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Abstract

An infinite magmatic bialgebra is a vector space endowed with n-ary operations, and n-ary coopera-
tions, for each n, verifying some compatibility relations. We prove an analogue of the Hopf–Borel theorem
for infinite magmatic bialgebras. We show that any connected infinite magmatic bialgebra is of the form
Mag∞(PrimH), where Mag∞(V ) is the free infinite magmatic algebra over the vector space V .
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The Hopf–Borel theorem is a rigidity theorem for connected bialgebras which are both com-
mutative and cocommutative. It takes the following form in the non-graded case:

Theorem (Hopf–Borel). Let H be a commutative and cocommutative bialgebra, over a field K

of characteristic zero. The following are equivalent:

(1) H is connected,
(2) H is isomorphic to S(Prim H).

Here S(V ) is the symmetric algebra over the vector space V , which can also be seen as the
polynomial algebra.
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This theorem has already been generalised to other types of bialgebras, see for example
[6–10]. A particular type of bialgebras, verifying a theorem analogue to the Hopf–Borel one,
are magmatic bialgebras, see [1]. They are vector spaces endowed with an unitary binary op-
eration and a counitary binary co-operation related by a magmatic compatibility relation. We
generalise them to bialgebras endowed with unitary n-ary operations for each n � 2, co-unitary
n-ary co-operations, Δn for each n � 2, related by some infinite magmatic compatibility relation.
We denote Mag∞(V ) the free infinite magmatic algebra over a vector space V .

We define the primitive part of such a bialgebra H to be:

PrimH :=
⋂
n�2

{
x ∈H ∣∣ Δ̄n(x) = 0

}
,

where

Δn(x) := Δn(x) −
n−1∑
m=1

∑
σ∈Sh(m,n−m)

σ ◦ (Δm(x),1⊗m−n
)
,

and, Sh(m,n − m) are the (m,n − m)-shuffles.
The rigidity theorem for infinite magmatic bialgebras is as follows:

Theorem 25. Let H be an infinite magmatic bialgebra over a field K of any characteristic. The
following are equivalent:

(1) H is connected,
(2) H is isomorphic to Mag∞(PrimH).

The proof is based on the construction of an idempotent projector from the bialgebra to its
primitive part, as in [1,6,10]. Other examples of type of algebra satisfying an analogue of the
Hopf–Borel theorem can be found in [5] but our example is the first one which has generating
operations and co-operations in any degree.

2. Infinite magmatic algebra

Definition 1. An infinite magmatic algebra A is a vector space endowed with one n-ary unitary
operation μn for all n � 2 (one for each n) such that: every μn admits the same unit, denoted
by 1, and that,

μn(x1, . . . , xn) = μn−1(x1, . . . , xi−1, xi+1, . . . , xn) where xi = 1 and xj ∈ A, ∀j.

Diagrammatically this condition is the commutativity of:

A⊗n

μn

A⊗i ⊗ K ⊗ A⊗n−i−1
Id⊗···⊗u⊗···⊗Id

A⊗n−1

μn−1

A.

where u : K → A is the unit map.



Author's personal copy

E. Burgunder / Advances in Applied Mathematics 40 (2008) 309–329 311

2.1. Free infinite magmatic algebra

Definition 2. An infinite magmatic algebra A0 is said to be free over the vector space V , if it
satisfies the following universal property. Any linear map f : V → A, where A is any infinite
magmatic algebra, extends to a unique morphism of algebras f̃ : A0 → A:

V
i

f

A0

f̃

A.

2.1.1. Planar trees and n-ary products
A planar tree T is a planar graph which is assumed to be simple (no loops nor multiple edges),

connected, rooted and reduced (no vertices with only one outgoing edge). We denote by Yn the
set of planar trees with n leaves. In low dimensions one gets:

Y0 = {∅}, Y1 = {|}, Y2 = { }
, Y3 =

{ }
,

Y4 =
{

}
, . . . .

The n-grafting of n trees is the gluing of the root of each tree on a new root. For example the
2-grafting of the two trees t and s is

∨
2

(t, s) := ,

the 3-grafting of three trees t , s and u is

∨
3

(t, s, u) := .

Remark 3. From our definition of a non-empty planar tree, any t ∈ Yn is of the form

t =
∨
k

(t1, . . . , tk)

for uniquely determined trees t1, . . . , tk .
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Let V be a vector space. A labelled tree of degree n, n � 1, denoted by (t, v1 · · ·vn), is a tree t

endowed with the labelling of the leaves by the elements v1, . . . , vn, represented as:

.

Moreover one can define the n-grafting of labelled trees by the n-grafting of the trees, where one
keeps the labellings on the leaves.

2.1.2. Construction of the free infinite magmatic algebra
Definition 4. Let (A,μn) be an infinite magmatic algebra. We define a map ϕ from the set of
trees to the vector space of operations of A as follows: to the nth corolla tn = ∨

n(|, . . . , |︸ ︷︷ ︸
n

) we

associate the operation μn. As the other trees can be seen as a grafting of corollas of degree k,
their image by ϕ is the composition of the respective operations μk .

