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Some notations

Sets of numbers

• Field K = R or C;

• D = {z ∈ C : |z | ≤ 1}, the closed unit disk.

Space of functions

• Pd(KN): The space of all polynomials in KN of degree ≤ d ;

• md := dimPd(KN) =
(N+d

d

)
;

• K compact in RN , Cd(K ) denotes the space of all d-times
continuously differentiable functions in open neighborhoods of
K ;

• For f ∈ Cd(K ), let Dd f (x) denote the d-th total derivative of
f at x ∈ K .
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Regular sets

Definition
The set A = {a1, . . . , amd

} in KN is said to be regular of degree d
if it is not included in the zero set of a nonzero polynomial of
degree not greater than d .

Observation
A is a regular set of degree d if and only if vdm(A) 6= 0.

Comment. Ordering the elements of A, we may regard it as an
element of KN·md . If we set

NR = {A ⊂ KN·md : A is not regular set of degree d},

then the Lebesgue measure of NR is zero. But it is not easy to
check whether a particular set A is a regular set.
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Vandermonde determinants

Definition
The Vandermonde determinant of A = {a1, . . . , amd

} ⊂ KN , say
vdm(a1, . . . , amd

), is the determinant of the matrix whose entries
are the monomials z 7→ zα of degree ≤ d evaluated at the aj ,

where md =
(N+d

d

)
and zα = zα1

1 · · · z
αN
N with z = (z1, . . . , zN),

α = (α1, . . . , αN).

• If N = 1 and A = {a1, . . . , ad+1}, then

vdm(A) = det(akj ) =
∏

1≤j<k≤d+1

(ak − aj);

• Multivariate vandermondians are difficulty to deal with.
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Examples of regular sets

• d + 1 distinct points in K, a regular set of degree d ;

• Chung-Yao lattices constructed from hyperplanes in general
position in KN ;

• Padua points in [−1, 1]2: The double points of the curve(
cos(nθ), cos((n + 1)θ)

)
together with the points on the

boundary [−1, 1]2. They form a regular set of degree n.
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Biermann intertwining

Given A = (a0, . . . , ad) and B = (b0, . . . , bd) in K. The Biermann
intertwining of A and B is

A⊕ B = ((ai , bj) : i + j ≤ d).

Theorem
If both A and B consist of d + 1 distinct points, then A⊕ B is a
bi-dimensional regular set of degree d .

Using graded lexicographic order of NN to order (block) regular
sets in KN , we can define the intertwining of two regular tuples
(sets) in KN and KM . A result of Calvi points out that the
resulting tuple is also regular.
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Pad6, n = 6 Pad13, n = 13
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A Chung-Yao lattice A Biermann intertwining
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Lagrange interpolation polynomials

Definition
Let A = {a1, . . . , amd

} be a regular set of degree d . Then for any
function f defined on A, there exists a unique polynomial in
Pd(KN) denoted by L[A; f ] and called the Lagrange interpolation
polynomial such that L[A; f ] = f on A. We have

L[A; f ](x) =

md∑
j=1

f (aj)l(A, aj ; x), where

l(A, aj ; x) =
vdm({a1, . . . , aj−1, x , aj+1, . . . , amd

})
vdm({a1, . . . , aj−1, aj , aj+1, . . . , amd

}))
, 1 ≤ j ≤ md .

Observation: l(A, aj ; ak) = δjk for 1 ≤ j , k ≤ md .
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Lagrange interpolation polynomials (to be continued)

When N = 1 and A = {a1, . . . , ad+1}, then

L[A; f ](x) =
d+1∑
j=1

f (aj)
d+1∏

k=1,k 6=j

x − ak
aj − ak

.

But when N > 1, there is no simplification. This is the origin of
the difficulty of multivariate interpolation.
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The graphs of the function (x , y) 7→ ex
2+y2

and its Lagrange
polynomial at 10 points.
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Natural problems

1. Given a class F of functions, find regular sets A(d) such that
L[A(d); f ] correctly approximate f as d →∞ for any f ∈ F ;

2. Conversely, given regular sets A(d), find functions that are
correctly approximated by its Lagrange interpolation
polynomial at A(d).

