms.16 It is clearly not necessary so let us quickly recall the construction of this
spectral sequence in the case of étale motivic cohomology, and more precisely its version with
support:

Hr,n
ét (X,Z) = HomDMh(X)(i∗(1Z), 1X(n)[r]).

where i:Z → X is closed immersion.
First, one defines a flag on X has a decreasing sequence (Zp)p∈Z of closed subschemes of X

such that the following hold.

• For all integer p > 0, Zp is of codimension greater or equal to p in X.

• For p < 0, we have Zp = X.

We let D(X) be the set of flags of X, ordered by term-wise inclusion. It is an easy fact it is
right filtering.

Given such a flag Z∗, and a fixed integer n ∈ Z, we define an exact couple, denoted by
(D(Z∗, n), E1(Z∗, n)) (with cohomological conventions, see [McC01, Theorem 2.8]), as follows

Dp−1,q(Z∗, n) // Ep,q1 (Z∗, n) // Dp,q(Z∗, n) // Dp−1,q+1(Z∗, n)

Hp+q−1,n
ét (X − Zp) Hp+q,n

ét (X − Zp+1, Zp − Zp+1) Hp+q,n
ét (X − Zp+1) Hp+q,n

ét (X − Zp)

where the morphisms are given by localization long exact sequence of cohomology with support
associated with the closed immersion: (Zp−Zp+1)→ (X−Zp+1).17 This exact couple is obviously
contravariantly functorial in Z∗ as follows from the six functors formalism (more precisely, we
need the proper base change theorem with respect to functor i∗, i a closed immersion).

The coniveau exact couple associated with X is obtained by taking the colimit of these exact
couples as Z∗ runs in the set of flags of X:

(D(X,n), E1(X,n)) = lim−→
Z∗∈D(X)

(D(Z∗, n), E1(Z∗, n)).

15 Compare this with the general fact Corollary A.3.3.
16 The reason for doing so is that at this moment we do not know if Gersten conjecture holds for all regular
schemes of unequal characteristics, either for K-theory or torsion étale cohomology.
17 This sequence is induced by the corresponding localization triangle in DMh, which exists according to
Theorem 5.6.2.
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Before stating the main result, we need a final notation. Let x ∈ X be any point, and Z be its
reduced closure in X. Then we will consider the following cohomology groups:

Ĥr,n
ét (X(x), x) = lim−→

U

Hr,n
ét (U,Z ∩ U),

Ĥr,n
ét (κ(x)) = lim−→

U

Hr,n
ét (Z ∩ U),

where U runs over the open neighborhood of x in X.

Proposition 7.1.6. Consider the notations above and assume that X is excellent and regular.
Then for any integers p, q ∈ Z, there exists canonical isomorphisms:

Ep,q1 (X,n) '
(1)

⊕
x∈X(p)

Ĥp+q,n
ét (X(x), x) '

(2)

⊕
x∈X(p)

Ĥq−p,n−p
ét (κ(x)) '

(3)

⊕
x∈X(p)

Hq−p,n−p
ét (κ(x)).

In particular, we get the usual form of the coniveau spectral sequence, associated with the
above exact couple:

Ep,q1 (X,n) =
⊕

x∈X(p)

Hq−p,n−p
ét (κ(x))⇒ Hp+q,n

ét (X). (7.1.6.a)

Proof. The isomorphism (1) only uses the additivity in Z of cohomology with support, H∗∗ét (X,
Z t Z ′) ' H∗∗ét (X,Z)⊕H∗∗ét (X,Z ′), which is obvious according to our definition.

The isomorphism (2) uses the absolute purity property for DMh (Theorem 5.6.2) together
with the fact that any integral closed subscheme Z ⊂ X has a dense regular locus (cf. [SGA4,
7.8.6]).

Finally, the isomorphism (3) uses the continuity property of DMh,c (see Theorem 6.3.9). 2

7.1.7. Let x be any point of X. Let us denote by px the exponential characteristic of κ(x).
Then we get the following canonical isomorphisms. Thus, according to Proposition A.3.1,
Corollary 5.5.5, and the Bloch–Kato conjecture (more precisely [Voe11, Theorem 6.17]), we
get the following isomorphisms for any integers r, n such that r 6 n+ 1:

Hr,n
ét (κ(x)) ' Hr,n

ét (κ(x))[p−1
x ] ' Hr,n(κ(x))[p−1

x ]

where the right-hand side denotes the motivic cohomology groups of the field κ(x) with Z[p−1
x ]-

coefficients. Recall the later groups are zero if in addition n < 0 or r > n.

Corollary 7.1.8. Under the assumptions of the previous proposition and with the above
notations, one gets, for any integers p, q,

Ep,q1 (X,n) =


0 if q = n+ 1, (q < n+ 1, p > n), (q < n, p = n),⊕
x∈X(p)

KM
n−p(κ(x))[p−1

x ] if q = n,

where KM
∗ denotes Milnor K-theory.

7.1.9. Thus, from the coniveau spectral sequence, one deduces the following maps:

En,n2 (X,n)
b−→ En,n∞ (X,n)

a−→ H2n,n
ét (X,n). (7.1.9.a)
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where b is an epimorphism, and an isomorphism if n 6 2, while a is always a monomorphism.
Moreover, we get a short exact sequence:⊕

y∈X(n−1)

κ(y)×[1/py]
d1−−→

⊕
x∈X(n)

Z[1/px]
c−→ En,n2 (X,n)→ 0, (7.1.9.b)

where d1 is the differential of the E1-page of the coniveau spectral sequence with source the
(n− 1, n)-term.

Let N be the set of made of the exponential characteristics of the residue fields of X. Then,
if we tensor the above short exact sequence with Z[N−1], the middle term becomes the group
of n-codimensional cycles with Z[N−1]-coefficients. To finish our study of the coniveau spectral
sequence, we notice the following critical point (analog of [Qui73, Proposition 5.14]).

Proposition 7.1.10. Consider the notations above. Then the differential of the coniveau spectral
sequence

d1 :
⊕

y∈X(n−1)

κ(y)×[p−1
y ] = En−1,n

1 (X,n)→ En,n1 (X,n) =
⊕

x∈X(n)

Z[1/px]

is the usual divisor class map: given (y, x) ∈ X(n−1) × X(n) such that y ∈ Z(1) where Z is the
reduced closure of x in X, the component (d1)yx is the order function of the local one-dimensional
excellent ring OZ,y up to the denominators indicated.

Proof. The first step is to reduce to the case where X is local regular of dimension 1, y being its
closed point.

This reduction works as in [Dég12, 1.16]. Though this proof is written for k-schemes, it works
equally fine if one uses the fact that étale motivic cohomology admits Gysin maps between regular
schemes for finite morphisms (see [Dég14, § 6]) and the fact these Gysin maps commute with
residue morphisms: more precisely, given any cartesian square

Z ′

��

// T ′

f��
Z

i // T

of regular schemes, such that f is finite and i is a (codimension 1) closed immersion, the following
diagram commutes

H∗∗ét (T ′ − Z ′)
∂T ′,Z′ //

h∗ ��

H∗∗ét (Z ′)

f∗��
H∗∗ét (T − Z)

∂T,Z // H∗∗ét (Z)

where f∗ (respectively h∗) is the Gysin morphism mentioned above and ∂T,Z is obtained from
the canonical (boundary) map

H∗∗ét (T − Z)→ H∗∗ét (T,Z)

using the purity isomorphism: H∗∗ét (T,Z) ' H∗∗ét (Z). Over a field, this commutativity has been
proved in [Dég08a, 5.15]. The absolute case considered here is treated likewise using the absolute
purity property.

