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Abstract. In this article, we first recall the definition of a family of root-
finding algorithms known as König’s algorithms. We establish some local and
some global properties of those algorithms. We give a characterization of ra-
tional maps which arise as König’s methods of polynomials with simple roots.
We then estimate the number of non-repelling cycles König’s methods of poly-
nomials may have. We finally study the geometry of the Julia sets of König’s
methods of polynomials and produce pictures of parameter spaces for König’s
methods of cubic polynomials.

Introduction.

In this article, we study a family of root-finding algorithms known as König’s
algorithms. To our understanding, those algorithms are actually due to Schröder
[Sch].
Definition 1. Assume f : U ⊂ C → P1 is a meromorphic map and σ ≥ 2 is an
integer. The König’s method of f of order σ is the meromorphic map Kf,σ : U → P1

defined by the formula:

Kf,σ = Id + (σ − 1)
(1/f)[σ−2]

(1/f)[σ−1]
,

where (1/f)[k] is the k-th derivative of 1/f .
For σ = 2, the map Kf,σ is the Newton’s method of f and for σ = 3, the map

Kf,σ is the Halley’s method of f – this is a projectively natural Newton’s method
(see [Sa], [ST] or [YB] for example). We will see that for each integer σ ≥ 2, each
root of f is a (super)attracting fixed point of Kf,σ and that generically, the local
degree of Kf,σ at such a fixed point α is σ. One says that Kf,σ is a root-finding
algorithm of order σ.

In Sect. 1, we collect some preliminary results. Some are known, some are new
(compare with [ABD], [Dr], [Kn], [Ho1] Sect. 4.4, [Sch], [Ste] or [VG]). We first
study the nature of the fixed points of König’s methods.
Proposition 1. Assume f : U ⊂ C→ P1 is a meromorphic map. Denote by αi its
zeros and by ni their multiplicities. Then, for any integer σ ≥ 2, the fixed points of
the König’s method Kf,σ : U → P1 are either (super)attracting or repelling.

The (super)attracting fixed points are exactly the zeros αi and their multipliers
are 1− (σ− 1)/(ni + σ− 2). When ni = 1, the local degree of Kf,σ at αi is at least
equal to σ.

The extraneous fixed points of Kf,σ are exactly the zeros of (1/f)[σ−2]. If βj is
a zero of (1/f)[σ−2] with multiplicity mj, then it is a repelling fixed point of Kf,σ

with multiplier 1 + (σ − 1)/mj.
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We then prove a semi-global result essentially due to Schröder.

Proposition 2. Assume f is meromorphic in a Euclidean disk D centered at z0

and has a unique zero (possibly multiple) α ∈ D. Then, there exists a neighborhood
of z0 on which the sequence Kf,σ converges uniformly to the constant function α,
as σ tends to +∞.

Remark. In this proposition, there is no iteration involved.

In Sect. 2, we restrict our study to the case where f : C→ C is a polynomial.

Proposition 3. Let f : C→ C be a polynomial of degree d. Then, for any σ ≥ 2,

(a) the König’s method Kf,σ is a rational map, it has a repelling fixed point at
∞ with multiplier is 1 + (σ − 1)/(d− 1);

(b) if f has N distinct roots, then Kf,σ has at most (σ − 2)(N − 1) repelling
fixed points in C and its degree is at most (σ − 1)(N − 1) + 1.

For a generic polynomial of degree d,

(c) the local degree of Kf,σ at the roots of f is exactly σ;
(d) the rational map Kf,σ has (σ − 2)(d − 1) repelling fixed points in C and

their multipliers are all equal to σ;
(e) the rational map Kf,σ has degree (σ − 1)(d− 1) + 1.

We also show that rational maps which arise as König’s methods of polynomials
with simple roots are completely characterized by the nature of their fixed points.
The problem was brought to our attention by Dierk Schleicher. The characteriza-
tion was known for Newton’s method, i.e., for σ = 2 (see [He], Prop. 2.1.2). For
applications in the setting of Newton’s methods, see for example [He], [R] or [Ta].
We do not know how to characterize rational maps which arise as König’s methods
of polynomials with multiple roots.