Comment: We solve the problems from a constructive point of
views:

• We want to construct explicit points that are good for
approximation by interpolation polynomials;

• We do not want to give properties which are equivalent to or
stronger than to be good points.
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One dimensional case

Theorem (Hermite)

Let Γ be a closed contour that contain A = {a0, . . . , ad}. Then,
for any function f analytic on and inside Γ, we have

f (z)−L[A; f ](z) =
1

2πi

∫
Γ

f (η)pn(z)dη

(η − z)pn(η)
, where pn(z) =

d∏
j=0

(z−aj).

We need to study the behaviour of potentials like
∑d

j=0 log |z − aj |.

Theorem
Let K be a regular polynomially convex compact set in C and

A(d) = {a(d)
0 , . . . , a

(d)
d } ⊂ K such that (1/(d + 1))

∑d
j=0[a

(d)
j ]

tends weakly to the equilibrium measure of K . Then for every
f ∈ H(K ) we have L[A(d); f ] converges to f uniformly on K .
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Lebesgue inequalities

Definition
Let K be a compact subset in KN containing A. The Lebesgue
constant ∆(A) or ∆(A |K ) is defined as the norm on C (K ) of the
interpolation operator L[A; ·]. We have

∆(A) = max
x∈K

md∑
j=1

|l(A, aj ; x)|.

Theorem
We have

max
x∈K

∣∣f (x)−L[A; f ](x)
∣∣ ≤ (1+∆(A)

)
distK

(
f ,Pd(KN)

)
, f ∈ C (K ),

where
distK

(
f ,Pd(KN)

)
= inf{maxx∈K |f (x)− p(x)| : p ∈ Pd(KN)}.
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The growth of distK
(
f ,Pd(KN)

)
• Theorem of Jackson: If f ∈ Cm([−1, 1]), then

distK
(
f ,Pd(R)

)
= o(

1

dm
).

• A generalization Jackson theorem: If K ⊂ RN satisfying some
geometric conditions and f ∈ Cm(K ), then

distK
(
f ,Pd(RN)

)
= O(

1

dm
).

• Theorem of Siciak: If f is a holomorphic function in a
neighborhood of a polynomially convex set K in CN , then

distK
(
f ,Pd(CN)

)
= O(

1

ρd
) for some ρ > 1.
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Questions on the growth of Lebesgue constants

Questions
Find a sequence of regular sets A(d) consisting of md points in a
compact set K ⊂ KN such that ∆(A(d)) grows

• sub-polynomially of d as d →∞?

• like a polynomial of d as d →∞?

• sub-exponentially, that is
(
∆(A(d))

) 1
d = 1?

Comment: A classical theorem of Bernstein points out that
∆(A(d)|[−1, 1]) grows at least like log d , i.e.,

lim inf
d→∞

∆(A(d)|[−1, 1])

log d
> 0.
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Known results on Lebesgue constants

• Chebyshev points
Td−1 = {cos (2k−1)π

2d : k = 1, . . . , d} ⊂ [−1, 1]:
∆(Td−1) = O(log d);

• Chebyshev-Lobatto points
Ld = {cos jπ

d : j = 0, . . . , d} ⊂ [−1, 1]: ∆(Ld) = O(log d);

• The d-th roots of unity
Rd = {e2πki/d : k = 0, . . . , d − 1} ⊂ D: ∆(Rd) = O(log d);

• If K is a plane compact set whose boundary is a C 2 Jordan
curve and Z = (zn : n ∈ N) is a Leja sequence for K , then

∆(Zd)
1
d → 1 as d →∞.

• Padua points Padn generated by the curve(
cos(nθ), cos((n + 1)θ)

)
(a regular set of degree n):

∆(Padn|[−1, 1]2) = O(log2 n).



Lagrange interpolation Approximation by Lagrange polynomials Lebesgue constants Kergin and Hakopian interpolants

Lebesgue constants under intertwining process

Theorem (Calvi)

Let A = (a0, . . . , ad) (resp. B = (b0, . . . , bd)) be distinct points on
compact set K1 ⊂ K (resp. K2 ⊂ K). Then

∆(A⊕ B|K ) ≤ 4

(
d + 2

d

) ∑
i+j≤d

∆
(
A[i ]|K1

)
·∆
(
B [j]|K2

)
,

where K = K1 × K2, A[i ] = (a0, . . . , ai ) and B [j] = (b0, . . . , bj).

Observations:

• The same estimate holds true in the case of multivariate
regular points.