To treat the remaining case, X = Spec(A) with A a discrete valuation ring, we thus have to
prove that d1 is the valuation map of A. In this case d1, is the residue map H1,1

ét (X−Z)→ H0,0
ét (Z),

Z being the closed point of X. Thus d1 obviously sends units to 0, and because it is additive, we
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have only to prove that d1(π) = 1 where π is a uniformizing parameter of A. This last property
follows from the definition of the absolute purity isomorphism (cf. Appendix A and especially
Theorem A.2.8) and a careful computation with the deformation space (see the proof of [Dég08b,
2.6.5]). 2

One can summarize the information obtained from the above proposition and its preceding
paragraph by the following commutative diagram⊕

y∈X(n−1) κ(y)×
div //

� _

��

Zn(X)� _

��⊕
y∈X(n−1) κ(y)×[1/py]

d1 //
⊕

x∈X(n) Z[1/px]
abc // H2n,n

ét (X)

where the maps a, b and c are those of (7.1.9.a) and (7.1.9.b) and the map div is the usual
divisor class map with values the n-codimensional algebraic cycles of X. Thus taking care of the
previous study, together with Theorem 5.2.2, one gets the following result.

Theorem 7.1.11. Let X be a regular excellent scheme and N be the set of integers made by
the exponential characteristics of all the residue fields of X.

Then for any integer n > 0, the above diagram induces a canonical morphism of abelian
groups

σn : CHn(X)→ H2n,n
ét (X)

which satisfies moreover the following properties.

(1) The morphism σn ⊗Q is an isomorphism.

(2) The morphism σ1 ⊗ Z[N−1] is an isomorphism.

(3) There exists a short exact sequence

0→ CH2(X)[N−1]
σ2

−−→ H4,2
ét (X)[N−1]→ H4,2

ét,nr(X)[N−1]→ 0

where H4,2
ét,nr(X) is the kernel of the differential

d4,2
1 : H4,2

ét (κ(X))→
⊕

x∈X(1)

H3,1
ét (κ(x)),

in the spectral sequence (7.1.6.a).

Remark 7.1.12. (1) The map σn is the étale cycle class map. The new information here is that
it exists with integral coefficients and, if one inverts the exponential characteristics of X, is an
isomorphism for n = 1 and a monomorphism for n = 2.

Note that the method gives the following explicit way to determine the étale class of a cycle
in X: take a reduced closed subscheme Z ⊂ X; there exists an open subscheme U ⊂ X such that
Z ∩U is regular and dense in Z; then the closed immersion i : Z ∩U → U induces a Gysin map

i∗ : H∗∗ét (Z ∩ U)→ H∗∗ét (U)

and the restriction to U of σ∗(〈Z〉) equals i∗(1). The latter is usually called the fundamental
class of Z ∩ U in U .
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(2) The previous method gives back the construction of the cycle class in torsion étale
cohomology (cf. [SGA41

2 ]). The construction used here is more direct but it uses the absolute

purity property.

(3) Along the lines of the equal characteristics case, one can show that σ∗ is compatible with
push-forwards with respect to projective maps between regular schemes, where on the left-hand
side one considers the usual functoriality of Chow groups and on the right-hand side the Gysin
morphisms of [Dég14]; this is a Riemann–Roch formula where, because the oriented theories
CH∗ and H∗∗ét have an additive formal group law, the Todd class is equal to 1.

(4) It is possible to extend the previous result to the case of a singular scheme X which is
separated of finite type over a regular scheme S. Given f : X → S the corresponding structural
morphism, one defines the Borel–Moore motivic étale cohomology of X/S as

HBM,ét
r,n (X/S) = HomDMh(X)(1X(n)[r], f !(1S)).

The niveau spectral sequence for this Borel–Moore homology is defined as in the case of coniveau
but replacing the indexing by codimension with the one by dimension. One then gets, using
similar arguments, a cycle map:

σ∗ : CH∗(X)→ HBM,ét
∗∗ (X/S).

The only remark to be done is that one has to take care of the dimension of S which will appear
in the computation of the E1-term of the niveau spectral sequence through absolute purity.

7.2 Completion and `-adic realization
In this section, we fix a discrete valuation ring R with local parameter `. We will write R/`r

for the quotient ring R/(`r), r > 0. Until Paragraph 7.2.18, there is not any constraint on the
characteristic of the field R/(`); only at this point, the characteristic will be positive.

Definition 7.2.1. Let X be a noetherian scheme.
We denote by DMh(X, R̂`) the localizing subcategory of DMh(X,R) generated by the objects

of the form M/` = R/`⊗L
RM , for any constructible object M of DMh(X,R).

7.2.2. Recall from § 5.4 the following adjunctions of triangulated categories, expressing various
change of coefficients:

Lρ∗` : DMh(X,R)� DMh(X,R/`) : ρ`∗,

Lρ∗ : DMh(X,R)� DMh(X,R[`−1]) : ρ∗,

where ρ∗` (M) = M/` and ρ∗(M) = R[`−1] ⊗M . Note that, for any h-motive M in DMh(X,R),
the h-motive R[`−1]⊗M is the homotopy colimit of the tower

M
`.1M−−−−→M

`.1M−−−−→M → · · ·→M
`.1M−−−−→M → · · · .

Moreover, the functor ρ∗ is fully faithful, and identifies DMh(X,R[`−1]) with the full subcategory
of DMh(X,R) whose objects are those on which the multiplication by ` is invertible. Such an
object will be said uniquely `-divisible.

Lemma 7.2.3. For an object M of DMh(X,R), the following conditions are equivalent.

(i) The h-motive M is uniquely `-divisible.

(ii) The h-motive M/` ' 0.
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(iii) For any constructible object C of DMh(X,R), any map C/`→M is zero.

(iv) For any object C of DMh(X, R̂`), any map from C to M is zero.

Proof. The equivalence between conditions (i) and (ii) is trivial (in view of the distinguished
triangle (5.4.4.b)), and the equivalence between conditions (iii) and (iv) is true by definition
of DMh(X, R̂`). The equivalence between conditions (ii) and (iii) comes from the fact that
the objects of the form C/`, with C constructible in DMh(X,R), form a generating family of the
triangulated category DMh(X,Z/`Z). 2

7.2.4. We are thus in the situation of the six gluing functors as defined in [Nee01, 9.2.1]. This
means that we have six functors

DMh(X, R̂`)
ρ̂`! //

ρ̂`∗
// DMh(X,R)ρ̂∗`

oo
Lρ∗ //

ρ!
// DMh(X,R[`−1])ρ∗oo (7.2.4.a)

where ρ̂`! denotes the inclusion functor, and that, for any h-motive in DMh(X,R) we have
functorial distinguished triangles

ρ̂`!ρ̂
∗
` (M)

ad(ρ̂`!,ρ̂
∗
` )−−−−−−→M

ad′(Lρ∗,ρ∗)−−−−−−−→ ρ∗Lρ
∗(M)→M [1], (7.2.4.b)

ρ∗ρ
!(M)

ad(ρ∗,ρ!)−−−−−→M
ad′(ρ̂∗` ,ρ̂l∗)−−−−−−→ ρ̂`∗ρ̂

∗
` (M)→M [1]. (7.2.4.c)

Consider the obvious exact sequence of R-modules:

0→ R→ R[`−1]→ R[`−1]/R→ 0.

It induces the following distinguished triangle in DMh(X,R)

M ⊗L (R[`−1]/R)[−1] −→M −→M ⊗L R[`−1] −→M ⊗L (R[`−1]/R)

which is isomorphic to the triangle (7.2.4.b). In other words, we have the formulas

ρ̂`!ρ̂
∗
` (M) = M ⊗L (R[`−1]/R)[−1] and ρ∗Lρ

∗(M) = M [`−1] = M ⊗ Z[`−1].

7.2.5. Let M be a cofibrant object in the model category underlying DMh(X,R). The h-motive
M/`r is then represented by the complex of Tate spectra:

Coker(M
`r.1M−−−→M).

Thus, we get a tower

M

`
��

` //M

`2

��

// · · · //M

`r

��

` //M

`r+1

��

// · · ·

M M · · · M M · · ·

(7.2.5.a)

which defines a projective system (M/`r)r∈N, and it makes sense to take its derived limit. This
construction defines a triangulated functor

DMh(X,R)→ DMh(X,R), M 7→ R lim
←−
r

M/`r.

