
Modular Las Vegas Algorithms for Polynomial

Absolute Factorization

Cristina Bertone a,b, Guillaume Chèze c, André Galligo a

aLaboratoire J.-A. Dieudonné, Université de Nice - Sophia Antipolis, France

bDipartimento di Matematica, Università degli Studi di Torino, Italy

c Institut de Mathématiques de Toulouse, Université Paul Sabatier Toulouse 3, France

Abstract

Let f(X, Y) ∈ Z[X, Y] be an irreducible polynomial over Q. We give a Las Vegas absolute

irreducibility test based on a property of the Newton polytope of f , or more precisely, of f
modulo some prime integer p. The same idea of choosing a p satisfying some prescribed properties

together with LLL is used to provide a new strategy for absolute factorization of f(X, Y). We

present our approach in the bivariate case but the techniques extend to the multivariate case.

Maple computations show that it is e�cient and promising as we are able to construct the

algebraic extension containing one absolute factor of a polynomial of degree up to 400.

Key words: Absolute factorization, modular computations, LLL algorithm, Newton polytope.

Introduction

Kaltofen's survey papers (Kaltofen, 1992) related the early success story of polynomial
factorization. Since then, crucial progresses have been achieved : algorithms developed
and implemented by Van Hoeij and his co-workers in the univariate case (Belabas et al.,
2004), by Gao and his co-workers (see for instance Gao (2003)), then by Lecerf and his
co-workers in the multivariate case (Bostan et al. (2004), Lecerf (2007)). Chèze (2004b),
Chèze and Lecerf (2007) and Lecerf (2007) also improved drastically the multivariate ab-
solute factorization (i.e. with coe�cients in the algebraic closure): they produced an algo-
rithm with the best known arithmetic complexity. Even if the situation evolved rapidly,
there is still room for improvements and new points of view.

Here, we focus on absolute factorization of rationally irreducible polynomials with
integer coe�cients (see Chèze and Galligo (2005), Rupprecht (2004), Sommese et al.

Email addresses: cristina.bertone@unice.fr (Cristina Bertone),
guillaume.cheze@math.ups-tlse.fr (Guillaume Chèze), galligo@math.unice.fr (André Galligo).

Preprint submitted to Elsevier 18 April 2010

(2004) and the references therein). For such polynomials, the best current algorithm and
implementation is Chèze's (Chèze (2004a), Chèze (2004b)) presented at Issac'04, it is
based on semi-numerical computation, uses LLL and is implemented in Magma. It can
factorize polynomials of high degrees, up to 200. One of the challenges is to improve its
capabilities at least in certain situations.

We propose yet another strategy and algorithm to deal with (multivariate) absolute
irreducibility test and factorization. This article will present a simple, but very e�cient,
irreducibility test. Then we extend our strategy to get a factorization algorithm based on
modular computations, Hensel liftings and recognition of algebraic numbers via p−adic
approximation using LLL (as explained in von zur Gathen and Gerhard (2003)).
Our absolute factorization algorithm can be viewed as a drastic improvement of the
classical algorithm TKTD (see Dvornicich and Traverso (1989), Kaltofen (1985), Trager
(1985) and Section 3). Indeed, we replace the computations in an algebraic extension of
Q of degree n, the degree of the input polynomial, by computations in an extension of
the minimal degree s, the number of factors of the input polynomial.

We made a preliminary implementation in Maple and computed several examples. It
is very promising as it is fast and able to compute the researched algebraic extension
for high degree polynomials (more than degree 200, see last section). The bottleneck of
the procedure is now the �nal X-adic Hensel lifting, but we may avoid this problem, for
instance, with a parallel version of our algorithm, as explained in Section 4.1.

In other words, our approach improves the practical complexity of absolute factoriza-
tion of polynomials with integer coe�cients.

Notations

K is a perfect �eld, K is an algebraic closure of K.
Fp = Z/pZ is the �nite �eld with p elements, where p is a prime integer.
tdeg f is the total degree of the polynomial f .

1. Absolute irreducibility test and Newton Polytope

Any implementation of an absolute factorization algorithm needs to �rst check if the
polynomial is �trivially� absolutely irreducible. That is to say, test quickly a su�cient
condition on f : when the test says yes, then f is absolutely irreducible and the factor-
ization algorithm can be spared. The test should be fast and should, in �most� cases (i.e.
with a good probability) say yes when the polynomial f is irreducible. For instance, for
polynomials of degree 100, one might expect that such a test runs 100 time faster than a
good general factorization algorithm. This is indeed the case for the test presented in this
section: for a polynomial of degree 100, absolute factorization algorithms (e.g. the ones in
Chèze (2004a) and Chèze and Lecerf (2007)) require 20 seconds to decide irreducibility
while our test answers after only 0.07 seconds.

The absolute irreducibility test presented in this article is based on properties of the
Newton polytope of a polynomial that we now review.

De�nition 1. Let f(X,Y) =
∑
i,j ci,jX

iY j ∈ K[X,Y]. The Newton polytope of f ,

denoted by Pf , is the convex hull in R2 of all the points (i, j) with ci,j 6= 0.
A point (i, j) is a vertex of Pf if it is not on the line segment of any other two points

of the polytope. 2

2

Remember that a polytope is the convex hull of its vertices.
We refer to Gao (2001) for basic results on absolute irreducibility and Newton poly-

topes and also for an interesting short history which goes back to the famous Eisenstein
criterion.

De�nition 2. Denote by (i1, j1), . . . , (il, jl) ∈ Z2 the vertices of Pf . We say that
condition (C) is satis�ed when gcd(i1, j1, . . . , il, jl) = 1. 2

The aim of this section is to prove the following criterion.

Proposition 3 (Absolute irreducibility criterion).
Let f(X,Y) be an irreducible polynomial in K[X,Y]. If condition (C) is satis�ed then

f is absolutely irreducible.

Our statement in Proposition 3 bears similarities with one of Gao's result (Gao, 2001);
but it di�ers since Gao assumed that Pf should be contained in a triangle when we assume
that f is irreducible in K[X,Y]. Although, our condition seems a strong theoretical
hypothesis, in practice we can check it very quickly thanks to the algorithms developed
in Bostan et al. (2004) and Lecerf (2006). The advantage of our criterion is that it applies
to a larger variety of polytopes.

We �rst recall an important lemma about absolute factorization of (rationally) irre-
ducible polynomials.

Lemma 4. Let f ∈ K[X,Y] be an irreducible polynomial in K[X,Y], monic in Y :

f(X,Y) = Y n +
n−1∑
k=0

∑
i+j=k

ai,jX
iY j .

Let f = f1 · · · fs be the monic factorization of f by irreducible polynomials fl in K[X,Y].
Denote by L = K[α] the extension of K generated by all the coe�cients of f1. Then each

fl can be written:

fl(X,Y) = Y m +
m−1∑
k=0

∑
i+j=k

a
(l)
i,jX

iY j = Y m +
m−1∑
k=0

∑
i+j=k

bi,j(αl)XiY j , (1)

where bi,j ∈ K[Z], degZ(bi,j) < s and where α1, . . . , αs are the di�erent conjugates over

K of α = α1. 2

See (Rupprecht, 2004, Lemma 2.2) for a proof.
As a corollary the number of absolute factors is equal to [L : K].
In order to prove Proposition 3, we introduce the Minkowski sum and its properties

concerning polytopes.