• To use the theorem we need to estimate the Lebesgue
constants of all blocks A[i ] and B [j];

• We need to find sequences of points with nice Lebesgue
constants.
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Leja sequences

Definition
Let K be a compact in C. One says that Z = (zn : n ∈ N) ⊂ K is
a Leja sequence for K if

|zd − z0| · · · |zd − zd−1| = max
z∈K
|z − z0| · · · |z − zd−1|, d ≥ 1.

• For K = D, we only consider a Leja sequence
E = (en : n ∈ N) with e0 = 1;

• A tuple Ed = (e0, . . . , ed−1) is called an d-Leja section.
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The structure of Leja sequences

Theorem (Bia las-Cież and Calvi)

A Leja sequence E = (en : n ∈ N) for D is characterized by the
following two properties.

• The set {e0, e1, . . . , e2n−1} is formed of the 2n-th roots of 1.

• E2n+1 = (E2n , ρU2n), i.e.,

(e0, . . . , e2n+1−1) = (e0, . . . , e2n−1, ρu0, . . . , ρu2n−1),

where ρ is a 2n-root of −1 and U2n is a 2n-Leja section.

An example

A simple Leja sequence is defined by the following rules{
E2 = (1,−1)

E2n+1 = (E2n , e
iπ/2nE2n), n ≥ 1
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Figure: The first 16 points of a Leja sequence
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<-Leja sequences

Definition
A sequence X (in [−1, 1]) is said to be a <-Leja sequence if there
exists a Leja sequence E = (ek : k ∈ N) such that X is obtained
by eliminating repetitions in <(ek : k ∈ N). Here, we mean that
the entry <(ej) is eliminated whenever there exists i < j such that
<(ej) = <(ei ). We write X = X (E ).

STRATEGY : To study <-Leja sequences, we decompose them
into the union of simpler finite sequences from the interpolation
theory the point of view.
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The structure of <-Leja sequences

Theorem
A sequence X = (xk : k ∈ N) is a <-Leja sequence if and only if
there exists a Leja sequence E = (ek : k ∈ N) such that

X = (1,−1) ∧
∞∧
j=1

<
(
E (2j : 2j + 2j−1 − 1)

)
.

Equivalently, xk = <(eφ(k)), k ∈ N, with φ(0) = 0, φ(1) = 1 and

φ(k) =

{
3k
2 − 1 k = 2n

2blog2(k)c + k − 1 k 6= 2n
, k ≥ 2,

where b·c is used for the ordinary floor function, the sign ∧
concatenates tuples, E (j : k) = (ej , ej+1, . . . , ek),
<
(
E (j : k)

)
=
(
<(ej),<(ej+1), . . . ,<(ek)

)
.
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Figure: Points from a <-Leja sequence and the intertwining.
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Lebesgue constants of Leja sequences

Theorem
If E = (en : n ∈ N) be a Leja sequence for D, then
∆(Ed) = O(d log d), d →∞, where Ed = (e0, e1, . . . , ed−1).

Theorem
For every Leja sequence E and every n ∈ N? we have
∆(E2n−1) = 2n − 1.

Open question

Is it true that ∆(Ed) ≤ d for all d ≥ 1?



Lagrange interpolation Approximation by Lagrange polynomials Lebesgue constants Kergin and Hakopian interpolants

The idea of the proof

Step 1. showing that if 2n + 1 ≤ d ≤ 2n+1 − 1, then

∆(Ed) ≤ Cd ·∆(E2n) + ∆(Ud−2n),

where Ud−2n is a (d − 2n)-Leja section and
∆(E2n) = O(n);

Step 2. Getting an upper bound of Cd , Cd ≤ 2n. To prove
this we must prove a trigonometric inequality,

s−1∏
j=0

∣∣sin 2nj+1−1(θ0 + · · ·+ θj)
∣∣ ≥ 1/2n,

where n − 1 ≥ n1 > · · · > ns ≥ 0 and
θj = (2tj + 1)/2nj , tj ∈ N, 0 ≤ j ≤ n − 1;

Step 3. Using Steps 1, 2 and binary expansion of d , we can
prove the theorem.
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Lebesgue constants of <-Leja sequences

Theorem
If X = (xn : n ∈ N) is a <-Leja sequence, then
∆(Xd) = O(d3 log d), d →∞, where Xd = (x0, x1, . . . , xd−1) .

