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ABSTRACT. We extend the definition of tridendriform bialgebra by in-
troducing a parameter q. The subspace of primitive elements of a g-
tridendriform bialgebra is equipped with an associative product and a
natural structure of brace algebra, related by a distributive law. This
data is called ¢- Gerstenhaber-Voronov algebras. We prove the equiv-
alence between the categories of conilpotent g-tridendriform bialgebras
and of g-Gerstenhaber-Voronov algebras. The space spanned by surjec-
tive maps between finite sets, as well as the space spanned by parking
functions, have a natural structure of g-tridendriform bialgebra, denoted
ST(q) and PQSym(q)*, in such a way that ST(q) is a sub-tridendriform
bialgebra of PQSym(q)*. Finally we show that the bialgebra of M-
permutations defined by T. Lam and P. Pylyavskyy comes from a ¢-
tridendriform algebra which is a quotient of ST(q).

INTRODUCTION

Some associative algebras admit finer algebraic structures. Dendriform
algebras were introduced by J.-L. Loday in [7] as associative algebras whose
product splits into two binary operations satisfying some relations. In par-
ticular, any associative product induced somehow by the shuffle product is
an example of dendriform structure. The algebraic operad describing den-
driform algebras is regular, so it is determined by the free dendriform algebra
on one element, which is the algebra of planar binary rooted trees described
in [9]. The natural question which arises is the existence of a regular operad
such that the free algebra spanned by one element has, as underlying vector
space, the space spanned by all planar rooted trees. Here are two examples
of such an operad:

(1) in [4], Frédéric Chapoton defined a K-algebra as a differential graded
dendriform algebra equipped with an extra associative product and
a boundary map, satisfying certains conditions. When considering
the free K-algebra on one element, the differential homomorphism

Key words and phrases. Parking functions, bialgebra, tridendriform, planar trees,
Solomon-Tits algebra, Poincaré-Birkhoff-Witt Cartier-Milnor-Moore theorem.

Our joint work was supported by the Project ECOS-Conicyt CO6EQL. The first author’s
work is partially supported by an IPDE grant and an ANR program. The second author’s
work is partially supported by FONDECYT Project 1100380. Both authors want to thank
the Banach Center for its hospitality.



2 E. BURGUNDER, M. RONCO

on planar trees coincides with the co-boundary map of the associa-
hedron.

(2) in a joint work with J.-L. Loday, see [10], the second author intro-
duced the notion of tridendriform algebra, which is an associative
algebra such that the product splits into three operations.

In fact the free K-algebra is the associated graded algebra of the free triden-
driform algebra.

In this paper, we define the notion of ¢-tridendriform algebra which is a
parametrized tridendriform algebra. The advantage of this notion is that
it permits us to deal simultaneously with tridendriform algebras (when ¢ =
1) and the notion of K-algebras (obtained when ¢ = 0). Mimicking the
definition of dendriform bialgebra given in [15], a g-tridendriform bialgebra
is a bialgebra such that the associative product comes from a g-tridendriform
structure, which satisfies certain compatibility relations with the coproduct.

Our main motivation to study this type of bialgebras are the following
examples:

(1) Given a positive integer n, let [n| denote the set {1,...,n}. We
define a g-tridendriform bialgebra structure on the space spanned
by all surjective maps from [n] to [r], for all positive integers r < n,
which we denote by ST(q). As a vector space ST(q) is spanned by
all the faces of the permutohedron.

(2) In[12] and [11], J.-C. Novelli and J.-Y. Thibon define the 1-tridendriform
bialgebra PQSym™ of parking functions. This structure is general-
ized to any ¢. The natural map which associates to any parking
function a surjective map is called the standardization, its dual in-
duces a monomorphism of g-tridendriform bialgebras from ST(q) to
PQSym*(q), which differs from the one defined in [11] for ¢ = 1.
In a forthcoming paper, we apply this homomorphism to prove that
PQSym®(q) is free as a tridendriform algebra, as was conjectured
in [11].

(3) The bialgebra M MR of big multi-permutations defined by T. Lam
and P. Pylyavskyy in [6] comes from a 1-tridendriform bialgebra
structure, which may be generalized to a g-tridendriform bialgebra
MMR(q), for any q. We prove that the g-tridendriform bialgebra
MMR(q) is a quotient of ST(q).

Any dendriform algebra H may be equipped with a brace algebra struc-
ture (see [14]), in such a way that whenever H is a dendriform bialgebra the
subspace Prim(H) of primitive elements of H is a sub-brace algebra. More-
over, the category of conilpotent dendriform bialgebras and the category of
brace algebras are equivalent (see [3] and [15]). We extend these results
to g-tridendriform bialgebras by introducing the notion of g-Gerstenhaber-
Voronov algebras, denoted G V;-algebras, which are brace algebras (B, Mi,,)
equipped with an associative product - which satisfies the distributive law:

Mln(x'y;zla"wzn) =



TRIDENDRIFORM STRUCTURE ON COMBINATORIAL HOPF ALGEBRAS 3

Z ¢ My 21, 2) i zj + My(n—j) (Y5 Zj+15 - - -5 2n)-
0<i<j<n
Applying that any g-tridendriform bialgebra has a natural structure of den-
driform algebra, we associate to any g-tridendriform algebra a GV, -algebra
which has the same underlying vector space. Following the results described
in [15], we prove that:

(1) the subspace of primitive elements of a g-tridendriform bialgebra H
is a sub-G'V,-algebra of H,

(2) the free g-tridendriform algebra spanned by a vector space V is iso-
morphic, as a coalgebra, to the cotensor coalgebra of the free G'V,-
algebra spanned by V,

(3) the category of conilpotent g-tridendriform bialgebras is equivalent
to the category of G'V,-algebras.

Our result gives a good triple of operads for the theory of generalised bial-
gebras studied by Loday, cf.[8].

Let us point out that, applying Chapoton’s results, the operad of G Vj-
algebras may be equipped with a differential in such a way that we recover
the operad Sz described in [16], also called homotopy G-algebra in [5].

The paper is organized as follows. The first section gives the definition of
g-tridendriform bialgebra, illustrated by some examples. In the next section
we prove the structure theorem for conilpotent ¢-tridendriform bialgebras
and GV, -algebras, which generalises the Cartier-Milnor-Moore Theorem in
our context. In the last section we describe the g-tridendriform structures of
the bialgebras of parking functions and of big multi-permutations and prove
that there exists a diagram of g-tridendriform bialgebras:

PQSym™(q) <« ST(q) -» MMR(q)
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NOTATIONS

All vector spaces and algebras are over a field K. Given a set X, we
denote by K[X] the vector space spanned by X. For any vector space V,
we denote by V" the tensor product of V ® ---® V, n times, over K. In
order to simplify notation, we shall denote an element of V" indistinctly
by 21 ® -+ @ x, or (X1,...,Tp).

A coalgebra over K is a vector space C equipped with a linear homomor-
phism A : C — C ® C which is coassociative. A counit of a coalgebra
(C,A) is a linear homomorphism € : C' — K such that po (e ® Idg) o A =
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ide = po (Ido ®€) o A, where pu denotes the action of K on C. The kernel
of € is denoted by C.
For any coalgebra (C,A) the image of an element x € C under A is
denoted using the Sweedler’s notation A(z) = Yz ®
Let (C, A, €) be a counital coalgebra such that C = K@ C , an element
x € C is primitive if A(x) = 2 ® 1g + 1g ® . The subspace of primitive
elements of C is denoted Prim(C). There exists a natural filtration on C
given by:
o 1 (C) = Prim(C),
o F,(C) = {x €C|Alx) € F, 1C® Fn_lC} ,
where A(r) = A(z) — Ik @7 — 7 ® Ig.

0.1. Definition. The counital coalgebra C' is said to be conilpotent if

C=Ko | JF.C.

n>1

Given a vector space V', we denote by T¢(V) the space T(V) = @,,sq VE"
equipped with the coalgebra structure given by deconcatenation:
n
AC(r1 @+ Q@ ap) = Z(xl®---®xi)®(a¢i+1®--~®xn),
i=0
for xq,...,xp € V.