Proposition 4. Let h : P1 → P1 be a rational map, whose fixed points are either
superattracting or repelling. Assume the local degree of h at every superattracting
fixed point αi is at least σ and the multiplier at every repelling fixed point βj is
of the form 1 + (σ − 1)/mj, where mj ≥ 1 is an integer. Finally, assume ∞ is a
repelling fixed point of h with multiplier 1 + (σ− 1)/(d− 1), where d is the number
of superattracting fixed points of h. Then, h = Kf,σ, where f(z) =

∏
i(z − αi).

In Sect. 3, we try to determine how many extraneous non-repelling cycles König’s
methods of polynomials may have. Those extraneous cycles are interesting since
they may give rise to open sets of points whose orbits under iteration of Kf,σ do
not converge to a root of f .

Definition 2. A periodic cycle of Kf,σ is called an extraneous cycle if it does not
coincide with a root of f . For any integers d ≥ 2 and σ ≥ 2, we define the integer
N(d, σ) as the maximum number of non-repelling cycles of Kf,σ for polynomials f
of degree d, i.e.,

N(d, σ) = max
f∈Polyd

#{extraneous non− repelling cycles of Kf,σ}.

Remark. Prop.s 1 and 3 show that when f is a polynomial, the extraneous fixed
points of Kf,σ are always repelling.

Proposition 5. For any integers d ≥ 2 and σ ≥ 2, we have

(d− 2) ≤ N(d, σ) ≤ (σ − 1)(d− 2).
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Moreover, if σ ≥ d > 2,

N(d, σ) ≤ (σ − 1)(d− 2)− 1.

This proposition shows that in the case of quadratic polynomials (d = 2),
N(2, σ) = 0, in the case of Newton’s methods (σ = 2), N(d, 2) = d − 2 and in
the case of Halley’s methods of cubic polynomials (d = σ = 3), N(3, 3) = 1. In
fact, the result N(d, 2) = d − 2 has already been proved by Hurley [Hur]. His
arguments are different from ours.

The lower bound N(d, σ) ≥ (d− 2) follows from McMullen’s results on algebraic
families of rational maps (see [McM1] Thm. 2.2). For the upper bound, we will see
that there are (σ − 1)(d − 2) free critical points. It follows from results by Fatou
and improvements by Douady-Hubbard [DH] and Shishikura [Shi] that N(d, σ) ≤
(σ − 1)(d − 2). To improve this inequality in the case σ ≥ d > 2, we will use
extremal-length arguments.

In Sect. 4, we study Julia sets of König’s methods and bifurcation loci.
Definition 3. The Julia set J (Kf,σ) can be defined as the closure of the set of
repelling cycles of Kf,σ or as the boundary of any basin of attraction of Kf,σ.
Remark. The Julia set is relevant when the degree of Kf,σ is greater than 1, i.e.,
when f has at least two distinct roots.
Definition 4. Let (fλ)λ∈Λ be a family of rational maps analytically parametrized
by Λ. The bifurcation locus is the set of parameters that admit no neighborhood on
which the period of superattracting cycles is bounded.
Remark. In this definition, it is more customary to replace superattracting by
attracting but the definitions are equivalent.

As an application of Prop. 2, we prove that the Julia sets J (Kf,σ) have remark-
able limits as σ tends to +∞.
Definition 5. Let us define the bisecting locus of a set S ⊂ C as the set of points
z ∈ C where the distance function z 7→ d(z,S) is not differentiable.
Proposition 6. As σ tends to ∞, the sequence of Julia sets J (Kf,σ) converges,
in the Hausdorff topology on compact subsets of P1, to the union of {∞} and the
bisecting locus of the set of roots of f .

We finally produce pictures of bifurcation loci for König’s methods of cubic
polynomials. The reason why we restrict our study to cubic polynomials is that
for higher degree polynomials, the dimension of the parameter spaces are greater
than 1, and thus, we could only draw slices. We do not know which slices would be
relevant.