Proposition

If X is a <-Leja sequence, then ∆(X2n) ≥ 2n − 2.
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The idea of the proof

Lemma. Let N = N0 ∪ · · · ∪ Ns−1 where the Ni form a
partition of the finite set N ⊂ K ⊂ R. We have

∆(N|K ) ≤
s−1∑
i=0

max
x∈K , a∈Ni

∣∣∣∣wN\Ni
(x)

wN\Ni
(a)

∣∣∣∣ ∆(Ni |K );

Decomposition. Xd is decomposed into some modified
Chebyshev-Labatto sets whose Lebesgue constant is
well estimated,
T (β)
d = {cosβj : βj = β + 2jπ/d , j = 0, . . . , d}.

Application. Using the lemma and the decomposition of Xd , we
can prove the upper bound for ∆(Xd).
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Answer to the questions

Univariate case
The following sequences have Lebesgue constants growing like
polynomials

• Leja sequences for D;

• Images of Leja sequences under conformal mappings of the
exterior of D onto the exteriors of many compact sets K in
the complex plane;

• <-Leja sequences.

Multivariate case
Lebesgue constants of the intertwining of above sequences also
grow like polynomials.
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Main progress
For the first time, we are able to give the construction of good
points in RN with N > 2.

Figure: The intertwining of three <-Leja sequences
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Kergin and Hakopian interpolants

Theorem
Let Ω be an open convex subset of RN , A = (a0, . . . , ad) be a tuple
in Ω and let k ∈ {0, . . . , d}. For every function f ∈ Cd−k(Ω),
there exists a unique polynomial P ∈ Pd−k(RN) such that∫

[a0,...,aj+k ]

Dα(f − P) = 0, |α| = j , j = 0, . . . , d − k ,

where ∫
[a0,..., am]

g :=

∫
∆m

g
(
a0 +

m∑
j=1

tj(aj − a0)
)

dt, g ∈ C (Ω),

∆m = {(t1, t2, . . . , tm) ∈ [0, 1]m,
m∑
j=1

tj ≤ 1}.
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Kergin and Hakopian interpolants (to be continued)

Definition

• When k = 0, the polynomial P in the theorem is called the
Kergin interpolation and denoted by K[A; f ];

• When k = N − 1, the polynomial P in the theorem is called
the Kergin interpolation and denoted by H[A; f ].

Extended Kergin (Hakopian) interpolation

When the points of a set A ⊂ R2 are in general position, i.e., no
three of them are aligned, then the Kergin operator K[A; ·] (resp.
H[A; ·]) extends to functions of class C 1 (resp. C 0).
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A question

We have proved that Leja sequences for D are good for Lagrange
interpolation. There arises a natural problem:

Question
Do bi-dimensional Kergin and Hakopian interpolants at Leja
sequences for D of sufficiently smooth functions on D converge
uniformly to the functions?
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Kergin and Hakopian interpolants at the roots of unity

Theorem
Let Rn be the set of n-th roots of unity.

• Theorem of Bos and Calvi: K[Rn; f ]→ f , uniformly on D, for
every f ∈ C 2(D);

• Theorem of Liang and Lü: H[Rn; f ]→ f , uniformly on D, for
every f ∈ C 2(D).
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Kergin interpolation at Leja sequences for D

Theorem
Let E = (en : n ∈ N) be a Leja sequence for D.

1. If f ∈ C 4(D), then K[Ed ; f ] converges uniformly to f on D;

2. If f ∈ C∞(D), then Dβ
(
K[Ed ; f ]

)
converges uniformly to Dβf

on D, for every two-dimensional index β.

Corollary

For every f ∈ C∞(D), the series

∞∑
d=0

∫
[e0,...,ed ]

Dd f (·, x − e0, . . . , x − ed−1)

converges to f uniformly on D. Moreover, the convergence extends
to all derivatives.
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Hakopian interpolation at Leja sequences for D

Theorem
Let E = (en : n ∈ N) be a Leja sequence for D.

1. If f ∈ C 5(D), then H[Ed ; f ] converges uniformly to f on D;

2. If f ∈ C∞(D), then Dβ
(
H[Ed ; f ]

)
converges uniformly to Dβf

on D, for every two-dimensional index β.

Corollary

For every f ∈ C∞(D), the series

∞∑
d=1

∑
0≤j1<j2<···<jd−1≤d−1

∫
[e0,...,ed ]

Dd f (·, x − ej1 , . . . , x − ejd−1
),

converges to f uniformly on D. Moreover, the convergence extends
to all derivatives.
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Thank you for your attention!
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