For example, consider the tree t = , we have

t 
→ μt = μ2 ◦ (Id⊗μ3) ◦ (Id⊗3 ⊗μ3).

Observe that for any trees t1, . . . , tn, we have μn ◦ (μt1 ⊗ · · · ⊗ μtn) = μ(∨n(t1,...,tn)) by defin-
ition.

We denote by Mag∞(V ) :=⊕∞
n=0 Mag∞

n ⊗ V ⊗n the free infinite magmatic algebra.

Proposition 5. Let V be a vector space and
⊕∞

n=0 K[Yn] ⊗ V ⊗n be the vector space spanned by
the labelled planar trees endowed with the n-grafting of labelled trees, for all n � 2, and with
unit ∅. The linear extension of ϕ to ϕ :⊕∞

n=0 K[Yn]⊗V ⊗n → Mag∞(V ) is an infinite magmatic
algebra isomorphism:

∞⊕
n=0

K[Yn] ⊗ V ⊗n ∼= Mag∞(V ).

We omit the proof as we will give it in the coalgebraic case, see Proposition 12.
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3. Infinite magmatic coalgebra

Definition 6. An infinite magmatic coalgebra C is a vector space endowed with one n-ary co-
operation Δn : C → C⊗n for all n � 2 which is co-unitary: every Δn admits the same co-unit
c : C −→ K and that the following diagram is commutative:

C⊗n
Id⊗···⊗c⊗···⊗Id

C⊗i ⊗ K ⊗ C⊗n−i−1 C⊗n−1

C.

Δn
Δn−1

3.1. Construction of the connected cofree infinite magmatic coalgebra

We denote Sh(p, q) the set of (p, q)-shuffles. It is a permutation of (1, . . . , p,p + 1, . . . ,

p + q) such that the image of the elements 1 to p and of the elements p + 1 to p + q are in
increasing order.

We define

Δ1(x) := x,

Δn(x) := Δn(x) −
n−1∑
m=1

∑
σ∈Sh(m,n−m)

σ ◦ (Δm(x),1⊗m−n
)
.

Let Tn denote the n-corolla. Then Δm(Tn) = 0 for all m = n and Δn(Tn) = |⊗n.

Definition 7. An infinite magmatic co-augmented coalgebra is connected if it verifies the follow-
ing property:

H=
⋃
r�0

FrH where F0H := K1

and, by induction,

FrH := K1 ⊕ {
x ∈H ∣∣ δn(x) = 0 for any reduced n-ary cooperation where n > r

}
.

Remark that connectedness only depends on the unit and co-operations.

We define the primitive part of H as PrimH :=⋂
n�2{x ∈H | Δn(x) = 0}.

Definition 8. An infinite magmatic coalgebra C0 is cofree on the vector space V if there exists a
linear map p : C0 → V satisfying the following universal property: any linear map φ : C → V ,
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where C is any connected infinite magmatic coalgebra such that φ(1) = 0, extends in a unique
coalgebra morphism φ̃ : C → C0:

C
φ

φ̃

C0
p

V .

3.1.1. Planar trees and n-ary coproducts
We endow the vector space of planar trees with the following n-ary co-operations, for n � 2:

for any planar tree t we define:

Δn(t) :=
∑

t1 ⊗ · · · ⊗ tn

where the sum is extended on all the ways to write t as
∨

n(t1, . . . , tn), where ti may be ∅. It can
be explicited, as follows, for t =∨

n(t1, . . . , tn), where ti = ∅ for all i:

Δn(t) :=
(

⊗ · · · ⊗
)

+
n−1∑
i=0

∅⊗i ⊗ t ⊗ ∅⊗n−i−1,

Δm(t) :=

⎧⎪⎪⎨
⎪⎪⎩
∑m−1

i=0 ∅⊗i ⊗ t ⊗ ∅⊗m−i−1, if m < n,∑m−1
i=0 ∅⊗i ⊗ t ⊗ ∅⊗m−i−1

+∑
i1+···+in+1=m−n ∅⊗i1 ⊗ t1 ⊗ ∅⊗i2 ⊗ · · · ⊗ tn ⊗ ∅⊗in+1 , if m > n,

Δn(|) :=
n−1∑
i=0

∅⊗i⊗ | ⊗∅n−i−1,

Δn(∅) := ∅⊗n.

As in the preceding section one can define the n-ungrafting of labelled trees by the n-ungrafting
of planar trees and keeping the labelling on the leaves.

Remark that the empty tree ∅ plays here the role of the unit, it can then be denoted by 1 := ∅.
To illustrate the above definition, we compute the image of the n-corolla tn by Δm. Since we
have tn :=∨

n(|, . . . , |︸ ︷︷ ︸
n times

), we get Δm(tn) = 0 for all m = n and Δn(tn) = |⊗n.