Let n be a natural number, the ordered set {1,...,n} is denoted by
[n]. If J = {j1,...,Jk} € [n] and r > 1, we denote by J + r the set
{ji+r,...,dk+71}. A composition of n is an ordered set n = (nq,...,n,) of
positive integers such that >, , n; = n; while a partition of n is a sequence
of non-negative integers A = (I1,...,l,) such that > ;_, l; = n.

The symmetric group of permutations of n elements is denoted by S,.
Given a composition n = (n1,...,n,) of n, a n-shuffle is a permutation
o € S, such that o(n; +---+n; +1) < .-+ < o(ny + -+ + ni41), for
0 <i<r—1. We denote by Sh(ni,...,n,) the set of all n-shuffles.

Consider the set of maps between finite sets. We identify a function

f i [n] — [r], with its image (f(1),..., f(n)).
Given a map f : [n] — [r] and a subset J ={i - < i} C [n], the
restriction of f to J is the map f|y := (f(i1),..., f(i )) Slmllarly, for a sub-

set K of [r], the co-restriction of f to K is the map 15 = (), .-, f(),
where {j; <--- < g} :={i e n]/f(i) € K}.

For any map f : [n] — [r], let maxz(f) be the maximal element in the
image of f. If g € F,, is another map, then fg is the element in F,,, such
that

fali) = {f(i), for 1 <i <mn,

g(i—n), forn+1<i<n+m.
We denote by N(f, g) the cardinal of the intersection Im(f) N Im(g).
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1. TRIDENDRIFORM BIALGEBRAS

We introduce the definition of g-tridendriform algebra in such a way that
specializing in ¢ = 1 we get the definition of tridendriform algebra given
n [10], while for ¢ = 0 we get the definition of K-algebra described in [4].
Our main goal is to study the tridendriform algebra structures of the space
of parking functions defined in [11] and of the space of multipermutations
introduced in [6], which we treat in the next sections. We give in the present
section some other examples. The first one is described in [10] for ¢ = 1 and
in [4] for ¢ = 0, while the second one is studied in [13] for ¢ = 1 and in [4]
for ¢ = 0.

1.1. Definition. A q-tridendriform algebra is a vector space A together with

three operations <: AQA — A,-: AQA — Aand =: AQ A — A, satisfying
the following relations:

(1) (a<b)<c=a<(b<c+b=c+qb-c),

(2) (a=b)<c=a> (b=<rc),

(3) (a<b+a>b+qga-b)=c=a> (b>c),
(4) (a-b)-c=a-(b-c),

(5) (@a=b)-c=a> (b-c),

(6) (a<b)-c=a-(b>c),

(7) (a-b)<c=a-(b=<c).

Note that the operation * := < 4+¢q - + > is associative. Moreover, given
a g-tridendriform algebra (A, <, -, =), the space A equipped with the binary
operations < and > := ¢ - + > is a dendriform algebra, as defined by J.-L.
Loday in [7].

1.2. Examples. a) The free tridendriform algebra Let T, denote the
set of planar rooted trees with n + 1 leaves. For instance,

L=} =Y} n={ VN

The tree with n + 1 leaves and a unique vertex (the root) is called the
n-corolla, and denoted by c,.

Given trees t1,... t", let \/(t!,...,t") be the tree obtained by joining the
roots of t!, ..., ", ordered from left to right, to a new root. It is easy to see
that any tree ¢ € T}, may be written in a unique way as t = V(.. "),
with t* € T),, and Y _;_; n; +r —1 =n. On the space K[T] spanned by the
set Too := U,;>1 Tn, we define operations <, - and > recursively as follows:
t-=|=t-|=]-t=|<t=0, forall t € T,
| =t=t=<|=t, foralteTy,
t<w= \/(tl,...,t”_l,tr kW),

t-w:= \/(tl,...,tr_l,tr*wl,wQ,...,wl),
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t-w:= \/(t*wl,wQ,...,wZ),

for t = \/(t',...,t") and w = \/(w',...,w"), where * is the associative
product * =< +¢q - + > previously defined.

Note that, even if we need to consider the element | € Ty as the identity
for the product # in order to define the tridendriform structure on K[T],
the elements | < | , |- | and | < | are not defined.

Following [4] and [10], it is immediate to verify that the data (K[Tw], <
, +, =) is the free g-tridendriform algebra spanned by the unique element of
1.

For any vector space V, the g-tridendriform structure of K[T4] extends
naturally to the space Tridend, (V) := @,,~, K[T},] @ V" as follows:

(tRUV® - Qup)o(WRAUI ® - DUp) = (tow) DV ®- - QVp DU Q- - D U

where o is replaced either by =, or <, or -, respectively. In this case,
Tridend, (V') is the free g-tridendriform algebra spanned by V' (see [4] and
[10]).

b) The algebra of surjective maps Let ST] be the set of surjective
maps from [n] to [r], for 1 < r < n, and let ST,, := |J_, ST;,. Given
f :[n] — [r] there exists a unique surjective map std(f) € ST, such that
f(@) < f(y) if, and only if, std(f)(i) < std(f)(j), for 1 <4,j < n. The map
std(f) is called the standardization of f.
For example if f = (2,3,3,5,7), then std(f) = (1,2,2,3,4).

Let x : ST x ST:, — ST, % be the map

n+m

(o, ) — ax f:=(a(l),...,a(n),B(1)+r,...,8(m)+7r).
Let ST(q) be the vector space ST := @, -, K[ST;] equipped with the
operations >, - and < defined as follows: -

frg:=>Y_ "k
mazx(h)<maz (k)
Fogi= Z AR TA S
maz(h)=maz (k)
f=g= > ¢ "k
max(h)>maz(k)

where the sums are taken over all pairs of maps (h, k) verifying that hk is
surjective, std(h) = f and std(k) = g, for f € ST,, and g € ST,.

For example, if « = (1,2,1) € ST3 and § = (2,1) € ST9, then
a=f=(1,2,1,4,3)+q¢(1,2,1,3,2)+¢(1,2,1,3,1)+(1, 3,1, 4,2)+(2, 3,2,4, 1),
a-f=4q(1,2,1,2,1) 4+ (1,3,1,3,2) +(2,3,2,3,1),
a=<0=¢q(1,3,1,2,1)+(1,4,1,3,2)+¢(2,3,2,2,1)+(2,4,2,3,1)+(3,4, 3,2, 1).

To check that (ST(q), >, -, <) is a g-tridendriform algebra we refer to [4]
and to [13].
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c) Rota-Baxter algebras. Let (A,-) be an associative algebra over K. A
Rota-Baxter operator of weight ¢ on A (see [1]) is a linear map R: A — A
verifying that:

R(x) - R(y) = R(R(z) -y) + R(z - R(y)) + qR(z - y),

for z,y € A. The data (A4, -, R) is called an associative Rota-Baxter algebra
of weight q.

Any Rota-Baxter algebra A of weight ¢ has a natural structure of ¢-
tridendriform algebra with the associative product - and the operations <
and > given by:

r<y:=x-R(y),
z =y = R(r) -y,
for z,y € A.

Let (A, <,-,>) be a g-tridendriform algebra and let AL := A ® K. We
denote by € : Ay — K the projection on the second term. For any x € A,
wefixer>=lg=z-lg=lg-z=1lg<z=0and lx =z =2 =2 < 1k.

1.3. Definition. A g-tridendriform bialgebra over K is a g¢-tridendriform
algebra H equipped with a linear homomorphism A : Hy, — H,; ® Hy
verifying the following conditions:
(1) A(lg) = 1k ® Ig,

(2) (e®@Id)oA(x) =1g®@z and ([d®e)oA(x) =2 @1k, for all x € H,
(3) Az = y) := > (zq) *ya)) @ (T@2) = ¥@2);

) Az - y) =D (zq) *ya)) @ (T@) - Y2)

) Az < y) =Y (za) *ya)) @ (T2) < Y2));
(z) = > () ®2(9) for all z € H, and by convention:

rxy) @ (Ix = 1k) = (z = y) ® Ik,
rxy) @ (Ik - 1x) = (v - y) ® 1k,
rxy) R (lg < 1g) = (x < y) ® 1k, for z,y € H.

Note that if (H, <, -, >, A) is a g-tridendriform bialgebra, then (Hy,*, A)
is a bialgebra in the classical sense.

