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Abstract

Coupled quantum-fluid models are derived by means of a diffusion approxima-
tion from adiabatic quantum-kinetic models. These models describe the electron
transport of a bidimensional electron gas. Particles are confined in one direction
(denoted by z) while transport occurs in an orthogonal direction (denoted by x).
The length-scale in the z direction is comparable to the de Broglie wavelength,
while the x-length scale is much bigger. The aim of this paper is to investigate
the diffusion limit from quantum-kinetic to quantum-fluid models, which are nu-
merically more interesting. Transitions between sub-bands are considered in the
Fermi Golden rule setting.

Keywords : Schrödinger equation; Boltzmann equation; Subband model; Collision op-
erator; Diffusion limit; Spherical Harmonic Expansion model; Energy-Transport model.

1 Introduction

Directionally coupled quantum/classical models are suited for the description of the
electron transport in devices in which the electron gas is confined in one direction and
the transport is allowed in the remaining directions. This situation arises for example in
MOSFET transistors, nanotubes, nanowires, etc. In such devices the length-scale of the
confinement direction is of the order of the electron de Broglie wavelength, such that
quantum transport models have to be adopted in this direction. The length-scale in the
transport direction is several times bigger than the de Broglie wavelength, allowing thus
the use of classical models for the electron transport description.

Such type of subband models are subject of recent work. In [7] a quantum/kinetic
subband model is derived by a partially semi-classical limit from a fully quantum model.
The study of the limit model is then presented in [6, 9], analyzing the existence of
weak or classical solutions for the Schrödinger-Vlasov system, coupled with the Poisson
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equation. The starting model of the present paper is a similar quantum/kinetic model,
which describes the electron evolution in the confinement direction by the Schrödinger
equation, whereas the transport direction is governed by the Boltzmann equation.

Quantum kinetic models are computationally rather expensive. In this aim the
derivation of quantum fluid adiabatic models has an important significance for the
semiconductor device simulation. A coupled Schrödinger/Drift-Diffusion system is in-
vestigated in [11]. The purpose of this paper is to derive coupled quantum mesoscopic
models, which are computationally less expensive than the Schrödinger/Boltzmann sys-
tem and provide a physically more accurate description of the electron transport than
the Schrödinger/Drift-Diffusion system.

Depending on the particular choice of the dominant collision mechanism, we show
that the Schrödinger/Boltzmann system tends in the diffusion limit either towards a
coupled Schrödinger/SHE model (Spherical Harmonic Expansion) or towards a cou-
pled Schrödinger/ET model (Energy-Transport). Considering firstly an elastic impurity
collision operator, which accounts also for the transitions between the subbands, a dif-
fusion limit α → 0 is carried out formally and rigorously. The parameter α represents
the ratio of the mean free path (between collisions) to the typical macroscopic device
size. The limit model is shown to be a coupled system constituted of the Schrödinger
equation in the confinement direction and the SHE model in the transport one, the
latter being a diffusion equation for the energy-dependent distribution function. In a
second part, we assume that the dominant scattering operator consists of the sum of
the elastic operator and the electron-electron collision operator. In a formal asymptotic
approach, the corresponding Schrödinger/Boltzmann system is shown to relax towards
a coupled Schrödinger/ET system. The resulting ET model in the transport direction
is constituted of a balance law for the electron density and an energy balance equation.

In the pure classical framework, the derivation of fluid models from kinetic ones has
been amply investigated, using moment methods or Hilbert expansions. An overview of
these transport models can be found in [3, 24] as well as in the following non-exhaustive
list of references for the derivation of the SHE model [18, 21], ET model [4, 5, 20] and
DD model [31, 36]. The models derived in the present paper differ from their clas-
sical counterparts in that the energy subbands depend on the time and the position
variables. Moreover the involvement of these energy subbands in the coefficients of the
fluid models, reflects the coupling with the quantum model in the confinement direction.

The subband models introduced and derived in this paper are based on the fact that
quantum effects and collision mechanisms occur separately in different directions, due to
the geometry of the device. When such an assumption cannot be adopted, our approach
is not relevant and one has to follow a different route. In [15], several SHE models incor-
porating quantum effects (in both longitudinal and transversal directions) are proposed.
Let us briefly summarize this approach in order to put our paper into perspective. In a
first step, a quantum SHE model is derived as the diffusive limit of a Wigner-Boltzmann
system. The disadvantage of this approach is the fact that collisions are modeled in a
classical setting, which means that the collision operator is local in the position variable
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and does not mix position and momentum. Then, in a second step, a fully quantum
SHE model is proposed, whose derivation is based on the concept of the ”local quantum
equilibrium”, introduced in [25], and using an entropy minimization procedure. The idea
consists in replacing the classical elastic Boltzmann operator by a relaxation operator
whose kernel consists of these quantum equilibrium states (this approach was previously
used in [22] in order to get quantum Drift-Diffusion and quantum Energy-Transport sys-
tems). Unfortunately the so-obtained model presents a complicated non local structure
– it is not a partial differential system – and its numerical implementation is not an
easy task. Consequently, it seems reasonable to define firstly an approximate model
which would be local in space : such a procedure is proposed in [15] in the semi-classical
scaling. The present article proposes a complementary strategy: the collisional Wigner
equation is firstly (formally) approximated via a semi-classical limit in the longitudinal
directions (the confined direction remaining quantized), leading thus to our collisional
subband model. Then the diffusive approximation is performed to obtain a SHE model
(or an ET model).

This paper is organized as follows. Section 2 is devoted to the diffusion limit towards
the adiabatic Schrödinger/SHE model. Firstly the properties of the elastic collision oper-
ator are studied and a formal diffusive limit is performed, based on a Hilbert expansion.
The formal result is given in Theorem 2.7. Then a mathematical rigorous proof is car-
ried out in Section 2.4, the principal rigorous result being presented in Theorem 2.11.
Section 3 deals with the formal diffusion limit towards the adiabatic Schrödinger/ET
model. This formal result is stated in Theorem 3.6.

2 The diffusion limit towards the SHE model

2.1 The diffusion scaling

Let us consider an electron ensemble in the slab R2×(0, 1) of R3. The first two directions,
called x, correspond to the classical degrees of freedom of the electrons, whereas in the
third direction z, quantum effects take place. For a given electrostatic potential, the
electron ensemble can be described by a sequence (fn) of distribution functions (for the
classical directions x ∈ R2 and the corresponding velocities v ∈ R2) and a sequence (χn)
of wave functions (for the quantum direction z). The electron density is written then as

n(t, x, z) =
∑

n≥1

(∫

R2

fn(t, x, v) dv

)

|χn(t, x, z)|
2 .

In dimensionless variables, the problem consists in finding for t ∈ (0, T ), x ∈ R2,
z ∈ (0, 1) and v ∈ R2 the unknowns (εn(t, x), χn(t, x, z), fn(t, x, v))n∈N∗ , where the
potential V (t, x, z) is assumed to be given. The wave functions χn depend parametrically
on t and x, and form a complete sequence of eigenfunctions of the one dimensional
Schrödinger operator − 1

2
d2/dz2 + V . More precisely, χn are solutions of the eigenvalue
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−
1

2
∂zzχn + V χn = εnχn ,

χn(t, x, ·) ∈ H
1
0 (0, 1),

∫ 1

0

χn χm dz = δnm ,

(2.1)

where εn are the corresponding eigenvalues. It is known that the eigenvalues are simple
and that they form an increasing sequence tending to +∞ (ε1 < ε2 < · · ·) [6, 37].
These functions represent the potential energy of the different electron subbands in the
confined z-direction and the index n stands for the n-th subband.

The distribution function fn of the subband n is solution of the rescaled Boltzmann
equation







∂tfn +
1

α
(v · ∇xfn −∇xεn · ∇vfn) =

1

α2
Q(f)n

fn(0, x, v) = fin,n(x, v) ,

(2.2)

where the operator Q accounts for collisions in the subband n, as well as for transitions
between the subbands. We shall denote by f the collection of all the subband distri-
bution functions, f = (fn)n∈N∗ . The collision operator Q is taken under the following
form

Q(f)n :=
∑

m∈N∗

∫

R2

[σ(t, x;m, v′ → n, v)fm(t, x, v
′)− σ(t, x;n, v → m, v′)fn(t, x, v)] dv

′ .

(2.3)
The first term on the right hand side is the gain term, describing the particles ”jump-
ing” from the subband m with a longitudinal velocity v ′, towards the subband n and
possessing there the longitudinal velocity v. The second term is the usual loss term.
The transition rates σ(t, x;m, v′ → n, v) are computed in the Fermi Golden rule approx-
imation and depend on the nature of the considered collisions.

In the first part of this paper, impurity collisions are considered, such that the
transition rates take the following form

σ(t, x;m, v′ → n, v) = αmn(t, x, v
′, v)δ(εn(t, x) +

|v|2

2
− εm(t, x)−

|v′|2

2
) ,

where αmn are the so-called scattering cross sections. The elastic impurity collision
operator Q0 reads then

Q0(f)n =
∑

m∈N∗

∫

R2

αnm(t, x, v, v
′)δ(εn +

|v|2

2
− εm −

|v′|2

2
) [fm(t, x, v

′)− fn(t, x, v)] dv
′ ,

(2.4)
and we shall assume in the sequel the fundamental hypothesis:

Hypothesis 1 The coefficients αnm satisfy the following positivity, boundedness and
symmetry properties, with λ0 and λ1 two positive constants

0 < λ0 < αnmN(t, x,εn +
|v|2

2
) < λ1 < +∞ , αnm(t, x, v, v

′) = αmn(t, x, v
′, v),
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where the weight function N , the density of states, which is introduced in Definition 2.3.