Furthermore, the towers (7.2.5.a) define a natural transformation

εM` : M → R lim
←−
r∈N

M/`r. (7.2.5.b)
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Lemma 7.2.6. For any h-motive M in DMh(X,R), we have a canonical isomorphism:

RHomR(R[`−1]/R,M)[1] ' R lim
←−
r∈N

M/`r.

Proof. We have R[`−1]/R = lim−→r
R/`r. As this colimit is filtering, this is in fact an homotopy

colimit, and we conclude from the isomorphisms RHom(R/`r,M)[1] 'M/`r. 2

Definition 7.2.7. For any h-motive M in DMh(X,R), we define the `-completion of M as the
h-motive

M̂` = R lim
←−
n∈N

M/`r.

We say that M is `-complete if the map εMl : M → M̂` defined above is an isomorphism.

According to Lemma 7.2.6 and Paragraph 7.2.4, the triangle (7.2.4.c) can be identified to
the triangle

RHom(R[`−1],M) −→M
εM`−−−→ M̂`

+1−−−→ .

Note in particular the following well-known fact (see for instance [DG02]).

Proposition 7.2.8. Let M be an h-motive in DMh(X,R). Then the following conditions are
equivalent.

(i) The h-motive M belongs to the essential image of ρ̂`∗ : DMh(X, R̂`)→ DMh(X,R).

(ii) The h-motive M is `-complete.

(iii) The h-motive M is left orthogonal to uniquely `-divisible objects in DMh(X,R).

Lemma 7.2.6 readily implies the following computation, which means (at least when R/(`) is
of characteristic prime to the residue characteristics of X), in view of the equivalences DMh(X,
R/`r) ' D(Xét, R/`

r), that the category DMh(X, R̂`) is a categorical incarnation of continuous
étale cohomology in the sense of Jannsen [Jan88].

Proposition 7.2.9. For any objects M and N in DMh(X, R̂`), we have

RHomDMh(X,R̂`)
(M,N) ' R lim

←−
r

RHomDMh(X,R/`r)(M/`r, N/`r).

7.2.10. The right adjoints Rf∗, RHom commute with homotopy limits in DMh(−, R). Moreover,
Proposition 5.4.5 shows they preserve `-complete objects.

On the other hand, for any morphism of scheme f : Y →X, and smooth morphism p : X→ S
and any `-complete h-motives M , N , we put

f̂∗(M) = ̂Lf∗(M)`, p̂](M) = ̂Lp](M)`, M⊗̂N = ̂(M ⊗L N)`.

This defines a structure of a premotivic triangulated category on DMh(−, R̂`), the right adjoints
being induced by their counterparts in DMh(−, R).

According to these definitions, we get a premotivic adjunction:

ρ̂∗` : DMh(−, R)� DMh(−, R̂`) : ρ̂`∗. (7.2.10.a)

The functor ρ̂∗` will be called the `-adic realization functor. Moreover, ρ̂∗` obviously commutes
with f∗ and Hom.

Taking into account Theorem 5.6.2, Corollary 5.4.11, Proposition 6.2.14, as well as
Lemma 7.2.6, we thus obtain the following theorem.
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Theorem 7.2.11. The triangulated premotivic category DMh(−, R̂`) satisfies the Grothendieck
six functors formalism (Definition A.1.10) and the absolute purity property (Definition A.2.9)
over noetherian schemes of finite dimension. The premotivic morphism ρ̂∗` defined above
commutes with the six operations (Definition A.1.17).

Remark 7.2.12. Note that, if R/(`) is of positive characteristic, by virtue of Theorem 5.5.3, if
we perform this `-completion procedure to DMeff

ét (X,R) or DMeff
h (X,R), this leads to the same

category DMh(−, R̂`).
Definition 7.2.13. Let X be any scheme. One defines the category DMh,gm(X, R̂`) of geometric

`-adic h-motives as the thick triangulated subcategory of DMh(X, R̂`) generated by h-motives

of the form R̂(X)`(n) for X/S smooth and n ∈ Z. An object M of DMh(X, R̂`) is said to be
constructible if, M/` is locally constructible in DMh(X,R/`) (see Definition 6.3.1). We write
DMh,c(X, R̂`) for the thick subcategory of the triangulated category DMh(X, R̂`) generated by
constructible `-adic motives. We thus have a natural inclusion

DMh,gm(X, R̂`) ⊂ DMh,c(X, R̂`).

Remark 7.2.14. The notion of constructible `-adic motive corresponds to what is usually called
(bounded complex of) constructible `-adic sheaves, while geometric `-adic h-motives correspond
to (bounded complex of) constructible `-adic sheaves of geometric origin.

Remark 7.2.15. It is clear that DMh,c(X, R̂`) is closed under the six operations in DMh(X, R̂`).
This readily follows from Corollary 6.3.15 in the case of R/`-linear coefficients. Indeed, the
functor

DMh(X, R̂`)→ DMh(X,R/`), M 7→M/`

is conservative and preserves the six operations as well as constructible objects (by definition).
Note also that an object M of DMh(X, R̂`) is constructible if and only if M/`r is constructible
in DMh(X,R/`r) for any r > 1.

Theorem 7.2.16. The `-adic realization functor of Theorem 7.2.11 sends constructible objects
to geometric ones (locally constructible objects to constructible ones, respectively). Moreover,
the six operations preserve geometric objects (constructible objects, respectively) in DMh(X, R̂`)
for quasi-excellent noetherian schemes of finite dimension.

Proof. The first assertion is obvious. To prove that the subcategory DMh,gm(X, R̂`) is closed

under the six operations in DMh(X, R̂`), it is sufficient check what happens on objects of the form
M̂` with M constructible in DMh(X,R). But then, the fact that the `-adic realization functor
preserves the six operations on the nose means that they preserve the class of these objects in
DMh(X, R̂`). The stability of constructible objects under the six operations readily follows from
the stability of locally constructible objects for torsion coefficients (Corollary 6.3.15). 2

Remark 7.2.17. The triangulated categories DMh,c(X, R̂`) make sense for any scheme, whether
or not the characteristic of R/` is invertible in OX . Moreover, as we will see now, in the case
where R/` is of positive characteristic invertible in OX , they are equivalent to their classical
analogues, whenever that makes sense: the construction of Beilinson et al. [BBD82], or the one
of Ekedahl [Eke90]; see Propositions 7.2.19 and 7.2.21, respectively.

7.2.18. Let us assume that R/` is of positive characteristic. Consider a noetherian scheme S with
residue characteristics prime to the characteristic of R/`, and assume that, for any constructible
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sheaf of R/`-modules F on Sét, the cohomology groups H i
ét(S, F ) are finite (e.g. R/` is finite

and S is strictly local or the spectrum of a finite field). Then, for any S-scheme of finite type
X, one can define, following Beilinson et al. [BBD82, Par. 2.2.14 and Propositon 2.2.15], the
triangulated category of constructible `-adic sheaves as the following 2-limit of derived categories
of constructible sheaves:

Db
c(X,R`) = 2-lim

←−
r

Db
ctf(Xét, R/`

r).

On the other hand, we have an obvious family of triangulated functors

DMh,c(X, R̂`)→ DMh,lc(X,R/`
r), M 7→M/`r

which, together with the equivalences of categories given by Theorem 6.3.11,

Db
ctf(X,R/`

r) ' DMh,lc(X,R/`
r),

induce a triangulated functor

DMh,c(X, R̂`)→ Db
c(X,R`). (7.2.18.a)

Proposition 7.2.19. Under the assumptions of Paragraph 7.2.18, the functor (7.2.18.a) is an
equivalence of categories.

Proof. Let M and N be two objects of DMh,c(X, R̂`). By virtue of Proposition 7.2.8, we have

N = R lim
←−
r

N/`r.

Moreover, by assumption, for any r > 1, the groups Hom(M/`r, N/`r) are finite, and thus, for
any integer i, we have

Hom(M,N [i]) = H i

(
R lim
←−
r

RHom(M,N/`r)

)
' lim
←−
r

Hom(M,N/`r[i]).