We describe the bialgebra structure of the g-tridendriform algebras de-
scribed in Examples a) and b) of 1.2.
a) Let V be a vector space.

Given elements x° = (t5;v¢,... 08 ) € T, ® V& _for 1 <4 < r and vectors

s Yn;
1 T\ . —
Wi, ..., w1 €V, let vw1 77777 wr71(‘T ,...,JC)._
1 ry. .1 1 2 r—1 r r
(\/(t sy )V, U WL VT, U W1, VT, Uy ),

T
in T, ® V" where n = Znﬁ—r— 1.
i=1
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The coproduct A on the free g-tridendriform algebra Tridend, (V') is the
unique linear homomorphism satisfying that:

(1) A(lg) = 1g ® 1k.
(2) Alen;viy..oyvp) = (Cp;v1,...,0,) ® Ig + 1g ® (cp;v1,...,vy), for
n > 1.

A(z) := Z(az%l) ok T() ® \/ (;1:%2), 5 T(g) TTQ Ik,

wi,...,Wr—1

for z =\/ rl .o 2", with ' € T, @ VO,

wlv"'va—l(

b) For any « € ST,,, define:
Af) =" 1y ® fays

J
where the sum is taken over all 0 < j < n, such that there exists 4, €
Sh(j,n — j)~" with f = (ff}) % fiy) - 0.
For example A(2,1,3,5,3,4,4,1) =
Ik ®(2,1,3,5,3,4,4,1) + (1,1) ® (1,2,4,2,3,3) + (2,1,1) ® (1,3,1,2,2)+
(2’ 17 37 37 1) ® (27 1? 1) + (27 173’ 3’ 47 47 1) ® (1) + (2’ 1’ 37 57 37 47 4? 1) ® 1K‘

The coproduct may also be described in terms of co-restrictions as follows:

A(f) = if\m ® std(f|" ),

j=1

To see that ST(q) with A is a g-tridendriform bialgebra, suppose that
hk € ST, are such that std(h) = f and std(k) = g. It is easy to check that:

(1) if maz(h) < max(k), then
A(hk) = > hayka) © hk),
maz(h(g))<maz(k(z))
(2) if maz(h) = maz(k), then
A(hk) = > hyka) © hk),
max(h@)):maw(k@))
(3) if max(h) > max(k), then
A(hk) = > haykay ® hke),
maz(h(g))>maz(k(z))
where both h)k(1) and h(g)k(s) are surjective.
Moreover, if h(yy = h|PIVIMM) - poy = p|laplpnim®) g = glrinim(k) anqg
ki) = k[ls=H0ImE) then N(h, k) = N(hy, kay) + N(h), k@)
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2. STRUCTURE THEOREM FOR TRIDENDRIFORM BIALGEBRAS

We want to prove that any conilpotent g-tridendriform bialgebra can be
reconstructed from the subspace of its primitive elements. In order to do
so we need to introduce the notions of brace algebra (see [5]) and of ¢-
Gertenhaber-Voronov algebra. Our construction mimics previous results
obtained for dendriform bialgebras and brace algebras. Whenever the results
exposed in the present work are obtained easily by applying the methods
developed in [15], we refer to it for the details of the proofs.

2.1. Definition. (1) A brace algebra is a vector space B equipped with
n + l-ary operations M, : B® B®" — B, for n > 0, which satisfy
the following conditions:

(a) Mo =1dp,
(b) Mim(Min(z391,- -, Un); 215+ -, Zm) =

Z er(.’L';Zl, .. -7Z¢1,M111(y1; .. .,Zjl), .. .,Mlln(yn; .. .,Zjn), e

0<i1<j1 < <jn<m
for x,y1,...,Yn,21,--.,2m € B, where [, = jp —ig, for 1 <k <
n,and r =Y ;i +m— jn +n.
(2) A g-Gerstenhaber-Voronov algebra, GV -algebra for short, is a vec-
tor space A endowed with a brace structure given by operations M1,
and an associative product -, satisfying the distributive relation:

Mln(x'y;zlw'wzn) =
Z @ M5 21,005 20)  Zigr 2 My(n—jy (Y5 Zj+15 - - - Zn),
0<i<j<n

for x,y,21,...,2n € B.

In [15] we constructed a functor from the category of dendriform algebras
to the category of brace algebras, we recall this construction. Let (4, <, =)
be a dendriform algebra, we denote:

w<(Y1s- ) =y < (Y2 < (Y1 < Yi)
W (Yit15---Yn) = (Mir1=¥it2) = .. )= Y.
The brace operations M, are defined as follows:

n
Min (i1, yn) = 3 (1) wi(y1, - 90) 57 < wg (Yis1s - - Un),
i=0
forn > 1.
Given any g-tridendriform algebra (A, <, -, =) we associate to it the brace
algebra (A, My,) obtained from the dendriform algebra (A4, <, > =¢-+ >).

2.2. Proposition. If (A, <, -, ) is a g-tridendriform algebra, then (A, M1, -)
is a GV, algebra.

7zm)7
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Proof. We know that (A, My,) is a brace algebra, therefore it suffices to
prove that - and My, satisfy the distributive relation:

Mip(z-y;21,. .. 2n) =

j—1 . .
E ¢ Mai(521, 005 20)  Zigr e zj - Myn—j) (Y5 241, - -+, 2n),s
0<i<j<n

for x,y, z1,...,2n € A.

As wo(vy, ..., vp) v =01 - (w<(va,...,v.) =), for any vy,...,v,,v € A,
we can split the expression

qu_iMli(:L‘; Z1yee s 2i) Zigd e 25 Mugo ) (U5 24155 2n)
in three types of terms:
a)X, 0= (w<(z1,...,20) = T <we (Zra1,- 05 2))  Zigl o0 2
(W< (Zjg1s oy 2) =Y < we (214152045 2n)),
with j —i > 1
b)Y, i = (w<(z1,...,2) = ¢ <we(Zr41,- .-, %))

(W<(Zig1s-rs21) =Y = wWs (2141555 2n))s

C)Zrii = (21 (w<(22,...,2) = & < we (Zpg1,..-,2)))
(L{).<(ZZ'+17 s )721) —y = w;(zl-l-l) s 7)Zn))~

For j —i > 1, the term X, ; ;; appears in:

[ Ml,i(x; Zl,'. X Zz) A Ml,n—j(y; S E Zn) with the co-
efficient ¢7—1(—1)"+
[ ] MLi(x; FAREE .,Zi) 2 A I S Ml,n_j(y;zjl, .. .,Zn) with the

coefficient ¢/ ="~ - ¢ - (—1)"H+1,
So, the coefficient of X,.; j; is ¢/~ [(=1)"" + (=1)"""*1] = 0, and therefore

quﬂMl,i(ﬁzla N A RE- TS zj - My (Y; 2j415 - - - y2n) =
1—i 1—i
Z (=) Y0+ q Z (1) Zs0
0<r<i<i<n 1<r<i<i<n

For r < I, we have that Y, ;; =
(w<(z1,- -y 20) = ) < (We (Zrg1s - oy 2i)7wW<(Zig1s -5 21))) (Y < we (Zig1, -0, 20)) =
(<2155 2r) = ) (W (Zrg1s -y 2)*wW<(Zidds o os521) = (Y R we (2141, -+ -5 20)))-
If r < i, then
we (Zrg1s 05 2i) *w<(Zig1, .0, 21) =

W (Zr41y -y 2it1) < W<(Ziva, vy 21) W (Zra1y v vy 2i) < W<(Zig1s -5 21)
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which implies that:

l
Z(—l)iw;(zrﬂ, vy zi) xw<(Zipt, -, 2) =

i=r
()" (w<(zrs1y -y 21) — 2r41 < w<(2Zr42,...,21)) =0,
Therefore, we get that Zﬁzr(—l)”l_i il =0, for r <. So,

Y. )M=Y ()Y =

0<r<i<li<n 0<r<n

Z (=) w<(#15. - 20) = (2 Y) < we (Zrg1, .- 5 2n)-
0<r<n

Applying an analogous argument we get that
Z (—1)T+liin,i,l — Z (_1)TZT7T,7" =
1<r<i<i<n 1<r<n
(Cd<(21, SRR ZT) : ($ : y) = w;—(ZTJrla SRR Zn))

We can conclude that:

Z qj_iMl,i(CC; 21y ,Zi) A R Ml,nfj(gﬁ Zj+1, .. ,Zn) =
0<i<j<n
n
ZW<(217 coenyze)= (oY) <we (Zrgt, -, 2n)
r=0

Myn(x-y;21, -0y 20),
which ends the proof. O

Proposition 2.2 states that there exists a functor F from the category of
g-tridendriform algebras to the category of G'V; algebras. Conversely, for a
G Vg-algebra (B, My, ), let

Uyav(B) := TriDend(B)/Z

where 7 is the tridendriform ideal spanned by the elements:
Mun (2391, yn) = (=101, ¥) 52 < 0z (Yir1, - Yn),
i=0
for all z,y1,...,yn € B. A standard argument shows that Uygy is a left
adjoint of F.