Generally, the potential is not a priori known, but is computed self-consistently by
means of the charge density. Denoting by Vext the exterior potential and by Vs the
self-consistent one, then V = Vext + Vs, where Vs is solution of the Poisson equation

−∆Vs(t, x, z) = n(t, x, z) ,

subject to appropriate boundary conditions. In order to keep this paper as simple as
possible, we consider the potential as given. The extension to the self-consistent case
changes nothing to the formal analysis.

2.2 Properties of the collision operator Q0

In this section, we study the elastic collision operator Q0. In particular, we determine
its kernel, prove that it is a Fredholm operator and show that it is dissipative. We begin
by recalling the coarea formula.

Lemma 2.1 (Coarea formula) Let d ∈ N, B ⊂ Rd, R ⊂ R. Then for every function
f ∈ C(Rd) and g ∈ C1(B,R) we have

∫

B

f(v)dv =

∫

R

(∫

Sε

f(v)dNε(v)

)

dε ,

where Sε := {v ∈ B ; g(v) = ε} is the surface of constant energy ε, and

dNε(v) :=
dσε(v)

|∇g(v)|
,

is the coarea measure, with dσε(v) being the surface measure on the sphere Sε.

Remark 2.2 In this paper, we shall consider the parabolic band approximation and take

thus g(v) := |v|2

2
, leading to dNε(v) =

dσε(v)
|v|

. Moreover the surface

Sε−εn
(t, x) =

{

v ∈ R2 /
|v|2

2
+ εn(t, x) = ε

}

,

represents the ensemble of possible velocities of electrons belonging to the n-th subband
and having the total energy ε.

Let us now introduce some notations.

Definition 2.3 The following definitions are used all along the paper:
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• We define the function N (t, x, ε) := max{n ∈ N∗ / εn(t, x) ≤ ε} with the
convention N (t, x, ε) = 0 if ε < ε1(t, x). This represents the number of subbands
lying beneath the energy value ε at (t, x). The density of states is thus defined as

N(t, x, ε) :=
∑

n∈N∗

∫

S
ε−εn

dNε−εn
(v) = 2πN (t, x, ε) . (2.5)

Remark that in the 2D case we have
∫

S
ε−εn

dNε−εn
(v) = 2πH(ε− εn) ,

with H the Heaviside function.

• We introduce the Hilbert space

L2 := {f = (fn)n∈N∗ ,

+∞
∑

n=1

∫

R2

|fn(v)|
2 dv < +∞} ,

with the L2 scalar product defined by

〈f, g〉 :=
∑

n∈N∗

∫

R2

fngn dv .

• Let H denote a Lipschitz continuous function on R with H(0) = 0. Then, for all
f ∈ L2, H(f) defined by [H(f)]n = H(fn) is an element of L2.

• The total energy of an electron, belonging to the n-th subband and having the
velocity v, is shortly denoted by

en(t, x, v) := εn(t, x) +
|v|2

2
.

With the notations introduced above, we have for some function ψ

∑

n

∫

R2

ψn(v) dv =
∑

n

∫ +∞

εn

(

∫

S
ε−εn

ψn(v)dNε−εn
(v)

)

dε ,

∑

n

∫

R2

ψn(v)δ(εn +
v2

2
− ε) dv =

∑

n

∫

S
ε−εn

ψn(v)dNε−εn
(v) .

We can pass now to the study of the elastic collision operator Q0. The variables t and
x are considered in the following of this section as parameters and are thus omitted for
simplicity arguments.
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Proposition 2.4 Under Hypothesis 1, the operator Q0 satisfies the following proper-
ties :
(i) The linear operator Q0 : L2 → L2 is a bounded, symmetric, non-positive operator.
(ii) For any increasing Lipschitz continuous function H with H(0) = 0, we have the
dissipative inequality

〈Q0(f), H(f)〉 ≤ 0 , ∀f ∈ L2. (2.6)

(iii) For any bounded function ψ : R → R we denote by ψ(e) the sequence (ψ(e))n(v) =

ψ( |v|
2

2
+ εn). Defining ψ(e)f by (ψ(e)f)n(v) = ψ( |v|

2

2
+ εn)fn(v), we have

Q0(ψ(e)f) = ψ(e)Q0(f) ∀f ∈ L2 .

(iv)The Kernel of Q0 is the set

A := {f ∈ L2 / ∃ψ : R → R with f = ψ(e)} ,

and f ∈ A if and only if 〈Q0(f), H(f)〉 = 0 for some strictly increasing Lipschitz
continuous function H. In particular, the collision operator Q0 conserves the mass and
the total energy.

Proof Let us first prove (i). Like in the scalar case, the symmetry of the operator Q0

is a direct consequence of the symmetry of the cross sections αnm, while the negativity
is a consequence of the positivity of these cross sections. Namely, it is immediately seen
that

〈Q0f, g〉 = −
1

2

+∞
∑

m,n=1

∫

R2×R2

αm,n(v
′, v)δ(εm+|v′|2/2−εn−|v|2/2)(f ′m−fn)(g′m−gn) dv′ dv ,

(2.7)
where we have dropped the (t, x) dependence for notational simplicity and where we
have used the usual notation f ′m = fm(v

′), fn = fn(v). The right-hand side being
invariant when the roles of f and g are exchanged, the operator Q0 is symmetric. The
negativity of Q0 is also immediate as well as item (ii). Let us now prove that Q0 is
bounded on L2. To this aim, it is enough to prove that

|〈Q0f, g〉| ≤ C‖f‖ ‖g‖ ∀f, g ∈ L2 .

From (2.7), a simple Cauchy-Schwarz inequality leads to

|〈Q0f, g〉| ≤ A(f)A(g) ,
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where

A(h)2 =
1

2
λ1
∑

m,n

∫

R2

∫

R2

1

N(εn + |v|2

2
)
δ(εm +

|v′|2

2
− εn −

|v|2

2
)(h′m − hn)

2dv dv′

≤ λ1
∑

m,n

∫ ∫

1

N(εn + |v|2

2
)
δ(e′m − en)((h

′
m)

2 + h2n)dv dv
′

= 2λ1
∑

m,n

∫ ∫

1

N(εn + |v|2

2
)
δ(e′m − en)h

2
ndv dv

′

= 2λ1
∑

n

∫ ∞

ε1

∫

S
ε−εn

(

∑

m

∫

S
ε−εm

dNε−εm
(v′)

)

1

N(ε)
h2n(v)dNε−εn

(v)dε

= 2λ1
∑

n

∫ ∞

ε1

∫

S
ε−εn

h2n(v)dNε−εn
(v)dε = 2λ1‖h‖

2,

which finishes the proof of item (i). Besides, item (iii) is immediate. Let us now prove
item (iv). It is clear that A is a subset of ker(Q0). Let now H be strictly increasing
and such that 〈Q0(f), H(f)〉 = 0. From (2.7), we deduce that fm(v

′) = fn(v) whenever

εm + |v′|2

2
= εn + |v|2

2
. This is satisfied if and only if f is a function of the energy,

f = ψ(e).

Let us now prove that −Q0 is coercive on the orthogonal to its kernel.

Proposition 2.5 The operator Q0 satisfies the following properties:
(i) The orthogonal to the kernel of Q0 is given by

ker(Q0)
⊥ := {f ∈ L2, such that

∑

n

∫

S
ε−εn

fn(v)dNε−εn
(v) = 0 for a.a. ε ≥ ε1}.

(ii) There exists a constant C > 0, such that

−〈Q0(f), f〉 ≥ C‖f‖2, ∀ f ∈ ker(Q0)
⊥. (2.8)

(iii) The range R(Q0) is closed and coincides with ker(Q0)
⊥.

Proof Item (i) is immediate and item (iii) is a direct consequence of item (ii). The
only thing left to be shown is item (ii). The starting point is

−〈Q0(f), f〉 =
1

2

+∞
∑

m,n=1

∫

R2×R2

αm,n(v
′, v)δ(εm +

|v′|2

2
− εn −

|v|2

2
)(f ′m − fn)

2 dv′ dv

≥
1

2
λ0

+∞
∑

m,n=1

∫

R2×R2

1

N(εn + |v|2

2
)
δ(e′m − en)(f

′2
m − 2fnf

′
m + f 2n) dv

′ dv .

Using the fact, that f ∈ ker(Q0)
⊥, we have

+∞
∑

m,n=1

∫

R2×R2

1

N(en)
δ(e′m − en)fnf

′
m dv

′ dv = 0 ,
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implying

−〈Q0(f), f〉 ≥
1

2
λ0

+∞
∑

m,n=1

∫

R2×R2

1

N(en)
δ(e′m − en)(f

′2
m + f 2n) dv

′ dv

= λ0

+∞
∑

m,n=1

∫

R2×R2

1

N(en)
δ(e′m − en)f

2
n dv

′ dv

= λ0

+∞
∑

n=1

∫ ∞

ε1

∫

S
ε−εn

|fn(v)|
2dNε−εn

(v)dε = λ0‖f‖
2 .