3.1.2. Construction of the cofree connected infinite magmatic coalgebra
Definition 9. The height of a planar tree T is the maximal number of inner vertices one can meet
when going through all the paths starting from the root to a leaf

.
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Example 10. The n-corolla is of height 1. The tree is of height 3.

Definition 11. Let (C,Δn) be an infinite magmatic coalgebra. We define a map ψ from the set of
trees to the vector space of co-operations of C as follows: to the nth corolla tn =∨

n(|, . . . , |︸ ︷︷ ︸
n

) we

associate the co-operation Δn. As the other trees can be seen as a grafting of corollas of degree k,
their image by ϕ is the composition of the respective co-operations Δk .

For example, consider the tree t = , we have

Δt = (
Id⊗3 ⊗Δ3

) ◦ (Id⊗Δ3) ◦ Δ2.

Observe that for any tree t1, . . . , tn we have: (Δt1 ⊗ · · · ⊗ Δtn) ◦ Δn = Δ(∨n(t1⊗···⊗tn)) by defini-
tion.

We denote by Mag∞ c(V ) :=⊕∞
n=0 Mag∞ c

n ⊗ V ⊗n the free infinite magmatic coalgebra.

Proposition 12. Let V be a vector space and
⊕∞

n=0 K[Yn]⊗V ⊗n be the vector space spanned by
the labelled planar trees endowed with the n-ungrafting of labelled trees, for all n � 2. The linear
extension of ψ to ψ : ⊕∞

n=0 K[Yn] ⊗ V ⊗n → Mag∞ c(V ) is an infinite connected magmatic
coalgebra isomorphism:

∞⊕
n=0

K[Yn] ⊗ V ⊗n ∼= Mag∞ c(V ).

It is equivalent to say that
⊕∞

n=0 K[Yn] ⊗ V ⊗n is cofree over V among the connected infinite
magmatic coalgebras.

Proof. We could prove this proposition by dualising Proposition 5, but since it is important for
our arguments later on, we will write this proof completely.

For conveniency of the proof, we denote here
⊕∞

n=0 K[Yn]⊗V ⊗n by C∞(V ) :=⊕∞
n=0 C∞

n (V ).
The co-operations are counital by definition, so C∞ is a magmatic coalgebra.
Then we verify the connectedness of C∞(V ). It comes naturally that:

F1C
∞(V ) = C∞

0 (V ) ⊕ C∞
1 (V ),

F2C
∞(V ) = C∞

0 (V ) ⊕ C∞
1 (V ) ⊕ C∞

2 (V ).

Then,

FrC
∞(V ) =

m=r⊕
m=0

K[trees with m leaves].
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The proof is done by contradiction. Indeed, let us consider the tree T ∈ C∞(V ) with p leaves
and suppose that there exists a reduced k-ary cooperation such that k > p and δk(T ) = 0. The
cooperation δk is of the form:

(δi1 ⊗ · · · ⊗ δim) ◦ Δm

for ij -ary reduced cooperations δij such that i1 + · · · + im = k. Moreover the tree T ∈ K[Yk] can
be seen as the n-grafting of other trees. Therefore we have:

δk(T ) = Δm ◦ μn(T1 ⊗ · · · ⊗ Tn)

=
{

0, if m = n,

δi1(T1) ⊗ · · · ⊗ δin(Tn), if m = n.

Then, by descending induction on the height of the tree, any reduced cooperation such that
δk(T ) = 0 is of arity at most p, which is in contradiction with k > p. So we get the expected
filtration. It is clear that

⋃
n FnC

∞(V ) = C∞(V ).
Let C be a connected magmatic coalgebra and φ : C → V a linear map. To prove the cofree-

ness of the coalgebra, it is sufficient to construct a unique extension of φ as a infinite magmatic
coalgebra morphism. That is to say, prove the commutativity of the following diagram:

C

φ

φ̃ C∞(V ) =
⊕
n�0

C∞
n ⊗ V ⊗n

V .

(1)

The map φ̃ can be decomposed into its homogeneous components as follows:

φ̃(c) = φ̃(c)(1) + φ̃(c)(2) + φ̃(c)(3) + · · · . (2)

By induction on n, one can determine the homogeneous components of φ̃. As the map φ̃ is a
coalgebra morphism defined on C̄, one defines φ̃(1) = 1 .

The commutativity of the diagram (1) gives the following equality:

φ̃(c)1 = (|, φ(c)
)
. (3)

By definition of C∞
2 (V ):

φ̃(c)2 =
∑(

, a1a2
)
.

We adopt the following notation Δ̄(c) = Σc1 ⊗ c2. And we compute:

φ̃1 ⊗ φ̃1 ◦ Δ̄(c) =
∑

φ̃1(c1) ⊗ φ̃1(c2) =
∑(|, φ(c1)

)⊗ (|, φ(c2)
)

thanks to (3).
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But

Δ ◦ φ̃(c)2 =
∑

(|, a1) ⊗ (|, a2) =
∑(|, φ(c1)

)⊗ (|, φ(c2)
)
.