The fully faithfulness of the functor (7.2.18.a) readily follows from this computation. Let F
be an object of Db

c(X,R`), that is a collection of objects Fr in Db
ctf(X,R/`

r), together with
isomorphisms

ur : R/`r ⊗L
R/`r+1 Fr+1 ' Fr

for each r > 1. Such data can be lifted into a collection (Er, vr), where Er is a complex of sheaves
of R/`r-modules on Xét, and

vr : R/`r ⊗R/`r+1 Er+1→ Er

is a R/(`r)-linear morphism of complexes of sheaves for each r > 1, such that Er ' Fr in
Db

ctf(X,R/`
r), and such that the canonical map

R/`r ⊗L
R/`r+1 Er+1→ R/`r ⊗R/`r+1 Er+1→ Er

coincides with the given isomorphism ur under these identifications. Applying the functor
α∗ (5.3.1.a), this defines similar data (α∗(Er), α

∗(vr)) in the category of complexes of sheaves
over the h-site of X. We may assume that each sheaf Er if flat over R/`r (by choosing them
cofibrant for the projective model structure, for instance), in which case the maps vr already are
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quasi-isomorphisms. Applying the infinite suspension functor Σ∞ finally leads to a diagram of
Tate spectra, and we can define

E = R lim
←−
r

Σ∞(α∗(Er)).

Note that, for any integer r > 1, we have E/`r ' Σ∞(α∗(Er)) in DMh,c(X,R/`
r). We thus see

through the equivalences

Db
ctf(X,R/`

r) ' DMh,lc(X,R/`
r) and DMeff

h (X,R/`r) ' DMh(X,R/`r)

that the functor (7.2.18.a) sends E to an object isomorphic to F . 2

7.2.20. More generally, assume now that R is noetherian and that the characteristic of the
field R/` is invertible in OX . Recall that Ekedahl has constructed a triangulated monoidal
category D(X,R`) of `-adic systems; see [Eke90, Definition 2.5].18 We denote by Db

c(X,R`) the full
subcategory of D(X,R`) spanned `-adic constructible systems. By virtue of (the proof of) [Eke90,
Theorem 6.3], Db

c(X,R`) is stable under the six operations (whenever this property holds for
the categories Db

ctf(X,R/`), which is the case whenever X is noetherian and quasi-excellent by
Gabber’s theorem [ILO14, XIII, Theorem 1.1.1]).

Proposition 7.2.21. Under the assumptions of Paragraph 7.2.20, there is a canonical
equivalence of categories

D(X,R`) ' DMh(X, R̂`)

which is compatible with the six operations. This equivalence restricts to an equivalence of
triangulated categories

Db
c(X,R`) ' DMh,c(X, R̂`).

Proof. Note that the second equivalence of categories readily follows from the first, using
Theorem 6.3.11. We will thus ignore finiteness hypotheses. We may assume that R is a complete
discrete valuation ring. Before going further, we should emphasize that, in Ekedahl’s article,
there are restrictions about boundedness of complexes or about finite tor-dimension: we will
ignore them completely because the reason for these is that, at that time, it was not known how
to derive the tensor product for unbounded complexes. In particular, [Eke90, Proposition 2.2,
Lemma 2.3] are true for unbounded complexes (and the proof does not change). We will try
to remain close to the notations of Ekedahl’s article. The obvious morphism of ringed topoi
π : XN

ét → Xét induces an adjunction

Lπ∗ : D(Xét, R)� D(XN
ét , R•) : Rπ∗

where D(XN
ét , R•) is the derived category of the category of R•-modules on the topos XN

ét of
inverse systems of sheaves on the small étale site of X (with R• the sheaf of rings on XN

ét

defined by the sequence R/`n+1
→ R/`n), while D(Xét, R) is the derived category of sheaves of

R-modules on the small étale site of X. An object C of D(Xét, R) will be said `-complete is the
canonical map

C → R lim
←−
n

C/`n

18 Ekedahl’s notation for this category is D(Xét − R), where Xét denotes the topos of sheaves on the small étale
site of X.
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is an isomorphism (remark that the analog of Proposition 7.2.8 holds, with the same proofs).
We denote by D(Xét, R)` the full subcategory of D(Xét, R) which consists of `-complete objects.
We notice first that there are natural isomorphisms

Rπ∗(C) ' R lim
←−
n

Cn.

Therefore, we have isomorphisms

Rπ∗Lπ
∗(C) ' R lim

←−
n

C/`n

and we obtain an adjunction

Lπ∗ : D(Xét, R)` � D(XN
ét , R•) : Rπ∗.

By definition of D(Xét, R)`, the functor Lπ∗ is now fully faithful, so that the functor Rπ∗ identifies
D(Xét, R)` as a Verdier quotient of D(XN

ét , R•). But we have the identifications Rπ∗(C)/`n '
Rπ∗(C/`

n), so that (the unbounded version of) [Eke90, Proposition 2.2 and Lemma 2.3], together
with Corollary 5.5.4, express precisely that this Verdier quotient is Ekedahl’s category D(X,R`).
In other words, we have proved that there is a canonical equivalence of triangulated categories

D(X,R`) ' D(Xét, R)`.

We are thus reduced to prove that we have an equivalence

D(Xét, R)` ' DMh(X, R̂`).

Considering the canonical adjunction

Σ∞α∗ : D(Xét, R)� DMh(X,R) : Rα∗RΩ∞,

we obtain an adjunction

Σ∞α∗(−)` : D(Xét, R)` � DMh(X, R̂`) : Rα∗RΩ∞,

where Σ∞α∗(C)` denotes the `-completion of Σ∞α∗(C). As these two adjoint functors commute
with the operation C 7→ C/`, it is sufficient to check that the counit and unit of this adjunction
are invertible modulo ` (i.e. are invertible when applied to objects of the form C/`), which is a
reformulation of Corollary 5.5.4. 2

Corollary 7.2.22. Under the assumptions of Paragraph 7.2.20, the category DMh,c(X, R̂`) has
a canonical bounded t-structure whose heart is equivalent to the abelian category of constructible
`-adic sheaves in the sense of [SGA5, Exp. V, 3.1.1].

Proof. This follows from Proposition 7.2.21 and, since the ring R is noetherian and regular,
from [Eke90, Theorem 6.3(i)]. 2

7.2.23. Let Q be the field of fractions of R, and assume furthermore that R is of mixed
characteristic. For a noetherian scheme X, we define the category of (constructible) Q`-sheaves
over X

Db
c(X,Q`) = DMh,c(X, R̂`)⊗R Q
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as the Q-linearization of the R-linear triangulated category DMh,c(X, R̂`).
19 Then Db

c(−, Q`)
is a motivic category which satisfies the absolute purity property (at least when restricted to
quasi-excellent noetherian schemes of finite dimension).

As a final result, taking into account the fact the Q-localization functor is well behaved for
h-motives (Corollary 5.4.11), we have a canonical identification, for any noetherian scheme of
finite dimension,

(DMh,c(X,R)⊗Q)] ' DMh,c(X,Q),

where the left-hand side denotes the pseudo-abelian completion of the Q-linearization of the
R-linear triangulated category DMh,c(X,R); see Appendix B. Note finally that, since the category

DMh,c(X, R̂`) has a bounded t-structure (using Proposition A.3.4, we may assume that the
characteristic of the field R/` is invertible in OX , and then apply Corollary 7.2.22), the category
Db
c(X,Q`) is pseudo-abelian, by Corollary B.2.3.

Theorem 7.2.24. The functor ρ̂∗` (7.2.10.a) together with the equivalence of categories of
Proposition 7.2.21 induce, for any noetherian scheme of finite dimension X, a Q-linear
triangulated monoidal functor:

DMh,c(X,Q)→ Db
c(X,Q`)

(again, the `-adic realization functor).
It is compatible with the six operations (when one restricts our attention to quasi-excellent

noetherian schemes of finite dimension and morphisms of finite type between them).