Remark 2.6 Defining by

P : L2 → ker(Q0) ; P⊥ : L2 → ker(Q0)
⊥ ,

the projections on the kernel respectively on the orthogonal of the kernel of Q0, such that
P⊥(f) = (Id− P)(f), we can express the coercivity inequality (2.8) as

−〈Q0(f), f〉 ≥ C‖f − Pf‖2, ∀ f ∈ L2 . (2.9)

2.3 The diffusion limit α → 0 : formal approach

We investigate in this section the formal limit α→ 0 in order to derive from the above
model a quantum-fluid subband model, corresponding to the chosen elastic collision
operator Q0. The limit model will be quantum in the confined z-direction, and in the
transport direction x we shall get the SHE model. This diffusion approximation is based
upon the Hilbert expansion

fα = f 0 + αf 1 + α2f 2 + · · · (2.10)

Inserting this expansion in (2.2) and identifying equal powers of α, leads to the equations

Q0(f
0)n = 0, (2.11)

Q0(f
1)n = v · ∇xf

0
n −∇xεn · ∇vf

0
n, (2.12)

Q0(f
2)n = ∂tf

0
n + v · ∇xf

1
n −∇xεn · ∇vf

1
n. (2.13)

The first equation and Proposition 2.4 imply the existence of an energy dependent
function F (t, x, ε), such that

f 0n(t, x, v) = F (t, x,
|v|2

2
+ εn) . (2.14)
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The second equation can then be rewritten as

Q0(f
1)n(t, x, v) = v · (∇xF )(t, x,

|v|2

2
+ εn) .

Denoting
G(t, x, ε) := ∇xF (t, x, ε) ,

we have

Q0(f
1) = vψ(e) ·

G

ψ
(e) ,

where ψ : R → R is a function, such that vψ(e) ∈ L2. It is then readily seen that
vψ(e) ∈ ker(Q0)

⊥, so that the equation

−Q0(h) = vψ(e) ,

admits a unique solution in ker(Q0)
⊥, that we write h = ϑψ(e). Therefore, the only

solution f 1 ∈ ker(Q0)
⊥ of (2.12) is defined by

f 1 = −ϑ ·G(e). (2.15)

This last equation has to be understood as follows

f 1n(t, x, v) = −ϑn(t, x, v) ·G(t, x,εn +
|v|2

2
) ,

where ϑn is a vector-valued function. Remark that ϑ is independent from the choice of
the function ψ.
Now in order to assure the solvability of equation (2.13), it is necessary and sufficient
that the right-hand side belongs to ker(Q0)

⊥. This leads to the solvability condition

∑

n

∫

S
ε−εn

(∂tf
0
n + v · ∇xf

1
n −∇xεn · ∇vf

1
n) dNε−εn

(v) = 0 , for a.a. ε ≥ ε1 .

Multiplication with an arbitrary energy-dependent test function ϕ ∈ C0(R) and inte-
gration with respect to the energy variable ε, yields

∫ ∞

ε1

∑

n

∫

S
ε−εn

(∂tf
0
n + v · ∇xf

1
n −∇xεn · ∇vf

1
n) dNε−εn

(v) ϕ(ε) dε = 0 . (2.16)

The first term gives

∫ ∞

ε1

∑

n

∫

S
ε−εn

∂tf
0
n dNε−εn

(v) ϕ(ε) dε =

∫ ∞

ε1

∑

n

∫

S
ε−εn

(∂tF + ∂εF∂tεn) dNε−εn
(v) ϕ(ε) dε

=

∫ ∞

ε1

∂tF N ϕ(ε) dε+

∫ ∞

ε1

∂εF

(

∑

n

∂tεn
∫

S
ε−εn

dNε−εn
(v)

)

ϕ(ε) dε .
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Using (2.15) we can deduce furthermore
∫ ∞

ε1

∑

n

∫

S
ε−εn

v · ∇xf
1
n dNε−εn

(v) ϕ(ε) dε =
∑

n

∫

R2

∇x · (v f
1
n) ϕ(en) dv =

= ∇x ·

[

∑

n

∫

R2

v f 1n ϕ(en) dv

]

−
∑

n

∫

R2

f 1n v · ∇xεn ϕ′(en) dv

= −

∫ ∞

ε1

∇x ·

[

∑

n

∫

S
ε−εn

v ⊗ ϑn dNε−εn
(v) · ∇xF

]

ϕ(ε) dε−
∑

n

∫

R2

f 1n v · ∇xεn ϕ′(en)dv ,

and for the last term of (2.16)

−

∫ ∞

ε1

∑

n

∫

S
ε−εn

∇xεn · ∇vf
1
n dNε−εn

(v) ϕ(ε) dε = −
∑

n

∫

R2

∇v · (f
1
n ∇xεn) ϕ(en) dv =

=
∑

n

∫

R2

f 1n ∇xεn · v ϕ′(en) dv .

Concluding, the solvability condition for equation (2.13) reads for all test functions
ϕ ∈ C0(R)

∫ ∞

ε1

∂tF N ϕ dε+

∫ ∞

ε1

∂εF κ ϕ dε+

∫ ∞

ε1

∇x · J ϕ dε = 0 ,

where we used the notations

J(t, x, ε) :=
∑

n

∫

S
ε−εn

vf 1n dNε−εn
(v) = −

∑

n

∫

S
ε−εn

(v ⊗ ϑn)dNε−εn
(v) · ∇xF ,

(2.17)
with

D(t, x, ε) :=
∑

n

∫

S
ε−εn

v ⊗ ϑn dNε−εn
(v) , (2.18)

the so-called diffusion matrix. Moreover we denoted

κ(t, x, ε) :=
∑

n

∂tεn
∫

S
ε−εn

dNε−εn
(v) = −2π∂t

(

∑

n

(ε− εn)+
)

. (2.19)

Recalling the definition of the density of states

N(t, x, ε) =
∑

n∈N∗

∫

S
ε−εn

dNε−εn
(v) , (2.20)

we observe that we have in a distributional sense the relation

∂tN(t, x, ε) = −∂εκ(t, x, ε) .

Thus we deduce the following important theorem

11



Theorem 2.7 (Formal diffusion limit)
The system of equations (2.11)-(2.13), deduced from the Hilbert expansion (2.10), is
solvable if and only if f 0 and f 1 are determined by (2.14), (2.15), and the distribution
function F (t, x, ε) satisfies the following diffusion equation in the position-energy space

N∂tF +∇x · J + κ ∂εF = 0 , (2.21)

where the current density is given by

J(t, x, ε) = −D(t, x, ε) · ∇xF (t, x, ε) , (2.22)

and N , D, κ are defined in (2.20), (2.18), (2.19).

This model is referred to as the SHE model. In contrast to the Boltzmann equation,
the distribution function F , solution of the SHE model, is only energy dependent. Due
to the elastic collisions, the angular dependence of the electron velocity is averaged in
the diffusion limit.

Hereby we shall also remark, that a similar equation is obtained for the 1D case, in
the diffusion limit α→ 0 of the following rescaled Boltzmann equation







∂tf +
1

α
(∇vε · ∇xf −∇xε · ∇vf) =

1

α2
Q(f)

f(0, x, v) = fin(x, v) ,

where ε(t, x, v) is an arbitrary regular function, satisfying ε(t, x, v) = ε(t, x,−v). In the
limit we get the diffusion equation

(∂tF )N +∇x · J + (∂εF )κ = 0 ,

with J := −D · ∇xF and

D(t, x, ε) :=

∫

Sε

∇vε⊗ϑ dNε(v) ; κ(t, x, ε) :=

∫

Sε

∂tε dNε(v) ; N =

∫

Sε

dNε(v) ,

the surface of constant energy being defined as Sε := {v ∈ R2 / ε(t, x, v) = ε}.

Let us now state an important property of the diffusion matrix D, corresponding to
the SHE model (2.21)-(2.22).

Lemma 2.8 The diffusion matrix D(t, x, ε), defined in (2.18) is a symmetric, non-
negative 2× 2 matrix, satisfying

D(t, x, ε) ≥ C
∑

n

∫

S
ε−εn

v ⊗ v dNε−εn
(v) , (2.23)

with a constant C > 0 independent on t, x and ε.
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Proof Let t and x be fixed parameters within this proof. Moreover let ϕ ∈ C0(R) be
an arbitrary test function with compact support, and ψ : R → R a function, such that
vψ(e) ∈ L2. Then using the selfadjointness of the operator Q0, we have

∫ ∞

ε1

Dij(ε)ϕ(ε)dε =

∫ ∞

ε1

∑

n

∫

S
ε−εn

vi ϑ
j
n dNε−εn

(v) ϕ(ε) dε

=
∑

n

∫

R2

(vi ψ(en))

(

1

ψ(en)
ϑjnϕ(en)

)

dv

= −
∑

n

∫

R2

Q0(ϑ
i ψ(e))n

(

1

ψ(en)
ϑjnϕ(en)

)

dv

= −
∑

n

∫

R2

(

ϑin
1

ψ(en)

)

Q0(ψ(e)ϑ
j)n ϕ(en) dv

=
∑

n

∫

R2

ϑin vj ϕ(en) dv =

∫ ∞

ε1

Dji(ε) ϕ(ε) dε .