Therefore,

φ̃(c)2 =
∑(

, φ(c1)φ(c2)
)
.

Recall that, by Definition 11, any tree t determines a co-operation that we denote by Δt . So, for
a tree ti of degree n, we have:

φ̃n(c) =
∑

(t, a1 · · ·an),

Δ̄ti φ̃(c) =
∑(|, ai

1

)⊗ · · · ⊗ (|, ai
n

)
.

Denote: Δ̄ti (c) =
∑

ci
1 ⊗ · · · ⊗ ci

n,

φ̃⊗n
1 ◦ Δ̄ti (c) =

∑(|, φ(ci
1

))⊗ · · · ⊗ (|, φ(ci
n

))
,

which gives us:

φ̃i
n(c) =

∑(
ti , φ

(
ci

1

) · · ·φ(ci
n

))
.

Going through all the trees of degree n, we have:

φ̃n(c) =
∑

ti of degree n

(
ti , φ

(
ci

1

) · · ·φ(ci
n

))

(though we denote φ̃i , ti , we do not assume that there must be an order on the trees, this notation
is only used to distinguish the trees with same degree).

Therefore one has:

φ̃(c) = (|, φ(c)
)+

∑(
, φ(c1)φ(c2)

)+
∑(

, φ
(
c1

1

)
φ
(
c1

2

)
φ
(
c1

3

))
+
∑(

, φ
(
c2

1

)
φ
(
c2

2

)
φ
(
c2

3

))+
∑(

, φ
(
c3

1

)
φ
(
c3

2

)
φ
(
c3

3

))+ · · · .

By construction φ̃ is a morphism of connected infinite magmatic coalgebras which is unique,
since we have no other choice to have the commutativity of diagram (1) and the coalgebra mor-
phism property. Therefore C∞(V ) ∼= Mag∞ c(V ). �
Remark 13. The primitive part of the cofree infinite magmatic coalgebra is:

Prim Mag∞ c(V ) = K{|} ⊗ V .



Author's personal copy

318 E. Burgunder / Advances in Applied Mathematics 40 (2008) 309–329

4. Infinite magmatic bialgebra

Definition 14. An infinite magmatic bialgebra (H,μn,Δn) is a vector space H= H̄⊕ K1 such
that:

(1) H admits an infinite magmatic algebra structure with n-ary operations denoted μn,
(2) H admits an infinite magmatic coalgebra structure with n-ary co-operations denoted Δn,
(3) H satisfies the following compatibility relation called the “infinite magmatic compatibility”:

Δn ◦ μn(x1 ⊗ · · · ⊗ xn) = x1 ⊗ · · · ⊗ xn +
n−1∑
i=0

1⊗i ⊗ x ⊗ 1⊗n−i−1,

Δm ◦ μn(x1 ⊗ · · · ⊗ xn)

=

⎧⎪⎨
⎪⎩
∑m−1

i=0 1⊗i ⊗ x ⊗ 1⊗m−i−1, if m < n,∑m−1
i=0 1⊗i ⊗ x ⊗ 1⊗m−i−1

+∑
i1+···+in+1=m−n 1⊗i1 ⊗ x1 ⊗ 1⊗i2 ⊗ · · · ⊗ xn ⊗ 1⊗in+1 if m > n,

(4)

where x := μn(x1 ⊗ · · · ⊗ xn) and x1, . . . , xn ∈ H̄.

A fundamental example in our context is the following:

Proposition 15. Let V be a vector space. The space (Mag∞(V ),
∨

n,Δn), where the operations∨
n (respectively the co-operations Δn) are defined in Sections 2.1.1 and 3.1.1, is an infinite

magmatic connected bialgebra.

Proof. Any tree can be seen as the n-grafting of n trees, except the empty tree and the tree
reduced to the root. Therefore the m-ungrafting of a tree can be viewed as the m-ungrafting of
the n-grafting of n trees. This observation gives the compatibility relation. �
5. The main theorem

Definition 16. The completed infinite magmatic algebra, denoted by Mag∞(K)∧, is defined by

Mag∞(K)∧ =
∏
n�0

Mag∞
n ,

where the first generator | is denoted by t . This definition allows us to define formal power series
of trees in Mag∞(K)∧.

Remark 17. Recall that any non-empty tree can be seen as the grafting of trees. By induction any
non-empty tree can be seen as a composition of graftings of the generator t . This is why some
authors adopt the notation K{{t}}∞ for Mag∞(K)∧ (cf. [2]).
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Lemma 18. The following two formal power series, g and f , are inverse for composition in
Mag∞(K)∧:

g(|) := | − − − − · · · , f (|) :=
∑

T ,

where the sum is extended to all non-empty planar trees T .

Here the tree T stands for the element T (t) := T (t, . . . , t), where t = | the generator.
The composition of T1 ◦ T2 is defined as T1 ◦ T2(t) := T1 ◦ T2(t, . . . , t) = T1(T2(t, . . . , t), . . . ,

T2(t, . . . , t)).