Remark 7.2.25. As Q is a Q-algebra, and taking into account Theorem 5.2.2, we have defined a
morphism of premotivic categories

ρ̂∗` : DMB,c→ Db
c(−, Q`)

which commutes with all of the six operations. Given (5.2.2.a) we see that this morphism
induces in particular a cycle class in `-adic étale cohomology, and even a higher cycle class. The
compatibility of this realization with the six operations gives us all the required functoriality
properties of this (higher) cycle class.

We like to think of ρ̂∗` as a kind of categorical cycle class for `-adic complexes.
The interest of the above theorem is to present the universal premotivic adjunction ρ̂∗` as a

homotopy `-adic completion, which implies the non-trivial fact that it commutes with all of the
six operations (i.e. with the right adjoint functors).

Remark 7.2.26. In the case where ` is a prime number invertible in the residue characteristics
of the scheme X, in the triangulated categories Db

c(X,Q`), there can be non-trivial extensions
between objects of the form p!(Q`)(n)[2n], for p : Y → X proper and Y is regular, with n ∈ Z.
Indeed, in the case where X is the spectrum of an algebraically closed field k, this means for
instance that the cohomology of smooth and proper k-schemes can be non-trivial in degree 1. In
the case where X is the complement of a finite set of points in the spectrum of a ring of integers,
examples are provided by Jannsen in [Jan90, Remarks 6.8.4].

Let us consider two (locally) constructible objects M and N in DMh(X,Z), and assume that

Hom(M,N [i]) = 0 for i > 0. (7.2.26.a)

19 Under the assumption of Paragraph 7.2.20, and according to Proposition 7.2.21, this category is Ekedahl’s
derived category of `-adic sheaves. Our definition has the advantage of having all the good properties without
assuming any restriction on the residue characteristics of X.
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This readily implies that

Hom(M,N [i])⊗ Z/`ν ' Hom(M,N/`ν [i])

for any non-negative integers ν and i. We thus have a Milnor short exact sequence

0→ lim
←−
ν

1 Hom(M,N)⊗ Z/`ν → Hom(M`, N`[1])→ lim
←−
ν

Hom(M,N [1])⊗ Z/`ν → 0.

This proves
Hom(M`, N`[1]) = 0. (7.2.26.b)

In other words, if ever DMh(X,Z) has a suitable weight structure in the sense of Bondarko,
there cannot be non-trivial extensions between `-adic realizations of pure h-motives over X with
integral coefficients. This shows that there is no hope to define a weight structure on DMh(X,Z)
such that objects of the form p!(Z)(n)[2n] are pure for p : Y → X proper, Y is regular, and with
n ∈ Z, at least when X is a separably closed field, or the complement of a finite set of points
in the spectrum of a ring of integers. Using the properties of continuity and of localization, it
is a nice exercise to deduce from there that finite extensions of primary fields must be avoided
as well. Remark that, in contrast, DMh(X,Q) carries a perfectly well-behaved theory of weights
with a great level of generality; see [Héb11, Bon14].
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Appendix A. Recall and complement on premotivic categories

A.1 Premotivic categories and morphisms
The following definition is a summary of the definitions in [CD09, § 1]. In this presentation, Sch
is an arbitrary category of schemes.

Definition A.1.1. Let P be one of the classes: Ét, Sm, S ft.
A triangulated (respectively abelian) P-premotivic category M is a fibered category over

Sch satisfying the following properties.

(1) For any scheme S, MS is a well-generated triangulated (respectively Grothendieck
abelian) category with a closed monoidal structure.20

(2) For any morphism of schemes f , the functor f∗ is triangulated (respectively additive),
monoidal and admits a right adjoint denoted by f∗.

(3) For any morphism p in P, the functor p∗ admits a left adjoint denoted by p].

(4) P-base change. For any cartesian square

Y
g
��

q //

∆

X
f��

T p
// S

there exists a canonical isomorphism: Ex(∆∗] ) : q]g
∗
→ f∗p].

20 In the triangulated case, we require that the bifunctor ⊗ is triangulated in each variable.
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(5) P-projection formula. For any morphism p : T → S in P, and any object (M,N) of
MT ×MS , there exists a canonical isomorphism:

Ex(p∗] ,⊗) : p](M ⊗T p∗(N))→ p](M)⊗S N.

When P = Sm, we say simply premotivic instead of Sm-premotivic. Objects of M are generically
called premotives.

Remark A.1.2. The isomorphisms appearing in properties (4) and (5) are particular instances
of what is generically called an exchange transformation in [CD09].

Example A.1.3. Let P be one of the classes: Ét, Sm, S ft.
Then the categories Shét(PS , R) (respectively Psh(PS , R)) of étale sheaves (respectively

presheaves) of R-modules over PS for various base schemes S form the fibers of an abelian
premotivic category (see [CD12, Example 5.1.1]).

Moreover, the derived categories D(Shét(PS , R)) (respectively D(Psh(PS , R))) for various
schemes S form the fibers of a canonical triangulated premotivic category (see [CD12,
Definition 5.1.17]).

A.1.4. Consider a premotivic triangulated category T .
Given any smooth morphism p : X → S, we define following Voevodsky the (homological)

premotive associated with X/S as the object MS(X) := p](1X). Then MS is a covariant functor.
Let p : P1

S → S be the canonical projection. We define the Tate premotive as the kernel
of the map p∗ : MS(P1

S) → 1S shifted by −2. Given an integer n and an object M of T , we
define the nth Tate twist M(n) of M as the nth tensor power of M by the object 1(1), allowing
negative n if 1(1) is ⊗-invertible.

We associate with T a bigraded cohomology theory on Sch:

H i,n
T (S) := HomT (1S , 1S(n)[i]).

One can isolate the following basic properties of T (see [CD12]).

Definition A.1.5. Consider the notations above. One introduces the following properties of the
premotivic triangulated category T .

(1) Homotopy property. For any scheme S, the canonical projection of the affine line over S
induces an isomorphism MS(A1

S)→ 1S .

(2) Stability property. The Tate premotive 1(1) is ⊗-invertible.

(3) Orientation. An orientation of T is natural transformation of contravariant functors

c1 : Pic→ H2,1

(not necessarily additive).21

When T is equipped with an orientation one says T is oriented.

A.1.6. Recall that a cartesian functor ϕ∗ : T → T ′ between fibered categories over Sch is the
following data:

• for any base scheme S in Sch, a functor ϕ∗S : T (S)→ T ′(S);

• for any morphism f : T → S in Sch, a natural isomorphism cf : f∗ϕ∗S
∼−→ ϕ∗T f

∗ satisfying
the cocycle condition.

21 However, the orientations which appear in this article are always additive.
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The following definition is a particular case of [CD12, Definition 1.4.6].

Definition A.1.7. Let P be one of the classes: Ét, Sm, S ft.
A morphism ϕ∗ : M →M ′ of triangulated (respectively abelian) P-premotivic categories is

a cartesian functor satisfying the following properties.

(1) For any scheme S, ϕ∗S is triangulated (respectively additive), monoidal and admits a right
adjoint denoted by ϕS∗.

(2) For any morphism p : T → S in P, there exists a canonical isomorphism: Ex(p], ϕ
∗) :

p]ϕ
∗
T → ϕ∗Sp].

Sometimes, we refer to such a morphism as the premotivic adjunction

ϕ∗ : M �M ′ : ϕ∗.

A sub-P-premotivic triangulated (respectively abelian) category M0 of M is a full triangulated
(respectively additive) subcategory of M equipped with a P-premotivic structure such that the
inclusion M0→M is a morphism of P-premotivic categories.

Remark A.1.8. Given a morphism of triangulated premotivic categories

ϕ∗ : T → T ′,

any orientation of T induces a canonical orientation of T ′. Indeed, we deduce from the preceding
definitions that for any scheme X, the functor ϕ∗X induces a morphism

H2,1
T (X)→ H2,1

T ′ (X)

contravariantly natural in X.

