Solution du devoir de calcul différentiel (L3 - Toulouse III)

JEAN-PAUL CALVI 11 avril 2007

Ce corrigé est disponible en ligne à l'adresse http://www.picard.ups-tlse.fr/~calvi/ens.html.

1

On considere l'application $\phi:\mathbb{R}^2\to\mathbb{R}^3$ définie par $\phi(x)=(\phi_1(x),\phi_2(x),\phi_3(x))$ avec

$$\phi_1(x) = \frac{1 - x_1^2 - x_2^2}{1 + x_1^2 + x_2^2}, \ \phi_2(x) = \frac{2x_1}{1 + x_1^2 + x_2^2} \text{ et } \phi_3(x) = \frac{2x_2}{1 + x_1^2 + x_2^2} \quad x = (x_1, x_2).$$
 (E1)

1.1. Montrer que ϕ est différentiable sur \mathbb{R}^2 et déterminer le rang de l'application $D\phi(x)$ en tout point x de \mathbb{R}^2 . (On rappelle que le rang d'une application linéaire est par définition la dimension de son ensemble image.)

Solution. La fonction ϕ est différentiable en tout point de \mathbb{R}^2 parce que ses composantes ϕ_1 , ϕ_2 et ϕ_3 le sont et elles le sont comme quotient de fonctions différentiables (polynômes) dont le dénominateur ne s'annule pas. Pour calculer le rang de l'application linéaire $d\phi(x)\in L(\mathbb{R}^2,\mathbb{R}^3)$ nous utilisons sa matrice J(x) dans la base canonique des espaces de départ et d'arrivée - c'est la matrice jacobienne de ϕ en x. Rappelons que le rang d'une application linéaire est toujours borné par le minimum des dimensions des espaces de départ et d'arrivée. Le rang maximal possible pour $d\phi(x)$ est donc 2. Le calcul des dérivées partielles conduit à

$$J(x) = \frac{2}{c(x)} \begin{pmatrix} -2x_1 & -2x_2 \\ x_2^2 - x_1^2 + 1 & -2x_1x_2 \\ -2x_1x_2 & -x_2^2 + x_1^2 + 1 \end{pmatrix},$$

avec $c(x)=(1+x_1^2+x_2^2)^2$. Nous allons vérifier - en calculant des déterminants d'ordre 2 - que deux des trois vecteurs lignes sont toujours linéairement indépendants ce qui prouvera que le rang de $d\phi(x)$ est égal à 2 pour tout $x\in\mathbb{R}^2$. On a

$$\begin{vmatrix} -2x_1 & -2x_2 \\ x_2^2 - x_1^2 + 1 & -2x_1x_2 \end{vmatrix} = 2x_2(1 + x_1^2 + x_2^2)$$

qui montre les deux premières lignes sont indépendantes dès que $x_2 \neq 0$. De la même manière, on montre que la première et la troisième ligne sont indépendantes dès que $x_1 \neq 0$. Enfin, lorsque x=(0,0) alors les deux dernières lignes de J(x) sont (1,0) et (0,1) qui sont linéairement indépendantes. CQFD.

1.2. On désigne par S la sphère de centre 0 = (0,0,0) et de rayon 1,

$$S = \{ y = (y_1, y_2, y_3) \in \mathbb{R}^3 : y_1^2 + y_2^2 + y_3^2 = 1 \}$$
 (E2)

et $P=(-1,0,0)\in S$. Montrer que pour tout $x=(x_1,x_2)\in \mathbb{R}^2$, $\phi(x)$ est l'intersection de S avec la droite passant par P et le point M_x de coordonnées $(0,x_1,x_2)$ et montrer que ϕ est une bijection de \mathbb{R}^2 sur $S\setminus\{P\}$ (la sphère privée du point P).