De�nition 5. If A1 and A2 are two subsets of the vector space Rn, we de�ne their
Minkowski sum as

A1 +A2 = {a1 + a2 | a1 ∈ A1, a2 ∈ A2}. 2

Lemma 6 (Ostrowski). Let f, g, h ∈ K[X1, X2, . . . , Xn] with f = gh. Then Pf = Pg+Ph.

3

Proof. See Ostrowski (1975). 2

In particular (Schneider, 1993), if we sum up s times the same convex polytope A,
then we have that

A+ · · ·+A︸ ︷︷ ︸
s−times

= s ·A,

where s · A = {s · v | v ∈ A}. Furthermore the vertices {v1, . . . , vl} of s · A are exactly
vi = s · wi, where {w1, . . . , wl} is the set of vertices of A.

We now consider the irreducible polynomial f ∈ K[X,Y] and its absolute factors
f1, . . . , fs ∈ K[X,Y]. Observe that thanks to Lemma 4, we have that Pfi

= Pfj
for every

couple of indexes i, j ∈ {1, . . . , s}.
We can then easily prove Proposition 3.

Proof. Suppose that f is not absolutely irreducible. Let f1, . . . , fs be the absolute factors
of f . For what concerns the Newton polytopes, we have that

Pf = Pf1 + · · ·+ Pfs
= s · Pf1 .

Suppose in particular that the vertices of Pf1 are {(i1, j1), . . . , (il, jl)}. Then we have
that the vertices of Pf are {(s · i1, s · j1), . . . , (s · il, s · jl)}. But then condition (C) is not
satis�ed. 2

Corollary 7. The number of absolute irreducible factors of a rationally irreducible poly-

nomial f(X,Y) ∈ K[X,Y] divides gcd(i1, j1, . . . , il, jl).

Proof. This is a consequence of the proof of Proposition 3. 2

As all the arguments we used in this section extend to Newton polytopes in any
number of variables we get:

Corollary 8. Proposition 3 holds for a polynomial ring with any number of variables. 2

2. Evaluation of our irreducibility criterion

In Proposition 3, we established the validity of our criterion. In this section we address
the natural question: does condition (C) happens frequently ?

When the polynomial f is dense, then the coordinates of the vertices of Pf are (0, 0),
(n, 0), (0, n), thus condition (C) is not satis�ed and we cannot apply our test. However
when f is sparse, in �most� cases, the Newton polytope is not the triangle of the previous
situation and a direct use of Proposition 3 can quickly detect if f is absolutely irreducible.

We �rst provide time tables and statistic evidences of the e�ciency of our criterion
applied to a sparse polynomial f(X,Y) ∈ Z[X,Y]. Then we consider its application
to dense polynomials. In that case, modular computations are used to force a sparsity
condition on a reduced polynomial modulo some prime p.

4

2.1. Statistics for a direct use of the test for sparse polynomials

To check the previous claim, we have constructed randomly 1000 polynomials of total

degree n and applied our test. Our test is implemented in Magma and available at:

http://www.math.univ-toulouse.fr/∼cheze/
The following table presents the obtained statistical results.

The entries are the degree n and a sparsity indicator Prop. When its value is Prop = 1
(respectively Prop = 2), each polynomial has about n(n+ 1)/4 (respectively n(n+ 1)/6)
non-zero coe�cients randomly chosen in [−1012; 1012] and n(n+1)/4 (respectively n(n+
1)/3) coe�cients randomly chosen equal to zero. The outputs are: the number Success

of absolute irreducible polynomials detected by our test, and the average running time

Tav (in second).

n Prop Success Tav

50 1 819 0.0134

50 2 943 0.0122

100 1 832 0.0787

200 1 849 0.6023

200 2 948 0.4432

This table shows that our test is well suited for sparse polynomials.

2.2. Irreducibility test with modular computations

Our aim is to construct a sparse polynomial associated to a dense polynomial, �break-

ing� its Newton polytope. For that purpose, we recall an easy corollary of Noether's

irreducibility theorem. For a statement and some results about Noether's irreducibility

theorem see e.g. Kaltofen (1995).

Proposition 9. Let f(X,Y) ∈ Z[X,Y] and f(X,Y) = f mod p, f ∈ Fp[X,Y].
If tdeg (f) = tdeg (f) and f is absolutely irreducible, then f is absolutely irreducible. 2

Now, even if f is dense, the idea is to choose p in order to force f to be sparse. Then

we apply the test to f instead of applying it to f .

Let a1, . . . , ar be the coe�cients corresponding to the vertices of Pf and L = [p1, . . . , pl]
be the list of the primes dividing at least one of the ai. Remark that:

∀pi ∈ L, Pf 6= P f mod pi
.

Thus even when f is dense, if the coe�cients a1, . . . , ar are not all equal to 1, we can

get polynomials f mod pi such that P f mod pi
is not the triangle with vertices (0, 0),

(0, n), (n, 0). In Section 2.3, we will see that a linear change of coordinates permits to

deal with the remaining case.

Example: f(X,Y) = Y 3 + X3 + 5X2 + 3Y + 2. Figure 1 clearly illustrates the e�ect

of a reduction modulo p = 2.

5

-

6

0 1 2 3

1

2

3

X

Y

u

u

u

@
@

@
@

@
@

@
@
@ -

6

0 1 2 3

1

2

3

X

Y

u

u

u
u

@
@

@
@

@
@

@
@
@

HH
HHHH

Fig. 1. Newton polytopes of f and f mod 2

Therefore, thanks to Proposition 3 and Proposition 9, absolute irreducibility can be tested
with a Las Vegas strategy (i.e. the output of the algorithm is always correct). However
the output can be �I don't know�. More precisely:
For each p ∈ L, test the absolute irreducibility of f ∈ Fp[X,Y] with Proposition 3, and
conclude with Proposition 9.

Newton-polytop-mod algorithm

Inputs: f(X,Y) ∈ Z[X,Y], irreducible in Q[X,Y].
Outputs: �f is absolutely irreducible� or �I don't know�.
(1) Compute Pf and the list L of the primes dividing a coe�cient corresponding to a

vertex of Pf . Initialize test:=false: i := 1:
(2) While(test=false) and (i ≤ |L|) do p := L[i];

If tdeg(f mod p) = tdeg(f) then
Compute Pf mod p.
If f mod p satis�es condition (C) then

If f mod p is irreducible in Fp[X,Y] then test:=true; End If;
End If; End If; i := i+ 1 End While:

(3) If (test = true) then return �f is absolutely irreducible� else return �I don't know�
End If:

The following table shows that this algorithm is quite e�cient. We constructed 1000
polynomials in Z[X,Y] of total degree n, with random integer coe�cients in [−1012; 1012].
All these polynomials are dense. For each polynomial we test its absolute irreducibility
with the previous algorithm. Success is the number of absolute irreducible polynomials
detected with this algorithm. Tav (respectively Tmax, Tmin) is the average (respectively
maximum, minimum) timing in second to perform one test.

n Success Tav Tmax Tmin

10 1000 0.0041 0.33 0

30 1000 0.0113 0.56 0

50 1000 0.0252 0.59 0.009

100 1000 0.1552 0.66 0.081

200 1000 1.7579 3.22 0.701

6

2.3. Modular computations and change of coordinates

A last task is to deal with polynomials whose coe�cients are 0, 1 or −1 like f(X,Y) =
Xn+Y n+ 1, because in that case the Newton polytope gives no information, even when
one looks at the modular reduction f mod p. The natural strategy is to perform a
linear change of coordinates in order to obtain, after reduction, a polynomial satisfying
condition (C). This is applied in the next algorithm.