Example A.1.9. Consider the notations of Example A.1.3.
Recall from [CD12, Definition 5.2.16] the A1-localization Deff

A1(Shét(P, R)) of triangulated
category D(Shét(P, R)), which is a P-fibered category equipped with a localization morphism

D(Shét(P, R))→ Deff
A1(Shét(P, R))

and satisfying the homotopy property.
When P = Sm, we will put Deff

A1,ét(S,R) = Deff
A1(Shét(SmS , R)).

The main properties of a triangulated premotivic category can be summarized in the so-called
Grothendieck’s six functors formalism.

Definition A.1.10. A triangulated premotivic category T which is oriented satisfies
Grothendieck’s six functors formalism if it satisfies the stability property and for any separated
morphism of finite type f : Y → X in Sch, there exists a pair of adjoint functors

f! : T (Y )� T (X) : f !

such that the following hold.

(1) There exists a structure of a covariant (respectively contravariant) 2-functor on f 7→ f!

(respectively f 7→ f !).

(2) There exists a natural transformation αf : f! → f∗ which is an isomorphism when f is
proper. Moreover, α is a morphism of 2-functors.
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(3) For any smooth morphism f : X → S in Sch of relative dimension d, there are canonical
natural isomorphisms

pf : f] −→ f!(d)[2d]

p′f : f∗ −→ f !(−d)[−2d]

which are dual to each other.

(4) For any cartesian square in Sch

Y ′
f ′ //

g′
�� ∆

X ′

g
��

Y
f
// X

such that f is separated of finite type, there exist natural isomorphisms

g∗f!
∼−→ f ′! g

′∗,

g′∗f
′! ∼−→ f !g∗.

(5) For any separated morphism of finite type f : Y → X, there exist natural isomorphisms

Ex(f∗! ,⊗) : (f!K)⊗X L
∼−−→ f!(K ⊗Y f∗L),

HomX(f!(L),K)
∼−−→ f∗HomY (L, f !(K)),

f !HomX(L,M)
∼−−→ HomY (f∗(L), f !(M)).

(5) For any closed immersion i : Z → S with complementary open immersion j, there exists
distinguished triangles of natural transformations as follows:

j!j
!

α′j−−→ 1
αi−−→ i∗i

∗ ∂i−−→ j!j
![1]

i!i
! α′i−−→ 1

αj−−→ j∗j
∗ ∂̃i−−→ i!i

![1]

where α′? (respectively α?) denotes the counit (respectively unit) of the relevant adjunction.

A.1.11. In [CD12], we have studied some of these properties axiomatically, introducing the
following definitions.

• Given a closed immersion i, the fact i∗ is conservative and the existence of the first triangle
in (6) is called the localization property with respect to i.

• The conjunction of properties (2) and (3) gives, for a smooth proper morphism f , an
isomorphism pf : f] → f∗(d)[2d]. Under the stability and weak localization properties,
when such an isomorphism exists, we say that f is T -pure (or simply pure when T is
clear).22

Definition A.1.12. Consider the notations and assumptions above.
We say that T satisfies the localization property (respectively weak localization property) if

it satisfies the localization property with respect to any closed immersion i (respectively which
admits a smooth retraction).

22 In fact, the isomorphism pf is canonical up to the choice of an orientation of T . Moreover, we will define
explicitly this isomorphism in the case where we need it; see (4.2.5.a).
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We say that T satisfies the purity property (respectively weak purity property) if for any
smooth proper morphism f (respectively for any scheme S and integer n > 0, the projection
p : Pn

S → S) is T -pure.

Building on the construction of Deligne of f! and on the work of Ayoub on cross functors,
we have obtained in [CD12, Theorem 2.4.50] the following theorem which is little variation on a
theorem of Ayoub.

Theorem A.1.13. Assume that Sch is an adequate category of schemes in the sense of [CD12,
2.0].23 The following conditions on a well-generated triangulated premotivic category T equipped
with an orientation and satisfying the homotopy property are equivalent.

(i) The triangulated category T satisfies Grothendieck’s six functors formalism.

(ii) The triangulated category T satisfies the stability and localization properties.

Remark A.1.14. In fact, Ayoub in [Ayo07] proves this result with the following notable
differences.

• One has to restrict oneself to a category of quasi-projective schemes over a scheme which
admits an ample line bundle.

• The questions of orientation are not treated in [Ayo07]: this means one has to replace the
Tate twist in property (3) above by the tensor product with a Thom space.

• The theorem of Ayoub is more general in the sense that it does not require an orientation
on the category T . In particular, it applies to the stable homotopy category of schemes,
which does not admit an orientation.

Recall the following definition from [CD12].

Definition A.1.15. A triangulated premotivic category T which satisfies the stability and
localization properties, and in which the functor f ! exists for any proper morphism f in Sch, is
called a triangulated motivic category.

A.1.16. Consider an adjunction
ϕ∗ : T � T ′ : ϕ∗

of triangulated premotivic categories which satisfies Grothendieck’s six functors formalism. Then
it is proved in [CD12] that ϕ∗ commutes with f! for f separated of finite type. In fact, ϕ∗

commutes with the left adjoint of the six-functors formalism while ϕ∗ commutes with the right
adjoint functors.

On the other hand, there are canonical exchange transformations:

ϕ∗f∗→ f∗ϕ
∗, f morphism in Sch,

ϕ∗f !
→ f !ϕ∗, f separated morphism of finite type in Sch,

[ϕ∗Hom(−,−)] −→ [Hom(ϕ∗(−), ϕ∗(−))].

(A.1.16.a)

Definition A.1.17. In the above assumptions, one says the morphism ϕ∗ commutes with the
six operations if the exchange transformations (A.1.16.a) are all isomorphisms.

If T is a sub-premotivic triangulated category of T ′, one simply says T is stable by the six
operations if the inclusion commutes with the six operations.

For example, if ϕ∗ is an equivalence of premotivic triangulated categories, then it commutes
with the six operations.

23 Examples of an adequate category: noetherian (respectively and/or finite-dimensional, quasi-excellent, excellent)
schemes (respectively Σ-schemes, eventually of finite type, for a noetherian base scheme Σ).

657



D.-C. Cisinski and F. Déglise

A.2 Complement: the absolute purity property
In this section, we consider a triangulated premotivic category T which satisfies the hypothesis
and equivalent conditions of Theorem A.1.13. We assume in addition that the motives of the
form MS(X)(i) for a smooth S-scheme X and a Tate twist i ∈ Z form a family of generators of
the category T (S).

A.2.1. As usual, a closed pair is a pair of schemes (X,Z) such that Z is a closed subscheme
of X. We will consider abusively that to give such a closed pair is equivalent to give a closed
immersion i : Z → X. We will say (X,Z) is regular when i is regular.

A (cartesian) morphism of closed pairs (f, g) : (Y, T ) → (X,Z) is a cartesian square of
schemes.

T
g ��

� � k // Y
f��

Z �
� i // X

(A.2.1.a)

We will usually denote it by f instead of (f, g).
Note the preceding diagram induces a unique map CTY → g−1(CZX) on the underlying

normal cones. We say f (or the above square) is transversal when this map is an isomorphism.

Definition A.2.2. Let (X,Z) be a closed pairs and i : Z → X be the canonical inclusion. For
any pair of integers (n,m), we define the cohomology of X with support in Z as

Hn,m
Z (X) := HomT (S)(i∗(1Z),1S(m)[n]).

Equivalently,
Hn,m
Z (X) = HomT (Z)(1Z , i

!(1S)(m)[n]). (A.2.2.a)

Moreover, using the first localization triangle for T with respect to i (point (6), Definition A.1.10),
we get that it is contravariantly functorial with respect to morphism of closed pairs.

Remark A.2.3. (1) Using this localization triangle, this cohomology can be inserted in the usual
localization long exact sequence (the twist m being the same for each group).