1. Preliminary results.

1.1. The nature of fixed points. Let us prove Prop. 1 step by step.
Lemma 1. If a germ f : (C, α) → (C, 0) has a zero α of multiplicity n, then
Kf,σ : (C, α) → (C, α) has a (super)attracting fixed point at α and its multiplier is
1− (σ − 1)/(n + σ − 2).
Proof. The map 1/f has a pole of order n at α. Therefore, for any j ≥ 0, the j-th
derivative of 1/f has a pole of order n + j at α. Thus, there exists λ ∈ C∗ such
that (

1
f

)[σ−2]

(z) =
λ

(z − α)n+σ−2

[
1 +O(|z − α|)

]
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and (
1
f

)[σ−1]

(z) = − (n + σ − 2)λ
(z − α)n+σ−1

[
1 +O(|z − α|)

]
.

As a consequence,

Kf,σ(z) = α + (z − α)
(

1− σ − 1
n + σ − 2

)
+O(|z − α|2).

¤

This result can be improved when α is a simple zero of f .
Lemma 2. If a germ f : (C, α) → (C, 0) has a simple zero at α, then α is a
superattracting fixed point of the König’s method Kf,σ : (C, α) → (C, α) and the
local degree of Kf,σ at α is at least equal to σ.
Proof. Since f has a simple zero at α, 1/f has a simple pole at α. Thus,

1
f(z)

=
λ

z − α
+ fα(z),

where fα is holomorphic in a neighborhood of α. It follows that
(

1
f

)[σ−2]

=
µ

(z − α)σ−1
+O(1) and

(
1
f

)[σ−1]

= −(σ − 1)
µ

(z − α)σ
+O(1)

for a suitable constant µ ∈ C∗. Thus,

Kf,σ(z) = α + (z − α) + (σ − 1)

µ

(z − α)σ−1
(1 +O(|z − α|σ−1))

−(σ − 1)
µ

(z − α)σ
(1 +O(|z − α|σ))

= α +O(|z − α|σ).

¤

The following result appears in a weaker form in [Dr], [Kn] and [VG].
Lemma 3. If f : U → P1 is a meromorphic map, the extraneous fixed points of
Kf,σ are exactly the zeros of (1/f)[σ−2]. If β is a zero of (1/f)[σ−2] with multiplicity
m, then it is a repelling fixed point of Kf,σ with multiplier 1 + (σ − 1)/m.
Proof. By definition, we have

Kf,σ(z) = z + (σ − 1)
g(z)
g′(z)

where g = (1/f)[σ−2].

The fixed points of Kf,σ are the zeros and the poles of g. On the one hand, the
poles of g are the zeros of f , which have already been studied. On the other hand,
if β is a zero of g of order m, then there exists a λ ∈ C∗ such that

g(z) = λ(z − β)m +O(|z − β|m+1) and g′(z) = λm(z − β)m−1 +O(|z − β|m).

Thus,

Kf,σ(z) = β + (z − β)
(

1 +
σ − 1

m

)
+O(|z − β|2).

Therefore, β is a repelling fixed point of Kf,σ and its multiplier is 1 + (σ − 1)/m.
¤
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Remark. When σ = 2, there are no extraneous fixed points, and when σ = 3, the
extraneous fixed points are the critical points of f which are not zeros of f .

1.2. Schröder’s approach. Prop. 2 seems to be known when α is a simple root
of f and follows from a theorem due to König [Kö]. This theorem asserts that
if an analytic function has a single singularity at the radius of convergence of its
power series, and if this singularity is a simple pole, then the ratios of the successive
coefficients of its power series converge to that pole. We will prove that this result
still holds when the pole is multiple. Prop. 2 follows immediately by setting g = 1/f
and n = σ − 2.
Proposition 7. Let D be a Euclidean disk centered at z0 and α be a point of
D. Assume g is meromorphic on D and has a unique pole (possibly multiple) at
α. Then, there exists a neighborhood of z0 on which the sequence of functions
(n + 1)g[n]/g[n+1] converges uniformly to the function z 7→ α− z.
Proof. Restricting D slightly if necessary, we may assume that g is continuous on
∂D. Let r be the radius of D and M be the supremum of |g(z)| on the boundary
of D. Besides, let V ⊂ D be a neighborhood of z0 for which there exists a real
number λ < 1 such that

(∀z ∈ V ) |z − α| ≤ λd(z, ∂D).