Modular computation is performed in Fp where p is a prime between 2 and some value,
here �xed to 101.

Newton-Polytop-mod-chg-var algorithm

Input: f(X,Y) ∈ Z[X,Y], irreducible in Q[X,Y].
Output: �f is absolutely irreducible� or �I don't know�.

For each p prime between 2 and 101 do:
For (a, b) ∈ F2

p do
fa,b(X,Y) = f(X + a, Y + b) mod p;
If tdeg (fa,b) = tdeg (f) then

If fa,b satis�es condition (C) then
If fa,b is irreducible in Fp[X,Y] then return

�f is absolutely irreducible�;
End If; End If; End If;End If; End For; End For;

Return �I don't know�.

This algorithm generalizes a test given by Ragot (2002) based on the following classical
property.
Fact: Let f(X,Y) ∈ K[X,Y] be an irreducible polynomial in K[X,Y]. If there exists

(a, b) ∈ K2 such that f(a, b) = 0 and
∂f

∂X
(a, b) 6= 0 or

∂f

∂Y
(a, b) 6= 0, then f is absolutely

irreducible.

Ragot's algorithm tests if f mod p has a simple root in Fp. Remark that f has a
simple root if and only if after a linear change of coordinates, which brings this root at
the origin, the Newton polytope of f has at least one of the points (1, 0) and (0, 1) as
vertex, while (0, 0) is not a vertex.
In that case, condition (C) is satis�ed; thus Ragot's test is weaker than our test.
At http://www.mip.ups-tlse.fr/∼cheze/, we listed an example of polynomial for which
absolute irreducibility is immediately detected by our algorithm reducing modulo p = 2,
while Ragot's test needs to reduce and check iteratively for all primes until p = 73.

Let us remark that thanks to the following proposition, for p ≥ (n − 1)4 our proba-
bilistic test becomes deterministic.

Proposition 10 (Ragot (1997), Prop. 4.4.3 page 79). Let f(X,Y) ∈ Fp[X,Y] be an

absolute irreducible polynomial of total degree n. If p ≥ (n− 1)4 then f has simple roots

in Fp. 2

Indeed, if we have a simple root then after a change of coordinates we get a polyno-
mial satisfying Ragot's test and thus satisfying condition (C). However, in practice, a
probabilistic approach with a small prime is much faster.

7

We only considered the case of integer polynomials, however our tests can be extended
to the case of polynomials with coe�cients in a commutative ring. In this case, the
computation modulo a prime number will be replaced by a computation modulo a prime
ideal. The algorithms can also be extended to the case of polynomials with N variables,
in which case the probability of success will increase with N . Indeed, there are more
chances to obtain a gcd equal to 1 with more coordinates.

3. A toolbox for an absolute factorization algorithm

We aim to build a factorization algorithm by extending the analysis and strategy
developed for the previous irreducibility test. We keep the notations introduced in Section
1 and specially in Lemma 4. A main task is to describe an algebraic extension L = Q(α)
of Q which contains the coe�cients of a factor f1 of f .

This kind of strategy was already developed in the TKTD algorithm; TKTD is an
acronym for Trager/ Kaltofen/Traverso/Dvornicich, (see Dvornicich and Traverso (1989),
Kaltofen (1985) and Trager (1985)). The result of the TKTD algorithm is an algebraic
extension L in which f(X,Y) factors. Usually this extension is too big, that is to say:
the degree extension of L is not minimal.

We aim to reach the same goal, obtain an algebraic extension in which f(X,Y) is
reducible, but the extension we will �nd is smaller, in fact minimal, and so more suitable
for the computation of the factorization.

3.1. Algebraic extensions and primitive elements

We can describe the extension L of Q with a primitive element. Let us see that,
generically, L = Q[f1(x0, y0)].

Lemma 11. Let f(X,Y) ∈ Z[X,Y] be a rationally irreducible polynomial (i.e. over Q)
of degree n. Let f1(X,Y) be an absolute irreducible factor of f(X,Y), deg f1(X,Y) = m.
For almost all (x0, y0) ∈ Z2 we have L = Q(f1(x0, y0)).
More precisely, the following estimate on the probability holds:

P
(
{(x0, y0) ∈ S2 | L = Q(f1(x0, y0))}

)
≥ 1− n(s− 1)

2|S|
with s := n/m,

where S is a �nite subset of Z.

Proof. We denote by ai,j the coe�cients of f1, so L = Q(ai,j). Let σl, (1 ≤ l ≤ s) be s
independent Q-homomorphisms from L to C.

Hence we have:

∀u 6= v, there exists (i, j) such that σu(ai,j) 6= σv(ai,j). (∗)

We consider D(X,Y) =
∏
u 6=v

(∑
i,j

(
σu − σv

)
(ai,j)XiY j

)
.

Property (∗) implies that D(X,Y) 6= 0. Then there exists (x0, y0) ∈ Z2 such that
D(x0, y0) 6= 0. This means: for all u 6= v, σu

(
f1(x0, y0)

)
6= σv

(
f1(x0, y0)

)
. Thus f1(x0, y0)

is a primitive element of L and this gives the desired result.
The probability statement is a direct consequence of Zippel-Schwartz's lemma, applied

to D(X,Y), whose degree is bounded by (ms(s− 1))/2 = (n(s− 1))/2. 2

8

Remark that the polynomial D(X,Y) appearing in the previous proof is connected
to another interesting polynomial: the discriminant, with respect to Z, of the 3-variate
polynomial F (X,Y, Z) =

∏s
j=1(Z − fj(X,Y)). The discriminant with respect to Z of

F (X,Y, Z) is the square of D(X,Y). F has coe�cients in Z because its coe�cients are
invariant when we permute the fj .

3.2. Number �elds and p-adic numbers

Lemma 12. Let M(T) ∈ Z[T] be a polynomial and p a prime number such that p divides
M(0), p does not divide the discriminant of q(T) and and p > deg(M).
Then there exists a root in Qp of M(T), considered as a polynomial in Qp[T].

This lemma allows us to consider a number �eld Q(α) as a sub�eld of Qp, for a well-
chosen prime p. Indeed, if q(T) is the minimal polynomial of α, then with a big enough
integer c we can �nd a prime number p such that the polynomial q(T + c) satis�es the
hypothesis of Lemma 12. Thus we can consider α+ c in Qp, then Q(α) ⊂ Qp. During our
algorithm we are going to factorize f(X,Y) mod p. We can consider this factorization as
an �approximate� factorization of f in Q(α) with the p-adic norm. Then this factorization
gives information about the absolute factorization.