The following result shows that the subspace of primitive elements of H
is a GV -algebra.

2.3. Lemma. Let (H,<, -,>,A) a g-tridendriform bialgebra. If the ele-
ments x,y,z1, - ,zn of H are primitive, then My, (x; 21, ,2,) and x -y
are primitive, too.
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Proof. If x and y are primitive, then
Alz-y) =2 y@1lg+ze(lk-y)+y@(z-1g) + lk@r -y = 2 y@ 1k + g @Y,

because 1x -y =x - 1g = 0.

To see that My, (x; 21, ,2,) is primitive, it suffices to note that the
brace operation My, on the g-tridendriform algebra (H, =<, -,>) coincides
with the brace defined on the dendriform algebra (H,<, > :=¢-+ >) in
[15]. Since (H,=<,>,A) is a dendriform bialgebra, it suffices to apply the
result of [15]. O

Let (H, <, -, >, A) be a g-tridendriform bialgebra, we say that H is conilpo-
tent if (H4+,A) is a conilpotent coalgebra. For n > 1, define linear maps
" H®" — H and A" : H — H®" as follows:

(1) - Id
(2> N >_n—l O(Id®n—2® >_)
(3) A = 1d
(4) A" = (Id®"2@A)o A",

Note that in this case H = H,.
Let er; : H — H be the linear map given by

e(z) =Y (=1)" =" 0A™ ().
n>1
For any element © € H, we have that ey;(z) = x — Zaz p €tm(l’(2))
for A(z) = T . The previous equality implies that:
(1) Ifx € Pmm( ), then ewi(r) = .
(2) Whenever z =y > z € F,,(H) for elements y, z € F,.(H) with r < n,
a recursive argument on n shows that eg.;(xz) = 0.

So, we may consider e,; as a projection from H to Prim(H). Moreover, the
Proposition below shows that any element x € H may be described in terms
of the operation > and primitive elements.

2.4. Proposition. Let (H,<,-, =, A) be a conilpotent q-tridendriform bial-
gebra. Any element x € F,,(H) satisfies that:

T = ey +Z etm ) = etm (2))+ : +Z Wi (etTi(x(l))7 < 7€tm'(x(n))) =

Z(Z W (etri(m(l))7 SRR et?"i(x(r))))7
r=1

where A" (z) = 2T “®@x(r) and
w>(€m( ) etm( ))) = (((etri(x(l)) - €m‘(37(2))) - €tm‘($(3)>) -
) > em( (r))
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Proof. Since H is conilpotent, an element x € F,,(H), for some n > 1. We
have also that x — ey (x) = > T(1y = ewri(T(2)). The result is clear for n = 1.

For n > 2, A(z) = > T(1) ® x(9), with (1) and z(9y in F,,_1(T). By a
recursive argument, we get that

n—1
zay = D we(emilzmm), - emilzym))-
1

r=

So,
n—1
T = eyi(T) + Z(Z(Z w>(€tri($(1)(1))a cee 7etr7j(x(1)(r))) > €trz‘(l’(2)))) =
r=1
YO we(ewilzay), - ewilz))),
r=1
which ends the proof. O

2.5. Remark. (see [15]) If the elements z1, ..., x, belong to Prim(H), then
Alws (T1,...,2y)) = Zw>(x1, ces @) @ W (Tig1y .o Tn),
=0

where wy (0) := 1k.

Note that Proposition 2.4 and Remark 2.5 imply that for any conilpotent
g-tridendriform bialgebra (H,<,-,>,A), the linear homomorphism from
(H4,A) to the cotensor coalgebra T(Prim(H)) which sends an element
x € Fo(H) to 320 (O ewi(za)a)) ® - - @ eri(T(1)(r))) is an isomorphism of
coalgebras.

We have proved that the subspace of primitive elements of a g-tridendriform
bialgebra has a natural structure of GV, algebra. In fact, there exists an
equivalence between the category of conilpotent g-tridendriform bialgebras
and the category of G'V, algebras. The last part of the section is devoted to
this result.

2.6. Proposition. Let V' be a K-vector space. The primitive part of the free
q-tridendriform algebra Tridendy(V') is the free GV algebra over V.

Proof. To prove the result we may assume that V is a finite dimensional
space over K, the general case follows by taking a direct limit.

Suppose that dimg (V) = m and that B is a basis of V. We know that
a basis for the space Tridend,(V'),, of homogeneous elements of degree n
of Tridend,(V'), is given by the set T}, x B" whose cardinal is C,,m", where
C,, = |T},| is the super-Catalan number. But the vector space Tridend, (V')
is isomorphic to the tensor space T'(Prim(Tridend,(V')), which implies that
the dimension of Prim(Tridendy(V'),) is Cp—1m™.

The paragraph above implies that there exists a bijection between the set
Ty—1 % B" of elements (¢;by,...,b,) € T,, x B" such that t = \/(|,t2,...,t")
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and a basis of the space of primitive elements of Tridend(V'). Let T, denote
the set of all trees in T}, of the form \/(¢!,... ") with |[t!| > 1. We have
that for any t = \/(|,t2,...,t"), ewi((t;b1,...,bp) = (t;b1,...,by) + 2z where
z belongs to the subspace spanned by T)7 x B™, which implies that the set of
elements e ((¢; b1, ..., by,), with ¢ € T, form a basis of Prim(Tridend,(V)).

On the other hand, the free GV, algebra GV, (V') spanned by V has a
basis GV,(B) whose elements of degree n may be described recursively as
follows:

(1) GVq(B)1 = B,
(2) GVy4(B)y, is the set of all elements of the form

Mlnl(bl;yiv‘ : "y’rlzl) e Mlnr(br;yI, s 7y’7r7,7~)7
where by,...,b. € B, y; € GVy(B)pn,;, with n;; < n, and 0 < n; for
1< <.

To end the proof it suffices to note that there exists a unique bijective map
@ from GVy(B) to T;; x B™ such that:

(1) gpl(b) = (Cl,b), for b € Ba

(2) em(Min(b;y1,---,yn) = (c1,b) < We (@my (Y1) - - - s Pm, (Yn)), where
we (X1, ..y xn) = (((x1 = 22) = 3)...) > Tn.

(3) emY1s--Yn) = @my (Y1) -+ - Ormn (Yn)-

Since Prim(Tridend,(V')) is a GV, algebra which contains V, it must be
isomorphic to GV, (V). O

Applying the previous results we may show that the category of conilpo-
tent g-tridendriform bialgebras is equivalent to the category of ¢-Gerstenhaber-
Voronov algebras.

2.7. Theorem. Let (H,<,-,>) be a g-tridendriform bialgebra.

(1) If H is conilpotent then H is isomorphic to the enveloping triden-
driform algebra Uygy (Prim(H)).

(2) Any GV algebra B is isomorphic to the primitive algebra Prim(Uqycv(B))
of its enveloping algebra.

Proof. We give the main line of the proof, for the details we refer to the
analogous result for conilpotent dendriform bialgebras proved in [15].