The following lemma implies that when z ∈ V ,

g[n](z)
n!

=
(−1)ma−m

(α− z)n+m

(n + m− 1)!
n!(m− 1)!

(1 + o(1)),

with a uniform control on the term o(1). It follows that for any z ∈ V ,

(n + 1)
g[n](z)

g[n+1](z)
−→

n→+∞
α− z,

the convergence being uniform on V .

Lemma 4. Let

g(z) =
+∞∑

k=−m

ak(z − α)k

be the Laurent series of g at α. Then, for any z ∈ V , we have∣∣∣∣∣
g[n](z)

n!
+

1
(α− z)n+1

m∑

k=1

a−k

(z − α)k−1

(n + k − 1)!
n!(k − 1)!

∣∣∣∣∣ ≤
λn+1Mr

|z − α|n+1
.

Proof. By the residue theorem, we have

1
2iπ

∫

∂D

g(w)
(w − z)n+1

dw =
g[n](z)

n!
+ residue

(
g(w)

(w − z)n+1
, α

)
.

Now, for any z ∈ V , ∣∣∣∣
1

2iπ

∫

∂D

g(w)
(w − z)n+1

dw

∣∣∣∣ ≤
λn+1Mr

|z − α|n+1

and an easy computation gives

residue
(

g(w)
(w − z)n+1

, α

)
=

1
(α− z)n+1

m∑

k=1

a−k

(z − α)k−1

(n + k − 1)!
n!(k − 1)!

.
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¤

2. König’s methods of polynomials.

From now on, f : C→ C will always be a polynomial.

2.1. Proof of Proposition 3. Everything we have proved up to now is valid for
any meromorphic map f : U ⊂ C → P1. Let us now restrict our study to the case
where f : C→ C is a polynomial of degree d ≥ 2. In that case, the König’s method
Kf,σ extends to a rational map Kf,σ : P1 → P1.

Figure 1 shows two pictures of P1. The points of the Riemann sphere are colored
according to which root of f their orbits under iteration of Kf,σ converge. The roots
of the polynomial are on the hidden face of the Riemann sphere. One can observe
the self-similarity of the basins near ∞, which indicates that ∞ is a repelling fixed
point of Kf,σ.

P1

∞

P1

∞

σ = 3 σ = 5

Figure 1. The basins of attraction of Kf,σ for the polynomial
f(z) = z(z − 1)(z − i)(z + i)(z + 1− i), for σ = 3 and σ = 5.

Proof of (a). When |z| tends to ∞, we have

f(z) = λzd

(
1 +O

(
1
|z|

))
.

Therefore,
(

1
f

)[σ−2]

(z) =
µ

zd+σ−2

(
1 +O

(
1
|z|

))

and (
1
f

)[σ−1]

(z) = −(d + σ − 2)
µ

zd+σ−1

(
1 +O

(
1
|z|

))
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for a suitable constant µ. Consequently,

Kf,σ(z) =
(

1− σ − 1
d + σ − 2

)
z +O(1) =

d− 1
d + σ − 2

z +O(1).

It follows that ∞ is a fixed point of Kf,σ with multiplier (d + σ − 2)/(d − 1) =
1 + (σ − 1)/(d− 1). This concludes the proof of (a).

Proof of (b). Let αi, i = 1, . . . , N , be the zeros of f and ni be their multiplicities.
Since f is a polynomial of degree d, we have

N∑

i=1

ni = d.

We have seen that the fixed points of Kf,σ are ∞, the points αi and the zeros of
the rational map g = (1/f)[σ−2] in C . For any rational map, the number of zeros
in P1 is equal to the number of poles in P1. The poles of g are the points αi, with
multiplicity ni + σ − 2, and g has a zero of order d + σ − 2 at ∞. Thus, g has

N∑

i=1

(ni + σ − 2) = d + N(σ − 2)

poles counted with multiplicities. It follows that g has

d + N(σ − 2)− (d + σ − 2) = (N − 1)(σ − 2)

zeros in C, counting multiplicities. Consequently, Kf,σ has at most (N − 1)(σ− 2)
repelling fixed points in C.