Proof. SinceM(0) = 0 mod p and p - disc(q(T)), 0 is also a root ofM1(T) = M(T)
gcd(M(T),M ′(T))

in Fp. As p > deg(M) we haveM ′1(0) 6= 0 in Fp and we can lift this root in Qp by Hensel's
liftings. This gives a root of M1(T) in Qp, thus a root of M(T) in Qp. 2

3.3. Choice of p

Lemma 13. Let f(X,Y) ∈ Z[X,Y], deg f(X,Y) ≥ 1 and let B be a positive integer.
There exist (x0, y0) ∈ Z2 and p ∈ Z such that p divides f(x0, y0) and p does not divide
B.

Proof. We can reduce to the case of one variable and use the classical argument of
Dirichlet for proving that the set of prime numbers is in�nite.

Consider the polynomial f(X) ∈ Z[X], deg f ≥ 1. Consider x1 such that the constant
term c := f(x1) is not zero.

Set f̃(X) = f(X − x1), so c is the constant term of f̃(X). Consider f̃(cBX) = c(1 +
BXq(X)), where q(X) ∈ Z[X] is not zero (otherwise degf < 1). We can �nd x0 ∈ Z,
x0 6= 0 such that Bx0q(x0) 6= 0. Then, a prime p dividing 1 + Bx0q(x0) does not divide
B and we are done. 2

De�nition 14. We say that the prime integer p gives a bad reduction of f(X,Y) if the
number of absolute factors of f(X,Y) mod p di�ers from the number of absolute factors
of f(X,Y). 2

Proposition 15. Let f(X,Y) be a rationally irreducible polynomial, monic in Y . Then
there is a �nite number of prime integers p giving a bad reduction of f(X,Y).

Furthermore, if d(X) = discY (f(X,Y)), d1(X) = square-free part of d(X) and D =
discX(d1(X)), the set of prime integers p giving a bad reduction of f is contained in the
set of prime divisors of D.

9

Proof. The �niteness of the set of p giving bad reductions comes from a theorem of

Noether (1922). For the characterization using D, we can say with other words that

f(X,Y) has a good reduction mod p if d(X) and d(X) mod p have the same number of

distinct roots. For the proof of this fact, see Trager (1989). Finally, for another proof, see

Zannier (1997). 2

3.4. Recognition strategy

We assume that we chose a good prime p, such that tdeg (f) = tdeg (f mod p) and
f mod p factors as f(X,Y) = F (1)(X,Y) ·G(1)(X,Y) mod p where F (1) is exactly the

image mod p of an absolute factor f1 of f .

In order to �nd the splitting �eld of f(x0, Y), relying on Proposition 11, we need to

compute q(T), the minimal polynomial with integer coe�cients of α := f1(x0, y0).
Starting from a factorization f(x0, Y) = F (1)(x0, Y)G(1)(x0, Y) mod p, we lift it

through Hensel Lifting to the level of accuracy pλ. We then consider the p-adic ap-

proximation α := F (λ)(x0, y0) of α. Using a �big enough� level of accuracy λ, we can

compute the minimal polynomial of α from α.

Proposition 16. Consider α = F (λ)(x0, y0), 0 ≤ α ≤ pλ − 1 constructed above, a

positive integer Q bounding the size of the coe�cients of q(T), Q ≥ ‖q(T)‖∞, and a

positive integer λ ≥ logp(2s
2/2(s+ 1)sQ2s).

Then we can compute the minimal polynomial q(T) of α using the LLL algorithm on

an integer lattice whose basis is given using α and pλ.

Proof. We apply the same construction of von zur Gathen and Gerhard (2003, Section

16.4) for detecting rational factors of univariate polynomials.

We consider the polynomials

{T i(T − α)|i = 0, . . . , s− 1} ∪ {pλ}.

We write as usual

T i(T − α) = T i+1 − αT i =
s∑
j=0

tjT
j ,

where, in this case, tj 6= 0 for j ∈ {i + 1, i} and tj = 0 otherwise. Then the associated

vector for the polynomial T i(T − α) is

bi = (ts, . . . , t0).

For the constant polynomial pλ, we associate the vector b̃ = (0, . . . , 0, pλ). We can

construct the (s+ 1)× (s+ 1) matrix B whose columns are the bi, i = 0, . . . , s− 1 and b̃:

10

B =



1 0 0 0 . . . 0 0 0

−α 1 0 0 . . . 0 0 0

0 −α 1 0 . . . 0 0 0

0 0 −α 1 . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . 1 0 0

0 0 0 0 . . . −α 1 0

0 0 0 0 . . . 0 −α pλ


If we consider a point g of the integer lattice

∧
(B) ⊆ Rs+1 generated by the columns

of the matrix B, we can write its components with respect to the standard basis of Rs+1

g =
s−1∑
i=0

gibi + g̃b̃ = (gs−1, gs−2 − αgs−1, . . . , g0 − αg1, g̃pλ − αg0)

and associate a polynomial:

G(T) = gs−1T
s + (gs−2 − αgs−1)T s−1 + · · ·+ (g0 − αg1)T + g̃pλ − αg0 =

= S(T)(T − α) + g̃pλ with S(T) =
s−1∑
i=0

giT
i.

So if g ∈
∧

(B), the associated polynomial G(T) has degree ≤ s and it is divisible by

(T − α) modulo pγ .

The vice versa holds:

If G(T) is a polynomial of degree at most s and G(T) mod pλ is divisible by (T − α),
then we can write

G(T) = S∗(T)(T − α) +R∗(T)pγ with degS∗(T) ≤ s− 1 and degR∗(T) ≤ s.

Using Euclidean division, we obtain R∗(T) = S∗∗(T)(T −α) +Rpγ with degS∗∗ ≤ s− 1
and R a costant. We de�ne S(T) := S∗(T) + pγS∗∗(T). We then have that

G(T) = S(T)(T − α) +Rpγ ,

that is, G(T) can be written as a point of the lattice
∧

(B).
So if we consider the matrix B and we apply the LLL algorithm, we obtain as �rst

vector of the reduced basis a �short�vector representing a polynomial G(T) with �small�

norm such that G(T) has degree s and G(T) mod pλ is divisible by (T − α). Using the

hypothesis λ ≥ logp(2s
2/2(s+ 1)sQ2s) we can apply von zur Gathen and Gerhard (2003,

Lemma 16.20): we then have that q(T) and G(T) have a non-constant gcd. But since
q(T) is irreducible and deg q(T) = degG(T), we have that q(T) = G(T). 2

To establish the level of accuracy λ, we need a bound on the size of the coe�cients of

11

the minimal polynomial of α, q(T). Remember that

q(T) =
s∏
i=1

(T − αi) = T s + σ1(α̃) + · · ·+ σs−1(α̃)T + σs(α̃),

where σi(α̃) is the i-th symmetric function in the α = α1, α2, . . . , αs.
Observe that

|σk(α̃)| ≤
∑
τ∈Sk

|ατ(1)| · · · |ατ(k)| ≤
∑
τ∈Sk

m∏
j=1

|yτ(1)j | · · ·
m∏
j=1

|yτ(k)j |,

where fl(x0, Y) =
∏m
j=1(Y − y(l)

j) and f(x0, Y) =
∏s
i=1 fl(x0, Y).