Proof. First, we show that g ◦ f = |, that is to say:

∑
T −

∑
T1,T2

∨
2

(T1 ⊗ T2) − · · · −
∑

T1,...,Tn

∨
n

(T1 ⊗ · · · ⊗ Tn) − · · · = |,

equivalently:

∑
T1,T2

∨
2

(T1 ⊗ T2) + · · · +
∑

T1,...,Tn

∨
n

(T1 ⊗ · · · ⊗ Tn) + · · · =
∑

T − |.

It is immediate, as every tree can be seen as the n-grafting of n trees for a certain n, except |.
Then one verifies that, as in the associative case, a left inverse is also a right inverse. Let f −1

denote the right inverse of f . Then:

f −1 = (g ◦ f ) ◦ f −1 = g ◦ (f −1 ◦ f
)= g.

Remark that we have associativity of composition even in the infinite magmatic context. There-
fore one has f ◦ g = Id and g ◦ f = Id. �
Definition 19. The n-convolution of n infinite magmatic algebra morphisms f1, . . . , fn is a linear
application defined by:

	n(f1 · · ·fn) := μn ◦ (f1 ⊗ · · · ⊗ fn) ◦ Δn.

Observe that these operations are unitary.

Definition 20. Let (H,μn,Δn) be an infinite magmatic bialgebra. Let t ∈ Yn be a tree. Any
tree t determines a composition of convolutions that we denote by 	t . Let f1, . . . , fn be infinite
magmatic bialgebra morphisms. We define 	t (f1, . . . , fn) by:

	t (f1, . . . , fn) := μt ◦ (f1, . . . , fn) ◦ Δt .
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Definition 21. Let (H,μn,Δn) be an infinite magmatic bialgebra. We define a map χ from
the set of trees to the vector space of operations of H: to the nth corolla tn = ∨

n(|, . . . , |︸ ︷︷ ︸
n

) we

associate the operation 	n. As any other tree can be seen as a grafting of corollas of degree k, it
is associated with the composition of the respective operations 	k .

For example, consider the tree t = , we have

t 
→ χ(t) = 	2 ◦ (Id ⊗	3) ◦ (Id⊗3 ⊗	3
)
.

Observe that for any trees t1, . . . , tn, we have 	n ◦ (	t1 ⊗· · ·⊗	tn) = 	(∨n(t1,...,tn)) by definition.

Proposition 22. Let (H,μn,Δn) be an infinite magmatic bialgebra and t ∈ Yn be a tree. Then
we have:

χ(t) = 	t .

It is convenient to introduce the following notation:

Notation 23. Let T ∈ Yn we define

	T (J ) :H−→H : x 
→ 	T (J · · ·J )
(
xn
)
.

Observe that 	n ◦ (	T1 ⊗ · · · ⊗ 	Tn)(J ) = 	(∨n(T1⊗···⊗Tn))(J ) by definition.

Lemma 24. Let (H,μn,Δn) be a connected infinite magmatic bialgebra. The linear map e :
H→H defined as:

e := J − 	2 ◦ J⊗2 − 	3 ◦ J⊗3 − · · · − 	n ◦ J⊗n − · · ·

where J = Id − uc, u the unit of the operations, c the co-unit of the co-operations, has the
following properties:

(1) Im e = Prim H,
(2) for all x1, . . . , xn ∈ H̄ one has e ◦ μn(x1 ⊗ · · · ⊗ xn) = 0,
(3) the linear map e is an idempotent,
(4) for H = (Mag∞(V ),μn,Δn) defined above, e is the identity on V = Mag1(V ) and trivial

on the other components.

Proof. In this proof, we adopt the following notation: Id := IdH̄, and for all x ∈ H̄, Δ̄n(x) :=
x1 ⊗ · · · ⊗ xn.

(1) Proof of Im e = PrimH.

Δn

(
e(x)

)= Δn(x) −
∑
m

Δn ◦ μm ◦ Δm(x)
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= x1 ⊗ · · · ⊗ xn − Δn ◦ μn(x1 ⊗ · · · ⊗ xn) −
∑
m =n

Δn ◦ μm ◦ Δm(x)︸ ︷︷ ︸
=0

= 0.

(2) Proof that for all x1, . . . , xn ∈ H̄ one has e ◦ μn(x1 ⊗ · · · ⊗ xn) = 0. Indeed,

e ◦ μn(x1 ⊗ · · · ⊗ xn) = μn(x1 ⊗ · · · ⊗ xn) −
∑
m

μm ◦ Δm ◦ μm(x1 ⊗ · · · ⊗ xn)

= μn(x1 ⊗ · · · ⊗ xn) − μn ◦ Δn ◦ μn(x1 ⊗ · · · ⊗ xn)

= 0.

(3) Proof that e is an idempotent. We compute:

e
(
e(x)

)= e(x) −
∑
m

e
(
μm ◦ Δm(x)

)= e(x).

