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Abstract. In this paper we study planar polynomial differential systems of

this form:
dX

dt
= Ẋ = A(X, Y ),

dY

dt
= Ẏ = B(X, Y ),

where A, B ∈ Z[X, Y ] and deg A ≤ d, deg B ≤ d, ‖A‖∞ ≤ H and ‖B‖∞ ≤
H. A lot of properties of planar polynomial differential systems are related
to irreducible Darboux polynomials of the corresponding derivation: D =

A(X, Y )∂X + B(X, Y )∂Y . Darboux polynomials are usually computed with
the method of undetermined coefficients. With this method we have to solve
a polynomial system. We show that this approach can give rise to the compu-
tation of an exponential number of reducible Darboux polynomials. Here we

show that the Lagutinskii-Pereira’s algorithm computes irreducible Darboux
polynomials with degree smaller than N , with a polynomial number, relatively
to d, log(H) and N , binary operations. We also give a polynomial-time method
to compute, if it exists, a rational first integral with bounded degree.

Introduction

In this paper we study the following planar polynomial differential system:

dX

dt
= Ẋ = A(X,Y ),

dY

dt
= Ẏ = B(X,Y ),

where A,B ∈ Z[X,Y ] and deg A ≤ d, deg B ≤ d, ‖A‖∞ ≤ H and ‖B‖∞ ≤ H.
We associate to this polynomial differential system the polynomial derivation D =
A(X,Y )∂X + B(X,Y )∂Y .

A polynomial f is said to be a Darboux polynomial, if D(f) = g.f , where g is
a polynomial. A lot of properties of a polynomial differential system are related
to irreducible Darboux polynomials of the corresponding derivation D. Usually
Darboux polynomials are computed with the method of undetermined coefficients.
In other words, if we suppose that deg f ≤ N then D(f) = g.f gives a polynomial
system in the unknown coefficients of g and f . Then we can find f and g if we solve
this system. We will see that this strategy can give rise to the computation of an
exponential number of reducible Darboux polynomials.
In this paper we show that we can compute all the irreducible Darboux polynomials

of degree smaller than N with O
(

(

dN log(H)
)O(1)

)

binary operations. Our strat-

egy relies on the factorization of the ecstatic curve as suggested by J.V. Pereira in
[Per01].
This complexity result implies that, if we use the Prelle-Singer’s strategy [PS83],
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then we can compute an integrating factor in polynomial-time. With this integrat-
ing factor we can then deduce an elementary solution of the given differential equa-
tion. We also show that we can decide if D has a rational first integral of degree N .

Furthermore, we can compute this rational first integral with O
(

(

dN log(H)
)O(1)

)

binary operations.

Related results. The computation of a first integral of a polynomial differential
system is an old and classical problem. The situation is the following: we want to
compute a function F such that the curves F(X,Y ) = c, where c are constants,
give orbits of the differential system. Thus we want to find a function F such that
D(F) = 0.
In 1878, G. Darboux [Dar78] gives a strategy to find first integrals. One of the tool
developed by G. Darboux is now called Darboux polynomials. There exist a lot of
different names in the literature for Darboux polynomials, for example we can find:
special integrals, eigenpolynomials, algebraic invariant curves, particular algebraic
solutions or special polynomials.

Now recall briefly the history and the use of Darboux polynomials.
G. Darboux shows in [Dar78] that if we have enough Darboux polynomials then
there exists a rational first integral for D, i.e. D(F) = 0 and F ∈ C(X,Y ). More
precisely, G. Darboux shows that if we have d(d + 1)/2 + 2 Darboux polynomials
then the derivation has a rational first integral which can be expressed by means
of these polynomials. This work is improved by H. Poincaré [Poi91], P. Painlevé
[Pai91], and L. Autonne [Aut91] at the end of the XIX century.

Since 1979, a lot of new results appear. In his book [Jou79], J.-P. Jouanolou gives
a polynomial derivation with no Darboux polynomials. Then there exist polynomial
differential systems with no nontrivial rational first integral.

In [PS83] M. Prelle and M. Singer give a structure theorem for polynomial differ-
ential systems with an elementary first integral. Roughly speaking an elementary
function is a function which can be written in terms of polynomials, logarithms,
exponentials and algebraic extensions. With this structure theorem the authors
show how we can compute an elementary first integral if we know all the Darboux
polynomials of D.

In [Man93] and [MM97] Y.-K Man and M. MacCallum explain how we can use
Prelle-Singer’s method in practice. The bottleneck of this method is the computa-
tion of Darboux polynomials. Indeed, the method of undetermined coefficients is
used. With this method we have to solve a polynomial system, and Y.-K Man in
[Man93] explains how to solve this system with a Groebner basis. The resolution
of this polynomial system is difficult because no particular structure of this system
is known. Furthermore, this polynomial system can give an exponential number of
reducible Darboux polynomials.

In [Sin92] M. Singer shows a structure theorem for polynomial differential sys-
tems with a Liouvillian first integral. Roughly speaking a Liouvillian function
is a function which can be obtained “by quadratures” of elementary functions.
C. Christopher in [Chr99] improves this structure theorem, and then he suggests
an algorithm to find Liouvillian first integrals.
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In a series of papers [DDdMS02, DDdM02a, DDdM02b] the authors describe an
algorithm and its implementation for the computation of Liouvillian first integrals.
The strategy is in the same spirit as the one proposed by C. Christopher.

Singer’s theorem, Christopher’s theorem, and Duarte-Duarte-da Mota’s algo-
rithm are based on Darboux polynomials.

In [CLP07] the authors define an algebraic, a geometric, an integral, an infini-
tesimal and an holonomic notion of multiplicity for an irreducible Darboux poly-
nomial. They show that these notions are related. Furthermore, in order to define
the algebraic multiplicity they introduce the ecstatic curve and then use some of
its properties. We recall the definition and some properties of the ecstatic curve in
Section 3. It seems that this curve and some of its properties was already known by
M.N. Lagutinskii (1871–1915), see [DLS98], and was rediscovered by J.V. Pereira,
see [Per01]. Theorem 2 in [Per01] is the main tool of our algorithms.