Solution. Cherchons l'intersection entre S et la droite $D(P,PM_x)$ passant par P et M_x ou encore passant par P et de vecteur directeur $\overrightarrow{PM_x}$. On a

$$M = (\alpha, \beta, \gamma) \in S \cap D(P, \overrightarrow{PM_x})$$

$$\iff \begin{cases} \alpha^2 + \beta^2 + \gamma^2 = 1\\ (\alpha, \beta, \gamma) = (-1, 0, 0) + t(0 - (-1), x_1, x_2) & \text{avec } t \in \mathbb{R}^* \\ = (-1 + t, tx_1, tx_2) \end{cases}$$
(E3)

De la condition $(t-1)^2+t^2x_1^2+t^2x_2^2=1$ on tire $t^2(1+x_1^2+x_2^2)-2t=0$, comme t est non nul, il vient $t=2/(1+x_1^2+x_2^2)$. On en déduit l'unicité de t, donc de M et en reportant la valeur de t on trouve facilement $\alpha=\phi_1(x)$, $\beta=\phi_2(x)$ et $\gamma=\phi_3(x)$. Cela

montre que $\phi(x)$ est l'intersection de S avec la droite passant par P et le point M_r .

Nous donnons une preuve géométrique de la bijectivité de ϕ de \mathbb{R}^2 sur $S\setminus\{P\}$. On pourrait évidemment directement travailler avec les expressions de ϕ . Montrons d'abord que ϕ est injective. Si elle ne l'est pas, alors il existe deux points distincts M_x et $M_{x'}$ dans le plan $y_1=0$ qui donne le même point M dans $S\setminus\{P\}$. Dans ce cas les droites (PM_x) et $(PM_{x'})$ sont confondues et égales à la droite $(M_xM_{x'})$ qui est incluse dans le plan $y_1=0$ (puisque chacun des deux points y appartient). Il suit que P lui-même - qui appartient à la droite - appartient à ce plan ce qui est une contradiction puisque la première coordonnées de P est non nulle.

La preuve de la surjectivité est similaire. Etant donné $M(\alpha,\beta,\gamma)$ dans S, $M\neq P$, on doit établir que la droite (PM) rencontre le plan $y_1=0$. S'il n'en est pas ainsi, c'est que la droite (PM) est parallèle au plan (ou incluse). Dans ce cas le vecteur \overrightarrow{PM}_x doit aussi appartenir au plan (vectoriel) $y_1=0$ ce qui est impossible car $\alpha-(-1)\neq 0$ puisque $M\neq P$ (Si $\alpha=-1$, $M\in S$ entraîne $\beta=\gamma=0$).

1.3. Soit Π la plan d'équation $x_1=-1$ dans \mathbb{R}^3 . On considère la fonction $\eta:\mathbb{R}^3\setminus\Pi\to\mathbb{R}^2$ définie par

$$\eta(y_1, y_2, y_3) = \left(\frac{x_2}{1 + x_1}, \frac{x_3}{1 + x_1}\right).$$
(E4)

1.3.1. Etudier la différentiabilité de η .

Solution. Même argument que dans la première question. Noter que $\mathbb{R}^3\setminus\Pi$ est un ouvert de \mathbb{R}^3 (comme complémentaire d'un fermé) sur le lequel les dénominateurs des composantes de η ne s'annulent pas.

1.3.2. Montrer que pour tout $x \in \mathbb{R}^2$, on a $(\eta \circ \phi)(x) = x$.

Solution. Un simple calcul à partir des expressions de ϕ et η .

1.4. Trouver une fonction ϕ' et une fonction η' pour lesquelles le rôle précédemment joué par P est joué par P'=(1,0,0).

Solution. Nous pouvons définir $\phi'(x)$ comme les coordonnées de l'unique point d'intersection $M=(\alpha',\beta',\gamma')$ entre la S et droite $(P'M_x)$. Le raisonnement suivant conduit au même résultat. Appelons, s la symétrie de \mathbb{R}^3 définie par $s(y_1,y_2,y_3)=(-y_1,y_2,y_3)$ et posons $\phi'=s\circ\phi$. Puisque s est un isomorphisme linéaire, les propriétés de différentiabilité et de rang de ϕ s'étendent immédiatement à ϕ' . De plus