(2) Consider a morphism of closed pairs f : (Y, T )→ (X,Z) defined by a cartesian square
of the form (A.2.1.a). Using point (4) of Definition A.1.10 applied to this square, we can define
the following exchange transformation:

Ex∗! : g∗i!
ad(f∗,f∗)−−−−−→ g∗i!f∗f

∗ ∼−→ g∗g∗k
!f∗

ad′(g∗,g∗)−−−−−−→ k!f∗. (A.2.3.a)

One can check that the functoriality property of H∗∗Z (X) is given by associating with a morphism
ρ : 1Z → i!(1Z)(i)[n] the composite map

1T
g∗(ρ)−−−→ g∗i!(1Z)(i)[n]

Ex∗!−−→ k!(1T )(i)[n]

through the identification (A.2.2.a).

According to (A.2.2.a), the bigraded cohomology group H∗∗(X) admits a structure of a
bigraded module over the cohomology ring H∗∗(Z). According to the preceding remark, this
module structure is compatible with pullbacks.

Definition A.2.4. Let (X,Z) be a regular closed pair of codimension c. A fundamental class
of Z in X is an element

ηX(Z) ∈ H2c,c
Z (X)

which is a base of the H∗∗(Z)-module H∗∗Z (X).
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In other words, the canonical map

H∗∗(Z)→ H∗∗Z (X), λ 7→ λ · ηX(Z) (A.2.4.a)

is an isomorphism. Note that if such a fundamental class exists, it is unique up to an invertible
element of H00(Z).

Proposition A.2.5. Consider a regular closed immersion i : Z → X of codimension c and a
morphism in T (Z):

ηX(Z) : 1Z → i!(1X)(c)[2c].

The following conditions are equivalent.

(i) The map ηX(Z) is an isomorphism.

(ii) For any smooth morphism f : Y → X, the cohomology class f∗(ηX(Z)), in the group
H2c,c
f−1(T )

(Y ), is a fundamental class.

Proof. We first remark that for any smooth X-scheme Y , T = Y ×X Z, and for any couple of
integers (n, r) ∈ Z2, the map induced by ηX(Z)

Hom(MZ(T )(−r)[−n], 1Z)→ Hom(MZ(T )(−r)[−n], i!(1X)(c)[2c])

is isomorphic to the map

Hn,r(T )→ Hn,r
T (Y ), λ 7→ λ.ηT (Y ).

Then the equivalence between (i) and (ii) follows from the fact the family of motives of the form
MZ(Y ×Z X)(−r)[−n] generates the category T (Z) because of the following.

• We have assumed T it is generated by Tate twist as a triangulated premotivic category.

• i∗ is essentially surjective according to the localization property. 2

Using the arguments24 of [Dég08a], one obtains that the orientation c1 : Pic→ H2,1 can be
extended canonically to a full theory of Chern classes and deduced the projective bundle formula.
One gets in particular, following [Dég08a, Paragraph 4.4], the following proposition.

Proposition A.2.6. Let E be a vector bundle over a scheme X, s : X → E the zero section.
Then s admits a canonical (depending only on the orientation c1 of T ) fundamental class.

This is the Thom class defined in [Dég08a, Paragraph 4.4]. In what follows we will denote it
by th(E), as an element of H2c,c

X (E).

A.2.7. Let (X,Z) be a closed pair with inclusion i : Z → X. Assume i is a regular closed
immersion of codimension c.

Following the classical construction, one define the deformation space DZX attached to
(X,Z) as the complement of the blow-up BZ(X) in BZ(A1

X). Note it contains A1
Z as a closed

subscheme.
This space is fibered over A1, with fiber over 1 (respectively 0) being the scheme X

(respectively the normal bundle NZX). In particular, we get morphisms of closed pairs

(X,Z)
d1−→ (DZX,A

1
Z)

d0
←− (NZX,Z) (A.2.7.a)

24 In fact, if T is equipped with a premotivic morphism D(PSh(−, R))→ T , one can readily apply all the results
of [Dég08a] to the category T (S) for any fixed base scheme S. All the premotivic triangulated categories considered
in this paper will satisfy this hypothesis.
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where d0 (respectively d1) means inclusion of the fiber over 0 (respectively 1). It is important to
note that d0 and d1 are transversal.

For the next statement, we denote by Preg the class of closed pairs (X,Z) in Sch such that
X and Z are regular.

Theorem A.2.8. The following conditions are equivalent.

(i) There exists a family
(ηX(Z))(X,Z)∈Preg

such that the following hold.

• For any closed pair (X,Z), ηX(Z) is a fundamental class of (X,Z).

• For any transversal morphism f : (Y, T )→ (X,Z) of closed pairs in Preg, f∗ηX(Z) =
ηY (T ).

(ii) For any closed pair (X,Z) in Preg, the deformation diagram (A.2.7.a) induces isomorphisms
of bigraded cohomology groups:

H∗∗Z (X)
d∗1
←− H∗∗A1

Z
(DZX)

d∗0−→ H∗∗Z (NZX).

Proof. The fact (i) implies (ii) follows from the homotopy property of T , using the isomorphism
of type (A.2.4.a) and the fact the morphisms of closed pairs d0 and d1 are transversal.

Reciprocally, given the isomorphisms which appear in (ii), one can put ηX(Z) =
d∗1(d∗0)−1(th(NZX)), using Proposition A.2.6. This is a fundamental class for (X,Z) using once
again the homotopy property for T . The fact these classes are stable by transversal base change
follows from the functoriality of the deformation diagram (A.2.7.a) with respect to transversal
morphisms. 2

Definition A.2.9. We will say that T satisfies the absolute purity property if the equivalent
properties of the preceding propositions are satisfied.

Example A.2.10. (1) The motivic category of Beilinson motives DMB satisfies the absolute purity
property according to [CD12, Theorem 14.4.1].

(2) According to the theorem of Gabber [Fuj02], the motivic category defined by the derived
categories of étale sheaves of Λ-modules X 7→ D(Xét,Λ) satisfies the absolute purity property
for any quasi-excellent scheme, with Λ a finite ring of order prime to the residue characteristics
of X.

A.3 Torsion, homotopy and étale descent
Recall the following result, essentially proved in [Voe96], but formulated in the premotivic
triangulated category of Example A.1.9.

Proposition A.3.1. For any scheme S of characteristic p > 0, the category Deff
A1,ét(S,Z) is

Z[1/p]-linear.

Proof. The Artin–Schreier exact sequence [SGA4, IX, 3.5] can be written as an exact sequence
of sheaves in Shét(X,Z):

0→ (Z/pZ)S → Ga
F−1−−→ Ga→ 0

where F is the Frobenius morphism. But Ga is a strongly contractible sheaf, thus F − 1 induces
an isomorphism in the A1-localized derived category Deff

A1,ét(S,Z). This implies (Z/pZ)S = 0 in
the latter category which in turn implies p · Id is an isomorphism, as required. 2
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A.3.2. Let T be a triangulated premotivic category. If T is obtained by a localization of
the derived category of an abelian premotivic category, it comes with a canonical premotivic
adjunction

D(PSh(S,Z))� T .

Then, the fact T satisfies the homotopy and the étale descent properties is equivalent to the
fact that the previous adjunction induces a premotivic adjunction of the form

Deff
A1,ét(−,Z)� T (A.3.2.a)

(see [CD12, 5.1.2, 5.2.10, 5.2.19, and 5.3.23]).

Corollary A.3.3. Let T be a premotivic triangulated category equipped with an adjunction
of the form (A.3.2.a). Then for any scheme S of characteristic p > 0, T (S) is Z[1/p]-linear.

Proposition A.3.4. Let p be a prime number and n = pa be a power of p. Let T be a premotivic
triangulated category equipped with a premotivic adjunction of the form

t∗ : Deff
A1,ét(−,Z/nZ)� T : t∗.

Let S be a scheme. We put S[1/p] = S×Spec(Z[1/p]) and consider the canonical open immersion
j : S[1/p]→ S. Then the functor

j∗ : T (S)→ T (S[1/p])

is an equivalence of categories.