(4) Proof that for H= (Mag∞(V ),μn,Δn) defined above, e is the identity on V = Mag1(V )

and trivial on the other components.
On Mag1(V ) = | ⊗ V we have: e(| ⊗ x) = | ⊗ x. All other trees can be seen as the n-grafting

of n trees for a certain n. Then it suffices to apply the second property of the idempotent e to
complete the proof. �
Theorem 25. LetH be a connected infinite magmatic bialgebra over a field K of any character-
istic, then the following are equivalent:

(1) H is connected,
(2) H∼= Mag∞(Prim H).

Proof. As the implication (2) to (1) is tautological, we focus on the proof of the converse impli-
cation.

Suppose that H is connected, we prove the isomorphism H ∼= Mag∞(PrimH) by explicitly
giving the two inverse maps.

Using Notation 23, we define the infinite magmatic coalgebra morphism

G : H̄→ Mag∞(PrimH)

as the unique extension of the following linear map:

x 
→ J (x) − 	2 ◦J⊗2(x) − 	3 ◦J⊗3(x) − · · · − 	n ◦J⊗n(x) − · · · ,

and the infinite magmatic algebra morphism

F : Mag∞(PrimH) → H̄

defined as the unique extension of the linear map:
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x 
→
∑

	T (J )(x),

where the sum is extended to all non-empty planar trees T .
Moreover, denote by t the generator of Mag∞(K), t := |, and by tn := ∨

n ◦t⊗n. We define
g(t) := t − t2 − t3 − · · · − tn − · · · , and f (t) := ∑

T , where the sum is extended to all planar
trees T . By Lemma 18, these two preceding maps are inverse, for composition.

These series can be applied to elements of HomK(H,H) sending 1 on 0 using 	n as a product,
thanks to the following morphism:

Mag∞(PrimH)∧ → HomK(H,H),

t 
→ J,

φ(t) =
∑

anT 
→ φ	(J ) = Φ =
∑

anJ
	T ,

φ ◦ ψ(t) 
→ (φ ◦ ψ)	(J ) = Φ ◦ Ψ = φ	(J ) ◦ ψ	(J ).

It is clear that e = g	(J ).
Therefore composing the two formal power series F and G gives as a result:

F ◦ G = f 	 ◦ g	(J ) = (f ◦ g)	(J ) = Id	(J ) = J,

G ◦ F = g	 ◦ f 	(J ) = (g ◦ f )	(J ) = Id	(J ) = J.

The proof is complete since J = Id on H̄. Remark that H∼= Mag∞(PrimH) is an isomorphism
of infinite magmatic bialgebra. Indeed, we have the two following properties:

μn

(
G(x1), . . . ,G(xn)

)= G ◦ F
(
μn

(
G(x1), . . . ,G(xn)

))
= G ◦ μn

(
F ◦ G(x1), . . . ,F ◦ G(xn)

)
= G ◦ μn(x1, . . . , xn),

Δn

(
F(x)

)= (
(F ◦ G) ⊗ · · · ⊗ (F ◦ G)

) ◦ Δn

(
F(x)

)
= (F ⊗ · · · ⊗ F) ◦ Δn

(
G ◦ F(x)

)
= (F ⊗ · · · ⊗ F) ◦ Δn(x),

which proves that F is moreover an infinite magmatic coalgebra morphism (respectively G is an
infinite magmatic algebra morphism) and hence an infinite magmatic bialgebra morphism. �
6. m-Magmatic bialgebras

Instead of considering infinite magmatic bialgebras one may consider m-magmatic bialge-
bras, with m � 2, where the number of operations and co-operations is restricted to m, cf. [3].
Explicitly, we would have:
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6.1. m-Magmatic algebra and free m-magmatic algebra

Definition 26. An m-magmatic algebra A is a vector space endowed with one n-ary unitary
operation μn for all 2 � n � m (one for each n) such that: every μn admits the same unit u and
that,

μn(x1, . . . , xn) = μn−1(x1, . . . , xi−1, xi+1, . . . , xn) where xi = 1 and xj ∈ A, ∀j.

Diagrammatically this condition is the commutativity of:

A⊗n

μn

A⊗i ⊗ K ⊗ A⊗n−i−1
Id⊗···⊗u⊗···⊗Id

A⊗n−1

μn−1

A.

6.1.1. Construction of the free m-magmatic algebra over a vector space V

Let us describe the set of m-ary planar trees. An m-ary planar tree T is a planar graph which
is assumed to be simple (no loops nor multiple edges) and connected, such that the valence of
each inner vertex is at most m + 1. We denote by Ym

n the set of m-ary planar trees with n leaves.
In low dimensions one gets:

Ym
0 = {∅}, Ym

1 = {|}, Ym
2 = { }

, . . . .

For example if m = 2 we have the binary planar trees, see [1]. For m = 3, in low dimensions we
have:

Y 3
3 =

{ }
,

Y 3
4 =

{
}

, . . . .

We observe that we have lost the tree from the planar case.

The n-grafting, 2 � n � m, of n trees is the gluing of the root of each tree on a new root,
exactly as in the infinite magmatic case.