If H is a conilpotent g-tridendriform bialgebra, we know that H is iso-
morphic as a coalgebra to T°(Prim(H)). To prove the first statement, it
suffices to verify that the composition:

H — T°(Prim(H)) = Tridend,(Prim(H)) — Uqgv(Prim(H)),

is an isomorphism of g-tridendriform bialgebras, which is straightforward to
check.
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For the second point, it is clear that B C Prim(Uycv(B)). On the other
hand, we have that Prim(Tridend,(B)) = GV,(B). Since in enveloping alge-
bra Uygv(B) we identify the elements of Prim(Tridend,(B)) with elements
of B, we get the result. O

Proposition 2.6 gives an easy way to compute the free g-Gerstenhaber-
Voronov algebra spanned by a vector space V. Let X be a basis of V, we
know that Tridend,(V') is isomorphic, as a coalgebra, to T(GV,(V)). We
know that the underlying vector space of Tridend,(V') is the vector space
spanned by the set | J,,~; 75 x X™ of all pairs (t,z1 x - -+ X ), where ¢ is a
rooted planar tree and x1,...,z, are elements of X.

On the other hand, define the product / on the graded vector space
KT, x] = D,,>1 K[, x X"] by setting that (¢, z1 X - -Xxy,)/(w, y1 X - - XYm)
is the element (t/w,z1 X -+ X Ty X Y1 X -+ X Y), where ¢/w is the tree
obtained grafting the root of ¢ to the first leaf of w. For example,

N = X

The product / is graded and associative. Moreover, (K[Tw x],/) is the
free associative algebra spanned by the colored trees of the form (¢,x1 X
coo X @), with t = \/([,£2,...,¢"). Given a tree t = \/(],#?,...,t"), the tree
t' € T,,_1 is defined as follows:

. {\/(tz’ o th),  for > 2,

2, for r = 2.

The map t — ¢’ gives a bijection from T}, to T,,—1|JT,,—1, where ¢ maps
to ¢’ in the first copy of T,—1|JTn—1 for r > 2 and ¢ maps to ¢’ in the
second copy of Tj,—1 |JTn—1 for m = 2. So, the vector spaces K[T x| and
KX DD, ~o(K[Th,—1 x X" P K[T},—1 x X™]) are isomorphic. Proposition
2.6 states that the set T},_1 x X" U7Th—1 x X™ is a basis of the subspace of
homogeneous elements of degree n of GV, (V), for n > 2.

We identify the element (¢,x1 X --- X x,) in the first copy of T),—1 x X"
with the tree ¢, with its leaves colored by the elements x1,...,z, from left
to right and the root colored with -, while the element (t,x; X - -+ X x,) in the
second copy of T;,_1 x X" is identified with the same colored tree excepted
that the root is colored by the letter M. For instance

Tl T2 T3 T4 Tj
(v axla"'a$5)’_)

Let us denote by -(¢t,z1 X --+ X x,,) the tree ¢t with its leaves colored by
the elements z; and its root colored by -, and by M (t,x; X -+ X z,) the
same colored tree but with the rooted colored M instead of -. Given planar
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rooted trees (t',...,t"), let Comb(t!,...,¢") be the tree (t' VI3)Vv...) V¢ .
It is easy to see that for any planar rooted tree ¢ there exist unique integers
m,r and unique planar trees t!,...,t" such that t = Comb(c,,_1,t!,...,t"),
here ¢;,_1 is the tree with m leaves and a unique vertex.

We want to define a bijective map «,, from T, x X" JK[T,—1 x X"
to a basis of the subspace of homogeneous elements of degree n of GV, (V).
For n =1, the set By := X is a basis of GV,(V);. We identify each element
of x € X with the pair (cg,x), that is the tree with a unique leaf, colored
by z, and no vertex.

For n = 2, the set By == {x -y | z,y € X} U{Mu(z;y) | =,y €

X} is a basis of GVy(V)2. We define as(-( Y ,z xy)) :=z-y , and

QQ(M(( Y y s T X y)) = M11($7y)
For n > 2, the definition of G'V, algebra implies that the set
By :={z1 2 | zi € By,, an =n} U{er(x;zl,...,zr) |z € X, 2z € By, an =n—1},

is a basis of the vector space GV,y(V),. Define o, is defined recursively in
the following way:

an(-(txy, . xn) = o (M 2y, xpy) o, (M Ty g1, -+ o5 Z0),

for t =\/(t,...,t"),

an(M(t; 21, ..., 2p) := My, (21; ozm(-(tl,:vg, ey Ty 1))y ey O (7 Tyt 1, - -+, ),
for t = Comb(cg, t',...,t"),
an(M(t; T1y--- 7xn) = er(xl” o Tm—1; an1<'(t17$m7 cee axm+n1—1))a ) am«(’(tra Tn—np41y--- 7xn)))7

for t = Comb(cp, t!,...,t"), with m > 0,

where My, (21 @m—1; Cny (Y Ty oo Ty —1))s -+ oy Qo (T Ty 415 - -5 T)))
may be written as a sum of elements of B,,, applying the relationship between
the operations Mj,’s and -.
The construction above gives a simple description of free g-Gerstenhaber-
Voronov algebras. This description and Theorem 2.7 will permit us to show
that the tridendriform algebra of surjective maps and the tridendriform alge-
bra of parking functions, which we describe in the next section of this paper,
are free. These results are the object of a second paper, under redaction.

2.8. Example. For n > 1, consider the subset Irr, of irreducible elements
of ST,, defined as Irr, := ST, \ U?:_ll ST; x ST,,_;. The product x defines
on the space ST := ,,~; K[ST,] a structure of free associative algebra
spanned by the set | J,+, Irry, which implies that the dimension of the sub-
space of homogeneous elements of degree n of Prim ST(q) coincides with
| Irry, |

There exists a natural way to describe a basis of Prim ST(q), it suffices
to observe that for all f € ST,,, the primitive element e;;(f) = f + >, fis
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with f; € U?;ll ST; x ST,,_; for all <. So applying the idempotent e ; to
the irreducible elements of @, -, ST,, we get a basis of Prim ST(q).
However, there exist another way to describe a basis of Prim ST(q), which
generalizes the construction of a basis of the subspace of primitive elements
of the Malvenuto-Reutenauer Hopf algebra given in [2]. Consider on the set
ST, the partial order spanned by the relation f < f-s;, if f(i) < f(i +1),
where s; is the permutation of S,, which exchanges ¢ and ¢ 4+ 1. For example

(2,1,2,3,4) < (2,2,1,3,4) < (2,2,1,4,3) < (2,2,4,1,3) < (2,2,4,3,1) <
(2,4,2,3,1) < (4,2,2,3,1) < (4,2,3,2,1) < (4,3,2,2,1).

Clearly, the Hasse diagram of the partially ordered set (ST,, <) is not
connected, two elements f and g are in the same component if, and only if,
[fH @) = 1971 ()] for all 1 < j < n.

For any f € STy, define the element My = >° _, u(g; f)g € K[ST,],
where p is the Moebius function of the poset ST,. Applying the same
arguments given in [2], we get that A(My) = 3 .,y My ® My, so the
collection {M;y} selrr, 18 @ basis of the subspace of homogeneous elements
of degree n of Prim ST(q).

For instance, consider f = (3,2,1) € Irrs, the primitive elements associ-
ated to f are given by:

eri(3,2,1) = (3,2,1) — (1,3,2) — (2,3,1) + (1,2,3) +¢((1,1,2) — (1,2,1)) =
M(3,2,1)Q((17 1, 2) - (17 27 1))

3. TRIDENDRIFORM STRUCTURE ON THE SPACES OF PARKING FUNCTIONS
AND OF MULTIPERMUTATIONS

3.1. Parking functions. In [11], J.-C. Novelli and J.-Y. Thibon defined a
1-tridendriform structure on the space PQSym™ spanned by parking func-
tions. We show that their result extends naturally to any ¢, in such a way
that the coalgebra structure on the parking functions gives a g-tridendriform
bialgebra on PQSym*. Our main result is that the ¢-tridendriform bial-
gebra ST(q) is a sub-tridendriform bialgebra of PQSym*(g). We begin by
recalling some basic definitions about parking functions, for a more complete
description we refer to [11].

3.2. Definition. A map f : [n] — [n] is called a n-non-decreasing parking
function if f(i) < i for 1 < i < n. The set of n-non-decreasing parking
functions is denoted by NDPF,,.

The composition f := f! o o of a non-decreasing parking function
f1 € NDPF, and a permutation o € S, is called a n-parking function. The
set of n-parking functions is denoted by PF,.

