Intertwining unisolvent arrays for multivariate Lagrange interpolation

Jean-Paul Calvi

Laboratoire de Mathématiques E. Picard, Université Paul Sabatier, 31062 Toulouse Cedex 4, France E-mail: calvi@picard.ups-tlse.fr

> Received 10 October 2003; accepted 19 March 2004 Communicated by T. Sauer

Generalizing a classical idea of Biermann, we study a way of constructing a unisolvent array for Lagrange interpolation in \mathbb{C}^{n+m} out of two *suitably ordered* unisolvent arrays respectively in \mathbb{C}^n and \mathbb{C}^m . For this new array, important objects of Lagrange interpolation theory (fundamental Lagrange polynomials, Newton polynomials, divided difference operator, vandermondian, etc.) are computed.

Keywords: multivariate polynomials, Lagrange interpolation, unisolvent arrays

AMS subject classification: 41A05, 41A63

1. Introduction

Let $\mathcal{P}_d(\mathbb{C}^n)$ denote the space of polynomials of degree at most d in n complex variables. A subset X of \mathbb{C}^n – we will usually speak of configuration or array – is said to be *unisolvent* for $\mathcal{P}_d(\mathbb{C}^n)$ (or simply unisolvent of degree d) if, for every function f defined on X there exists a unique polynomial $P \in \mathcal{P}_d(\mathbb{C}^n)$ such that P(x) = f(x) for every $x \in X$. This polynomial is called the *Lagrange interpolation polynomial* of f at (the points of) X and is denoted by $\mathbf{L}_X[f]$. A necessary condition for X to be unisolvent of degree d is that its cardinality coincide with the dimension of $\mathcal{P}_d(\mathbb{C}^n)$, that is, $\sharp X = t_d(n)$ where $t_d(n) := \binom{n+d}{d}$ (we will often abbreviate $t_d(n)$ to t_d). This condition is not sufficient as soon as n > 1. Apart from containing $t_d(n)$ points, it is required that X not be included in an algebraic hypersurface of degree smaller or equal to d. If $X = \{x_i, i = 1, 2, ..., t_d\}$, the condition translates in

$$VDM(x_1, x_2, \dots, x_{t_d}) \neq 0$$
 (1.1)

where the left-hand term stands for the *Vandermonde determinant* (or *vandermondian*), that is,

$$VDM(x_1, x_2, \dots, x_{t_d}) = \det[\mathbf{e}^i(x_j)]_{i,j=1,\dots,t_d},$$
(1.2)