Remark 27. From our definition of an m-ary planar tree, any t ∈ Ym
n is of the form

t =
∨
k

(t1, . . . , tk)

for uniquely determined trees t1, . . . , tn.
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Note that one can define the n-grafting of labelled trees by the n-grafting of the trees, where
one keeps the labellings on the leaves.

We define the vector space, denoted Magm(V ), as follows:

Magm :=
⊕

n

Magm
n ⊗ V ⊗n,

where Magm
n := K[Ym

n ].

Proposition 28. Let V be a vector space. The space Magm(V ) endowed with the n-grafting of
labelled trees, for all 2 � n � m, is an m-magmatic algebra. Moreover it is the free m-magmatic
algebra over V .

6.2. m-Magmatic coalgebra and cofree m-magmatic coalgebra

Definition 29. An m-magmatic coalgebra C is a vector space endowed with one n-ary co-unitary
co-operation Δn : C → C⊗n for all 2 � n � m such that: every Δn admits the same co-unit c and
that the following diagram is commutative:

C⊗n
Id⊗···⊗c⊗···⊗Id

C⊗i ⊗ K ⊗ C⊗n−i−1 C⊗n−1

C.

Δn
Δn−1

6.2.1. The cofree m-ary magmatic coalgebra
We endow the vector space of m-planar trees,defined above, with the following n-ary co-

operations, for 2 � n � m: for any m-ary planar rooted tree t we define:

Δn(t) =
∑

t1 ⊗ · · · ⊗ tn

where the sum is extended to all the manner to write t =∨
n(t1, ·, tn).

Explicitely for t =∨
n(t1, . . . , tn), where all ti = ∅, we have:

Δn(t) :=
(

⊗ · · · ⊗
)

+
n−1∑
i=0

∅⊗i ⊗ t ⊗ ∅⊗n−i−1,

Δm(t) :=

⎧⎪⎨
⎪⎩
∑m−1

i=0 ∅⊗i ⊗ t ⊗ ∅⊗m−i−1, if m < n,∑m−1
i=0 ∅⊗i ⊗ t ⊗ ∅⊗m−i−1

+∑
i1+···+in+1=m−n ∅⊗i1 ⊗ t1 ⊗ ∅⊗i2 ⊗ · · · ⊗ tn ⊗ ∅⊗in+1, if m > n,

Δn(|) :=
n−1∑
i=0

∅⊗i ⊗ | ⊗ ∅n−i−1,

Δn(∅) := ∅⊗n.
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As in the preceding section one can define the n-ungrafting of labelled trees by the n-ungrafting
of planar trees and keeping the labelling on the leaves.

Remark that ∅ plays here the role of the unit, it can then be denoted by 1 := ∅.

Proposition 30. Let V be a vector space. The space Magm(V ) endowed with the n-ungrafting co-
operations, 2 � n � m, on labelled trees is a connected infinite magmatic coalgebra. Moreover
it is free over V among the connected infinite magmatic coalgebras.

Proof. It is similar to the proof of cofree infinite magmatic coalgebra. �
6.3. m-Magmatic bialgebra

Definition 31. An m-magmatic bialgebra (H,μn,Δn), where 2 � n � m, is a vector space H=
H̄⊕ K1 such that:

(1) H admits an m-magmatic algebra structure with n-ary operations denoted μn,
(2) H admits an m-magmatic coalgebra structure with n-ary co-operations denoted Δn,
(3) H satisfies the following “compatibility relation”:

Δn ◦ μn(x1 ⊗ · · · ⊗ xn) = x1 ⊗ · · · ⊗ xn +
n−1∑
i=0

1⊗i ⊗ x ⊗ 1⊗n−i−1,

Δm ◦ μn(x1 ⊗ · · · ⊗ xn)

=

⎧⎪⎨
⎪⎩
∑m−1

i=0 1⊗i ⊗ x ⊗ 1⊗m−i−1, if m < n,∑m−1
i=0 1⊗i ⊗ x ⊗ 1⊗m−i−1

+∑
i1+···+in+1=m−n 1⊗i1 ⊗ x1 ⊗ 1⊗i2 ⊗ · · · ⊗ xn ⊗ 1⊗in+1, if m > n,

(5)

∀x := μn(x1 ⊗ · · · ⊗ xn) and x1, . . . , xn ∈ H̄ and 2 � n � m.

Example 32. Let V be a vector space. The space (Magm(V ),
∨

n,Δn), where 2 � n � m and
the operations

∨
n (respectively the cooperations Δn) are defined in Section 6.1.1 (respectively

in Section 6.2.1) is an infinite magmatic connected bialgebra.

6.4. The rigidity theorem

We can now state a rigidity theorem:

Theorem 33. Let H be a connected m-ary magmatic bialgebra over a field K of any character-
istic, then the following are equivalent:

(1) H is connected,
(2) H∼= Magm(Prim H).