Since ϕ was arbitrary, we deduce the equality Dij(ε) = Dji(ε) for a.a. ε ∈ [ε1,∞). The
non-negativity is a direct consequence of the inequality (2.23). To prove this inequality,
let ϕ ∈ C0(R) be a test function, with ϕ ≥ 0. Note, that in this case v

√

ϕ(e) ∈ L2. Let
(ξ1, ξ2) ∈ R2 be fixed, we have

∫ ∞

ε1

ϕ(ε)
2
∑

i,j=1

Dij(ε) ξi ξj dε =

∫ ∞

ε1

∑

n

(

∫

S
ε−εn

ϕ(ε)
∑

i,j

vi ϑ
j
n ξi ξj dNε−εn

(v)

)

dε =

=
∑

n

∫

R2

∑

i

(

√

ϕ(en) vi ξi

)

∑

j

(

√

ϕ(en) ϑ
j
n ξj

)

dv

= −
∑

n

∫

R2

Q0

(

2
∑

i=1

√

ϕ(e) ϑi ξi

)

n

(

2
∑

j=1

√

ϕ(en) ϑ
j
n ξj

)

dv.

Using the coercivity and the boundedness of the operator Q0, we deduce

∫ ∞

ε1

ϕ(ε)
∑

i,j

Dij(ε) ξi ξj dε ≥ C ||
2
∑

i=1

ϑi ξi
√

ϕ(e) ||2 ≥ C ||Q0

(

2
∑

i=1

ϑi ξi
√

ϕ(e)

)

||2

= C ||Q0(ϑ
√

ϕ(e)) · ξ||2 = C ||
√

ϕ(e) v · ξ ||2

= C
∑

n

∫ ∞

ε1

ϕ(ε)

∫

S
ε−εn

|v · ξ|2 dNε−εn
(v) dε

= C
∑

n

∫ ∞

ε1

ϕ(ε)

∫

S
ε−εn

∑

i,j

(v ⊗ v)ij ξi ξj dNε−εn
(v) dε

= C

∫ ∞

ε1

ϕ(ε)
∑

i,j

[

∑

n

(

∫

S
ε−εn

(v ⊗ v)ij dNε−εn
(v)

)]

ξi ξj dε

13



for all ϕ ∈ C0(R), ϕ ≥ 0, which implies (2.23).

In a simplified case, we can give the exact expression for the diffusion matrix D and
show that the estimate (2.23) is sharp. Let us consider cross sections of the form

αnm(t, x, v, v
′) := α(t, x,εn +

|v|2

2
) ,

with α(t, x, ε) an energy dependent function. Then we are able to determine the expres-
sion of the unique solution h ∈ (kerQ0)

⊥ of −Q0(h) = vψ(e). Indeed

Q0(h)n(v) =
∑

m

∫

R2

α(t, x, en)δ(en − e′m)h
′
mdv

′ −
∑

m

∫

R2

α(t, x, en)δ(en − e′m)dv
′hn .

The first term vanishes, as h ∈ (kerQ0)
⊥. Hence

−Q0(h)n(v) = α(t, x, en)

∫ ∞

ε1

∑

m

∫

S
ε−εm

δ(en − e′m)dNε−εm
(v) dε hn = α(en)N(en)hn(v) ,

implying

hn(t, x, v) = v
ψ(en)

α(t, x, en)N(t, x, en)
⇒ ϑn(t, x, v) =

1

α(t, x, en)N(t, x, en)
v .

Consequently, the diffusion matrix D has the explicit form

D(t, x, ε) =
1

α(t, x, ε)N(t, x, ε)

∑

n

∫

S
ε−εn

v ⊗ v dNε−εm
(v)

=
2π

α(t, x, ε)N(t, x, ε)

∑

n

(ε− εn)+Id ,

with Id the identity matrix.

2.4 The rigorous approach

This section is devoted to the rigorous proof of the convergence of the solution corre-
sponding to the adiabatic quantum/kinetic model (2.1)-(2.2) towards the solution cor-
responding to the quantum/fluid model (2.1), (2.21), (2.22), which was formally derived
in the last section. We first claim the following existence result for the one-dimensional
Schrödinger equation (2.1). Details can be found in [6].

Lemma 2.9 Let the potential V be a fixed real-valued function belonging to C1([0, T ];
W 1,∞(R2× [0, 1])). The eigenvalue problem (2.1) admits a unique solution (εn, χn)n∈N ∈
C1([0, T ];W 1,∞(R2))× C1([0, T ];W 1,∞(R2 × [0, 1])) .

To precise the right functional framework, we have to introduce some new notations.
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• We shall denote by L2 and L2x,εloc the following spaces

L2 :=

{

f = (fn(x, v))n∈N /
∑

n

∫

R2×R2

|fn(x, v)|
2dvdx <∞

}

,

L2x,εloc :=

{

ρ : R2 × R → R /

∫

R2

∫

K

|ρ(x, ε)|2dεdx <∞ , ∀K ⊂ R bounded

}

.

• The transport operator Λ is defined by

Λ : D(Λ)→ L2 ; (Λg)n(x, v) := v · ∇xgn −∇xεn · ∇vgn ,

with the definition domain and corresponding norm

D(Λ) := {g ∈ L2 / Λg ∈ L2} ; ||g||2D(Λ) := ||g||
2
L2 + ||Λg||2L2 .

The weak formulation of the Boltzmann equation (2.2) is given in the following

Definition 2.10 A function fα ∈ L2(0, T,L2) is called weak solution of (2.2), if fα

satisfies

∑

n

∫ T

0

∫

R2×R2

fαn ∂tϕn dvdxdt+
1

α

∑

n

∫ T

0

∫

R2×R2

fαn (Λϕ)n dvdxdt

+
1

α2

∑

n

∫ T

0

∫

R2×R2

Q0(f
α)nϕn dvdxdt = −

∑

n

∫

R2×R2

fαin,nϕn(0) dvdx ,

(2.24)
for all test functions ϕ belonging to

S :=
{

ϕ ∈ W 1,2(0, T ;L2) ∩ L2(0, T ;D(Λ)) , ϕ(T, ·, ·) ≡ 0
}

.

The goal of this section is to prove the following main theorem :

Theorem 2.11 (Rigorous diffusion limit)
Let fα be the weak solution of the Boltzmann equation (2.2) for α > 0 and let f αin converge
in L2 towards a function fin, as α→ 0. Then, up to a subsequence, fα converge weakly
in L2(0, T ;L2) towards a function f which is only energy-dependent, that means

fn(t, x, v) = F (t, x,εn(t, x) +
|v|2

2
) ,

and the distribution function F satisfies in a weak sense the following SHE model

∂t(N F ) +∇x · J + ∂ε(Fκ) = 0 , (2.25)

with the current density given by

J(t, x, ε) = −D(t, x, ε) · ∇xF (t, x, ε) , (2.26)
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and the initial data

F (0, x, ε) = Fin(x, ε) :=
1

N(0, x, ε)

∑

n

∫

S
ε−εn(0,x)

fin,n(x, v) dNε−εn
(v) , (2.27)

where N , D, κ are defined in (2.20), (2.18), (2.19).

Remark 2.12 The weak formulation of the continuity equation (2.25) reads

∫ T

0

∫

R2

∫

R
N F ∂tΦ dεdxdt+

∫ T

0

∫

R2

∫

R
J · ∇xΦ dεdxdt+

∫ T

0

∫

R2

∫

R
F κ∂εΦ dεdxdt =

= −

∫

R2

∫

R
N(0, x, ε)Fin(x, ε) Φ(0, x, ε) dεdx , ∀Φ ∈ C1

0 ([0, T )× R2 × R) ,

(2.28)
whereas the current equation has the following weak form

∫ T

0

∫

R2

∫

R
J ·Ψ dεdxdt =

∑

n

∫ T

0

∫

R2×R2

(Λf)nQ
−1
0 (v ·Ψ)n dvdxdt ,

∀Ψ ∈ C0([0, T ]× R2 × R)2 .
(2.29)

The derivation of the current weak formulation (2.29) is immediate by observing that

∑

n

∫ T

0

∫

R2×R2

(Λf)nQ
−1
0 (v ·Ψ)n dvdxdt = −

∑

n

∫ T

0

∫

R2×R2

(∇xF · v)(ϑn ·Ψ) dvdxdt

= −

∫ T

0

∫

R2

∫ ∞

ε1

∇xF (t, x, ε) ·

(

∑

n

∫

S
ε−εn

v ⊗ ϑndNε−εn
(v)

)

·Ψ(t, x, ε) dεdxdt .

To justify the existence of all these integrals, we show later on, that the involved func-
tions belong to the right functional spaces.

The proof of Theorem 2.11 is done in several steps. Establishing a priori estimates,
the sequence {fα} of weak solutions of (2.2) is shown to be bounded in L2(0, T,L2).
This implies the existence of a function f ∈ L2(0, T,L2) such that, up to a subsequence,
fα → f weakly in L2(0, T,L2). It will be proven in a next step that this limit function
is only energy-dependent. Finally, passing to the limit in the weak formulation (2.24),
with special choices of test functions, enables to get the desired equation.