For any rational map, the number of fixed points counted with multiplicities is
equal to the degree plus one. The fixed points of Kf,σ are simple (a fixed point is
multiple if and only if its multiplier is equal to 1). There are N (super)attracting
fixed points, one repelling fixed point at infinity and at most (N−1)(σ−2) repelling
fixed points in C. Therefore, the degree of Kf,σ is at most

[N + 1 + (N − 1)(σ − 2)]− 1 = (N − 1)(σ − 1) + 1.

This concludes the proof of (b).
Remark. The definition of Kf,σ only involves the σ − 1 first derivatives of f . It
follows from known results (see for example [Tr] Theorem 5.3) that for a generic
analytic map having a zero α, the local degree of Kf,σ at α is at most σ. However,
the set of polynomials is not generic within the set of analytic mappings, and thus,
the proof of (c) does not follow from those known results.

Proof of (c), (d) and (e). If (c) does not hold, then either the local degree of
Kf,σ at one of the roots of f is less than σ and in that case, f has a multiple root,
or the local degree of Kf,σ at one of the roots of f is larger than σ.

If f and g = (1/f)[σ−2] only have simple zeros in C we can redo the proof of (b)
with N = d. Then, g has exactly (d− 1)(σ − 2) simple zeros, which correspond to
exactly (d − 1)(σ − 2) repelling fixed point of Kf,σ with multiplier σ. Moreover,
the degree of Kf,σ is exactly (d − 1)(σ − 1) + 1. Therefore, if (d) or (e) does not
hold, either f has a multiple root, or g = (1/f)[σ−2] has a multiple zero in C.

In summary, assume f does not satisfy one of the properties (c), (d) or (e).
Then, either f has a multiple root, or g = (1/f)[σ−2] has a multiple zero in C, or
the local degree of Kf,σ at one of the roots of f is larger than σ.

Let us first show that these conditions are algebraic.



8 X. BUFF AND C. HENRIKSEN

• The polynomial f has a multiple root if and only if its discriminant vanishes.
• Define the polynomial

Pσ = fσ−1 ·
(

1
f

)[σ−2]

.

Supposing f has only simple roots then (1/f)[σ−2] has a multiple zero in C
if and only if the discriminant of Pσ vanishes.

• Observe that the local degree of Kf,σ at a simple root of f exceeds σ if and
only if K

[σ]
f,σ vanishes at the root. Now

Kf,σ =
z · Pσ+1 + (σ − 1)f · Pσ

Pσ+1
,

so letting
Qσ = (Pσ+1)σ+1 · (Kf,σ)[σ],

we obtain a polynomial Qσ. If f has only simple roots, the partial fractional
expansion of 1/f shows that Pσ+1 does not vanish at any root of f . Hence
supposing all the roots of f are simple, the local degree of Kf,σ at one of
them is larger than σ if and only if the resultant of f and Qσ vanishes.

Since the coefficients of Pσ and Qσ are polynomials in the coefficients of f , those
three conditions are algebraic in the coefficients of f . As a consequence, it is enough
to show that properties (c), (d) and (e) are satisfied by some polynomial of degree
d in order to show that they are satisfied generically by polynomials of degree d.

Let us now prove the existence of such a polynomial. We will give a proof by
induction on the degree d (in the rest of the proof, σ is fixed). There may be a more
elementary (or more algebraic) proof than the one we present here. The inductive
hypothesis is the following.

(Hd). There exists a polynomial f of degree d with d distinct roots, such that Kf,σ

has (at least) (σ − 1)(d − 2) critical points, counting multiplicities, which do not
coincide with the roots of f .