In [CMS09, CMS06], the authors give a Las Vegas strategy to decide if there
exist Darboux polynomials for a given derivation.

Recently, in [FG10] the authors propose an algorithm to compute a rational
first integral without computing Darboux polynomials. Unfortunately, there are no
complexity study for this algorithm.

Darboux polynomials are also used in the qualitative study of polynomial system.
For example, the inverse integrating factor is a special Darboux polynomial, and,
algebraic limit cycles are factors of the inverse integrating factor, see e.g. [GLV96].

We also mention that Darboux polynomials are used in Physics: In [Hew91] the
author uses Darboux polynomials in order to find exact solutions to the Einstein
field. In [LZ00, Val05, LV08] Darboux polynomials are also used to study the Rik-
itake system, which is a simple model for the earth’s magneto-hydrodynamic.

In [CG03, Gin07] the reader can find some open questions and some relations
between the computation of Darboux polynomials and Hilbert’s 16th problem.

For other results, references or applications of Darboux polynomials the reader
can consult for example [Gor01, DLA06].

Main results. In this paper we show:

Theorem 1. Let D = A(X,Y )∂X + B(X,Y )∂Y be a polynomial derivation such

that A(X,Y ), B(X,Y ) ∈ Z[X,Y ], deg A ≤ d, deg B ≤ d, ‖A‖∞ ≤ H, ‖B‖∞ ≤ H
and A, B are coprime.

(1) We can decide if there exists a finite number of irreducible Darboux poly-

nomials with degree smaller than N in a deterministic way with

O
(

(

dN log(H)
)O(1)

)

binary operations.

(2) If there exists a finite number of irreducible Darboux polynomials with degree

smaller than N then we can compute all of them in a deterministic way with

O
(

(

dN log(H)
)O(1)

)

binary operations.

To author’s knowledge this is the first polynomial-time result on the computa-
tion of Darboux polynomials.
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In this paper we suppose that A and B have integer coefficients and are coprime.
This hypothesis is not restrictive. Indeed, if A and B have rational coefficients then
we can always reduce our study to the case of integral coefficients by clearing de-
nominators. Furthermore if A and B have a nontrivial greatest common divisor
R then we set ds = Rdt. This gives a derivation D2 = A/R∂X + B/R∂Y . If D2

has a first integral then D has a first integral, thus the hypothesis “A and B are
coprime” is not restrictive.
Furthermore in this paper we describe algorithms in the bivariate case in order
to emphasize their role in the Prelle-Singer’s algorithm. Nevertheless, Proposition
18 which is our main tool is also true in the multivariate case, i.e. when we con-
sider a derivation D = A1∂X1

+ · · · + An∂Xn
where Ai ∈ Z[X1, . . . ,Xn]. Then the

Lagutinskii-Pereira’s algorithm, see Section 4, is also correct in the multivariate
case.

If the polynomial derivation D has an infinite number of Darboux polynomials
then by Darboux’s theorem, D has a rational first integral. Thus in this situation
the problem is the computation of a rational first integral. We prove the following
result:

Theorem 2. Let D = A(X,Y )∂X + B(X,Y )∂Y be a polynomial derivation such

that A(X,Y ), B(X,Y ) ∈ Z[X,Y ], deg A ≤ d, deg B ≤ d, ‖A‖∞ ≤ H, ‖B‖∞ ≤ H
and A, B are coprime.

(1) We can decide if there exists a rational first integral F of degree smaller

than N with O
(

(

dN log(H)
)O(1)

)

binary operations.

(2) If there exists a rational first integral with degree smaller than N then we

can compute it in a deterministic way with O
(

(

dN log(H)
)O(1)

)

binary

operations.

To author’s knowledge this is the first polynomial-time result on the computa-
tion of rational first integrals.

Structure of this paper. In Section 1 we recall some classical results about
Darboux polynomials, the spectrum of a rational function and the complexity of
bivariate factorization. In Section 2 we show that the method of undetermined
coefficients can give an exponential number of reducible Darboux polynomials. In
Section 3 we give the definition and some properties of the ecstatic curve. In Section
4 we prove Theorem 1 and in Section 5 we prove Theorem 2. At last in Section 6
we ask two questions about complexity and polynomial differential equations.

Notations. Let f(X,Y ) =
∑

i,j fi,jX
iY j ∈ Z[X,Y ] be a polynomial.

‖f‖∞ = maxi,j |fi,j | is the height of the polynomial f .
deg f is the total degree of the polynomial f . The degree of a reduced rational
function p/q is the maximum of deg p and deg q.
The bit-size of a bivariate polynomial f is (deg f)2 log(‖f‖∞).
∂X (resp. ∂Y ) denotes the derivative relatively to the variable X (resp. Y ).
We set: div(A,B) = ∂XA + ∂Y B.
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1. Classical results

1.1. Darboux polynomials.

Definition 3. Let D = A(X,Y )∂X + B(X,Y )∂Y be the derivation associated to
the planar polynomial differential system

Ẋ = A(X,Y ), Ẏ = B(X,Y ),

where A,B ∈ Z[X,Y ].
A polynomial f ∈ C[X,Y ] is said to be a Darboux polynomial of D if there exists
a polynomial g ∈ C[X,Y ] such that D(f) = g.f .
The polynomial g is called the cofactor of f .
If F is a function such that D(F) = 0 then we said that F is a first integral of D.

Proposition 4. Let f be a polynomial and let f = f1f2 be a factorization of f
where f1 and f2 are coprime. Then f is a Darboux polynomial with cofactor g if and

only if f1 and f2 are Darboux polynomials with cofactors g1 and g2. Furthermore

g = g1 + g2.