Lemma 2.13 The Boltzmann equation (2.2) admits for each α > 0 and fαin ∈ L
2 a

unique weak solution fα ∈ L2(0, T ;L2).
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Proof To prove this lemma, we shall use a fixed point argument. Let us define for a
fixed α > 0 the application

τ : L2(0, T ;L2)→ L2(0, T ;L2) ; f old 7→ fnew ,

with fnew solution of






∂tf
new
n +

1

α
(v · ∇xf

new
n −∇xεn · ∇vf

new
n ) +

1

α2
Q−0 (f

new)n =
1

α2
Q+
0 (f

old)n

fnew(0, x, v) = fin,n(x, v) ,

(2.30)

where Q+
0 and Q−0 are the gain respectively loss terms, given by

Q+
0 (f)n(t, x, v) =

∑

m∈N∗

∫

R2

αnm(t, x, v, v
′)δ(en − e′m)fm(t, x, v

′)dv′ ,

Q−0 (f)n(t, x, v) =
∑

m∈N∗

∫

R2

αnm(t, x, v, v
′)δ(en − e′m)dv

′ fn(t, x, v) .

The idea is to prove that this application is a contraction and admits thus a fixed point
f ∈ L2(0, T,L2). Our first concern shall be to show that τ is well defined. For this
let f old ∈ L2(0, T,L2). By standard existence results for the transport equation, we
deduce for each n ∈ N∗ the existence of a weak solution fnewn ∈ L∞(0, T, L2x,v) of (2.30),
satisfying the estimate

||fnewn (t, ·, ·)||L2
x,v
≤ ||fin,n(·, ·)||L2

x,v
+

1

α2

∫ t

0

||(Q+
0 (f

old))n(s)||L2
x,v
ds for a.a. t ∈ (0, T ) .

This implies after a summation over n

||fnew(t, ·, ·)||2L∞(0,T,L2) ≤ 2||fin||
2
L2 + 2T

1

α4
||Q+

0 (f
old)||2L2(0,t,L2) ,

yielding fnew ∈ L∞(0, T,L2) ⊂ L2(0, T,L2). To prove that τ is a contraction, we shall
introduce a new equivalent norm in L2(0, T,L2), by

||g||2δ :=

∫ T

0

e−δt||g(t, ·, ·)||2L2 dt ∀g ∈ L2(0, T,L2) .

The parameter δ > 0 shall be specified later on. With this norm, we have

||τ(f old1 )− τ(f old2 )||δ = ||fnew1 − fnew2 ||δ =

∫ T

0

e−δt||fnew1 (t)− fnew2 (t)||2L2 dt

≤
2T

α4

∫ T

0

e−δt
∫ t

0

||Q+
0 (f

old
1 − f old2 )(s)||2L2dsdt

=
2T

α4

∫ T

0

∫ T

s

e−δt||Q+
0 (f

old
1 − f old2 )(s)||2L2dtds

≤
2cT

α4

∫ T

0

||f old1 (s)− f old2 (s)||2L2

e−δs − e−δT

δ
ds

≤
2cT

α4δ
||f old1 − f old2 ||

2
δ .
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For fixed α > 0 and T , we can choose δ > 0 in such a manner, that the application τ
is a contraction in (L2(0, T ;L2), || · ||δ). Thus τ admits a fixed point f ∈ L2(0, T,L2),
unique weak solution of the Boltzmann equation (2.2).

Lemma 2.14 The weak solutions fα of the rescaled Boltzmann equation (2.2) form
a bounded sequence in L2(0, T ;L2), such that up to a subsequence fα → f weakly in
L2(0, T ;L2), as α → 0. Moreover there exists an energy-dependent function F (t, x, ε)
such that the limit function f reads

fn(t, x, v) = F (t, x,εn +
|v|2

2
) .

Proof Multiplying (2.2) with fα and integrating with respect to (t, x, v), leads to

1

2

∑

n

∫ t

0

∫

R2×R2

∂t|f
α
n |
2dvdxds =

1

α2

∑

n

∫ t

0

∫

R2×R2

Q0(f
α)nf

α
n dvdxds ,

implying

1

2
||fα(t, ·, ·)||2L2 =

1

2
||fαin(·, ·)||

2
L2 +

1

α2

∑

n

∫ t

0

∫

R2×R2

Q0(f
α)nf

α
n dvdxds . (2.31)

This procedure requires some regularity for the functions fα. However a standard reg-
ularisation technique permits to deduce (2.31) even for fα ∈ L2(0, T,L2). The non-
positivity of the operator Q0 and the boundedness of the sequence fαin imply

||fα(t, ·, ·)||2L2 ≤ ||fαin(·, ·)||
2
L2 ≤ c , ∀α > 0 ,

establishing thus the boundedness of the sequence fα in L∞(0, T ;L2). Consequently, up
to a subsequence, fα is weakly convergent in L2(0, T ;L2) as α tends to zero. It remains
to prove that the limit function f is only energy dependent. For this, we multiply
equation (2.31) by α2 and pass to the limit α→ 0. Thus, we have

∑

n

∫ t

0

∫

R2×R2

Q0(f
α)nf

α
n dvdxds→ 0 , ∀t ∈ [0, T ] .

With (2.9) this yields P⊥fα → 0 in L2(0, T,L2), hence Q0(f
α) = Q0(P

⊥fα) → 0. As
however fα ⇀ f and thus Q0(f

α) ⇀ Q0(f) in L2(0, T,L2), we get Q0(f) = 0. Conse-
quently, the limit function f belongs to the kernel of Q0.

It remains to show that the limiting distribution function F of Lemma 2.14 satisfies
in a weak sense the SHE model (2.25), (2.26). For this, it will be of use to introduce
the electron and the current densities associated to the statistics fα

ρα(t, x, ε) :=
∑

n

∫

S
ε−εn

fαn (t, x, v) dNε−εn
(v) , Jα(t, x, ε) :=

1

α

∑

n

∫

S
ε−εn

vfαn dNε−εn
(v) ,
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as well as the terms

Γα(t, x, ε) :=
∑

n

∂tεn
∫

S
ε−εn

fαn (t, x, v) dNε−εn
(v) , ραin(x, ε) :=

∑

n

∫

S
ε−εn(0,x)

fαin,n dNε−εn
(v) .

Using the boundedness of the distribution functions fα in L2(0, T,L2) and choosing in
(2.24) the particular test function ϕ1 ∈ S given by

ϕ1n(t, x, v) := Φ(t, x,εn +
|v|2

2
) , (2.32)

with Φ ∈ C1
0([0, T )× R2 × R), we can show immediately:

Lemma 2.15 (i) The energy-dependent functions (ρα, Jα,Γα) ∈ L2(0, T ;L2x,εloc)
4 and

the initial data ραin ∈ L
2
x,εloc

satisfy in a weak sense the following system

{

∂tρ
α +∇x · J

α + ∂εΓ
α = 0

ρα(0) = ραin .

(ii) The sequences ρα, Jα,Γα as well as ραin are bounded in the corresponding spaces
and thus (up to a subsequence) weakly convergent for α → 0 towards some functions
(ρ, J,Γ) ∈ L2(0, T ;L2x,εloc)

4 and ρin ∈ L
2
x,εloc

. These limit functions satisfy the following
equation

∫ T

0

∫

R2

∫

R
ρ ∂tΦ dεdxdt+

∫ T

0

∫

R2

∫

R
J · ∇xΦ dεdxdt+

∫ T

0

∫

R2

∫

R
Γ ∂εΦ dεdxdt =

= −

∫

R2

∫

R
ρin(x, ε) Φ(0, x, ε) dεdx , ∀Φ ∈ C1

0 ([0, T )× R2 × R) .

(2.33)

Proof The only thing left to be shown is that Jα is a bounded sequence in L2(0, T ;L2x,εloc)
2.

For this let us decompose fα as follows

fα = hα + αgα with hα := Pfα ; gα :=
1

α
P⊥fα . (2.34)

Thus

∫ T

0

∫

R2

∫

K

|Jα(t, x, ε)|2 dεdxdt =

∫ T

0

∫

R2

∫

K

∣

∣

∣

∣

∣

∑

n

∫

S
ε−εn

gαn(t, x, v)v dNε−εn
(v)

∣

∣

∣

∣

∣

2

dεdxdt

≤

∫ T

0

∫

R2

∫

K

(

∑

n

∫

S
ε−εn

|gαn(t, x, v)|
2 dNε−εn

(v)

)(

∑

n

∫

S
ε−εn

|v|2 dNε−εn
(v)

)

dεdxdt

≤ cK <∞ ,

where cK > 0 is a constant independent on α. For this last estimate we used the coer-
civity inequality (2.8) as well as equation (2.31), and the fact, thatK is a bounded set.
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In order to finish the proof of the main theorem, it remains to express the limit
functions ρ, J,Γ and ρin in terms of the distribution function F .

Proof of Theorem 2.11 For the identification of the functions ρ, J,Γ and ρin, we shall
use the fact that fα ⇀ f in L2(0, T,L2). Thus we have for some arbitrary test function
Φ ∈ C1

0 ([0, T )× R2 × R)

∫ T

0

∫

R2

∫

R
ρα(t, x, ε)Φ(t, x, ε) dεdxdt =

∑

n

∫ T

0

∫

R2×R2

fαn (t, x, v)Φ(t, x,εn +
|v|2

2
) dvdxdt

−→α→0

∫ T

0

∫

R2

∫

R
F (t, x, ε)N(t, x, ε)Φ(t, x, ε) dεdxdt .