Note that given a parking function f = f! oo, the non-decreasing parking
function f! is uniquely determined but ¢ is not unique. However, if r; =
|f~1(3)], for 1 <14 < n, then there exists a unique (r1,...,7,)-shuffle oy such
that f = flooy?
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3.3. Example. In low dimensions, the sets NDPF,, and PF,, are described
as follows:

e NDPF, = {(1)}, NDPF, = {(1,2), (1,1)},

e NDPF; ={(1,2,3),(1,1,2),(1,1,3),(1,2,2),(1,1,1)},

[ ] PF1 = {( )}, PF2 — {(17 )7 (171)a( 71)}7

o PFy = S3|J(1,2,2)05h(1,2) " J(1,1,2)08h(2,1) " (1,1, 3)0Sh(2,1) " U{(1,1,1)}.

(2n)!

Recall that the cardinal of NDPF,, is the Catalan number ¢, = (EESymE

while the number of elements of PF,, is (n + 1)"" 1.
The map Park : U]:” — U PF,, (see [12]) is defined as follows. Let

n>1 n>1
f1:[n] — [r] be a non-decreasing function, the element Park(f") is given
by:

1, for j =1,

ark(f!
Park(£7)(7) = {Mm{Park(fT)(] — 1))+ f1G) - f1G—1), 4}, forj>1,

Suppose now that f = f! o o, where f! is a non-decreasing function and
o is a permutation. Define

Park(f) :== Park(f") oo

3.3.1. Remark. Let f € PF, be a parking function. It is easy to check
that:

(1) f(i) = f(j) if, and only if Park(f)(i) = Park(f)(j),
(2) f(i) < f(j) if, and only if Park(f)(i) < Park(f)(j),

for 1 <i,j <n.
There exists a natural embedding xp : PF, x PF,, — PF,_,, given by:
fxpg = (F(1),..., f(n),g(1)+n, ..., g(m)+n), for f € PF, and g € PF,,

Note that it is not the same that the one considered on ST, which is denoted
X.

Let PQSym™ denote the vector space spanned by the set |J,,~,; PFy of
parking functions. For any ¢ € K, we endow PQSym* with a structure of
g-tridendriform bialgebra, which extends the J.-C. Novelli and J.-Y. Thibon
construction of 1-tridendriform bialgebra on this space.
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The binary operations <, - and = on PQSym* are defined in a similar
way that in the case of ST:

f=g= > "k,
maz(h)>maz (k)
f Lgi= Z qm(h’k)_lhk,
maz(h)=maz(k)
fg:= > "k,
mazx(h)<maz (k)

where the sums are taken over all pairs of maps (h, k) verifying that hk is
parking, Park(h) = f and Park(k) = g, for f,g € U, PFn.
For example, if f = (1,3,1) € PF3 and g = (1,1) € PFy, then

f<g = (2,4,2,1,1)+(2,5,2,1,1) +(3,5,3,1,1) + q((1,3,1,1,1) + (1,4,1,1,1) +
(1,5,1,1,1)) + (1,3,1,2,2) + (1,4,1,2,2) + (1,4,1,3,3) + (1,5,1,2,2) +
(1,5,1,3,3) 4 (1,5,2,4,4),

f=g = (1,3,1,4,4),

f-9g = (1,3,1,3,3),

Applying the same arguments that in [11] it is easily seen that (PQSym*, <
, - >) is a g-tridendriform algebra. We denote by PQSym*(g) the space
PQSym* endowed with the structure of g-tridendriform algebra.

Define a coproduct A on PQSym* by setting for f € PF,, :

A =D 1) © foy:
J

where the sum is taken over all 0 < 5 < n such that there exist f(jl) € PF},
f{Q) € PF,_j and 6; € Sh(j,n — j)~' with f = (f(jl) xp f(g)) o d;. Note that
for any 0 < j < n, if the decomposition f = (f(jl) Xp f(j2)) o 0; exists, then
the elements f(Jl), f(JQ) and ¢; are unique.

For example,

A((17575>3> 6’273)) = (17575)3’67273) ® 1k + (1a37273) ® (17 172)+
(1,2)®(3,3,1,4,1) + (1) ® (4,4,2,5,1,2) + 1g ® (1,5,5,3,6,2,3).

3.4. Proposition. The g-tridendriform algebra PQSym®*(q), equipped with
A is a q-tridendriform bialgebra.

Proof. Let us see that

Alf=g9) = (fa)*90) ® (f) = 92);

for f € PF, and g € PF,,. The other relations may be verified in a similar
way.
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Let h € F, and k € F,, be such that hk € PF,.,,, Park(h) = f,
Park(k) = g and maz(h) < max(k). Suppose that for 0 < j < n + m,
the function hk may be written as:

Bk = (Wl xp (hkYy) 06,

with (hk)],) € PFj, (hk)]y) € PFoym-; and §; € Sh(j,n+m -
Then there exists a unique integer 0 < r < j such that (hk)gl) = h(l)kgl_)r,

(hk)y) = hiy)kly)s and &; = (6] x 63) -, with 6] € Sh(r,n —7)7", &7 €
Sh(j —r,m+r—7)"! and v € Sh(n,m)~!. In this case we have that f =

(Park(hiy)) xp Park (hf,))) o 8} and g = (Park(k(;)") xp Park (kl3")) 0 62.

Finally, it is easy to see that ma:z(h&)) < max(k:(;)r). So, to any term in
A(f > g) corresponds a term in (xx =)o (A X A)(f ® g).

Conversely, suppose that f = (f(’"l) ><7>f(2))057« and g = (gél) ><7>g€2))o'yl, for
parking functions f(T1)7 f&), 9%1)7 9%2) and permutations 6, € Sh(r,n — )~}
and y; € Sh(l,m —1)~1. Let hy € Fy, ho € Frr, k1 € Fy and kg € Fyp,_; be
such that:

(1) hiki € PF,. 4 and hoks € PF i m—r—1,

(2) Park(h;) = iy and Park(k;) = géi), fori=1,2,

(3) max(h(y)) < max(k)).
The elements h = (hy Xp ha) 09, € F, and k = (k1 xXp ka) oy € Fy, verify
that hk € PF, 1, Park(h) = f, Park(k) = g and max(h) < maz(k). O

Note that any surjective map from {1,...,n} to {1,...,7} is a parking
function. There exist a natural map from PF,, to ST,, given by f > std(f)
which is surjective but not injective, and coincides with the identity map on
ST,,. The linear map a, : K[ST,,] — K[PF,] given by

Oén(f) = Z h7
he PF,|std(h)=f

is a monomorphism, for n > 1.

3.5. Theorem. The bialgebra ST(q) is a sub-q-tridendriform bialgebra of
PQSym™(q).

Proof. Let f € ST, and g € ST,,. Given u € PF,,, there exist unique
functions u; € F,, and us € F,;, such that © = ujue, and unique functions
h € F, and k € F,, such that std(u) = hk. Moreover, we have that
std(uy) = std(h) and std(ug) = std(k).

Note that
nym(f = g) = Z g "k,
UePFn+m

where the sum is extended over all the functions u such that std(u) = hk,
with std(h) = f, std(k) = g and maz(h) < maz(k).
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On the other hand,

an(f) =q am(g) = Z gy,
uGPFner
where the sum is extended over all the functions ©w = wujus such that
std(Park (u1)) = f, std(Park (uz)) = g and maz(ui) < maz(usg).
It is immediate to check that:
(1) std(Park (u;)) = std(u;), for i = 1,2,
(2) if u = ujug and std(u) = hk, then N(h, k) = N(u1, uz),
(3) if std(u1) = f and std(uz) = g, then std(ujuz) = hk with std(h) = f
and std(k) = g,
(4) if std(uiug) = hk, then maz(h) < maz(k) if, and only if, maz(u;) <
maz(uz).
We may conclude that apm(f > g) = an(f) = am(g).
Similar arguments show that ay,+m (f - 9) = an(f) - am(g) and appm(f <
g9) = an(f) < am(g)-
So, ST(q) is a g-tridendriform subalgebra of PQSym™(q).