$$\phi'(\mathbb{R}^2) = s(\phi(\mathbb{R}^2)) = s(S \setminus \{P\}) = S \setminus \{P'\}$$

car s(S)=S et s(P)=P'. Notons que ϕ' est une bijection (comme composée de deux bijections). La fonction η' n'est autre que $\eta\circ s$ et, puisque $s\circ s=Id$ on a bien

$$\eta' \circ \phi' = (\eta \circ s) \circ (s \circ \phi) = \eta \circ \phi = Id.$$

1.5. Soit $a\in S$, $a\not\in\{P,P'\}$, et $x_a=\eta(a)$. Montrer que $f=\eta'\circ\phi$ est un difféomorphisme au voisinage de x_a .

Solution. Remarquons d'abord que x_a est bien défini grâce au fait que $a \neq P$ et comme $a \neq P'$ on a $x_a \neq 0$. Ensuite, pour $x = (x_1, x_2) \neq 0$,

$$f(x) = (\eta' \circ \phi)(x) = (\eta \circ s \circ \phi)(x) = \eta(-\phi_1(x), \phi_2(x), \phi_3(x)) = \left(\frac{\phi_2(x)}{1 - \phi_1(x)}, \frac{\phi_3(x)}{1 - \phi_1(x)}\right).$$

En remplaçant par les expressions des ϕ_i on arrive a

$$f(x) = \frac{x}{\|x\|^2}.$$

D'après le théorème d'inversion locale, pour s'assurer que f est un difféomorphisme local au voisinage de x_a , il suffit d'établir que f est différentiable en x_a et que $Df(x_a)$ est un isomorphisme linéaire de \mathbb{R}^2 . La

différentiabilité est claire (toujours les mêmes arguments) dès lors que $x_a \neq 0$. La matrice de $Df(x_a)$ dans la base canonique est

$$\frac{1}{\|x\|^4} \begin{pmatrix} x_2^2 - x_1^2 & -2x_1x_2 \\ -2x_1x_2 & x_1^2 - x_2^2 \end{pmatrix}.$$

Mais

$$\begin{vmatrix} x_2^2 - x_1^2 & -2x_1x_2 \\ -2x_1x_2 & x_1^2 - x_2^2 \end{vmatrix} = -(x_1^2 + x_2^2)^2$$

qui est différent de 0 pour $x=x_a$ puisque $x_a\neq 0$. CQFD

2

- 2.1. Soit f est une fonction réelle définie sur un intervalle ouvert I de $\mathbb R$ et α une forme linéaire sur $\mathbb R^n$, $\alpha(x) = \sum_{i=1}^n \alpha_i x_i$ pour $x = (x_1, \dots, x_n)$. On pose $g = f \circ \alpha$. On suppose que $x_0 \in \mathbb R^N$ est tel que $\alpha(x_0) \in I$.
- 2.1.1. Montrer que g est définie sur un voisinage ouvert de x_0 .

Solution. La fonction g est définie sur $\alpha^{-1}(I)$ qui contient x_0 . Comme I est ouvert et α est continue, $\alpha^{-1}(I)$ est un ouvert de \mathbb{R}^n et donc un voisinage ouvert de x_0 .

2.1.2. Montrer que si f est d fois dérivable au point $\alpha(x_0)$ alors g est d fois différentiable au point x_0 et

$$D^{d}g(x_{0})(h_{1},h_{2},\cdots,h_{d}) = f^{(d)}(\alpha(x_{0}))\alpha(h_{1})\cdots\alpha(h_{d})$$
 (E5)

où $f^{(d)}(x_0)$ désigne la d-ème dérivée de f. Que dire des dérivées partielles de g?