But since ρα ⇀ ρ in L2(0, T,L2), we get ρ = F N ∈ L2(0, T ;L2x,εloc). Similarly due to
the fact that fαin → fin in L2, we deduce ρin = FinN(0) ∈ L2x,εloc . Furthermore

∫ T

0

∫

R2

∫

R
Γα(t, x, ε)Φ(t, x, ε) dεdxdt =

∑

n

∫ T

0

∫

R2×R2

fαn ∂tεnΦ(t, x,εn +
|v|2

2
) dvdxdt

−→α→0

∫ T

0

∫

R2

∫

R
F (t, x, ε)

(

∑

n

∂tεn
∫

S
ε−εn

dNε−εn
(v)

)

Φ(t, x, ε) dεdxdt ,

implying Γ = F κ ∈ L2(0, T ;L2x,εloc). And finally, let us analyse the limit of the following
term

∫ T

0

∫

R2

∫

R
Jα ·Ψ dεdxdt =

1

α

∑

n

∫ T

0

∫

R2×R2

fαn (t, x, v) v ·Ψ dvdxdt ,

for some test function Ψ ∈ C0([0, T ] × R2 × R)2. For this, let us consider again the
decomposition (2.34), implying, in view of v ·Ψ ∈ ker(Q0)

⊥, that

1

α

∑

n

∫ T

0

∫

R2×R2

fαn (v ·Ψ)n dvdxdt =
∑

n

∫ T

0

∫

R2×R2

gαn (v ·Ψ)n dvdxdt .

As shown in the proof of Lemma 2.15, the sequence gα is bounded in L2(0, T,L2), thus
up to subsequence weakly convergent towards some function g ∈ L2(0, T,L2), leading
to

∑

n

∫ T

0

∫

R2×R2

gαn(v ·Ψ)n dvdxdt→
∑

n

∫ T

0

∫

R2×R2

gn(v ·Ψ)n dvdxdt .

To finish the proof we have to express this last integral in terms of the distribution
function F . For this purpose, let us insert the decompostion (2.34) in the variational
formulation (2.24), where ϕ ∈ S is an arbitrary test function, deducing thus

∑

n

∫ T

0

∫

R2×R2

hαn(Λϕ)n dvdxdt+
∑

n

∫ T

0

∫

R2×R2

Q0(g
α)nϕn dvdxdt = O(α) .
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Here we used the fact, that fα, gα and hα are bounded sequences in L2(0, T,L2) andO(α)
stands for the terms of the order one in α. From (2.34), one can deduce immediately
that hα ⇀ f in L2(0, T,L2), such that passing to the limit in the last equation yields

∑

n

∫ T

0

∫

R2×R2

fn(Λϕ)n dvdxdt+
∑

n

∫ T

0

∫

R2×R2

Q0(g)nϕn dvdxdt = 0 , (2.35)

which shows that Λf = ∇xF · v is a well defined function in L2(0, T,L2). Choosing at
this stage the special function ϕ2 ∈ L2(0, T,L2) (unique in ker(Q0)

⊥), given by

ϕ2 := Q−10 (v ·Ψ) ,

we have by using (2.35)

∑

n

∫ T

0

∫

R2×R2

gn(v ·Ψ)n dvdxdt =
∑

n

∫ T

0

∫

R2×R2

gnQ0(ϕ
2)n dvdxdt =

=
∑

n

∫ T

0

∫

R2×R2

(Λf)nϕ
2
n dvdxdt =

∑

n

∫ T

0

∫

R2×R2

(Λf)n(Q
−1
0 (v ·Ψ))n dvdxdt .

Altogether we have thus ∀Ψ ∈ C0([0, T ]× R2 × R)2

∫ T

0

∫

R2

∫

R
Jα ·Ψ dεdxdt −→α→0

∑

n

∫ T

0

∫

R2×R2

(Λf)n(Q
−1
0 (v ·Ψ))n dvdxdt,

which proves that J ∈ L2(0, T ;L2x,εloc) is solution of the weak formulation (2.29). This
fact, as well as equation (2.33) permits to finish the proof of the main theorem.

3 The diffusion limit towards the ET model

In the previous section we have derived the coupled Schrödinger/SHE model from the
Schrödinger/Boltzmann system, by assuming that the elastic impurity collisions are
predominant. In this section we shall perform another relaxation limit, based on a
different collision mechanism, constituted of the elastic impurity scattering and the
electron-electron scattering. In the limit of a vanishing rescaled free mean path α→ 0,
we shall get the coupled Schrödinger/ET model.

Starting point is the coupled model composed of the rescaled Boltzmann equation
in the transport direction x







∂tfn +
1

α
(v · ∇xfn −∇xεn · ∇vfn) =

1

α2
(Q0(f)n +Qe(f)n)

fn(0, x, v) = fin,n(x, v) ,

(3.1)
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whereas the confinement direction is still described by means of the 1D Schrödinger
equation (2.1). The linear, elastic collision operator Q0, describing the lattice-defect
collisions, is the same as in the previous section,

Q0(f)n :=
∑

m∈N∗

∫

R2

αmn(t, x, v
′, v)δ(εn +

|v|2

2
− εm −

|v′|2

2
)(fm(t, x, v

′)− fn(t, x, v)) dv
′ ,

(3.2)
and the elastic, non-linear electron-electron collision operator Qe is given by

Qe(f)n(v) :=

∑

m,r,s∈N∗

∫

(R2)3
βnmrs(t, x, v, v1, v

′, v′1)δ(εn +
|v|2

2
+ εm +

|v1|
2

2
− εr −

|v′|2

2
− εs −

|v′1|
2

2
)

δ(v + v1 − v′ − v′1)[f
′
rf
′
s,1(1− ηfn)(1− ηfm,1)− fnfm,1(1− ηf ′r)(1− ηf ′s,1)] dv1dv

′dv′1 ,

(3.3)
where η ≥ 0 is a distribution function scale and the terms 0 ≤ 1 − ηfn ≤ 1 express
the Pauli exclusion principle. We shall denote in the following the kinetic energy of the
electrons belonging to the n− th energy subband, by

en(t, x, v) := εn(t, x) +
|v|2

2
.

The notations em,1, e
′
r and e′s,1 stand then for em(v1), er(v

′) respectively es(v
′
1). The

scattering cross sections αnm satisfy Hypothesis 1, whereas βnmrs are assumed to satisfy

Hypothesis 2 The coefficients βnmrs satisfy the following positivity, boundedness and
symmetry properties

0 < λ2 < βnmrsM(t, x, v, n, v1,m) < λ3 < +∞ ,

βnmrs(v, v1, v
′, v′1) = βmnrs(v1, v, v

′, v′1) = βrsnm(v
′, v′1, v, v1).

The weight function M is defined as

M(t, x, v, n, v1,m) :=
∑

r,s∈N∗

∫

R2

∫

R2

δ(en + em,1 − e′r − e′s,1)δ(v + v1 − v′ − v′1)dv
′dv′1 .

Similarly as for the elastic impurity collisions, the weight function M is a density of
states. It gives the number of possible configurations the electrons can occupy after
an electron-electron collision, if their configuration before the collision was (v, n, v1,m).
Using the conservation of the energy and the impulsion, the outgoing velocities are given
by



















v′ =
v + v1

2
+

√

εn + εm − εr − εs +
1

4
|v − v1|2 σ

v′1 =
v + v1

2
−

√

εn + εm − εr − εs +
1

4
|v − v1|2 σ

, |σ| = 1 , σ ∈ R2 ,
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such that the density of states can be written in the form

M(t, x, v, n, v1,m) := 2π
∑

r,s∈N∗

(

εn + εm − εr − εs +
1

4
|v − v1|

2

)+

.

As for the derivation of the SHE model, we shall perform a Hilbert expansion

fα = f 0 + αf 1 + α2f 2 + · · · (3.4)

The electron-electron collision operator being not linear, we have to expand it around
the equilibrium function f 0, as

Qe(f) = Qe(f
0) + αDQe(f

0)(f 1) + α2
[

DQe(f
0)(f 2) +

1

2
D2Qe(f

0)(f 1, f 1)

]

+ · · · .

Substituting the Hilbert expansion in the Boltzmann equation (3.1) and comparing the
terms in the same order of α, yields the equations

Qe(f
0)n +Q0(f

0)n= 0 , (3.5)

DQe(f
0)(f 1)n+Q0(f

1)n= v · ∇xf
0
n −∇xεn · ∇vf

0
n , (3.6)

DQe(f
0)(f 2)n+Q0(f

2)n= ∂tf
0
n + v · ∇xf

1
n −∇xεn · ∇vf

1
n −

1

2
D2Qe(f

0)(f 1, f 1)n . (3.7)

To solve these equations we have to analyze the operatorsQe+Q0 respectivelyDQe(f
0)+

Q0. In particular, we are interested in finding the kernel of Qe +Q0 and the orthogonal
to the kernel of DQe(f

0) +Q0. This shall be the aim of the next sections.

3.1 Properties of the operator Qe +Q0 : formal approach

The purpose of this section is to derive some properties of the operatorQe+Q0, especially
to determine its kernel, and consequently to solve the equation (3.5) in order to find the
zeroth order term of the Hilbert expansion.

Proposition 3.1 Under the Hypothesis 2, the operator Qe satisfies the following prop-
erties:
(i) The micro-reversibility assumption on βnmrs implies immediately

〈Qe(f), g〉 = −
1

4

∑

n,m,r,s

∫

(R2)4
βnmrsδeδv[f

′
rf
′
s,1(1− ηfn)(1− ηfm,1)−

−fnfm,1(1− ηf ′r)(1− ηf ′s,1)] [g
′
r + g′s,1 − gn − gm,1] dvdv1dv

′dv′1 .