To prove that « is a coalgebra homomorphism, suppose that h € PF,
and 0 <7 < n are such that std(h) = f and

h = (h{yy Xp hiy) 0by, for hi}) € PF;, hiy € PF,_, and 6, € Sh(r,n — r)~L.
Let f}) == std(hzl)) and [y = std(h&)), we get that f = (f(rl) X f(”z)) 0 0y

Conversely, suppose that f = (f(rl) X f&)) o d,, for some f(rl) e ST,,
f&) € ST, and 6, € Sh(r,n — )L
Given elements hfl) € PF, and h7("2) € PF,_,, the element h := (h’(”l) Xp
hi,) o &, € PF, verifies that std(h) = f.

(2)
The arguments above imply that:

Z A(h () iy @ hiy)

std(h std(h) T

Z( Y. hiy®hly) = Zar ) @ an—r(f(g));

"ostdihg)=17,

which proves that a is a coalgebra homomorphism. O

Clearly, since any surjective map is a parking function, there exists the
natural inclusion homomorphism ¢ : ST — PQSym™, but ¢ is not a coal-
gebra homomorphism. For instance, the element (1,1,2) is primitive in
PQSym®. An element x € ST,, is such that ¢,(z) = a,(x) if, and only if,
x is a permutation.

Note that (PQSym*, xp) is an associative algebra, too. If we denote by
PlIrr, the subset of J,,~,; PF, of all parking functions f such that there do
not exist fi € PF; and fo € PF,_; with f = fi xp foand 1 <i <n — 1.
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So, as a vector space PQSym” is isomorphic to T(K[U, >, PIrry]), which
implies that the space of primitive elements of PQSym®* of degree n has
dimension Plrr,, for n > 1.

3.6. Multipermutations. In [6], T. Lam and P. Pylyavskyy define a big
multi-permutation or M-permutation of n as an ordered partition (B, ..., By)
of n such that if an element 4, 1 < i < n — 1, belongs to the block B;, then
i+1¢ Bj. The set of M-permutations of n is denoted Sy1.

The element B = [(1,4,6),(2,7),(3,5)] is a M-permutation of 7, while
D =1(1,6,7),(2,3),5,4] is not.
Let W = (W1y,...,W,) be an ordered partition of n, the M-standardization
of W is the big multi-permutation stdy((W') obtained by:
(1) delete 7 + 1 if both 4 and i + 1 belong to the same block W;,
(2) if i does not appear in any block obtained applying the rule above,
then reduce all numbers larger than ¢ in (1).

For example stdap[(1,6,7),(2,3),5,4] =[(1,5),2,4, 3].

Let J be a subset of [n] and let B € S, the restriction B|; of B to J is
the intersection B with J. If B =[(1,4,6),(2,7),(3,5)] and J ={1,2,4,6},
then B|; = [(1,4,6),2]. Let B = [(i 1,...,¢;l),...,(il1,..., il,)] be a big
multi-permutation, for any integer k we denote by B+k the ordered partition

(i1 + kit + k), (B + Ky il + R
In [6], the authors define an algebra structure on the vector space M MR
spanned by the set of all M-permutations, as follows:

BoD:ZW for B e SM and D € SM,

where the sum is taken over :
(1) all W € S{Z\im such that W{y,) = B and stdp(W[j)4n) = D,

(2) all W € S, such that Wi, = B and sth(W\ J+n—1) = D.
For example,
[(13), 2]e[2,1] = [(1,3),2,5,4]+[(1,3), (2,5),4]+[(1,3),5,2,4]+[(1,3,5),2,4]+
[5,(1,3),2,4]+[(1,3,5),(2,4)]+ 5,4, (1,3),2] +[4,(1,3),2] +[(1,3), 5,4, 2]+
[(1,3,5),4,2] +[5,(1,3),4,2].
For any ordered partition W = (W1,...,W)) € S’,/l\jr‘m such that W/, = B
and stdp(Wlin1,....nemy) = D, define the integer NY ,, as the number of

blocks W; such that W; N [n] # 0 and W; N [m] +n # 0. Tt is immediate to
check that, if B = (Bi,...,B;) and D = (D, ..., D), then N}y ), = r+s—1.

Let B = (Bi,...,By)and D = (D, ..., D). We define binary operations
>, - and < on the space M MR as follows:

(1) B=D:=5) qmvB‘{D W, where the sum is taken over:
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o alW = (Wi,...,W)) € Sp1,, with W, = B and stdag(W | 1n) =
D,
. all W e SM,. _, with Wl = B and stdpm(Wlpn)4n-1) = D,
such that W; N [n] = 0.
(2) B-D:=5)" qm%V»D_lW, where the sum is taken over:
o alW = (Wy,...,W)) € Sit,, with W/|,,) = B and stdyg(W|pnj4n) =

D, suchthathﬂH#@andI/Vlﬂ[ | +n#0,
e all W e SM, _, with Wl = B and stdp(Wlpm)4n-1) = D,
suchthatVVlﬂ[]#@andVVlﬂ[ ]+n—17é(1)

(3) B<D: =) qmg/»D W, where the sum is taken over:

o allW = (Wy,..., W) € Sit,, with W]y, = B and stdp (W |}
D, suchthatVVlﬂ[ |+n=0,
e all We S, | with W, = B and stdayg(W|pnjpn_1) = D,

such that W; N [m ]—i—n—l—@

Let us denote by M MR(q) the space M MR equipped with the products >,
-and <.

3.7. Proposition. The data (MMR(q), >, -, <) is a qg-tridendriform algebra.

Proof. Let B = (B1,...,B,) € SM, D= (Dy,...,D,) € SM and
E=(Fy,....,E) € S]/)\/l. We prove that B = (D = E) = (B D) > E, and
that B- (D = E) = (B < D) - E. The other relationships can be verified in
a similar way.

We have that B >~ (D > E) = > 6(W)W, while (B *x D) = E =
> ow (W)W, where the both sums are taken over all the M-permutations
W = (Wh,..., W) satisfying that:

o W € SﬁmJﬂ, wl .= W‘[n] = B, w? .= W‘{n+1,...,n+m} =D,
W3 = W|{n+m+1,...,n+m+r} =FEand W, = E; +n+m,

o W € S ntmr—1s wl .= W|[n} = B, w2 .= W|{n+1,_._7n+m} =D,
w3 W|{n+m,...,n+m+r71} =FEand Wy =FE;+n+m—1,

oW e Sn+m+r 1 Wt = W|[n} = B, w? = W‘{n,...,n#»mfl} =D,
w3 W|{n+m...n+m+r—1} =Fand Wi =FE;+n+m—1,

o W e Sn+m+r 25 Wt = W|[n} = B, W2 = W|{n,...,n+m—1} = D,
W3 .= Wlintm—1,...ntmir—2y = E and W) = Ey + n +m — 2.

We need to prove that a(W) = 6(W). We give a detailed proof of it for
the case W € Sﬂm 1, the other cases are analogous.
Let V € Si,. be such that Wlingm) =V and let R € Sf,ﬁ_T be such that
Wlimsr4+n = R+ n. We have that a(W) = QE,D + QVE, where ﬂByD is
the number of blocks of V' which have both elements in [n] and elements in
[m] + n, while ﬂ‘(}fE is the number of blocks of W which have both elements

in [n 4+ m] and elements in [r] +n 4+ m. So, a(W) = 22:1 a(W;), where

+n) =
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0, if W; C[n]or W; C[m]+mnorW;Clrl+n+m,
1, if W; contains integers in exactly two sets of [n], [m] 4+ n and [r] +n +m,
2, if W; contains integers in all the sets [n], [m] +n and [r] + n + m.

On the other hand, §(W) = N Bt al'4 _R» Where nE g 1s the number of
blocks of R which have both elements in [m] and elements in [r] + m, while
ﬂgR is the number of blocks of W which have both elements in [n] and

elements in [m + r] + n, which implies that (W) = Zizl a(W;) = a(W).