Proof. See for example Lemma 8.3 page 216 in [DLA06]. �

Now we recall Darboux’s Theorem.

Theorem 5 (Darboux’s Theorem). Let A,B ∈ Z[X,Y ] and let D = A∂X + B∂Y .

If f1, . . . , fm ∈ C[X,Y ] are relatively prime irreducible Darboux polynomials for

i = 1, . . . ,m, then either m < d(d + 1)/2 + 2 where d = max(deg A,deg B) or there

exist integers ni not all zero such that D(w) = 0, where w =
∏m

i=1 fni

i . In the latter

case, if f is any irreducible Darboux polynomial, then either there exists λ, µ in C,

not both zero such that f divides λ
∏

i∈I fni

i − µ
∏

j∈J f
−nj

j where I = {i |ni ≥ 0}
and J = {j |nj < 0}, or G divides gcd(A,B).

Proof. See [Dar78] or [Sin92]. �

Definition 6. A function R is an integrating factor if

D(R) = −div(A,B)R.

Remark 7. We remark that an integrating factor satisfies also one of these equivalent
conditions:

div(RA,RB) = 0, ∂X(RA) = −∂Y (RB).

If we know an integrating factor then we can deduce a first integral. Indeed, if
R is an integrating factor then

(1.1) F =

∫

RBdX −
∫

(

RA + ∂Y

∫

RBdX
)

dY

is a first integral.

1.2. Elementary solutions. The following theorem is due to M. Prelle and M. Singer,
see [PS83].

Theorem 8 (Prelle-Singer). If a polynomial differential system has an elementary

first integral then there exists an integrating factor which is a Kth root of a rational

function.
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This gives the following method to compute an elementary first integral. This
method is called the Prelle-Singer’s method. Here we follow the description given
in [Man93].

Prelle-Singer’s method

Input: D = A(X,Y )∂X + B(X,Y )∂Y a polynomial derivation, and N an integer.
Output: An elementary first integral, if it exists, constructed with Darboux poly-
nomials of degree smaller than N .

(1) Set n = 1.
(2) Find all monic irreducible polynomials fi such that deg fi ≤ n and fi divides

D(fi).
(3) Let D(fi) = gifi. Decide if there are constants ni, not all zero, such that

m
∑

i=1

nigi = 0.

If such ni exist then
∏m

i=1 fni

i is a first integral.
If no such ni exist then go to the next step.

(4) Decide if there are constants ni, such that

m
∑

i=1

nigi = −div(A,B).

If such ni exist then
∏m

i=1 fni

i is an integrating factor for the given differ-
ential equation. A first integral is given by the formula (1.1).
If no such ni exists then go to the next step.

(5) Increase the value n by 1. If n is greater than N then return failure other-
wise repeat the whole procedure.

If we want to compute an integrating factor, it is well known, see [Man93], that
step 2 is the most difficult step of the Prelle-Singer’s method. Indeed, when we
have all the irreducible Darboux polynomials we just have to solve linear systems
(see Step 3 and Step 4) to deduce and integrating factor.

Remark 9. In Prelle-Singer’s method the user must give a bound N . Nowadays we
cannot remove this input. Indeed, we do not know a bound on the maximal degree
of irreducible Darboux polynomials of a given derivation. This is an open question
and appears in [Poi91, PS83]. The following example shows that we cannot get a
bound in term of the degree of D only. The bound must also take into account the
coefficients of D.
Example: The derivation D = (n + 1)X∂X + nY ∂Y has Xn − Y n+1 as Darboux
polynomial.

1.3. Spectrum of a rational function. In this subsection we recall the definition
and a property of the spectrum of a rational function. This notion is used in Section
5.

Definition 10. A rational function f(X,Y ) ∈ Q(X,Y ) is said to be composite if
it can be written f = u ◦ h where h(X,Y ) ∈ Q(X,Y ) and u ∈ Q(T ) such that
deg(u) ≥ 2. Otherwise f is said to be non-composite.
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Definition 11. Let f = p/q ∈ Q(X,Y ) be a reduced rational function of degree
d. The set

σ(p, q) = {(λ : µ) ∈ P1
C | λp + µq is reducible in C[X,Y ],

or deg(λp + µq) < d }
is the spectrum of f = p/q. We recall that a polynomial reducible in C[X,Y ] is
said to be absolutely reducible.

The spectrum σ(p, q) is finite if and only if p/q is non-composite and if and only
if the pencil of algebraic curves λp + µq = 0, has an irreducible general element
(see for instance [Jou79, Chapitre 2, Théorème 3.4.6] or [Bod08, Theorem 2.2] for
detailed proofs).
To author’s knowledge, the first effective result on the spectrum has been given
by Poincaré [Poi91]. In this paper, Poincaré gives a relation between the number
of saddles of a polynomial vector field and the spectrum. He also shows that
|σ(p, q)| ≤ (2d − 1)2 + 2d + 2. This bound was improved only recently by Ruppert
[Rup86] who proved the following result:

Proposition 12. If p/q ∈ Q(X,Y ) is a reduced non-composite rational function

of degree d then |σ(p, q)| ≤ d2 − 1.

This result was obtained as a byproduct of a very interesting technique developed
to decide the reducibility of an algebraic plane curve.
Several papers improve this result, see e.g. [Lor93, Vis93, AHS03, Bod08, BC08].

Remark 13. If p/q is a reduced non-composite rational first integral of D then p+λq,
where λ ∈ C, are Darboux polynomials. Then D has infinitely many irreducible
Darboux polynomials because the spectrum σ(p, q) is finite.

