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Introduction

This will be a talk in the Bourbaki tradition. All the results I
will be presenting are due to Curt. T McMullen.
They can be found in the paper:

Self-similarity of Siegel disks
and Hausdorff dimension of Julia sets.

Acta Math. Vol 180, 1998.
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Basic definitions

Define

Pθ(z) = ei2πθz + z2 : C → C, θ ∈ R.

Jθ the Julia set of Pθ and cθ the critical point.

Kθ = {z ∈ C|∀n : |P n
θ (z)| ≤ 4} the filled in Julia set.

For any Brjuno Number θ ∈ B: The Siegel disk ∆θ of Pθ

and Ωθ := C\∆θ its complement.

For θ ∈ B the ε-neighbourhood ∆θ(ε) of ∆θ and

Kθ(ε) = {z ∈ C|∀n : P n
θ (z) ∈ ∆θ(ε)}

Disques de Siegel, implosion parabolique et aire des ensembles de Julia – p. 3/27



Basic definitions

Define

Pθ(z) = ei2πθz + z2 : C → C, θ ∈ R.

Jθ the Julia set of Pθ and cθ the critical point.

Kθ = {z ∈ C|∀n : |P n
θ (z)| ≤ 4} the filled in Julia set.

For any Brjuno Number θ ∈ B: The Siegel disk ∆θ of Pθ

and Ωθ := C\∆θ its complement.

For θ ∈ B the ε-neighbourhood ∆θ(ε) of ∆θ and

Kθ(ε) = {z ∈ C|∀n : P n
θ (z) ∈ ∆θ(ε)}

Disques de Siegel, implosion parabolique et aire des ensembles de Julia – p. 3/27



Basic definitions

Define

Pθ(z) = ei2πθz + z2 : C → C, θ ∈ R.

Jθ the Julia set of Pθ and cθ the critical point.

Kθ = {z ∈ C|∀n : |P n
θ (z)| ≤ 4} the filled in Julia set.

For any Brjuno Number θ ∈ B: The Siegel disk ∆θ of Pθ

and Ωθ := C\∆θ its complement.

For θ ∈ B the ε-neighbourhood ∆θ(ε) of ∆θ and

Kθ(ε) = {z ∈ C|∀n : P n
θ (z) ∈ ∆θ(ε)}

Disques de Siegel, implosion parabolique et aire des ensembles de Julia – p. 3/27



Basic definitions

Define

Pθ(z) = ei2πθz + z2 : C → C, θ ∈ R.

Jθ the Julia set of Pθ and cθ the critical point.

Kθ = {z ∈ C|∀n : |P n
θ (z)| ≤ 4} the filled in Julia set.

For any Brjuno Number θ ∈ B: The Siegel disk ∆θ of Pθ

and Ωθ := C\∆θ its complement.

For θ ∈ B the ε-neighbourhood ∆θ(ε) of ∆θ and

Kθ(ε) = {z ∈ C|∀n : P n
θ (z) ∈ ∆θ(ε)}

Disques de Siegel, implosion parabolique et aire des ensembles de Julia – p. 3/27



Basic definitions

Define

Pθ(z) = ei2πθz + z2 : C → C, θ ∈ R.

Jθ the Julia set of Pθ and cθ the critical point.

Kθ = {z ∈ C|∀n : |P n
θ (z)| ≤ 4} the filled in Julia set.

For any Brjuno Number θ ∈ B: The Siegel disk ∆θ of Pθ

and Ωθ := C\∆θ its complement.

For θ ∈ B the ε-neighbourhood ∆θ(ε) of ∆θ and

Kθ(ε) = {z ∈ C|∀n : P n
θ (z) ∈ ∆θ(ε)}

Disques de Siegel, implosion parabolique et aire des ensembles de Julia – p. 3/27



Main Theorem

Theorem 1 (McMullen).
For every bounded type θ ∈ BT and for every ε > 0 the boundary

∂∆θ is uniformly measureably deep in Kθ(ε).

That is ∃ α,C > 0 depending on θ and ε such that

∀ z ∈ ∂∆θ,∀r ≤ 1 : Area(Br(z)\Kθ(ε)) ≤ Cr2+α,

where Br(z) denotes the euclidean ball of center z and radius r.