As a bound on the coe�cients of f(x0, Y) gives a bound on the y
(l)
j (von zur Gathen

and Gerhard, 2003), a bound on the coe�cients of f(x0, Y) gives a bound for ‖q(T)‖∞.
In practice, for �early detection�, we rely on Proposition 16 replacing Q by

Q1 = ‖f(x0, Y)‖∞.

Remark 17. We have to face two problems concerning the algorithm for the Hensel
Lifting and the level of accuracy λ:
(1) Leading coe�cient problem: Since f(X,Y) ∈ Z[X,Y] is not assumed to be monic,

its modular factors too may not be monic; then the classical Hensel lifting of the
modular factorization of f(X,Y) is not necessarily unique (Geddes et al., 1992,
Corollary of Theorem 6.2).

(2) In practical use of this construction of the minimal polynomial of α, we will avoid
to lift the factorization until the level λ of Proposition 16 (this bound is usually
very pessimistic). However, in this way we are not sure that the polynomial G(T) is
actually q(T). We then need a quick method to check if we found a good candidate
to de�ne the �eld extension or if we have to lift the factorization to a higher level
of accuracy.

Consider f(x0, Y) =
∑n
i=0 φiY

i.
For what concerns the leading coe�cient problem, we can simply consider the �modi-

�ed� linear Hensel Lifting (Geddes et al., 1992, Algorithm 6.1). In this way we can lift the
factorization modulo p, but the coe�cients involved in the computations are bigger, since
actually we lift a factorization of φn · f(x0, Y), obtaining a factor that we call F̃ (λ)(Y).

For what concerns the second problem, we have to understand how the roots of a factor
of f(x0, Y) are in connection with the coe�cients of q(T) and f̃1(Y), that is the factor
of f(x0, Y) that we obtain after the �modi�ed� Hensel Lifting. We call qs the leading
coe�cient of the polynomial q(T).

If f1(x0, Y) is the factor of f(x0, Y) we are looking for, then the product of its roots

is simply β := (−1)deg f̃1(Y)f̃1(y0)/φn.
Then the product of the conjugated of β is simply q(0)/qs, but this is also the product

of all the roots of f(x0, Y). So we have the following relation q(0)
qs

= (−1)s f(x0,y0)
φn

.

When we apply the LLL algorithm to
∧

(B) we can then proceed as follows: if the
obtained polynomial G(T) satis�es

G(0)
Gs

= (−1)s
f(x0, y0)

φn
with Gs leading coe�cient of G(T) (?)

12

then we will try to factor f(x0, Y) in the algebraic extension de�ned by G(T), that is
Q[T]/G(T). If G(T) does not satisfy (?), then we have to rise the level of approximation
of the Hensel lifting and then apply again LLL to the new lattice and test again.

In this way we have a necessary condition that can help us to recognize the minimal
polynomial of α.

4. Absolute factorization algorithm

We use the results and methods of the previous section to compute an absolute factor
f1 of f (i.e. a representation of the �eld L of its coe�cient and the coe�cients).

To ease the presentation, we rely on the practical evidence that for random integer
value x0, f(x0, Y) is irreducible. In Section 4.2 we will present a variant using a weaker
condition.

Abs-Fac algorithm

Input: f(X,Y) ∈ Z[X,Y], irreducible in Q[X,Y] of degree n, a �nite subset S of Z2.
Output: q(T) ∈ Q[T] minimal polynomial of α de�ning the minimal algebraic extension
L = Q(α) = Q[T]/q(T) and f1(X,Y) ∈ L[X,Y] an absolute irreducible factor of f , or �I
don't know�.
Preprocessing: Choose (x0, y0) ∈ S2, such that f(x0, Y) is irreducible. If all of the
points were used, then return �I don't know�.
(1) Choose a prime p dividing f(x0, y0) such that tdeg (f mod p) = tdeg (f).
(2) Factorize f in Fp[X,Y].

If f mod p is irreducible and satis�es an absolute irreducibility test then Return
�f is absolutely irreducible�, f1 := f and q(T) := T .
If f mod p is irreducible and not absolutely irreducible then go back to the

Preprocessing step (choosing a point (x0, y0) not yet used and a di�erent prime p).
Else f(X,Y) = F (1)(X,Y) · G(1)(X,Y) mod p where F (1) is one of the irre-

ducible factors in Fp[X,Y] with smallest degree m, check that s := tdeg (f)
m is an

integer else go back to the Preprocessing step (choosing a point (x0, y0) not yet
used and a di�erent prime p).

(3) Lift the factorization to f(x0, Y) = F (λ)(x0, Y)G(λ)(x0, Y) mod pλ ; λ is chosen
according to Proposition 16 and Remark 17.

(4) De�ne α := F (λ)(x0, y0) ∈ Z/pλZ. Find, using the lattice described in Section 3.4
and the LLL algorithm, the polynomial q(T). If q(T) does not satisfy (?) or it is
not irreducible, go back to step (3) and double λ.

(5) Denote by α a root of q(T) then factorize f(x0, Y) in Q(α)[Y] = L[Y] and denote
by F1(x0, Y) a factor with degree m and with F1(x0, y0) = α.
If we do not �nd such a factor, then go back to the Preprocessing step (choosing a
point (x0, y0) not yet used and a di�erent prime p).

(6) Perform m times X-adic Hensel liftings on f(x0, Y) = F1(x0, Y)F2(x0, Y) to deter-
mine a candidate for f1(X,Y) in L[X,Y] and check that it divides f(X,Y). Else
go back to the Preprocessing step (choosing a point (x0, y0) not yet used and a
di�erent prime p).

Return q(T) and f1(X,Y).

Proposition 18. The algorithm gives a correct answer.

13

Proof. Since it is a Las Vegas algorithm, this algorithm is probably fast and always
correct but the answer can be �I don't know�. So we just have to check that a given
positive answer is correct.

The starting point of the proposed algorithm, as in the irreducibility test, is to deter-
mine a prime p such that the reduction modulo p kills the evaluation of f on an integer
point (x0, y0). Then the constant term of the minimal polynomial of α := f1(x0, y0)
vanishes modulo p. Such a p is easily found. However we rely on randomness to expect
with a good probability that L = Q(α) and that f has good reduction modulo p (using
Proposition 15 and Lemma 12).

In the algorithm described above, we inserted some checks and a loop to change p if
it is an �unlucky� choice. The algorithm can be made deterministic (but less e�cient)
by considering a large testing set for (x0, y0) and take p not dividing a huge constant B
computed a la Trager, to avoid bad reduction. We would be able to do this thanks to
Lemma 13.

The output of the algorithm, the factor f1, is irreducible in L[X,Y]. Indeed, f1(x0, Y) =
F1(x0, Y) and F1(x0, Y) is irreducible in L[Y] because of the irreducibility of f(x0, Y) in
the Preprocessing Step. Furthermore, the extension L is minimal. Indeed, at the end of
the algorithm we have degY f1 = m, deg q = s and s.m = n, see the de�nition of s in
Step 2. 2

Remark: f1 is irreducible modulo p and f1 modulo p generically satis�es condition
(C), so Proposition 3 guarantees the absolute irreducibility of f1 in L[X,Y].