1.4. Complexity results. In this paper we consider the dense representation of
polynomials in the usual monomial basis. We recall that we can factorize in a de-

terministic way an integer univariate polynomial f with O
(

(

d log(H)
)O(1)

)

binary

operations, where d is the degree of f and H its height, see e.g. [Sch84]. An algo-
rithm with this kind of complexity is called a polynomial-time algorithm because
its complexity is bounded by a polynomial in the size of the input. We recall that
the bit-size of an univariate polynomial f of degree d and height H is d log(H).
The first polynomial-time algorithm for the factorization of univariate polynomials
is due to Lenstra, Lenstra and Lovasz, see [LLL82]. However this algorithm, called
LLL, is probabilistic because it uses Berlekamp’s algorithm which is probabilistic,
see [Ber70]. Nevertheless, there exist deterministic polynomial-time algorithms, see
e.g. [Sch84, KLL88]. In [Sch84, KLL88] the strategy is numerical. Instead of com-
puting a modular factorization as in [LLL82], the authors propose to compute a
complex root with a sufficiently high precision.

In [Kal85b] the author shows that we can reduce bivariate factorization to uni-
variate factorization. Then we get a deterministic polynomial-time algorithm for
the factorization of integer bivariate polynomials. Another polynomial-time algo-
rithm is proposed in [Len84], the authors extend to the multivariate case the LLL
algorithm.
Few time later, several papers see [Kal85a, DT89, Tra85], show that we can also
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compute the absolute factorization (i.e. the factorization in Q[X,Y ], where Q is
the algebraic closure of Q) of integer bivariate polynomials with a deterministic
polynomial-time algorithm. Thus there exist deterministic algorithms which per-
form the absolute factorization of a bivariate polynomial f(X,Y ) ∈ Q[X,Y ] of

degree d and height H with O
(

(

d log(H)
)O(1)

)

binary operations.

For the history of factorization’s algorithm the reader can consult [Kal90, Kal92].
For more recent results about complexity and bivariate polynomials factorization
see [Gao03, BLS+04, Lec06, BvHKS09, CL07, AKS07, Wei].

We also mention here that we can solve a linear system, and compute a deter-
minant, with coefficients in Z or in Z[X,Y ], in polynomial-time, see e.g. [Yap00,
BCS97, HS75]. This will be useful in our complexity analysis.

2. The method of undetermined coefficients

Usually, Darboux polynomials are computed with the method of undetermined
coefficients. In other words, we write: D(f) = g.f with deg g ≤ d, where d is
the degree of D, and deg f ≤ N . This gives a polynomial system in the unknown
coefficients of g and f . This system has O(N2 + d2) unknowns. In this section,
we show that the method of undetermined coefficients can give an exponential
numbers of reducible Darboux polynomials. We recall that only irreducible Darboux
polynomials are useful because the product of Darboux polynomials is a Darboux
polynomial, see Proposition 4.

Lemma 14. If we consider the following derivation:

D = (∂Y F)∂X − (∂XF)∂Y , with F(X,Y ) = Y

d−1
∏

i=1

(X + i) + X,

then there are at least 2d−1 + 1 Darboux polynomials with degree smaller than d.

Proof. In this situation X+i, i = 1, . . . , d−1, are irreducible Darboux polynomials.
Thus

∏

I

(X + i), where I is a subset of {1, . . . , d − 1}

is a Darboux polynomial. We have 2d−1 such Darboux polynomials and these
polynomials have a degree smaller than d − 1. Furthermore F is an irreducible
Darboux polynomial and degF = d. This gives the desired result. �

Remark 15. In Lemma 14, we give a derivation with a rational first integral. It
would be interesting to have the same kind of result with a derivation with no
rational first integral.

In the situation of Lemma 14, F is an irreducible Darboux polynomial of degree
d. Thus if we want to find all the irreducible Darboux polynomials, then we have to
consider polynomials f with degree smaller or equal to d in the polynomial system
D(f) = g.f . Now, Lemma 14 implies that we have at least 2d−1 + 1 solutions for

the system D(f) = g.f with deg f ≤ d.
Then we can conclude: in the worst case the method of undetermined coefficients

gives an exponential number, in d, of reducible Darboux polynomials.
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The problem comes from reducible Darboux polynomials. The recombination of
irreducible Darboux polynomials gives an exponential number of Darboux polyno-
mials. We can “avoid” this problem. Indeed, we can add to the system D(f) = g.f ,
forms ϕi,N (f), i = 1, . . . , T , such that ϕi,N (f) = 0, for all i = 1, . . . , T if and only
if f is an absolutely reducible polynomials with degree N . Such forms exist and
they are called Noether’s forms, see [Rup86, Sch00]. Unfortunately, to author’s
knowledge, the number T of these forms is exponential in N . More precisely, the

number of Noether’s forms is equal to
(

2N2−3N+1
N2−1

)

. With Stirling’s formula we can
show, when N tends to infinity:

T =

(

2N2 − 3N + 1

N2 − 1

)

∼ 22N2−3N+1

e9/4
√

πN
.

Thus in this case we have an exponential number of equations, and then we get a
method with an exponential complexity in N .

We remark that there exists a strategy to compute the leading term of Darboux
polynomials, see e.g.[Chr94]. This strategy gives a net gain in practical examples,
see [MM97]. However, this strategy do not detect the leading term of an irreducible
Darboux polynomial. Then, even if we add this strategy to the method of undeter-
mined coefficient, we still get an exponential number of Darboux polynomials.

The exponential complexity is related to the recombination of irreducible Dar-
boux polynomials. Exponential complexity due to recombinations appears also
when we study factorization algorithms. However, we can factorize polynomials in
polynomial-time as mentioned in Section 1.4. In the following we show that we can
reduce the computation of irreducible Darboux polynomials to the factorization of
a bivariate polynomial. Then, we will deduce a polynomial-time algorithm for the
computation of irreducible Darboux polynomials.

3. The ecstatic curve

Definition 16. Let D be a polynomial derivation, the Nth ecstatic curve of D,
EB,N (D), is given by the polynomial

det











v1 v2 · · · vl

D(v1) D(v2) · · · D(vl)
...

... · · ·
...