In particular every point of ∂∆θ is a Lebesgue density point of Kθ(ε).
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Auxillary definitions 1

Definition 2. A point z0 ∈ Λ ⊂ C, where Λ is a compact subset, is
called a deep point of Λ, iff
∃ δ > 0 and ∃ C > 0 such that ∀r ≤ 1:

Bs(z) ⊂ Br(z0)\Λ ⇒ s ≤ Cr1+δ

Definition 3. A compact subset Λ ⊂ C is called porous iff
∃C > 0 such that:

∀ z0 ∈ C,∀ r > 0,∃z : BCr(z) ⊂ (Br(z0)\Λ).

We also say that Λ is C porous.

The two notions deep and porous are in some sense
opposite of each other.
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Comments on Auxillary definitions 1

Deepness of a point z0 ∈ Λ means that round holes in the
complement of Λ become exponentially small relative to the
scale when we pass to small scales near z.

Poroussity of Λ means that Λ has definite size holes relative
to the scale everywhere. It is like a uniform Swiss cheese.
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General definitions

Definition 4. For Λ ⊂ C a compact subset. The upper box-dimension
of Λ is the real number

dimbox(Λ) := lim sup
r→0

log(N(Λ, r))

log 1/r
,

where N(Λ, r) is the minimal number of squares of side length r
needed to cover Λ.

Trivially the Hausdorff dimension dimH(Λ) satisfies:

dimH(Λ) ≤ dimbox(Λ) ≤ 2.
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General poroussity results

Proposition 5. For C > 0 let N = N(C) ∈ N satisfy N ≥
√

2
C .

Then Any C-porous subset Λ ⊂ C satisfies:

dimH(Λ) ≤ dimbox(Λ) ≤
log(N2 − 1)

log N
:= dN < 2.

Moreover for dN < d < 2 there exists K0 ≥ N such that for any
K ≥ K0, for any square Q of side length r ≤ 1: The partition of Q into
sub squares q of equal side lengths r/K has the property that the

number N̂((Λ ∩ Q),K) of small squares q needed to cover (Λ ∩ Q)
satisfies

N̂((Λ ∩ Q),K) ≤ Kd.
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Proof

lim
n→∞

log (N2 − 1)
n

log Nn − log r
=

log(N2 − 1)

log N
= dN
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General results 2

Proposition 6. Any deep point z0 of a compact subset Λ ⊂ C with
pourous boundary is a measureable deep point.

Moreover if z0 is a δ, CD > 0 deep point and ∂Λ is CP > 0 porous.
Then ∀ r ≤ 1

Area(Br(z0)\Λ) ≤ CMD · r2+α,

where α,CMD > 0 depends only on the constants δ, CD, CP > 0.
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Proof of Proposition 6

It suffices to prove it for small r > 0. Let dN < d < 2 and K0

be as in Proposition 5. For r ≤ 1
(2CK0)

1/δ write

K0 ≤ K ≤ 1
2Crδ < K + 1 ∈ N.

2r
K covers

dz0

Q
q

2
K  squares q
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Proof of Proposition 6 cont.

Hence Br(z0)\Λ is contained in Kd small squares and we
have the estimate:

Area(Br(z0)\Λ) ≤ Kd

(
2r

K

)2

(as 1 ≤ (K + 1) · 2Crδ) ≤ 4r2

(
K + 1

K

)2−d

(2Crδ)
2−d

≤ CMDr2+α

with CMD = 4
(

K0+1
K0

)2−d
(2C)2−d and α = δ(2 − d).
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Main Technical Theorems

Theorem 7 (McMullen).
For every bounded type θ ∈ BT and for every ε > 0 the boundary
∂∆θ is uniformly deep in Kθ(ε).

That is ∃ δ, C > 0 depending on θ and ε such that

∀r ≤ 1 : Bs(z) ⊂ ∆θ(r)\Kθ(ε) ⇒ s ≤ Cr1+δ.

Theorem 8 (McMullen).
For every bounded type θ ∈ BT the Julia set Jθ is porous.
Moreover so is ∂Kθ(ε) for every ε > 0.

Combining Theorem 7 and Theorem 8 with Proposition 6
we obtain the Main Theorem.

Disques de Siegel, implosion parabolique et aire des ensembles de Julia – p. 13/27



Main Technical Theorems

Theorem 7 (McMullen).
For every bounded type θ ∈ BT and for every ε > 0 the boundary
∂∆θ is uniformly deep in Kθ(ε).

That is ∃ δ, C > 0 depending on θ and ε such that

∀r ≤ 1 : Bs(z) ⊂ ∆θ(r)\Kθ(ε) ⇒ s ≤ Cr1+δ.