(ii) Let the function H be defined as H(x) := ln x
1−ηx

. Then Qe satisfies the following
dissipative inequality

〈Qe(f), H(f)〉 ≤ 0 . (3.8)
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(iii) Collision invariants
〈

Qe(f),





1
v1
e(v)





〉

= 0 . (3.9)

Proof The proof of this proposition is immediate and similar to the proof of Proposition
2.4. It is based on the positivity and symmetry properties of the cross sections βnmrs.
We remark only, that with the special choice of the function H, we have

〈Qe(f), H(f)〉 =

−
1

4

∑

n,m,r,s

∫

(R2)4
βnmrsδeδv[f

′
rf
′
s,1(1− ηfn)(1− ηfm,1)− fnfm,1(1− ηf ′r)(1− ηf ′s,1)]

[ln(f ′rf
′
s,1(1− ηfn)(1− ηfm,1))− ln(fnfm,1(1− ηf ′r)(1− ηf ′s,1))] dvdv1dv

′dv′1 .

Let us now pass to the description of the kernel of the operator Qe +Q0.

Proposition 3.2 The kernel of the operator Qe +Q0 is given by

Ker(Qe+Q0) = {f(t, x, v) ; ∃ µ(t, x), T (t, x) such that fn(t, x, v) = Fµ,T (t, x, en(v))} ,

with the Fermi-Dirac distribution function

Fµ,T (t, x, ε) :=
1

η + exp ε−µ(t,x)
T (t,x)

, (3.10)

where µ is the associated chemical potential and T > 0 the electron temperature .

Proof Within the proof we shall consider t and x as fixed parameters. To show the
inclusion “⊂”, let f ∈ ker(Qe + Q0) and H(x) := ln x

1−ηx
. Then we have 〈Q0(f) +

Qe(f), H(f)〉 = 0, which implies in view of (2.6) and (3.8)

〈Q0(f), H(f)〉 = 0 ; 〈Qe(f), H(f)〉 = 0 .

As in the case of the SHE model, we deduce from the first equality the existence of a
function F (t, x, ε), such that

fn(t, x, v) = F (t, x,εn +
|v|2

2
) .

The second equation implies

ln(f ′rf
′
s,1(1− ηfn)(1− ηfm,1)) = ln(fnfm,1(1− ηf ′r)(1− ηf ′s,1)) , (3.11)
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for all (n,m, r, s) ∈ N4 and (v, v1, v
′, v′1) ∈ (R2)4 with







v + v1 = v′ + v′1 ,

εn + |v|2

2
+ εm + |v1|2

2
= εr + |v′|2

2
+ εs + |v′1|

2

2
.

Equation (3.11) can be rewritten in the form

ln
fn

1− ηfn
+ ln

fm,1

1− ηfm,1

= ln
f ′r

1− ηf ′r
+ ln

f ′s,1
1− ηf ′s,1

,

or simply

(H ◦ F )(εn +
|v|2

2
) + (H ◦ F )(εm +

|v1|
2

2
) = (H ◦ F )(εr +

|v′|2

2
) + (H ◦ F )(εs +

|v′1|
2

2
) .

Let us now fix for each energy ε > ε1 a subband n and a velocity v 6= 0, such that

εn + |v|2

2
= ε. Placing us in the n-th subband, we shall assume, that for each ε > ε1

there exists an αε > 0, such that

[ε− αε, ε+ αε] ⊂
{

e′n / en = en,1 = ε ; v + v1 = v′ + v′1 ; en + en,1 = e′n + e′n,1
}

,

[ε− αε, ε+ αε] ⊂
{

e′n,1 / en = en,1 = ε ; v + v1 = v′ + v′1 ; en + en,1 = e′n + e′n,1
}

.

In other words, the sets of outgoing electron energies e′n and e′n,1 contain the set [ε −
αε, ε + αε], when the incoming energies are equal ε. This means that ∀ε > ε1 there
exists an αε > 0, such that

2(H ◦ F )(ε) = (H ◦ F )(ε− α) + (H ◦ F )(ε+ α) ∀α ∈ [−αε, αε] .

Hence H ◦ F : (ε1,∞) → R is an affine function, implying thus the existence of two
functions µ and T with

Fµ,T (ε) =
1

η + exp ε−µ
T

,

and T > 0, ensuring the integrability of F .
The other inclusion ′′ ⊃′′ is immediate.

Remark 3.3 A consequence of Proposition 3.2 is that the solutions of (3.5) are given
by a Fermi-Dirac distribution function

f 0n(t, x, v) = Fµ,T (t, x,εn +
|v|2

2
) . (3.12)
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3.2 Properties of the operator DQe(f
0) +Q0 : formal approach

Before discussing the properties of the operator DQe(f
0)+Q0, let us introduce the right

functional framework. Straightforward computations lead to the following expression
for the derivative of the electron-electron collision operator Qe at F

[DQe(F )(f)]n(v) =
∑

m,r,s

∫

(R2)3
βnmrsδeδvF

′
rF

′
s,1(1− ηFn)(1− ηFm,1)

[h′r + h′s,1 − hn − hm,1] dv1dv
′dv′1 ,

(3.13)

with F = Fµ,T the Fermi-Dirac distribution function and

hn(v) :=
fn(v)

Fn(v)(1− ηFn(v))
.

This leads to

〈DQe(F )(f), g〉 = −
1

4

∑

n,m,r,s

∫

(R2)4
βnmrsδeδvF

′
rF

′
s,1(1− ηFn)(1− ηFm,1)

[h′r + h′s,1 − hn − hm,1][g
′
r + g′s,1 − gn − gm,1] dvdv1dv

′dv′1 ,
(3.14)

Let us now define the Hilbert space

L2F :=

{

f = (fn)n∈N,
+∞
∑

n=1

∫

R2

|fn(v)|
2 1

Fn(1− ηFn)
dv < +∞

}

,

provided with the weighted scalar product

〈f, g〉F :=
∑

n∈N∗

∫

R2

fngn
1

Fn(1− ηFn)
dv .

Moreover let us shortly denote by De the derivative operator DQe(F ) and let Q :=
Q0 +De. Then we have

Proposition 3.4 Under Hypothesis 1 and 2, the operators Q0 and De satisfy the fol-
lowing properties:
(i) The operators Q0 and De are bounded, symmetric, non-positive operators on L2F .
(ii) The kernel of Q is given by

Ker(Q) =

{

f ∈ L2F ; fn(v) = G(εn +
|v|2

2
) with G ∈ Span{F (1− ηF ), F (1− ηF )ε}

}

(iii) Let P : L2F → Ker(Q) be the orthogonal projection on Ker(Q), then we have the
coercivity inequality with a constant C > 0,

−〈Qf, f〉F ≥ C||f − Pf ||2F , ∀f ∈ L2F .

(iv) The range of Q is closed and we have

R(Q) = Ker(Q)⊥ =

{

f ∈ L2F /
∑

n∈N∗

∫

R2

fn(v)

(

1
en

)

dv = 0

}

.
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Proof Item (i) is immediate by using Hypothesis 1 and 2. To prove item (ii), let
f belong to Ker(Q). This implies 〈(Q0 + De)(f), f〉F = 0, and as Q0 and De are
non-positive operators, we obtain thus

〈Q0f, f〉F = 0 ; 〈Def, f〉F = 0 .

From the first equality we deduce the existence of an energy dependent functionG(t, x, ε)
such that

fn(t, x, v) = G(t, x,εn +
|v|2

2
) .

From the second equality we deduce

Gn

Fn(1− ηFn)
+

Gm,1

Fm,1(1− ηFm,1)
=

G′r
F ′r(1− ηF ′r)

+
G′s,1

F ′s,1(1− ηF ′s,1)
,

for all (n,m, r, s) ∈ N4 and (v, v1, v
′, v′1) ∈ (R2)4 with







v + v1 = v′ + v′1 ,

εn + |v|2

2
+ εm + |v1|2

2
= εr + |v′|2

2
+ εs + |v′1|

2

2
.

Similar arguments as in the proof of Proposition 3.2 imply that the function G
F (1−ηF )

is
an affine function of the energy variable ε, such that we can write with some functions
a(t, x) and b(t, x)

G(t, x, ε) = F (t, x, ε)(1− ηF (t, x, ε))(a(t, x)ε+ b(t, x)).

The proof of item (iii) is similar as in [4]. The operator De can be written in the form

(Def)n(v) = −νnfn +
∑

i

∫

R2

Ki,n(u, v)
fi(u)

Fi(u)(1− ηFi(u))
du = (Υf)n(v) + (Kf)n(v) ,

with

νn(v) :=
∑

m,r,s

∫

(R2)3
βnmrsδeδvF

′
rF

′
s,1(1− ηFn)(1− ηFm,1)

1

Fn(1− ηFn)
dv1dv

′dv′1 ,

and

Ki,n(u, v) := 2
∑

l,j

∫

(R2)2
βnlijδ(en(v) + el(v1)− ei(u)− ej(v

′
1))δ(v + v1 − u− v′1)

Fi(u)Fj(v
′
1)(1− ηFn(v))(1− ηFl(v1)) dv1dv

′
1−

−
∑

l,j

∫

(R2)2
βniljδ(en(v) + ei(u)− el(v

′)− ej(v
′
1))δ(v + u− v′ − v′1)

Fl(v
′)Fj(v

′
1)(1− ηFn(v))(1− ηFi(u)) dv

′dv′1 .
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Using the boundedness property of the cross sections βnmrs, it can be shown that 0 <
%1 ≤ νn ≤ %2 with %1 and %2 independent on n, v, x and t, such that the spectrum of
the self-adjoint operator Υ : L2F → L2F satisfies

σ(Υ) ⊂ [−%2,−%1] .