Solution. D'abord g est d fois différentiable au point x_0 parce qu'elle est la composée d'une fonction d-fois différentiable en $\alpha(x_0)$ et d'une forme linéaire (donc de classe c^∞) en x_0 . Rappelons que f étant d fois dérivable en $\alpha(x_0)$ elle est d-1 fois dérivable sur un voisinage de x_0 de sorte que g est d-1 différentiable dans un voisinage de $\alpha(x_0)$.

Nous établissons la relation (E5) par récurrence sur d.

Lorsque d=1, il s'agit de la relation usuelle pour la différentielle d'une composée en tenant compte du fait que $D\alpha(x_0)(h)=\alpha(h)$.

Supposons la relation démontrée lorsque d=k et établissons-la pour d=k+1. Nous devons déterminer la différentielle en x_0 de la fonction

$$\Psi: \alpha^{-1}(I) \to f^{(k)}(\alpha(x))\alpha^{\otimes k} \in \mathcal{L}_k(\mathbb{R}^n, \mathbb{R})$$

où $\mathcal{L}_k(\mathbb{R}^n,\mathbb{R})$ désigne l'ensemble des formes k-linéaires sur $(\mathbb{R}^n)^k$ et $\alpha^{\otimes k}$ la forme k-linéaire définie par

$$\alpha^{\otimes k}(h_1,\ldots,h_k) = \alpha(h_1)\cdots\alpha(h_k), \quad (h_i\in\mathbb{R}^n).$$

Maintenant, on a $\Psi=\psi\circ G$ où $G(x)=f^{(k)}\big(\alpha(x)\big)$ et ψ est l'application linéaire $t\in\mathbb{R}\to t\alpha^{\otimes k}\in\mathcal{L}_k(\mathbb{R}^n,\mathbb{R})$. La formule de différentiation d'une fonction composée donne alors

$$D\Psi(x_0) = D\psi(G(x_0)) \circ DG(x_0) = \psi \circ DG(x_0)$$

d'où

$$D\Psi(x_0)(h_{k+1}) = f^{(k+1)}(\alpha(x_0))\alpha(h_{k+1})\alpha^{\otimes k}$$

d'où l'on déduit la formule demandée dans le cas d=k+1 ce qui achève la démonstration par récurrence.

Pour ce qui concerne les dérivées partielles, nous savons que si $k=i_1+i_2+\dots i_n$,

$$\frac{\partial^k g}{\partial x_1^{i_1} \dots \partial x_n^{i_n}}(x_0) = D^k(g)(x_0)(\underbrace{e_1, \dots, e_1}_{i_1 \text{ fois}}, \dots, \underbrace{e_n, \dots, e_n}_{i_n \text{ fois}})$$

où (e_1,\ldots,e_n) désigne la base canonique de \mathbb{R}^n . Comme $\alpha(e_i)=\alpha_i$, on déduit de (E5) que

$$\frac{\partial^k g}{\partial x_1^{i_1} \dots \partial x_n^{i_n}}(x_0) = f^{(k)}(x_0) \alpha_1^{i_1} \dots \alpha_n^{i_n}.$$

Naturellement, on peut retrouver ces formules en calculant directement les dérivées partielles de g.

2.1.3. Déterminer, à l'aide du résultat précédent, les différentielles en 0 de la fonction

$$\mathcal{E}: x = (x_1, \dots, x_n) \in \mathbb{R}^n \to \exp(x_1 + \dots + x_n) \in \mathbb{R}.$$
 (E6)

Retrouver ce résultat en utilisant les propriétés particulières de la fonction exponentielle.