Dl−1(v1) Dl−1(v2) · · · Dl−1(vl)











,

where B = {v1, v2, . . . , vl} is a basis of C[X,Y ]≤N , the C-vector space of polynomials
in C[X,Y ] of degree at most N , l = (N +1)(N +2)/2, and Dk(vi) = D

(

Dk−1(vi)
)

.
When B is the monomial basis, we denote by EN (D) the ecstatic curve.

Now, we remark that the ecstatic curve is independent of the chosen basis of
C[X,Y ]≤N up to a multiplicative constant.

Proposition 17. Let B be a basis of C[X,Y ]≤N . We have

EB,N (D) = c.EN (D),

where c ∈ C∗.
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Proof. We are going to show that EB,N (D) is the determinant of an endomorphism.
Consider

D : C(X,Y )[U, V ]≤N −→ C(X,Y )[U, V ]≤N

U iV j 7−→
∑

0≤k+l≤N

Dcantor(k,l)(XiY j)UkV l

where U and V are new independent variables, C(X,Y )[U, V ]≤N is the C(X,Y )
vector space of polynomials with coefficients in C(X,Y ), and with a degree relatively
to U and V at most N . Furthermore cantor is the following map:

cantor : N2 −→ N

(k, l) 7−→ (k + l)2 + 3k + l

2
.

This application maps (0, 0) to 0, (0, 1) to 1, (1, 0) to 2, (0, 2) to 3. . . That is to
say, the monomials UkV l are ordered with a graded lexicographic order.

D is defined on a basis thus D is a well defined endomorphism. EN (D) is the
determinant of this endomorphism written in the monomial basis.

Now we remark that:

D
(

∑

0≤i+j≤N

pi,jU
iV j

)

=
∑

0≤k+l≤N

(

Dcantor(k,l)(
∑

0≤i+j≤N

pi,jX
iY j)

)

UkV l,

where pi,j ∈ C.
Each element of the basis B can be written

∑

i,j pi,jX
iY j with pi,j ∈ C. We can also

consider a basis B′ of the C(X,Y ) vector-space C(X,Y )[U, V ]≤N , such that each
element is written

∑

i,j pi,jU
iV j with pi,j ∈ C. Thus EB,N (D) is the determinant of

D written with B′ in the domain, and with the monomial basis in the target space.
As pi,j ∈ C, this gives the desired result. �

The following proposition is due to J.-V. Pereira, see [Per01, Proposition 1].
It is the key point of our algorithm: it shows that the computation of Darboux
polynomials can be reduced to the factorization of EN (D). We give a proof in order
to ease the readability of the paper.

Proposition 18. Every Darboux polynomial, relatively to D, of degree smaller

than N is a factor of EN (D).

Proof. Let F ∈ C[X,Y ]≤N be a Darboux polynomial. By Proposition 17 we can
choose a basis B where v1 = F .
Furthermore, we have:

D(F ) = g1F,

D2(F ) = D(g1F ) =
(

g2
1 + D(g1)

)

F = g2F,

...

Dl−1(F ) = gl−1F,

where g1, g2, . . . , gl−1 are polynomials.
Thus F is a factor of EB,N (D) and this concludes the proof. �

Remark 19. The converse is false. Indeed, consider the derivation D = −2X2∂X +
(1 − 4XY )∂Y . Then E1(D) = Y X4 but Y is not a Darboux polynomial.
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We know by Darboux’s Theorem, see Theorem 5, that if a derivation has a ra-
tional first integral then there are infinitely many irreducible Darboux polynomials.
Thus if D has a rational first integral then by Proposition 18, EN (D) has infinitely
many irreducible factors. This gives EN (D) = 0, and also EM (D) = 0 for M bigger
than N . The following proposition says that the converse is also true. This propo-
sition will be useful in Section 5 when we will study the computation of rational
first integrals.

Proposition 20. We have EN (D) = 0 and EN−1(D) 6= 0 if and only if D admits

a rational first integral of exact degree N .

Proof. See [Per01, Theorem 1]. �

In our complexity study we will need to know the bit-size of EN (D). We recall

that the bit-size of EN (D) is:
(

deg(EN (D)
)2

log
(

‖EN (d)‖∞
)

. Thus in the following
we are going to compute the degree and the height of EN (D).

Proposition 21. Let D = A(X,Y )∂X + B(X,Y )∂Y be a polynomial derivation,

where deg A,deg B ≤ d. The degree of EN (D) is at most N.l + (d − 1).(l − 1).l/2,
where l = (N + 1)(N + 2)/2.

Proof. By definition of a determinant we have:

deg EN (D) ≤
l−1
∑

k=0

deg
(

Dk(vi)
)

,

where D0(vi) = vi.
A straightforward computation gives deg Dk(vi) ≤ k(d − 1) + N . Then

deg EN (D) ≤
l−1
∑

k=0

(

k(d − 1) + N
)

,

≤ N.l + (d − 1)

l−1
∑

k=0

k,

≤ N.l + (d − 1).(l − 1).l/2.

This gives the desired result. �

Corollary 22. Under the hypothesis of Proposition 21, we have deg EN (D) belongs

to O(dN4).

Proposition 23. The height ‖EN (D)‖∞ satisfies

‖EN (D)‖∞ ≤
(

2lH
(

l(d − 1) + N
)3

)l(l−1)/2

.

Proof. First we recall that if f1 and f2 are two polynomials with total degree smaller
than d then we have

‖f1.f2‖∞ ≤ (d + 1)2‖f1‖∞‖f2‖∞.

This gives for f ∈ C[X,Y ]≤N ,

‖D(f)‖∞ ≤ 2HN3‖f‖∞.
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By induction, using (N + k(d − 1) + 1)2 ≤ (N + k(d − 1))3, we get

‖Di(f)‖∞ ≤ 2iHi
(

i−1
∏

k=0

(

k(d − 1) + N
)3

)

‖f‖∞, where i ≥ 1.