Moreover, the operator K : L2F → L2F is shown to be a Hilbert-Schmidt operator and
thus compact, implying with Weyl’s theorem σess(De) = σess(Υ). Here we have denoted
by σess the essential spectrum of an operator. As furthermore De is self-adjoint and
non-positive, we have σ(De) ⊂ (−∞, 0]. Hence

σ(De) ⊂]−∞,−%3] ∪ {0} with %3 > 0 .

Denoting by Pe : L2F → kerDe the orthogonal projection on kerDe, we have proven
thus, that

−〈Def, f〉F ≥ %3||f − Pef ||
2
F ∀f ∈ L2F .

The rest of the proof is identical to the proof in [4].
Finally, Item (iv) is a simple consequence of items (iii) and (ii).

We can now pass to the resolution of the equation (3.6), which reads Q(f 1) = g,
with

gn(v) := v · ∇xf
0
n −∇xεn · ∇vf

0
n .

According to (3.12), g can be rewritten as g = v · ∇xF , where

∇xF (t, x, ε) = −F (1− ηF )

[

ε∇x

(

1

T

)

−∇x

(µ

T

)

]

.

The solvability condition g ∈ Ker(Q)⊥ is obviously satisfied and we obtain

Proposition 3.5 Equation (3.6) admits a unique solution f 1 ∈ Ker(Q)⊥, which can
be written in the form

f 1 = −∇x

(µ

T

)

·Ψ1 +∇x

(

1

T

)

·Ψ2 , (3.15)

with Ψ1 and Ψ2 unique solutions in Ker(Q)⊥ of

(Q(Ψ1))n(v) = −vFn(1− ηFn) ,

(Q(Ψ2))n(v) = −envFn(1− ηFn) .
(3.16)

Finally we have to solve the last equation (3.7). The solvability condition reads

∑

n∈N∗

∫

R2

(∂tf
0
n + v · ∇xf

1
n −∇xεn · ∇vf

1
n)

(

1
en

)

dv = 0 , (3.17)
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where we have used the fact, that

∑

n∈N∗

∫

R2

D2Qe(F )(f
1, f 1)n

(

1
en

)

dv = 0 . (3.18)

Indeed, (3.9) is valid for all f ∈ L2F , such that differentiating twice at F leads to (3.18).
Let us now analyze (3.17) term by term. The first condition gives

•
∑

n∈N∗

∫

R2

∂t(F (t, x,εn +
|v|2

2
))dv = ∂t

(

∑

n∈N∗

∫

R2

F (t, x,εn +
|v|2

2
)dv

)

,

•
∑

n∈N∗

∫

R2

∇x · (vf
1
n)dv = −∇x ·

∑

n∈N∗

∫

R2

v

[

∇x

(µ

T

)

·Ψ1
n −∇x

(

1

T

)

·Ψ2
n

]

dv

= −∇x ·
∑

n∈N∗

∫

R2

[

(v ⊗Ψ1
n) · ∇x

(µ

T

)

− (v ⊗Ψ2
n) · ∇x

(

1

T

)]

dv

= −∇x ·

{

∑

n∈N∗

(∫

R2

v ⊗Ψ1
ndv

)

· ∇x

(µ

T

)

−
∑

n∈N∗

(∫

R2

v ⊗Ψ2
ndv

)

· ∇x

(

1

T

)

}

,

•
∑

n∈N∗

∫

R2

∇v · (f
1
n∇xεn)dv = 0 .

For the second condition we get

•
∑

n∈N∗

∫

R2

∂t(F (t, x,εn +
|v|2

2
))endv =

= ∂t

(

∑

n∈N∗

∫

R2

F (t, x, en)endv

)

−
∑

n∈N∗

∂tεn
∫

R2

F (t, x, en) dv ,

•
∑

n∈N∗

∫

R2

∇x · (vf
1
n)endv = ∇x ·

∑

n∈N∗

(∫

R2

vf 1nendv

)

−
∑

n∈N∗

(∫

R2

f 1nv · ∇xεndv
)

= −∇x ·
∑

n∈N∗

∫

R2

v

[

∇x

(µ

T

)

·Ψ1
n −∇x

(

1

T

)

·Ψ2
n

]

endv −
∑

n∈N∗

(∫

R2

f 1nv · ∇xεndv
)

= −∇x ·

{

∑

n∈N∗

(∫

R2

(v ⊗Ψ1
n)endv

)

· ∇x

(µ

T

)

−
∑

n∈N∗

(∫

R2

(v ⊗Ψ2
n)endv

)

· ∇x

(

1

T

)

}

−
∑

n∈N∗

(∫

R2

f 1nv · ∇xεndv
)

,

• −
∑

n∈N∗

∫

R2

∇xεn · ∇vf
1
nendv = −

∑

n∈N∗

∫

R2

∇v · (∇xεnf 1nen)dv +
∑

n∈N∗

∫

R2

f 1n∇xεn · v dv

=
∑

n∈N∗

∫

R2

f 1n∇xεn · v dv .
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Let us denote by ρ and ρE the charge density respectively the energy associated to the
Fermi-Dirac distribution function Fµ,T

ρ(µ, T ) :=
∑

n∈N∗

∫

R2

Fµ,T (t, x,εn +
|v|2

2
)dv ; ρE(µ, T ) :=

∑

n∈N∗

∫

R2

Fµ,T (t, x, en)endv .

(3.19)
The diffusion matrices are given by

D1j :=
∑

n∈N∗

(∫

R2

v ⊗Ψj
ndv

)

; D2j :=
∑

n∈N∗

(∫

R2

(v ⊗Ψj
n)endv

)

, j = 1, 2 ,

(3.20)
where Ψ1, Ψ2 are solutions of (3.16). Then we can state the main theorem of this section

Theorem 3.6 (Formal diffusion limit)
The system of equations (3.5)-(3.7) is solvable if and only if f 0 and f 1 are determined by
(3.12), respectively (3.15), and if moreover the functions µ(t, x) and T (t, x), associated
to the Fermi-Dirac distribution function Fµ,T , which is given by

Fµ,T (t, x, ε) :=
1

η + exp ε−µ(t,x)
T (t,x)

,

satisfy the following system

∂tρ(µ, T ) +∇x · Jρ = 0 , (3.21)

∂t(ρE)(µ, T )−
∑

n∈N∗

∂tεn
∫

R2

Fµ,T (t, x, en)dv +∇x · JE = 0 (3.22)

where the particle respectively energy currents Jρ and JE are defined as

Jρ(µ, T ) := −D11 · ∇x

(µ

T

)

+D12 · ∇x

(

1

T

)

JE(µ, T ) := −D21 · ∇x

(µ

T

)

+D22 · ∇x

(

1

T

)

,

(3.23)

and where ρ, ρE are given in (3.19)-(3.20).

The Energy-Transport model (3.21)-(3.23) is constituted of two continuity equations for
the charge density and energy, completed by two relations for the charge and energy
fluxes. The temperature of the particles is a variable of the problem, fact which differs
from the Drift-Diffusion model, where the electron temperature coincides with that of
the lattice. The parabolicity of the ET model is proven by the following
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Lemma 3.7 The composed diffusion matrix

D :=

(

D11 D12

D21 D22

)

,

is a symmetric, positive definite matrix.

Proof The symmetry is an easy consequence of the self-adjointness of the operator Q.
Indeed

Dkl
ij = −〈QΨi

k,Ψ
j
l 〉F = −〈Ψi

k,QΨj
l 〉F = −〈QΨj

l ,Ψ
i
k〉F = Dlk

ji .

To prove, that D is positive definite, let ξ = (ξ11 , ξ
2
1 , ξ

1
2 , ξ

2
2) ∈ R4 be arbitrary chosen.

Then, using the non-positivity of Q, we get

ξtDξ =
2
∑

l,j=1

[

2
∑

i,k=1

ξkiD
kl
ij

]

ξlj = −

〈

Q

(

2
∑

i,k=1

ξki Ψ
i
k

)

,
2
∑

l,j=1

ξljΨ
j
l

〉

F

≥ 0 .

From (3.16) we remark that Ψj
l are linearly independent functions. Thus due to the

coercivity of the operator −Q we have ξtDξ = 0 if and only if ξ = 0. Hence there exists
even a constant γ > 0, such that

ξtDξ ≥ γ|ξ|2 , ∀ξ 6= 0 .

4 Conclusion

In the present paper we have investigated two diffusion limits corresponding to different
collision operators. Starting model was a coupled quantum/kinetic subband model, de-
scribing the electron evolution in the confinement direction by the Schrödinger equation
and in the transport direction by the Boltzmann equation. In the limit of a vanishing
scaling parameter α → 0, we obtained either the adiabatic Schrödinger/SHE model or
the Schrödinger/ET model. By means of this diffusion approximation, we were able to
derive expressions for the diffusion matrices, which are even explicitly computable in
some simplified cases.
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