Let us see that a polynomial f satisfying (Hd) automatically satisfies properties
(c), (d) and (e). Let us first show that the local degree of Kf,σ at the roots of f is
exactly equal to σ. We know that the local degree of Kf,σ at the roots of f is at
least equal to σ. Thus, Kf,σ has at least d(σ− 1)+ (d− 2)(σ− 1) = 2(d− 1)(σ− 1)
critical points. By the Riemann-Hurwitz formula, a rational map of degree k has
2k − 2 critical points counted with multiplicities. Therefore, the degree of Kf,σ is
at least (d− 1)(σ − 1) + 1. Statement (b) above asserts that the degree is at most
(d− 1)(σ − 1) + 1. Hence, the degree of Kf,σ is exactly equal to (d− 1)(σ − 1) + 1
and the local degree of Kf,σ at the roots of f is exactly equal to σ.

Let us now show that the zeros of g = (1/f)[σ−2] are simple. We have seen
above that g has (d− 1)(σ − 2) zeros in C, counting multiplicities. Therefore, it is
sufficient to show that g has (d− 1)(σ− 2) distinct zeros in C, or equivalently that
Kf,σ has (d− 1)(σ− 2) repelling fixed points in C. A rational map of degree k has
k + 1 fixed points counted with multiplicities and the fixed points of Kf,σ are all
simple. Since the degree of Kf,σ is (d − 1)(σ − 1) + 1, it has (d − 1)(σ − 1) + 2
fixed points. One of these is at ∞, and d of these are at the roots of f , so there are
(d− 1)(σ − 2) repelling fixed points in C. Using that the zeros of g all are simple,
Prop. 1 shows that the multiplier equals σ at each repelling fixed point of Kf,σ.
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Proof of (Hd). The inductive hypothesis (H2) is clearly true: for each quadratic
polynomial f with distinct roots, there is at least 0 critical points which do not
coincide with the roots of f . Let us now assume that f is a polynomial of degree
d which satisfies (Hd). We will show that for α ∈ C with |α| large enough, the
polynomial fα defined by

fα(z) = (z − α)f(z)
satisfies (Hd+1).

The key point is the following lemma.
Lemma 5. Assume (fn)n∈N is a sequence of polynomials converging uniformly to
a polynomial f on every compact subset of C. Denote by Fixσ the set of fixed points
of Kf,σ. Then, the sequence of rational maps Kfn,σ converges uniformly to Kf,σ

on every compact subset of P1 \ Fixσ, for the spherical metric on P1.
Proof. Let us define U = C \ Fixσ. Since the set of zeros of f is contained in
Fixσ, we see that 1/fn converges uniformly (for the Euclidean metric on C) to 1/f
on every compact subset of U . It follows that the sequences gn = (1/fn)[σ−2] and
g′n = (1/fn)[σ−1] converge uniformly on every compact subset of U to g = (1/f)[σ−2]

and g′ = (1/f)[σ−1] (again for the Euclidean metric on C). Next, the set of zeros
of gn is contained in a neighborhood of Fixσ. Thus, g′n/gn converges uniformly on
every compact subset of U to g′/g (still for the Euclidean metric on C). Therefore,
gn/g′n and Kfn,σ = z + (σ − 1)gn/g′n both converge uniformly on every compact
subset of U to g/g′ and Kf,σ = z + (σ − 1)g/g′ (this time, for the spherical metric
on P1). ¤

Choose R > 0 large enough, so that the disk DR = {z ∈ C | R > |z|} contains
all the fixed points of Kf,σ. When |α| > R, the roots of fα are the roots of f (they
are contained in DR) and α. Thus, they are simple. Denote by Fixf,σ ⊂ DR the
set of fixed points of Kf,σ. Observe that − 1

αfα converges uniformly to f on every
compact subset of C when |α| tends to ∞. Since Kfα,σ = K− 1

α fα,σ, the previous
lemma asserts that Kfα,σ converges uniformly to Kf,σ on every compact subset of
DR \Fixf,σ. Thus, when α is large enough, Kfα,σ has (σ− 1)(d− 2) critical points
in DR which do not coincide with the roots of fα.

We will now show that when |α| is large enough, Kfα,σ has σ − 1 critical points
outside DR that differ from α. It then follows that fα satisfies (Hd+1). Define

Fα(z) =
1

αd+1
fα(αz) = (z − 1)

f(αz)
αd

.

It is possible to show (see Lemma 8 below) that

KFα,σ(z) =
1
α

Kfα,σ(αz).