Instead of costructing the absolute factor f1(X,Y) ∈ L[X,Y] using univariate fac-
torization and X-adic Hensel lifting, one can substitute Steps 5 and 6 of the Abs-Fact
Algorithm with the computation of the factorization of f(X,Y) in L[X,Y]. This is pos-
sible, for instance, using the software Magma (Bosma et al., 1997). In this way in the
Preprocessing Step we do not need to look for (x0, y0) ensuring the irreducibility of
f(x0, Y).
Anyhow, if such a routine for bivariate factorization in L[X,Y] is not available, we can
weaken the request on the point (x0, y0) as described in Section 4.2.

4.1. Parallel version of the Algorithm

In step (5) of the Abs-Fac Algorithm we perform a factorization of f(x0, Y) in the
polynomial ring L[Y]. Then in Step (6) we use Hensel liftings to reconstruct the factor f1.
If we use parallel calculus in these steps, we can perform (m+1) Lagrange interpolations
to reconstruct the factor f1. We have to assume that in the factorization of f(x0, Y) in
L[Y] there is only one factor of degree m. This is not always veri�ed, for instance if the
extension L is normal we may have several factors of the same degree m.

We write the absolute factor f1 as

f1(X,Y) = Y m +
m−1∑
k=0

∑
i+j=k

a
(1)
i,jX

iY j = Y m +
m−1∑
j=0

bj(α,X)Y j ,

where bj(Z,X) ∈ Q[Z,X] of degree ≤ m−j and α is a root of the polynomial q(T) found
in step (4).

We then want to �nd the polynomials bj(α,X).
We substitute steps (5) and (6) with the following procedure:

14

(5bis) Denote by α a root of q(T) (i.e. the command RootOf in Maple).
Choose points x1, . . . , xm ∈ Z, xi 6= x0 for i = 1, . . . ,m such that f(xi, Y) is rationally
irreducible.
Compute the factorization of f(xi, Y) in L[Y] and choose F1,0(Y) from the factorization
of f(x0, Y) as in step (5) of the algorithm and F1,j(Y) a factor of minimal degree m
in the factorization of f(xj , Y).

(6bis) Write F1,j(Y) as follows

F1,j =
m∑
i=0

γi,jY
j with γj ∈ L.

We then construct the polynomials bj(α,X) of degree j using Lagrange interpolation
(Burden and Faires, 1993, Section 3.1) on the set of nodes γ0,j , . . . , γj,j . In this way
we determine a candidate for f1(X,Y) in L[X,Y]. We check that it divides f(X,Y).
Else go back to the Preprocessing step (choosing a point (x0, y0) not yet used and a
di�erent prime p).

The advantage of steps (5bis) and (6bis) is that in this way this part of the algorithm
can be naturally parallelized and do not saturate the memory.

4.2. Hilbert's Irreducibility Theorem

In the preprocessing step we check that f(x0, Y) is irreducible. This situation hap-
pens very often in practice. With a more theoretical point of view, we know that there
exists an in�nite number of x0 ∈ Z such that f(x0, Y) is irreducible, thanks to Hilbert's
irreducibility theorem. There exists bounds for this theorem but unfortunately they are
very big, see Dèbes and Walkowiak (2008).

Here we now use a weaker condition on the choice of (x0, y0) that allows us to recon-
struct the factor f1(X,Y) even if f(x0, Y) is not rationally irreducible.

Choose an integer point (x0, y0) ∈ Z2 such that x0 is not a root of the polynomial
∆(X) = discY (f(X,Y)) and choose an integer p such that ∆(x0) mod p 6= 0. With this
choice of (x0, y0) we are sure that the univariate polynomial f(x0, Y) has no multiple
roots in Q nor in Fp.

We do not assume that f(x0, Y) is rationally irreducible. We computed the factoriza-
tion mod p

f(X,Y) = F (X,Y) ·G(X,Y) ∈ Fp[X,Y] degF = m.

Thanks to the choice of p as in step (1) of the algorithm, F (X,Y) should be equal
mod p to the researched absolute factor f1(X,Y) of f .

After applying step (5), we get the following factorization

f(x0, Y) = ψ1(Y) · · ·ψr(Y) ∈ Q(α)[Y] (2)

and need to �nd the set of indexes I ⊆ {1, . . . , r} such that∏
i∈I

ψi(Y) = f1(x0, Y). (3)

We reduce mod p the equalities (2) and (3). We obtain that j ∈ I if and only if ψj
mod p divides F (x0, Y) mod p.

15

5. Examples and practical complexity

We tested our algorithm on several examples, using (probably non-optimal) routines
implemented in Maple 10.

We focused on the construction of the minimal polynomial q(T) of α, that is on the
construction of the splitting �eld Q(α); in fact the last part of the algorithm, the fac-
torization using coe�cients in Q(α), depends strongly on the used software: in some
computer algebra systems one can �nd routines for multivariate factorization over alge-
braic extension of the rationals, such as in Magma (Bosma et al., 1997), or, alternatively,
one can use X-adic Hensel lifting or Lagrange interpolation as described before.

The procedures, data and Maple �les of several examples are available at
http://math.unice.fr/∼cbertone/

Here we list some remarks about both the strong and the weak points of our algorithm
arising from the computed examples.
• In general the algorithm is quite fast: it took around 30 sec (factorization mod p,
Hensel lifting, construction of the minimal polynomial) to compute the polynomial q(T)
starting from a polynomial of degree 200, with 10 absolute factors of degree 20 each.
• If possible, it seems to be a good idea to choose a �small� prime p (in this way we can
gain some time in the mod p-factorization). If the integers dividing f(x0, y0) are quite
big, it may be better to go back to the preprocessing step.
• On examples of high degree, most of the time is spent for the construction of the
minimal polynomial from the approximation α. In our tests, we used the LLL function
of Maple, but we may speed up this part of the computation using more performing
algorithms for LLL (for example, see Nguên and Stehlé (2005) and Schnorr (2006)).
• For the computation of the p-adic Hensel Lifting, we have implemented a small pro-
cedure in Maple, both for the linear and the quadratic one, which can deal also with
non-monic polynomials (von zur Gathen and Gerhard, 2003, Algorithm 6.1).

Benchmark

We consider random polynomials g1 ∈ Q[x, y, z] and g2 ∈ Q[z], of degrees d1 and d2

resp. both rationally irreducible. We compute f(X,Y) = Resz(g1, g2). In this way we
obtain an irreducible polynomial f(X,Y) ∈ Q[x, y], monic in y, of degree d1 · d2 with d2

absolute irreducible factors each of degree d1.

The polynomials g1 and g2 used are listed in the �le �Polynomials.mws�.

Here we summarize the time needed to obtain q(T), the minimal rational polynomial
of α, such that the absolute factors of f(X,Y) are in L[x, y], L = Q(α) = Q[T]/q(T) and
we made a few remarks about the strategy one may adopt (for instance the choice of the
prime).

