Les symboles et quantificateurs et leur signification

∀ : pour tout ∃ : il existe / : tel que

 \in : appartenant à \subset : inclus dans

 \cup : union (l'ensemble des éléments qui appartiennent à l'un ou l'autre des ensembles)

 \cap : intersection (l'ensemble des éléments qui appartiennent aux deux ensembles)

 \circ : la composition des fonctions

 \Rightarrow : implique \Leftrightarrow : équivaut à

 $\frac{\sum : somme}{\prod : produit}$

Exemples:

• Assertions:

 $\forall x \in \mathbb{R}, \ x^2 \ge 0$ se lit : pour tout x réel, x^2 est positif ou nul.

 $\forall x \in \mathbb{R}^+, \ \exists y \geq 0 \ / \ x = y^2$ se lit : pour tout x réel positif ou nul il existe y un réel positif ou nul tel que $x = y^2$.

 $\forall x \in \mathbb{R}, \sin x = 0 \Leftrightarrow \exists k \in \mathbb{Z}, x = k\pi \text{ se lit : pour tout } x \text{ réel, } \sin x \text{ est nul si et seulement si il existe un entier relatif } k \text{ tel que } x = k\pi.$

• Ensembles:

 $\mathbb{N} \subset \mathbb{R}$ se lit \mathbb{N} est un sous-ensemble de \mathbb{R} . On peut aussi le lire \mathbb{N} est inclus dans \mathbb{R} .

$$\{1,2,3,5\} \cup \{3,6,7\} = \{1,2,3,5,6,7\} \\ \{1,2,3,5\} \cap \{3,6,7\} = \{3\}$$

• Sommes, produit:

$$\sum_{k=3}^{9} k^2 = 3^2 + 4^2 + 5^2 + 6^2 + 7^2 + 8^2 + 9^2.$$

$$\sum_{j=2}^{4} \sum_{k=3}^{5} jk = \sum_{j=2}^{4} (3j+4j+5j)$$
$$= (6+8+10) + (9+12+15) + (12+16+20) = \sum_{j=2}^{4} \sum_{k=3}^{5} jk$$

$$\prod_{k=3}^{9} k^2 = 3^2.4^2.5^2.6^2.7^2.8^2.9^2.$$