Theorem 8 (McMullen).
For every bounded type θ ∈ BT the Julia set Jθ is porous.
Moreover so is ∂Kθ(ε) for every ε > 0.

Combining Theorem 7 and Theorem 8 with Proposition 6
we obtain the Main Theorem.

Disques de Siegel, implosion parabolique et aire des ensembles de Julia – p. 13/27



Main Technical Theorems

Theorem 7 (McMullen).
For every bounded type θ ∈ BT and for every ε > 0 the boundary
∂∆θ is uniformly deep in Kθ(ε).

That is ∃ δ, C > 0 depending on θ and ε such that

∀r ≤ 1 : Bs(z) ⊂ ∆θ(r)\Kθ(ε) ⇒ s ≤ Cr1+δ.

Theorem 8 (McMullen).
For every bounded type θ ∈ BT the Julia set Jθ is porous.
Moreover so is ∂Kθ(ε) for every ε > 0.

Combining Theorem 7 and Theorem 8 with Proposition 6
we obtain the Main Theorem.

Disques de Siegel, implosion parabolique et aire des ensembles de Julia – p. 13/27



Main Technical Theorems

Theorem 7 (McMullen).
For every bounded type θ ∈ BT and for every ε > 0 the boundary
∂∆θ is uniformly deep in Kθ(ε).

That is ∃ δ, C > 0 depending on θ and ε such that

∀r ≤ 1 : Bs(z) ⊂ ∆θ(r)\Kθ(ε) ⇒ s ≤ Cr1+δ.

Theorem 8 (McMullen).
For every bounded type θ ∈ BT the Julia set Jθ is porous.
Moreover so is ∂Kθ(ε) for every ε > 0.

Combining Theorem 7 and Theorem 8 with Proposition 6
we obtain the Main Theorem.

Disques de Siegel, implosion parabolique et aire des ensembles de Julia – p. 13/27



Golden Siegel disk
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Approx Kθ(ε)
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Zoom 1
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Zoom 2
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Reducing notation

In the following we shall fix a bounded type irrational θ and
drop all subscripts θ to simplify writting and reading.

Recall that Ω = C\∆ and that c denotes the critical point.
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Nearby critical visits

Theorem 9 (McMullen). There exists C > 0 such that for every z ∈ J
and every r > 0 there is a univalent iterate between pointed disks

Pn : (U, y) → (V, c), n ≥ 0,

such that |y − z| ≤ r and BCr(y) ⊂ U .

The Koebe distortion theorems for univalent maps and the
fact that ∂∆ is a quasi disk easily implies that:
Corollary 10 (McMullen). The Julia set J of P is porous.

Elaborating a bit more one also obtain that ∂K(ε) is porous.

Disques de Siegel, implosion parabolique et aire des ensembles de Julia – p. 19/27



Nearby critical visits

Theorem 9 (McMullen). There exists C > 0 such that for every z ∈ J
and every r > 0 there is a univalent iterate between pointed disks

Pn : (U, y) → (V, c), n ≥ 0,

such that |y − z| ≤ r and BCr(y) ⊂ U .

The Koebe distortion theorems for univalent maps and the
fact that ∂∆ is a quasi disk easily implies that:
Corollary 10 (McMullen). The Julia set J of P is porous.

Elaborating a bit more one also obtain that ∂K(ε) is porous.

Disques de Siegel, implosion parabolique et aire des ensembles de Julia – p. 19/27



Small hyperbolic balls

Theorem 11. For each ε > 0 there exists α,C > 0 depending on ε
such that for any z0 ∈ C\K(ε) with d = d(z0,∆) ≤ 1

dΩ(z0,K(ε)) ≤ C · dα.

The uniform deepness of ∂∆ in K(ε)

Theorem 12. McMullen
For every bounded type θ ∈ BT and for every ε > 0 the boundary
∂∆θ is uniformly deep in Kθ(ε).

is an easy Corollary as the coeficient function of the
hyperbolic metric λΩ(z) is uniformly comparabel to
d = d(z, ∂∆):
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Hyperbolic expansion

Let Ω′ = P−1(Ω) and let ∆′ = Ω′ ∩ P−1(∆) denote the
co-preimage of ∆. Then

P : C\(∆ ∪ ∆
′
) = Ω′ → Ω = C\∆

is a local hyperbolic isometry.