By definition of a determinant, we have:

‖EN (D)‖∞ ≤
∑

σ∈Sl

l−1
∏

i=0

‖Di(vσ(i+1))‖∞,

where {v1, . . . , vl} is the monomial basis of C[X,Y ]≤N . We get then:

‖EN (D)‖∞ ≤ l!

l−1
∏

i=1

2iHi
(

i−1
∏

k=0

(

k(d − 1) + N
)3

)

≤ l!
l−1
∏

i=1

2iHi
(

(

l(d − 1) + N
)3i

)

≤
(

2lH
(

l(d − 1) + N
)3

)l(l−1)/2

.

�

Corollary 24. Under the hypothesis of Proposition 23, the bit-size of EN (D) be-

longs to O
(

(

dN log(H)
)O(1)

)

.

Proof. By Corollary 22 and Proposition 23 the bit-size of EN (D) is bounded by

(dN4)2.l.(l − 1). log
(

2lH
(

l(d − 1) + N
)3

)

.

This gives the desired result. �

4. D has a finite number of irreducible Darboux polynomials

If D has a finite number of irreducible Darboux polynomials then the ecstatic
curve EN (D) is non-zero by Proposition 20. It follows that we can compute ir-
reducible Darboux polynomials with a bivariate factorization algorithm thanks to
Proposition 18. It seems that Proposition 18 has been proved by M.N. Lagutinskii
and rediscovered by J.V. Pereira, see [Per01, Theorem 2]. Then we call “Lagutinskii-
Pereira’s algorithm” the following algorithm.

Lagutinskii-Pereira’s algorithm

Input: A polynomial derivation D = A(X,Y )∂X + B(X,Y )∂Y , and N an integer.
Output: The finite set S of all the absolute irreducible Darboux polynomials with
degree smaller than N or “There exists an infinite number of irreducible Darboux
polynomials”.

(1) S = {}.
(2) Compute EN (D).
(3) If EN (D) = 0 then Return “There exists an infinite number of irreducible

Darboux polynomials” else go to step 4, end If.
(4) Compute the set f1, . . . , fm of all absolutely irreducible factors of EN (D)

with degree smaller than N .
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(5) For i := 1, . . . ,m do: If gcd(fi,D(fi)) = fi then add fi to S, end If, end
For.

(6) Return S.

Proposition 25. The Lagutinskii-Pereira’s algorithm is correct.

Proof. This is a straightforward consequence of Proposition 18. �

Now we can prove Theorem 1.

Proof. The Lagutinskii-Pereira’s algorithm is correct and works with the claimed
complexity. Indeed, we can compute EN (D) in polynomial-time because it is a
determinant. Furthermore, by Corollary 24 we know that the bit-size of EN (D)

belongs to O
(

(

dN log(H)
)O(1)

)

. Then we can compute the absolutely irreducible

factors of EN (D) with O
(

(

dN log(H)
)O(1)

)

binary operations, see Section 1.4. As

gcd computations can also be performed in polynomial-time we obtain the desired
result. �

We also deduce:

Corollary 26. Under conditions of Theorem 1, if there exists an integrating factor

R such that R =
∏

i fni

i , where fi are Darboux polynomials with degree smaller

than N , then we can compute R with O
(

(

dN log(H)
)O(1)

)

binary operations.

Proof. We compute Darboux polynomials with the Lagutinskii-Pereira’s algorithm
and then we solve a linear system as in Step 4 of the Prelle-Singer’s method, see
Section 1. �

This corollary implies that we can compute an integrating factor corresponding to

an elementary first integral with the Prelle-Singer’s method with O
(

(

dN log(H)
)O(1)

)

binary operations.

5. D has a rational first integral

We have seen in Section 3 that is easy to test if a derivation has a rational first
integral with degree smaller than N . Indeed, we just have to compute the ecstatic
curve EN (D) and check if it is the zero polynomial. In this section, we show how
we can compute this rational first integral.

5.1. Computation of a Darboux polynomials with degree N . In this section
we suppose that D has a rational first integral p/q with degree N . Then p and q
are Darboux polynomials with degree N . By Proposition 20, EN (D) = 0. Thus we
cannot compute p and q as factors of EN (D). The strategy is then the following:
compute one Darboux polynomial with degree N , compute its cofactor, and then
deduce p and q.
Now we explain how we can compute a Darboux polynomial with degree N .

Definition 27. Let D be a polynomial derivation, EN,0(D), is the polynomial
EB0,N (D) where B0 is the monomial basis of the C-vector space of polynomials in
C[X,Y ] of degree at most N with constant term equal to zero.

We have the following property.
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Proposition 28. Let p/q be a non-composite rational first integral of D, such that

deg(p/q) = N , and p(0, 0)q(0, 0) 6= 0.

(1) We have EN,0(D) 6= 0 in Q[X,Y ].
(2) If we set (λ0, µ0) =

(

−q(0, 0), p(0, 0)
)

then λ0p+µ0q is a factor of EN,0(D).

Proof. This proof follows very closely the proof of Theorem 5.3 and Proposition 5.2
in [CLP07].
First, we prove that EN,0(D) 6= 0.
We suppose the converse: EN,0(D) = 0 and we show that it is absurd.
If EN,0(D) = 0 then the columns of the matrix are linearly dependent. Hence there
are rational functions ci(X,Y ) ∈ Q(X,Y ) such that

(5.1) Nj :=

k
∑

i=1

ciD
j(vi) = 0, j = 0, . . . , k − 1

with k = (N + 1)(N + 2)/2− 1. Now, take k to be the smallest value such that for
i = 1, . . . , k there exists rational functions ci, not all zero, and vi ∈ C[X,Y ]≤N,0,
linearly independent over Q such that equalities (5.1) holds. It is clear that k > 1.
We have:

D(Nj) −Nj+1 =

k
∑

i=1

D(ci)D
j(vi) = 0, j = 0, . . . , k − 2,

and so from the minimality of k, we see that the terms D(ci) must all vanish.
Hence, each of the ci are either rational first integrals or constants.
Now, we consider the polynomial G = λp + µq where (λ : µ) does not belongs to
σ(p, q) ∪ {(λ0 : µ0)}. This choice is possible because by Proposition 12, σ(p, q)
is finite. Then G is absolutely irreducible, deg G = N and G(0, 0) 6= 0. We also
remark that ci are constants for all (x, y) such that G(x, y) = 0, because p/q is a
first integral. We denote by ci(λ, µ) these constants. This gives

N λ,µ
0 :=

k
∑

i=1

ci(λ, µ)vi 6= 0, and G = λp + µq divides N λ,µ
0 .