Proof. Note that the proposition is obvious when T = Deff
A1,ét(−,Z/nZ) by the previous corollary

and the localization property. In particular, for any object of the form E = t∗(M) with M in
Deff

A1,ét(−,Z/nZ), we have j]j
∗(E) ' E. In particular, we have j]j

∗(1S) ' 1S . Therefore, for any
object E of T (S), one has

j]j
∗(E) ' j](j∗(1S)⊗ E) ' j]j∗(1S)⊗ E ' 1S ⊗ E.

As the functor j] is fully faithful, this readily implies the proposition. 2

Appendix B. Idempotents

B.1 Idempotents and localizations
B.1.1. In this section, we give some complements on localization of abstract triangulated
categories.

For a triangulated category T , we shall denote by T ] its idempotent completion (with its
canonical triangulated structure; see [BS01]).

Proposition B.1.2. Let T be a triangulated category and S ⊂ T a thick subcategory of T .
Then U ] is a thick subcategory of T ] and the natural triangulated functor

(T/U)]→ (T ]/U ])]

is an equivalence of categories.

Proof. Both functors T → (T/U)] and T → (T ]/U ])] share the same universal property, namely
of being the universal functor from T to an idempotent complete triangulated category in which
any object of U becomes null. 2
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Corollary B.1.3. Given a triangulated category T and a thick subcategory U of T , an object
of T belongs to U if and only if its image is isomorphic to zero in the triangulated category
(T ]/U ])].

Proof. As U is thick in T , an object of T is in U if and only if its image in the Verdier quotient
T/U is trivial. On the other hand, the preceding proposition implies in particular that the natural
functor

T/U → (T ]/U ])]

is fully faithful, which implies the assertion. 2

B.1.4. We fix a commutative ring A and a multiplicative system S ⊂ A. Let T be an A-linear
triangulated category. We define a new triangulated category T ⊗A S−1A as follows. The objects
of T ⊗A S−1A are those of T , and morphisms from X to Y are given by the formula

HomT⊗AS−1A(X,Y ) = HomT (X,Y )⊗A S−1A

with the obvious composition law. We have an obvious triangulated functor

T → T ⊗A S−1A (B.1.4.a)

which is the identity on objects and which is defined by the canonical maps

Hom(X,Y )→ HomT (X,Y )⊗A S−1A

on arrows. The distinguished triangles of T ⊗A S−1A are the triangles which are isomorphic to
some image of a distinguished triangle of T by the functor (B.1.4.a).

Given an object X of T and an element f ∈ S, we write f : X→X for the map f.1X , and we
shall write X/f for some choice of its cone. We write TS-tors for the smallest thick subcategory
of T which contains the cones of the form X/f for any object X and any f in S, the objects of
which will be called S-torsion objects of T . The functor (B.1.4.a) clearly sends S-torsion objects
to zero, and thus induces a canonical triangulated functor

T/TS-tors→ T ⊗A S−1A. (B.1.4.b)

Proposition B.1.5. The functor (B.1.4.b) is an equivalence of categories.

Proof. One readily checks that T is S−1A-linear if and only if TS-tors ' 0. Therefore, both functors
T → T/TS-tors and (B.1.4.a) share the same universal property: these are the universal A-linear
triangulated functors from T to an S−1A-linear triangulated category. 2

Corollary B.1.6. We have a canonical equivalence of A-linear triangulated categories

(T ⊗A S−1A)] ' (T ] ⊗A S−1A)].

Proof. This follows again from the fact that, by virtue of Propositions B.1.2 and B.1.5, these
two categories are the universal A-linear idempotent complete triangulated categories under T
in which the S-torsion objects are trivial. 2

Proposition B.1.7. Let T be an A-linear triangulated category and U a thick subcategory of
T . Given a prime ideal p in A, we write Tp = T ⊗A Ap. For an object X of T , the following
conditions are equivalent.
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(i) The object X belongs to U .

(ii) For any maximal ideal m in A, the image of X in (T/U)m is trivial.

(iii) For any maximal ideal m of A, the image of X in (T ]m/U
]
m)] is trivial.

Proof. The equivalence between conditions (ii) and (iii) readily follows from Corollaries B.1.3
and B.1.6. The equivalence between conditions (i) and (ii) comes from the fact that the
localizations Am form a covering for the flat topology and from the Yoneda lemma. 2

B.2 Idempotents and t-structures
Proposition B.2.1. Any triangulated category endowed with a bounded t-structure. is
idempotent complete.

Proof. Let T be a triangulated category endowed with a bounded t-structure given by the pair
(T 60,T >0). We denote by T ] the pseudo-abelianization of T . By virtue of a result of Balmer
and Schlichting [BS01, Theorem 1.12], the additive category T ] is naturally endowed with the
structure of a triangulated category: distinguished triangles of T ] as those isomorphic to direct
factors of distinguished triangles of T . By definition, the embedding functor T → T ] is then
exact. Furthermore, one can define a t-structure (T ]60,T ]>0) on T ] as follows: an object of T ]

belongs to T ]60 (to T ]>0) if it is a direct factor of an object of T ]60 (of T ]>0, respectively).
The truncation functors of the t-structure (T 60,T >0) extend uniquely to truncation functors
for this t-structure on T ]. The embedding functor T → T ] now is a t-exact functor. Let X be
an object of T and p : X → X a projector with image Y in T ]. We will prove that Y belongs to
T (by which we mean that it is isomorphic to an object of T ), by induction on the amplitude
of X. We may assume that X belongs to T >0. Let n be the smallest non-negative integer such
that X belongs to T 6n. If n = 0, then X belongs to the heart of the t-structure of T , and any
abelian category being in particular pseudo-abelian, this implies that the image of p, namely Y ,
is representable in T . If n > 0, we then have a canonical distinguished triangle of the following
form.

τ<n(Y )→ Y → Hn(Y )[−n]→ τ<n(Y )[1]

We already know that Hn(Y )[−n] belongs to T , and, by induction, so does the truncation
τ<n(Y ). Therefore, the object Y belongs to T as well. In other words, we have an equivalence
of categories T ' T ], and the property of being idempotent complete being closed under
equivalences of categories; this proves the proposition. 2

Proposition B.2.2. Let A be a commutative ring and S ⊂ A a multiplicative system. Consider
an A-linear triangulated category T endowed with a t-structure. Then there is a unique t-
structure on the S-localization S−1T = T ⊗AS−1A such that the canonical functor T → S−1T
is t-exact. In particular, if the t-structure of T is bounded, so is the t-structure of S−1T .

Sketch of proof. We will consider the canonical functor T → S−1T as the identity on objects.
Let (T 60,T >0) be the given t-structure on T . We define (S−1T 60, S−1T >0) as follows: a,
object of S−1T belongs to S−1T 60 (to S−1T >0) if it is isomorphic in S−1T to the image of
an object of T 60 (of T >0, respectively). For objects X and Y in T 60 and T >0, respectively,
we have

HomS−1T (X[i], Y ) = S−1 HomT (X[i], Y ) = 0

for i > 0. We leave the task of checking the axioms for a t-structure on S−1T as an exercise for
the reader. Once we know it is well defined, it is obvious that this t-structure on the S-localization
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is the unique one such that the canonical functor T → S−1T is t-exact (because this functor
is essentially surjective). For the same reason, it is also clear that, if the t-structure of T is
bounded, so is the corresponding one on S−1T . 2

The preceding two propositions thus give the following corollary.

Corollary B.2.3. Let A be a commutative ring and consider an A-linear triangulated category
T , and suppose that there exists a bounded t-structure on T . Then, for any multiplicative system
S ⊂ A, the S-localization S−1T = T ⊗A S−1A is idempotent complete.
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CD09 D.-C. Cisinski and F. Déglise, Local and stable homological algebra in Grothendieck abelian
categories, Homology, Homotopy Appl. 11 (2009), 219–260.
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Dég08a F. Déglise, Around the Gysin triangle II, Doc. Math. 13 (2008), 613–675.
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