Hence

∀ z ∈ Ω′ : ||DP ′(z)||Ω :=
|P ′(z)| · λΩ(P (z))

λΩ(z)
> 1

and ∀ C > 0 ∃Λ > 1 such that

∀ z ∈ Ω′ with dΩ(z,∆
′
) ≤ C : ||DP ′(z)||Ω ≥ Λ.
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Critical Visits

Proposition 13. ∃C,C1, C2, 1/β > 1 s. t. ∀ (zk)k≥0, P (zk) = zk+1,

d = d(z0,∆) ≤ 1:

∃k0 : dβ/C2 ≤ |zk0
− c| ≤ C2d

1/β

Moreover if |z0 − c| ≤ 1 then:
– Either

∃k ≥ 1 : |zk − c| ≤ |z0 − c|

– Or

∃k ≥ 1 : |zk − c| ≤ C|z0 − c| ∧ dΩ(zk,∆
′) ≤ C1.

so that ||DP (zk)||Ω ≥ Λ > 1.

where Λ = Λ(C1) is the associated hyperbolic expansion coefficient.
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Critical Visits
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Critical Visits
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Critical Visits

Proposition 16. ∃C,C1, C2, 1/β > 1 s. t. ∀ (zk)k≥0, P (zk) = zk+1,
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Sketch of proof of small hyperbolic balls.

Fix 0 < ε ≤ 1, let z0 ∈ Bε(c)\K(ε), write d = |z0 − c| < ε and
denote by (zk)k≥0 the orbit of z0.

Let k1, . . . kn+1 denote the critical visits until |zkn+1
− c| > ε.

Then

||DP kn+1(z0)||Ω ≥ Λn and dΩ(zkn+1
, ∂∆′) ≤ C1

and in the worst case

Cnd ≤ ε < Cn+1d so that n ≤
log(ε/d)

log C
< n + 1,
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more small hyperbolic balls

Hence pulling back a geodesic arc of length at most C1

from zkn+1
to wkn+1

∈ ∂∆′ we obtain a point w0 ∈ K(ε) with

dΩ(z0, w0) ≤ C1Λ
−n ≤ C1Λ exp((log d − log ε)

log Λ

log C
)

= C ′ · dα′

,

where C ′ = C1Λ
εα′ and α′ = log Λ

log C .

As you may have noticed the sketch has a slight oversight.
The closest point in ∂∆′ may bee outside ∆(ε) or one of the
iterates wk may bee outside ∆(ε).

Also what about the points near ∂∆, but not near c?
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rectifying the sketch of proof.

For the first obstacle as the λΩ(z) is comparable to d(z,∆)
on ∆(ε). There exists a constant C3 > 1 such that
dΩ(∆(ε/C3), ∂∆(ε)) > C1. Replacing ε by ε/(C · C3) in the
estimates only changes C ′ and ensures that
wkn+1

∈ ∂(∆′ ∩ ∆(ε)).

Replacing further ε by εβ/C2 also only changes C ′ and
ensures that the points zj and their companions wj with
kn < j < kn+1 belongs to ∆(ε) as

d(zj , ∂∆)β/C2 ≤ d(zkn+1
, c) ≤ εβ/C2

Hence the full orbit of w0, . . . , wkn+1
∈ ∆(ε) and thus in K(ε).
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final estimate

Finally an arbitrary z near ∂∆ with d = d(z, ∂∆) has an
iterate zk0

with

d′ = d(zk0
, c) ≤ C2 · d

1/β.

Let wk0
∈ K(ε) be a point with dΩ(wk0

, zk0
) ≤ C ′′ · (d′)

α′

. Then
there is a point w0 ∈ K(ε) with

dΩ(w0, z0) ≤ C ′ · (d′)
α′

≤ C ′′′dα,

where α = α′/β and C ′′′ = C ′′ · Cα′

2 = C1ΛC2α′

2

(
CC3

ε

)βα′

.
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final comments

McMullen uses a very nice idea to prove the hyperbolic
estimate and the theorem on nearby critical visits.
The idea being: The boundary of ∆ is a quasi circle so the
linearizer φ : ∆ → D of P extends to a quasi conformal
homeomorphism also denoted φ : C → C.

The conjugate degree 2 map f = φ ◦ P ◦ φ−1 coincides on D

with the corresponding rigid rotation R. Its iterates are
uniformly quasi regular and tends to be close to
corresponding iterates of R near ∂D.

With the aid of this he maneges to prove all the above
mentioned theorems without making explicit reference to
the usual Blaschke model described by Douady in his 1987
Bourbaki seminar.
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