Indeed, vi are linearly independent, and furthermore if G(x, y) = 0 then N λ,µ
0 (x, y) =

N0(x, y) = 0. Thus, there exists c ∈ Q such that c.G = N λ,µ
0 . As by construction,

N λ,µ
0 ∈ C[X,Y ]≤N,0, we deduce that G belongs to C[X,Y ]≤N,0 and this contradicts

G(0, 0) 6= 0. Thus we obtain EN,0(D) 6= 0.

Second, we prove that F = λ0p + µ0q divides EN,0(D).
F is a Darboux polynomial and belongs to C[X,Y ]≤N,0. Since EN,0(D) is indepen-
dent of the chosen basis (with the same arguments used in Proposition 17), we can
choose a basis where v1 = F . Then as in Proposition 18 we deduce that F is a
factor of EN,0(D) and this concludes the proof. �

5.2. Computation of a rational first integral. Thanks to Proposition 28, we
can describe an algorithm which computes a rational first integral.

We denote by (xk, yk), k = 1, . . . , N6, the points in S × S where
S = {0, . . . , N3 − 1} and by Dk the following derivation:

Dk = A(X + xk, Y + yk)∂X + B(X + xk, Y + yk)∂Y .
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Let g ∈ Q[X,Y ] with degree smaller than d, Lk,g is the following linear map:

Lk,g : Q[X,Y ]≤N −→ Q[X,Y ]≤N+d−1

f 7−→ Dk(f) − g.f

Lemma 29. Suppose that Dk has a rational first integral p/q of degree N . We

denote by g the cofactor of p and q.
Then dimQ kerLk,g = 2 and if we denote by {p̃, q̃} a basis of kerLk,g then p̃/q̃ is a

rational first integral of Dk.

Proof. This proof follows very closely the first part of the proof of Theorem 6 in
[MO04].
If f ∈ kerLk,g then by Darboux’s theorem, see Theorem 5, there exist α and β in
Q such that f = αp + βq or f has degree less than N and divides αp + βq. The
last case implies that (α, β) ∈ σ(p, q). We deduce that:

(5.2) kerLk,g = Span(p, q) ∪ Span(f1) ∪ · · · ∪ Span(fm),

where fi is a factor of αp + βq, (α, β) ∈ σ(p, q), and the cofactor of fi is equal to g.
Remark that this union is finite because σ(p, q) is finite.
As Q is infinite, equality (5.2) implies kerLk,g = Span(p, q). �

Algorithm Rat-First-Int

Input: A polynomial derivation D = A(X,Y )∂X + B(X,Y )∂Y , and N an integer.
Output: A rational first integral with degree smaller than N or “There exists no
rational first integral with degree smaller than N”.

(1) Compute EN (D).
(2) If EN (D) 6= 0 then Return “There exists no rational first integral with

degree smaller than N”, else go to step 3, end If.
(3) Compute the smallest integer n such that En(D) = 0 and En−1(D) 6= 0.
(4) Set F:=0; k:=1;
(5) While F = 0 do

(a) Compute En,0(Dk).
(b) Compute all the irreducible factors f1, . . . , fm of En,0(Dk) with degree

equal to n.
(c) For all i:=1, . . . , m do: If gcd

(

fi,Dk(fi)
)

= fi then set F := fi and
go to step 6, end If; end For.

(d) k := k + 1;
end While.

(6) Compute the cofactor g := Dk−1(F )/F .
(7) Compute a basis {p, q} of kerLk−1,g.
(8) Return p/q(X − xk−1, Y − yk−1).

Proposition 30. The algorithm Rat-First-Int terminates and uses the While loop

at most N6 times. Furthermore the algorithm Rat-First-Int is correct.

Proof. The algorithm terminates. We just have to show that the While loop termi-
nates.
In Step 5, thanks to Proposition 20, D has a reduced rational first integral p/q of de-
gree n ≤ N . Then Dk has a rational first integral pk/qk(X,Y ) = p/q(X+xk, Y +yk)
of degree n ≤ N .
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Furthermore p/q is non-composite (thus pk/qk is also non-composite). Indeed, if
p/q is composite then p/q = u ◦ h with deg h < n. This gives

0 = D(p/q) = D(u ◦ h) = u′(h)D(h),

and u′(h) 6= 0 because deg u ≥ 2. Therefore D(h) = 0 and h is a rational first
integral with degree smaller than n. Thus by Proposition 20, Edeg h(D) = 0, this
contradicts the minimality of n. We deduce then: p/q is non-composite.

Now, remark that the algorithm terminates if the following two conditions are
satisfied:

(5.3) p(xk, yk) 6= 0 or q(xk, yk) 6= 0,

and

(5.4)
(

− q(xk, yk) : p(xk, yk)
)

6∈ σ(pk, qk) = σ(p, q).

Indeed, in this situation we can apply Proposition 28 and we deduce that there
exists a polynomial F = −q(xk, yk)pk(X,Y ) + p(xk, yk)qk(X,Y ) absolutely irre-
ducible such that gcd

(

F,Dk(F )
)

= F .