In almost all of the examples, we compute the Hensel lifting both with the linear and
the quadratic algorithm, this is why we always chose as level of accuracy a power of 2.

Example 19, we computed the factor f1(X,Y) using Lagrange Interpolation.
To repeat the examples, one need to change at the beginning of each Maple �le the

location of the �le �proc.txt�, in which there are (non-optimal) implementations for linear
and quadratic Hensel Lifting (for non monic polynomials) and a procedure to compute
the minimal polynomial of a p-adic approximation of α using the LLL algorithm.

The names of kind �Example1.2.mws� refer to the Maple �les on the website.

16

Example 19. f(X,Y) rational irreducible polynomial of degree 50 with 5 absolute
factors of degree 10.

We need 1.5 sec to construct the example and factor f(0, 0). We construct the minimal
polynomial de�ning the �eld extension for 2 di�erent choices of p.

Example1.1.mws: we choose p = 11.
• Time to factor f(X,Y) mod p: 0.131 sec.
The estimation of the level of accuracy that ensures the correct computation of q(T)

is in this case 338; we choose to lift the factorization to the level p256.
• Time to lift the factorization f(0, Y) = g1(0, Y)g2(0, Y) mod p to a factorization

mod p256, using:
Linear Hensel Lifting: less than 1 sec
Quadratic Hensel Lifting: less than 0.07 sec.
• Time to �nd the minimal polynomial of α through its approximation mod p256

using LLL: 0.22 sec.

We can complete the algorithm using steps (5bis) and (6bis):
we choose 10 nodes x1 . . . , x10 randomly and factor the polynomials f(xj , Y) in Q(α)[Y];
using parallel calculus, these factorizations take less than 4 minutes, since the longest of
them takes about 219 sec. Then we use Lagrange Interpolation and obtain f1(X,Y).

Example1.3.mws: if we use the software Pari GP, applying the function polred() to
the obtained polynomial q(T), we get q1(Z) which de�nes the same algebraic extension
as q(T) but has smaller coe�cients. In this way, the factorization of f(0, Y) in Q(α) took
only 8 sec, but the computation of the polynomial q1(Z) in Pari GP took more than 360
sec! 2

Example 20. f(X,Y) rational irreducible polynomial of degree 400 with 20 absolute
factors of degree 20.

We need around 1260 sec to construct the example and factor f(0, 0).

Example6.1.mws: we choose p = 53259165137.
• Time to factor f(X,Y) mod p: 1924 sec.
The estimation of the level of accuracy that ensures the correct computation of q(T)

is in this case 398; we choose to lift the factorization to the level p256.
• Time to lift the factorization f(0, Y) = g1(0, Y)g2(0, Y) mod p to a factorization

mod p256, using
Linear Hensel Lifting: less than 365 sec
Quadratic Hensel Lifting: less than 39 sec.
• Time to �nd the minimal polynomial of α through its approximation mod p256

using LLL: 1024 sec.

In order to compare the time needed for the construction of q(T) computing modulo
a �small� prime, we considered also the case with p = 89 dividing f(−1, 0). In this case
we obtained (Example6.2.mws):
• Time to factor f(X,Y) mod p: 127 sec.
The estimation of the level of accuracy that ensures the correct computation of q(T)

is in this case 2194; we choose to lift the factorization to the level p1024.

17

• Time to lift the factorization f(0, Y) = g1(0, Y)g2(0, Y) mod p to a factorization

mod p1024, using

Linear Hensel Lifting: 737 sec

Quadratic Hensel Lifting: 24 sec.

• Time to �nd the minimal polynomial of α through its approximation mod p1024

using LLL: 520 sec. 2

For the details of other examples, see http://math.unice.fr/∼cbertone/
In the following table we resume the timings of a few more examples.

• n = tdeg (f), s=number of absolute factors of f , m = n/s=degree of an absolute

factor of f ;

• p= prime integer, λ = level of accuracy of Proposition 16, λ̃ =chosen level of accuracy;

• T1 = time to factor f(X,Y) mod p, T2 =time to lift the factorization to pλ̃, T3 =time

to �nd the minimal polynomial of α.

Example n s m p λ λ̃ T1 T2 T3

Example 1.1 50 5 10 11 338 256 0.13 s 0.07 s 0.22 s

Example 1.2 50 5 10 307 141 128 0.13 s 0.08 s 0.4 s

Example 2.1 100 10 10 7 1105 512 3.4 s 0.3 s 2.25 s

Example 2.2 100 10 10 655379 160 128 6.2 0.4 s 5.7 s

Example 3.1 150 15 10 7 2246 1024 10 s 1.08 s 21 s

Example 4.1 200 10 20 47 853 512 33 s 2.8 s 14 s

Example 4.2 200 10 20 114041 282 256 128 s 3.8 s 30 s

Example 5 200 20 10 7682833 457 256 68 s 3.8 s 220 s

Example 6.1 400 20 20 53259165137 398 256 1924 s 39 s 1024 s

Example 6.2 400 20 20 127 2194 1024 127 s 24 s 520 s

Example 7 100 20 5 7 3029 2048 0.64 s 1.25 s 205 s

6. Conclusion

In this paper we have presented a new approach to absolute factorization improving

the use of classical tools, in particular the TKTD algorithm and LLL algorithm.

In fact, we have re�ned the main idea of the TKTD algorithm (Dvornicich and Traverso

(1989), Kaltofen (1985), Trager (1985)), because we construct a �small� algebraic exten-

sion �eld in which the polynomial f(X,Y) splits. However the degree of the extension con-
structed by our algorithm is minimal, i. e. the number of absolute factors. In the TKTD

algorithm the degree of the used extension is the degree of the polynomial f(X,Y).
Furthermore, we use the LLL algorithm in a new way to de�ne the �eld extension,

while its classical applications are on the coe�cients of a univariate rational polynomial

18

in order to factor it (Lenstra et al., 1982), or on the exponents (see van Hoeij (2002) and
Chèze (2004a)).

In our application, LLL is used on a lattice de�ned by s + 1 vectors, where s is the
number of absolute factors of the polynomial, which is smaller than the degree of the
polynomial to factor. That is why in our algorithm the use of LLL is not a bottleneck.

Nevertheless, we may improve the fastness of the computations using, if it will be
available in the future, a fast LLL (see Nguên and Stehlé (2005) and Schnorr (2006))
and a good implementation of the Polred algorithm (Cohen and Diaz y Diaz, 1991), which
allows a better presentation of the algebraic �eld extension. Also the part concerning the
construction of the absolute factor using X-adic Hensel lifting can be improved using an
e�cient strategy as the one described in Chèze and Lecerf (2007).

Our Maple prototype was able to construct the rational algebraic extension containing
the coe�cients of an absolute factor of a polynomial of high degree (up to 400), which
were so far out of reach of all other absolute factorization algorithm; furthermore our
construction is very fast on polynomials of middle degrees (about 100).