For the second equality, we have that B-(D = E) = 3. ¢°")W and (B <
D)-E =% ¢WW, where both sums are taken over all M-permutations
W = (Wh,...,W;) such that:

o W e Sty W= Wiy = B, W2 = Wl = D, W3 =
W][TJrner =F,and W, =B, UE; +n+m,
o We S 1, W= Wy = B, W? :i= Wpun = D, WP =
Wli4nem—1 = E, and W, :BTUEt—i—n—i—m—l
o We S 1, W Wl = B, W2 := W|psn = D, W3 :=
Wli4n+m—1 = E,and Wy = B, UE; +n + m—1,
o We S g Whi=W|p =B, W2i=Wpyn =D, W3 =
W’[T}Jrner,Q:E, andI/Vl:BTUEt—i-n—Fm 2.
To check that (W) = (W), for all W, is suffices to do a similar computa-
tion that the one in the previous case. O

The coproduct on the space MMR is defined by T. Lam and P. Py-
lyyavsky (see [6]) as follows:

AB)= > stdpy(W)® stdu(R),
[W,R]=B

where [W, R] is the union of two ordered partitions W and R, such that W is
a partition of J and R is a partition of K with [n] = JUK and JNK = (. In
other words, for B = (B4, ..., B;) and 0 < j < r define B<; := (B, ..., B))
and Bsj := (Bj41,...,By). The coproduct A on B is given by:
l
A(B) =) stdpB<; @ stdpBsi.
=0

We have, for example, that:

A1) =[1] @ 1g + 1x ® [1],
A([2)D)) =12)(D)] ® 1k + [1] ® [1] + 1k ® [(2)(1)],
A([(13)(2)]) = [(13)(2)] ® 1k + [1] ® [1] + 1k @ [(13)(2)],
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in the last example, note that [(13)(2)] = [[(13)], [2]] and stda[(13)] = [1] =

Sth[ ].
n [6] the authors prove that (MMR(1),*,A) is a bialgebra. We want

to show that M MR(q) equipped with the coproduct A is a quotient of the
g-tridendriform bialgebra ST(q).

let ¢ be the map from the set (J,,~; ST, of all surjections to the set
U, St of M-permutations, which sends f € ST, to the element
stdp[(f71(1)), ..., (f71(n))]. For example, if f = (2,3,3,6,1,5,1,2,4) then

(,O(f) = Sth[(E)v 7)7 (1’ 8)7 (2’ 3)7 9,6, 4] = [(4’ 6)7 (17 7)v 2,8,5, 3]
Note that ¢ is surjective and does not respect the graduation.

3.8. Remark. Let f € ST, be a surjection, and let 1 < I < n be such
that stdp[(f72(1)),...,(F7*(n))] € SM, then there exists a unlque fe

~1
ST, such that stdy([(f~1 (1)), (f 7 (n))] = stdpd(F (1), (F ()]
Moreover, for any map h : {1,...,l} — {1,...,r} such that std( ) = f,
there exist a unique h € F,, such that:
(1) (h(1),...,h(l)) is obtained from (h(1),...,k(n)) by eliminating all
integers h(i) which are equal to h(i — 1), for 1 < i < n,
(2) std(h) = f.
For example, if f = (1,2,2,3,1,4), then f = (1,2,3,1,4). Take h =
(4,6,7,4,9), we get that h = (4,6,6,7,4,9).
Applying Remark 3.8 we are able to prove the following result.

3.9. Theorem. For any pair of elements f € ST,, and g € ST,, we have
that:

(1) o(f < g)=p(f) < el9),
(2) o(f-9)=¢(f)-¢(9),

(8) o(f = g) =o(f) = ©(9),
(4) Alp(f)) = (g @ p)(A(f))-

Proof. If h and k are two maps such that hk € ST, 4, std(h) = f and
std(k) = g, then
stap[(AH(1)), -, (W1 ()] = stdp[(f7H(1)), -,
stdv[(k7H (1)), ., (k1)) = stdul(g (1)), -+, (g7 (m)],
where maz(hk) =r < n -+ m.
Suppose that maz(h) > maz(k), we have that:
[((h&) D)), -, ((RE)TH(r))] = (MU (1) +n)), -, (R (r=1)U(k™ 1(7“—1)+n))7(h_1(7“))],
where (h~1(i)U(k~1(i)+n)) denotes the disjoint union of the sets h™~ (z) an
k=1(i)+n, for 1 <i < r—1. The standardization stdp[((hk)~1(1)), ..., ((hk ) L))
is a M-permutation W = (W, ..., W,) satisfying that:
(1) if h(n) # k(1), then W|p) = stdp[(f71 (1)), ..., (f 7 ()], Wlimj4n =
stdv[(g7H (1) +n), ..., (g7 (m) +n)] and W, N ([m] +n) = 0,



26 E. BURGUNDER, M. RONCO

(2) it h(n) = k(1), then Wi = stdad[(F (1)), ., (F7(0)], Wlipns =
stdm[(g7 (1) +n—1),..., (g7 (m)+n—1)] and W,.N([m]+n—1) = (.
Conversely, let W = (W71,..., W;) be a M-permutation such that W, =
o(f) = stdm[(f7H(1)), ..., (f~1(n))] and W, C [n], we have that

(1) if Wlpnjan = stdp[(g7 (1) +n),..., (g7 (m) 4+ n)], then there exist

maps h and k defined as follows:

(a) h(i) is the unique integer such that i € Wiy
(b) k(j) is the unique integer such that j +n € Wiy
By Remark 3.8, there exist unique elements h € F,, and k € F,, such
that std(h) = f, std(k) = g and stdp[((Rk)~(1)),. .., ((Rk)~1(r))] =
w.
(2) 3 Wlnpns = stdul(g~' (1) + 7= 1),..., (g (m) +n — 1)), then
the maps h and k are defined as follows:
(a) h(i) is the unique integer such that ¢ € Wi
(b) k(4) is the unique integer such that j +n —1¢€ Wi
Again, there exist unique elements h € F,, and k € F,, such that
std(h) = f, std(k) = g and stdp[((Rk)~1(1)),..., ((Rk)"L(r))] = W.
Moreover, since W, N ([m] + n) = 0, we get that maz(k) < maz(h) = r in
both cases.
We get then that o(f < g) = ¢(f) < ¢(g), the proofs of the second and
third statements follow from similar arguments.

To end the proof of the theorem we need to show that ¢ is a coalgebra
homomorphism. For f € ST, let f € ST; be the unique surjection such

that stdu[(f~1(1),....(F~1r)] = [(F'Q),....(F ' (1))]. It is easy to

see that there exists a bijection between the set of elements (r, f(kl),f(k?)),
with 0 < k <n, f(kl) € ST} and f(kQ) € ST,,_i, such that

f= (f(kl) X f(kg)) o 0, for some 6, € Sh(k,n — k),

and the set of elements (j,f{l),ﬂé)), with 0 < j < [, f{l) € ST; and
?%2) € ST,_;, such that

= (ﬁl) X 7{2)) oTj, for some 7; € Sh(j,1 — j).

So, it suffices to verify that A(p(f)) = (¢ ® ¢)(A(f)) for f satisfying

that stda(f~1(1)),..., (f71(n)] = [(f71(1)),...,(f~1(r))], that is when
f@) # fi+1) for 1 < i < n—1. If for some 0 < k < n there exist

&y € STk, [y € STy—y and & € Sh(k,n — k) such that f = ( f(kl) X f)) 00k
and W o= [((f5) (1) + )., ()"0 — ) + )]

Conversely, let [(f~1(1)),...,(f~1(r))] = [R,W], with R = [R1, ..., Ry]
and W = [Wq,...,W,_,], and suppose that R is a partition of {i; < --- <
ir} and W is a partition of {j; < -+ < jp—g}. Define f(kl) and f(k2) as follows:
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(1) f(kl)(l) is the unique integer 1 < f(kl)(l) < s such that i; € Rf(kl)(l), for
1 <1<k,

(2) f(kz) (1) is the unique integer 1 < f(kQ)(l) < r—ssuch that j; € Rf(’;)(l)v
for1<i<n-—k.

It is clear that there exists a shuffle d; € Sh(k,n — k) such that f = (f(kl) X
f(’“?)) 0 d,. We get then that

(e @) A = S o(fh) ® ol fhy) =
k

>

std[((fy) D))o ((FG) T HEDI@stdu[((f) T (1) (Fz) ™ H (k)]

Z stdpm(R) @ stdp (W) = A(e(f)).
e(f)=[R,W]
O

As a consequence of Theorem 3.9, we can assert that MMR(q) is a ¢-
tridendriform bialgebra.

3.10. Corollary. The q tridendriform algebra MMR(q) equipped with the
coproduct A is a q-tridendriform bialgebra which is a quotient of ST(q).
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