t

,

Kergin Interpolants of Holomorphic Functions

APPROXIMATION @ 1997 Springer- Verlag New York Ine.

T. Bloom and J.-P. Calvi

Abstract. Let *D* be a C-convex domain in C^n . Let $\{A_{d,j}\}, j = 0, \ldots, d$, and $d =$ 0, 1, 2, ..., be an array of points in a compact set $K \subset D$. Let f be holomorphic on \overline{D} and let $K_d(f)$ denote the Kergin interpolating polynomial to f at A_{d0}, \ldots, A_{dd} . We give conditions on the array and *D* such that $\lim_{d\to\infty} ||K_d(f) - f||_K = 0$. The conditions are, in an appropriate sense, optimal.

This result generalizes classical one variable results on the convergence of Lagrange-Hermite interpolants of analytic functions.

1. Introduction

The procedure known as Kergin interpolation (see below) is a multivariate counterpart of the classical Lagrange-Hermite interpolation. It was introduced in 1978 by Kergin [Ke] for sufficiently differentiable functions on a convex open set in \mathbb{R}^n . A little later, a constructive approach was given by Micchelli [M], see also [MM]. ln the complex case the work of Andersson and Passare, see [APl] and [AP2], showed the crucial role played by C-convexity.

The main properties of convergence are known for the case of entire functions, see [B 1] and [APl]. ln this paper, we are concerned with convergence problems for nonentire functions. More precisely, we will study the

Problem 1.1. Let $A = (A_{dj})$ be a triangular array of (not necessarily distinct) points in a compact set K in \mathbb{C}^n , find a domain D in \mathbb{C}^n as small as possible (or a compact set K_1) such that for every function *f* holomorphic on *D* (or in a neighborhood of K_1) the Kergin interpolation polynomial of f at the points A_{d0}, \ldots, A_{dd} exists and converges to *f* uniformly on *K* as *d* approaches ∞ .

Note that the existence requirement is not superfluous or straightforward for the definition of the Kergin operator for functions holomorphic on a domain D needs a strong geometric condition, namely, D must be C-convex (see below again).

As it turns out, the problem is closely related to the distribution of the points (A_{df}) ,

.

Date received: October 21, 1995. Date revised: May 1, 1996.Communicated by Doron S. Lubinsky. *AMS classification:*32A05, 32AlO, 41A63.

Key words and phrases: Logarithmic potential, C-Convex, Kergin interpolation.