A complete and e�cient implementation of our algorithm will also need good p-adic
and X-adic Hensel liftings. We expect, in a near future, that the library Mathemagix
(Mathemagix, 2009) will provide optimized implementations of these routines. Another
point to improve is the parallel version of the algorithm, in order to be able to deal
also with normal extensions of Q. With these improvements we think that a complete
implementation of our algorithm can be challenging with other absolute factorization
algorithms such as Chèze and Lecerf (2007) and Chèze (2004a).

We would like to explore in the near future the possibility to use a "LLL technique"
to directly recognize all of the algebraic coe�cients of an absolute factor; in particular,
we would like to test if such a technique may be more e�cient than the X-adic Hensel
lifting or the use of Lagrange interpolation on several univariate factorization in Q(α).

Another related direction of research that we will soon explore, is extending some of
these techniques to the decomposition of a�ne curves in dimension 3 or more.

Acknowledgments

The authors would like to thank Grégoire Lecerf for useful discussions and valuable
suggestions concerning this paper and the anonymous referees for their helpful comments
and remarks.

References

Belabas, K., Klueners, J., Steel, A., van Hoeij, M., 2004. Factoring polynomials over
global �elds, preprint arXiv:math/0409510v1, to appear in Journal de Théorie des
Nombres de Bordeaux.

Bosma, W., Cannon, J., Playoust, C., 1997. The Magma algebra system. I: The user
language. J. Symb. Comput. 24 (3-4), 235�265.

Bostan, A., Lecerf, G., Salvy, B., Schost, E., Wiebelt, B., 2004. Complexity issues in
bivariate polynomial factorization. Gutierrez, Jaime (ed.), ISSAC 2004. Proceedings of
the 2004 international symposium on symbolic and algebraic computation, Santander,
Spain, July 4�7, 2004. New York, NY: ACM Press. 42-49 (2004).

19

Burden, R. L., Faires, J., 1993. Numerical analysis. 5th ed. Boston, MA: PWS Publishing
Company. London: ITP International Thomson Publishing, xiv, 768 p.

Chèze, G., 2004a. Absolute polynomial factorization in two variables and the knapsack
problem. Gutierrez, Jaime (ed.), ISSAC 2004. Proceedings of the 2004 international
symposium on symbolic and algebraic computation, Santander, Spain, July 4�7, 2004.
New York, NY: ACM Press. 87-94 (2004).

Chèze, G., 2004b. Des méthodes symboliques-numériques et exactes pour la factorisation
absolue des polynômes en deux variables. Ph.D. thesis.

Chèze, G., Galligo, A., 2005. Four lectures on polynomial absolute factorization. Dick-
enstein, Alicia (ed.) et al., Solving polynomial equations. Foundations, algorithms,
and applications. Berlin: Springer. Algorithms and Computation in Mathematics 14,
339-392, 393�418 (2005).

Chèze, G., Lecerf, G., 2007. Lifting and recombination techniques for absolute factoriza-
tion. J. Complexity 23 (3), 380�420.

Cohen, H., Diaz y Diaz, F., 1991. A polynomial reduction algorithm. Sémin. Théor.
Nombres Bordx., Sér. II (1), 351�360.

Dèbes, P., Walkowiak, Y., 2008. Bounds for Hilbert's irreducibility theorem. Pure Appl.
Math. Q. 4 (4), 1059�1083.

Dvornicich, R., Traverso, C., 1989. Newton symmetric functions and the arithmetic of
algebraically closed �elds. Applied algebra, algebraic algorithms and error-correcting
codes, Proc. 5th Int. Conference, AAECC-5, Menorca, Spain, 1987, Lect. Notes Com-
put. Sci. 356, 216-224 (1989).

Gao, S., 2001. Absolute irreducibility of polynomials via Newton polytopes. J. Algebra
237 (2), 501�520.

Gao, S., 2003. Factoring multivariate polynomials via partial di�erential equations. Math.
Comput. 72 (242), 801�822.

Geddes, K. O., Czapor, S. R., Labahn, G., 1992. Algorithms for computer algebra. Dor-
drecht: Kluwer Academic Publishers Group. XVIII, 585 p. .

Kaltofen, E., 1985. Fast parallel absolute irreducibility testing. J. Symb. Comput. 1,
57�67.

Kaltofen, E., 1992. Polynomial factorization 1987-1991. In I. Simon, editor, Proc. LATIN
'92.

Kaltofen, E., 1995. E�ective Noether irreducibility forms and applications. J. Comput.
System Sci. 50 (2), 274�295, 23rd Symposium on the Theory of Computing (New
Orleans, LA, 1991).

Lecerf, G., 2006. Sharp precision in Hensel lifting for bivariate polynomial factorization.
Math. Comput. 75 (254), 921�933.

Lecerf, G., 2007. Improved dense multivariate polynomial factorization algorithms. J.
Symb. Comput. 42 (4), 477�494.

Lenstra, A., Lenstra, H., Lovász, L., 1982. Factoring polynomials with rational coe�-
cients. Math. Ann. 261, 515�534.

Mathemagix, 2009. A free computer algebra system. Available at
http://www.mathemagix.org.

Nguên, P. Q., Stehlé, D., 2005. Floating-point LLL revisited. Cramer, Ronald (ed.),
Advances in cryptology � EUROCRYPT 2005. 24th annual international conference
on the theory and applications of cryptographic techniques, Aarhus, Denmark, May
22�26, 2005. Proceedings. Berlin: Springer. Lecture Notes in Computer Science 3494,
215-233 (2005).

20

Noether, E., 1922. Ein algebraisches Kriterium für absolute Irreduzibilität. Math. Ann.
85, 26�33.

Ostrowski, A. M., 1975. On multiplication and factorization of polynomials. I: Lexico-
graphic orderings and extreme aggregates of terms. Aequationes Math. 13, 201�228.

Ragot, J.-F., 1997. Sur la factorisation absolue des polynomes. Ph.D. thesis.
Ragot, J.-F., 2002. Probabilistic absolute irreducibility test for polynomials. J. Pure Appl.
Algebra 172 (1), 87�107.

Rupprecht, D., 2004. Semi-numerical absolute factorization of polynomials with integer
coe�cients. J. Symb. Comput. 37 (5), 557�574.

Schneider, R., 1993. Convex bodies: the Brunn-Minkowski theory. Encyclopedia of Ma-
thematics and Its Applications. 44. Cambridge: Cambridge University Press. xiii, 490
p. .

Schnorr, C. P., 2006. Fast LLL-type lattice reduction. Inf. Comput. 204 (1), 1�25.
Sommese, A. J., Verschelde, J., Wampler, C. W., 2004. Numerical factorization of mul-
tivariate complex polynomials. Theor. Comput. Sci. 315 (2-3), 651�669.

Trager, B., 1985. On the integration of algebraic functions. Ph.D. thesis.
Trager, B., 1989. Good reduction of curves and applications. Meeting on Computer and
Commutative Algebra (COCOA II).

van Hoeij, M., 2002. Factoring polynomials and the knapsack problem. J. Number Theory
95 (2), 167�189.

von zur Gathen, J., Gerhard, J., 2003. Modern computer algebra. 2nd ed. Cambridge
University Press.

Zannier, U., 1997. On the reduction modulo p of an absolutely irreducible polynomial
f(x, y). Arch. Math. 68 (2), 129�138.

21