Solution. L'application est immédiate:

$$D^{d}\mathcal{E}(0)(h_{1},\ldots,h_{d}) = \prod_{j=0}^{k} (h_{1j} + \cdots + h_{nj}).$$

On peut retrouver ce résultat en remarquant que $\mathcal{E}(x)=e^{x_1}\dots e^{x_n}$ et en utilisant la formule sur la différentielle d'un produit. Par exemple, notant $f_i(x)=e^{x_i}$, on a

$$D\mathcal{E}(0)(h) = \sum_{j=1}^{n} \prod_{i \neq j} f_i(0) Df_j(0)(h) = \sum_{j=1}^{n} h_j.$$

Le résultat correspondant à (E5) peut être établi par récurrence. Le résultat sur les dérivées partielles par contre est immédiat car

$$\frac{\partial^k \mathcal{E}}{\partial x_1^{i_1} \dots \partial x_n^{i_n}}(0) = \frac{d^{i_1} \exp x}{dx^{i_1}} \bigg|_{x=0} \dots \frac{d^{i_n} \exp x}{dx^{i_n}} \bigg|_{x=0} = 1 \times \dots \times 1 = 1.$$

- 2.2. Soit, plus généralement, A un application affine de \mathbb{R}^n dans \mathbb{R}^m c'est-à-dire une application de la forme A(x) = L(x) + v où $v \in \mathbb{R}^m$ et L est une application linéaire de \mathbb{R}^n dans \mathbb{R}^m .
- 2.2.1. Quelles sont les différentielles (de tout ordre) de A en $x_0 \in \mathbb{R}^n$?

Solution. Puisque la différentielle d'une fonction constante est nulle, on a DA=DL de sorte que DA(x)=L et les différentielles d'ordre supérieur sont toutes nulles.

2.2.2. Sous quelles hypothèses sur f et sur $x_0 \in \mathbb{R}^n$ la fonction $g = f \circ A$ sera-t-elle d fois différentiable au point x_0 ?

Solution. Il suffit que f soit (définie sur un voisinage ouvert de $A(x_0)$ et) d-fois différentiable au point $A(x_0)$. On utilise ensuite la composition de d et A comme il est fait dans une question précédente.

Dans la suite on suppose que ces hypothèses sont vérifiées. Nous supposons aussi que toutes les fonctions f sont à valeurs dans $\mathbb R$.

2.3. Donner une relation entre les différentielles d'ordre d de f et celles de g, puis une relation entre les dérivées partielles de f et de g.

Solution. Nous montrons que

$$D^{d}(g)(x_0) = D^{d}(f)(A(x_0))(L(h_1), \dots, L(h_d)).$$
(E7)

La démonstration s'effectue par récurrence comme dans le cas de (E5). Lorsque d=1, c'est la formule pour la différentielle d'une fonction composée. Supposons la relation démontrée lorsque d=k et établissons-la pour d=k+1. Nous devons déterminer la différentielle en x_0 de la fonction

$$\Psi: x \to D^k f(A(x))(L(\cdot), \dots, L(\cdot)) \in \mathcal{L}_k(\mathbb{R}^n, \mathbb{R})$$

où $\mathcal{L}_k(\mathbb{R}^n,\mathbb{R})$ désigne l'espace des formes k-linéaires sur $(\mathbb{R}^n)^k$. Appelons ψ l'application qui à un élément $u\in\mathcal{L}_k(\mathbb{R}^m,\mathbb{R})$ fait correspondre $\psi(u)\in\mathcal{L}_k(\mathbb{R}^n,\mathbb{R})$ défini par $\psi(u)(h_1,\ldots,h_k)=u\big(L(h_1),\ldots,L(h_k)\big)$. Cette application est linéaire et pour x dans un voisinage de x_0 on a

$$\Psi(x) = \psi \circ D^k(f) \circ A.$$

En différentiant cette expression on obtient

$$D\Psi(x_0)(h) = \psi \Big(D^{k+1} f(A(x_0))(L(h)) \Big)$$

= $D^{k+1} f(A(x_0))(L(h))(L(\cdot), \dots, L(\cdot))$
= $D^{k+1} f(A(x_0))(L(\cdot), \dots, L(\cdot), L(h)),$

où on utilise, pour la dernière égalité, l'identification habituelle entre $\mathcal{L}(\mathbb{R}^n,\mathcal{L}_k(\mathbb{R}^n,\mathbb{R}))$ et $\mathcal{L}_{k+1}(\mathbb{R}^n,\mathbb{R})$ (une autre identification donnerait le même résultat puisque les différentielles sont des formes multilinéaires symétriques). En particulier, revenant à la définition de ψ ,

$$Dg^{k+1}(x_0)(h_1,\ldots,h_k,h) = D^{k+1}f(A(x_0))(L(h_1),\ldots,L(h_k),L(h))$$

ce qui achève la preuve de la formule pour d=k+1.