Now we show that there exists a point (xk, yk) in {0, . . . , N3 − 1}2 such that
(5.3) and (5.4) are satisfied.
By Bezout’s Theorem we just have to avoid N2 points to satisfy (5.3).
Now, we consider the polynomial

P(X,Y ) =
∏

(λ:µ)∈σ(p,q)

(

λp(X,Y ) + µq(X,Y )
)

.

We remark that if P(xk, yk) 6= 0 then (5.4) is satisfied. Furthermore, by Proposi-
tion 12, degP ≤ N(N2 − 1). Zippel-Schartz’s lemma, see [vzGG03, Lemma 6.44],
implies that P has at most N6 −N5 roots in {0, . . . , N3 − 1}2. Then the algorithm
terminates and uses the While loop at most N6 − N5 + N2 + 1 times.

The algorithm is correct. If fi satisfies gcd
(

fi,Dk(fi)
)

= fi then fi is a Darboux
polynomial. Then by Darboux’s theorem, see Proposition 5, we deduce that fi =
αpk + βqk because deg pk/qk = n = deg fi.
As pk/qk is a first integral, the cofactors of pk and qk are equal. Then, we deduce
that the cofactors of pk, qk and fi are equal. This cofactor is the polynomial g.
Then thanks to Lemma 29 we conclude that the algorithm is correct. �

Now we can prove Theorem 2.

Proof. Thanks to Proposition 30, we just have to prove that the algorithm Rat-

First-Int works with O
(

(

dN log(H)
)O(1)

)

binary operations.

We have already mention that we can compute determinants and solve linear sys-
tems in polynomial-time. Thus we can perform Step 1, Step 2 and Step 3 with

O
(

(

dN log(H)
)O(1)

)

binary operations.

Now, we study the While loop.
We recall here that we can shift the variable of a polynomial in polynomial-time see
e.g. [BP94, Problem 2.6]. We can also perform linear algebra, compute gcd and di-
vide polynomials in polynomial-time, see e.g. [vzGG03]. Furthermore, as in Corol-

lary 24 we can show that the bit-size of EN,0(D) belongs to O
(

(

dN log(H)
)O(1)

)

.
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Then we can factorize EN,0(D) with O
(

(

dN log(H)
)O(1)

)

binary operations. As

we use the While loop at most N6 times we obtain the desired result. �

6. Open questions

6.1. Liouvillian first integrals. In this paper we have shown how to compute effi-
ciently Darboux polynomials. Thus this improves the complexity of Prelle-Singer’s
method. Now the question is: Can we compute efficiently an integrating factor
corresponding to a Liouvillian first integral?
In [DDdMS02, DDdM02a, DDdM02b] the authors give an algorithm to compute
such integrating factors. The key point is the computation of exponential factors.
The definition of an exponential factor is the following:

Definition 31. Given f, g ∈ C[X,Y ], we say that e = exp(g/f) is an exponential
factor of the derivation D if D(e)/e is a polynomial of degree at most d − 1.

In [CLP07] the authors define the integrable multiplicity and the algebraic mul-
tiplicity.

Definition 32. We say that a Darboux polynomial f has integrable multiplicity m
with respect to a derivation D, if m is the largest integer for which the following
is true: there are m − 1 exponential factors exp(gj/f j), j = 1, . . . ,m − 1, with
deg gj ≤ j.deg f , such that each gj is not a multiple of f .
We say that a Darboux polynomial f of degree N has algebraic multiplicity m with
respect to a derivation D, if m is the greatest positive integer such that the mth
power of f divides EN (D).

C. Christopher, J. LLibre and J.V. Pereira in [CLP07] show that these multiplic-
ities are equal when we consider absolutely irreducible Darboux polynomials. This
is a deep result, but unfortunately nowadays there is no simple characterization of
exponential factor exp(g/f) when f is reducible. If we can characterize exponential
factors with the ecstatic curve then perhaps we will compute efficiently an integrat-
ing factor corresponding to a Liouvillian first integral.

6.2. Inverse integrating factor. An inverse integrating factor is a Darboux poly-
nomial with cofactor div(A,B). An inverse integrating factor R has the following
interesting property: The algebraic limit cycles of the polynomial vector field cor-
responding to D are factors of R, see e.g. [GLV96]. For other results we can read
e.g. [CGGL03]. We remark easily that:

R is an inverse integrating factor ⇐⇒ ∂X

(A

R

)

= ∂Y

(B

R

)

⇐⇒ A∂XR + B∂Y R = div(A,B)R.(6.1)

For a given integer N we can compute, if it exists, R with deg R ≤ N . Indeed,
we just have to solve the linear system (6.1). With this strategy and with classi-
cal tools of linear algebra we can compute R with O(N6) arithmetic operations if
N ≥ d.

This kind of linear system also appears when we study absolute factorization,
see [Rup86, Rup99, Gao03, CL07, Sch07]. Indeed, we can compute the absolute
factorization of a given polynomial R with a solution (A,B) of (6.1).
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In [CL07] the authors use this kind of linear system and show that the absolute

factorization of R can be performed with Õ(N4) arithmetic operations. We recall
that “soft Oh” is used for readability in order to hide logarithmic factors in cost
estimates. Then the question is the following:
Can we perform the computation of an inverse integrating factor in a deterministic
way with Õ(N4) arithmetic operations instead of O(N6)?
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[BLS+04] A. Bostan, G. Lecerf, B. Salvy, É. Schost, and B. Wiebelt. Complexity Issues in Bivari-
ate Polynomial Factorization. In Proceedings of ISSAC 2004, pages 42–49. ACM, 2004.

[Bod08] A. Bodin. Reducibility of rational functions in several variables. Israel J. Math., 164:333–

347, 2008.
[BP94] D. Bini and V. Pan. Polynomial and matrix computations. Vol. 1. Progress in Theoretical
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[CL07] G. Chèze and G. Lecerf. Lifting and recombination techniques for absolute factorization.
J. Complexity, 23(3):380–420, 2007.
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