The proof is very similar to the infinite magmatic case. One has to use the following two
definitions and the two lemmas:
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Definition 34. The completed m-ary magmatic algebra, denoted by Magm(K)∧, is defined by

Magm(K)∧ =
∏
n�0

Magm
n ,

where the first generator | is denoted by t . This definition allows us to define formal power series
of trees in Magm(K)∧.

Definition 35. Let 2 � n � m. The n-convolution of n m-ary magmatic algebra morphisms
f1, . . . , fn is defined by:

	n(f1 · · ·fn) := μn ◦ (f1 ⊗ · · · ⊗ fn) ◦ Δn.

Observe that these operations are unitary.

Lemma 36. The following two formal power series are inverse for composition in Magm(K)∧:

g(|) := | − − − − · · · − , f (|) :=
∑

T ,

where the sum is extended to all m-ary planar trees T .

Lemma 37. Let (H,μn,Δn) be a connected m-ary magmatic bialgebra. The linear map e :H→
H defined as:

e := J − 	2 J⊗2 − 	3 J⊗3 − · · · − 	m J⊗m

where J = Id − uc, u the unit of the operations, c the co-unit of the co-operations, has the
following properties:

(1) Im e = Prim H,
(2) for all x1, . . . , xn ∈ H̄ one has e ◦ μn(x1 ⊗ · · · ⊗ xn) = 0,
(3) the linear map e is an idempotent,
(4) forH= (Magm(V ),μn,Δn) defined above, e is the identity on V = Mag1(V ) and trivial on

the other components.

Remark 38. Theorems 25, 33, 45 fit into the framework of “triples of operad” of Loday [5]. In
our case the triple is (Magm,Magm,Vect), m ∈ N or m = ∞. In the case (Magm,Magn,P) the
operad of the primitives is still to be unraveled.

7. Binary magmatic bialgebras

A special case of the m-ary magmatic bialgebra is the binary magmatic bialgebras, known
also as magmatic bialgebras [1–4].

Definition 39. A binary magmatic algebra A is a vector space endowed with a binary unitary
operation.
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Definition 40. A binary magmatic coalgebra A is a vector space endowed with a binary counitary
cooperation.

7.1. Planar binary trees equipped with a product and a coproduct

A planar binary tree T is a planar connected graph which is assumed to be simple (no loops
nor multiple edges), rooted and such that any inner vertices is of valence at most 2. We denote
by Y 2

n the set of planar trees with n leaves. In low dimensions one gets:

Y 2
0 = {∅}, Y 2

1 = {|}, Y 2
2 = { }

, Y 2
3 =

{ }
,

Y 2
4 =

{ }
, . . . .

The grafting of two trees is the gluing of the root of each tree on a new root. For example, if t

and s are two planar binary trees, their grafting is defined as:

∨
2

(t, s) := .

Remark 41. From our definition of a planar binary tree, any t ∈ Y 2
n is of the form

t =
∨

(t1, t2)

for uniquely determined trees t1, t2. Diagrammatically it is represented by:

t = .

Thanks to this remark one can define the ungrafting of a tree t = t1 ∨ t2 as:

Δ(t) := ⊗ + t ⊗ ∅ + ∅ ⊗ t.

We add:

Δ(|) = | ⊗ ∅ + ∅ ⊗ |,
Δ(∅) = ∅ ⊗ ∅.

Let V be a vector space, one can define the grafting (respectively the ungrafting) of labelled
trees by the grafting (respectively the ungrafting) of the trees, where one keeps the labellings
on the leaves. Therefore we have defined an operation and a cooperation on the vector space
Mag2(V ) :=⊕

n�0 Mag2
n ⊗ V ⊗n, where Mag2

n = K[Y 2
n ].
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7.2. Binary magmatic bialgebras

Definition 42. A binary magmatic bialgebra (H, ·,Δ) is a vector space such thatH= H̄⊕ K · 1
verifying:

(1) (H, ·) is a binary magmatic algebra,
(2) (H,Δ) is a binary magmatic coalgebra,
(3) H satisfies the following “compatibility relation”:

Δ(x · y) = x · y ⊗ 1 + x ⊗ y + 1 ⊗ x · y, ∀x, y ∈H.

Definition 43. A binary magmatic coalgebraH is said to be connected if it verifies the following
property:

H=
⋃
r�0

FrH where F0 := K1, and by induction

Fr := {
x ∈H ∣∣ Δ̄(x) ∈ Fr−1 ⊗ Fr−1

}
,

where Δ̄(x) = Δ(x) − x ⊗ 1 − 1 ⊗ x.
Note that the connectedness only depends on the unit and the cooperation.

A fundamental example, in this context, is:

Proposition 44. The space (Mag2(V ), ·,Δ), where · (respectively Δ) was defined in Section 7.1
is a connected magmatic bialgebra.

And, we can state the following theorem, see [1]:

Theorem 45. If H be a connected binary magmatic bialgebra over a field of any characteristic,
then H is isomorphic to the binary magmatic bialgebra Mag2(PrimH).
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