Pour les dérivées partielles, on raisonne comme dans la solution de la question 2.1.2.

2.4. On désigne, lorsqu'il existe, par $\mathbf{T}_d(h,a)$ le polynôme de Taylor de la fonction h au point a à l'ordre d. Avec les notations précédentes, montrer que

$$\mathbf{T}_d(f \circ A, x_0) = \mathbf{T}_d(f, A(x_0)) \circ A. \tag{E8}$$

Solution. En notant $g = f \circ A$, on a

$$\mathbf{T}_{d}(f \circ A, x_{0}) = \sum_{j=0}^{d} \frac{1}{j!} D^{j}(g)(x_{0})(x - x_{0}, \dots, x - x_{0})$$

$$= \sum_{j=0}^{d} \frac{1}{j!} D^{j}(f)(A(x_{0}))(L(x - x_{0}), \dots, L(x - x_{0}))$$

$$= \sum_{j=0}^{d} \frac{1}{j!} D^{j}(f)(A(x_{0}))(A(x) - A(x_{0})), \dots, A(x) - A(x_{0}))$$

$$= \mathbf{T}_{d}(f, A(x_{0}))(A(x)).$$

La première égalité est la définition du polynôme de Taylor, la seconde résulte du résultat démontré précédemment sur les différentielles de g, la troisième utilise le fait que $L(x-x_0)=L(x)-L(x_0)=(L(x)+v)-(L(x)+v)=A(x)-A(x_0)$.

2.5. Application. Montrer que si $f=\mathbb{R}^n\to\mathbb{R}$ est une fonction de classe C^∞ symétrique alors tous ses polynômes de Taylor à l'origine sont aussi des polynômes symétriques.

On rappelle que f symétrique signifie que pour toute permutation σ de $\{1,2,\ldots,n\}$ et tout $x=(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n$, on a

$$f(x_1, x_2, \dots, x_n) = f(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)}).$$
 (E9)

 $extit{Solution}.$ Notons A_σ l'isomorphisme linéaire de \mathbb{R}^n défini par

$$A_{\sigma}(x_1,\ldots,x_n)=(x_{\sigma(1)},x_{\sigma(2)},\ldots,x_{\sigma(n)}).$$

La symétrie de f se traduit par $f\circ A_\sigma=f$. On a alors en utilisant la question précédente et $A_\sigma(0)=0$,

$$\mathbf{T}_d(f,0) = \mathbf{T}_d(f \circ A_{\sigma},0) = \mathbf{T}_d(f,A_{\sigma}(0)) \circ A_{\sigma} = \mathbf{T}_d(f,0) \circ A_{\sigma}.$$

L'égalité $\mathbf{T}_d(f,0) = \mathbf{T}_d(f,0) \circ A_\sigma$ valide pour toute permutation σ assure la symétrie de $\mathbf{T}_d(f,0)$.

2.6. Les propriétés démontrées s'étendent-elles au cas où \mathbb{R}^n et \mathbb{R}^m sont remplacés par des espaces de Banach quelconques.

Solution. Exceptés ceux sur les dérivées partielles, les résultats s'étendent immédiatement aux cas où \mathbb{R}^n et \mathbb{R}^m sont remplacés par des espaces de Banach quelconques E et F (et même une fonction f à valeurs dans un espace de Banach G). Notons toutefois qu'il est alors nécessaire - lorsque E est de dimension infinie - de supposer l'application affine A continue ou, ce qui revient au même, sa partie linéaire L. La continuité de A entraîne ensuite sa différentiabilité.