Therefore, the critical points of Kfα,σ are the images of the critical points of KFα,σ

by the scaling map z 7→ αz. In particular, it is sufficient to prove that when |α| is
large enough, KFα,σ has σ− 1 critical points in C \ (DR/|α| ∪ {1}). When |α| tends
to ∞, Fα converges uniformly to F : z 7→ λ(z− 1)zd on every compact subset of C,
where λ 6= 0 is the leading coefficient of f.

Lemma 6. Let F be the polynomial z 7→ λ(z − 1)zd and denote by FixF,σ ⊂ DR

the set of fixed points of KF,σ. Then, KF,σ has σ − 1 critical points in C \ FixF,σ.
Proof. We know that KF,σ has a superattracting fixed point with local degree
at least σ at 1. Hence, its degree is at least σ. Since F has only N = 2 roots,
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statement (b) above asserts that the degree of KF,σ is at most σ. Therefore, this
degree is exactly equal to σ. A rational map of degree σ has 2(σ−1) critical points,
and such a critical point has multiplicity at most σ− 1 (with equality if and only if
the rational map is conjugate to a polynomial). As a consequence, KF,σ has σ − 1
critical points, counting multiplicities, in P1 \ {1}. Since the remaining fixed points
of KF,σ are not superattracting, those critical points belong to C \ FixF,σ. ¤

Remark. This discussion shows that KF,σ is a polynomial of degree σ in the
coordinate w = 1/(z − 1).

Let us now finish the proof of Prop. 3. We know that when |α| tends to ∞, Fα

converges uniformly to F : z 7→ λ(z−1)zd on every compact subset of C. We know
that KF,σ has σ−1 critical points in C\FixF,σ ⊂ C\{0, 1}. It follows immediately
that when |α| is large enough, KFα,σ has σ− 1 critical points in C \ (DR/|α| ∪ {1}).

2.2. König’s methods for quadratic polynomials. As a trivial application of
Prop. 3, let us recall that the case of quadratic polynomials is completely under-
stood (compare with [VG] and [Dr]):

• if f has a double root a ∈ C, the König’s method Kf,σ is the affine map
z 7→ a + (z − a)/σ;

• the König’s method of a quadratic polynomial f(z) = λ(z − a)(z − b),
λ ∈ C∗ and a 6= b, is conjugate, in the coordinate w = (z − a)/(z − b), to
the rational map w 7→ wσ.

In both cases, the result may be obtained by a direct calculation. One may also
argue that in the case of a double root, the König’s method has to be a rational
map of degree at most 1. This rational map must have an attracting fixed point
with multiplier 1/σ at a and a repelling fixed point with multiplier σ at ∞. In the
case of two distinct roots a 6= b, Prop. 3 asserts that the degree of Kf,σ is at most
(2 − 1)(σ − 1) + 1 = σ. This rational map has two superattracting fixed points
at a and b with local degree at least σ. As a consequence, the degree of Kf,σ is
at least σ. Therefore, it is equal to σ and the local degree of Kf,σ at a and b is
exactly σ. We know that Kf,σ has a repelling fixed point at ∞. Therefore, in the
coordinate w = (z − a)/(z − b), Kf,σ is conjugate to a rational map of degree σ
having superattracting fixed points at 0 and ∞ and a repelling fixed point at 1.
This rational map is w 7→ wσ.

2.3. Comments on the degree of Kf,σ. According to McMullen [McM1], a
purely iterative root-finding algorithm is a rational map T : f 7→ Tf from the space
Polyd of polynomials of degree d into the space Ratk of rational map of degree k,
such that each root of f is a (super)attracting fixed point of Tf . As a set-theoretic
mapping, T may be undefined on an algebraic sub-variety of its domain. We say
that the algorithm T is of order σ if, outside an algebraic sub-variety of codimension
at least 1, the local degree of Tf at the roots of f is equal to σ.

Prop. 3 shows that the König’s algorithm f 7→ Kf,σ from the set Polyd of
polynomials of degree d to the set Rat(σ−1)(d−1)+1 of rational maps of degree (σ −
1)(d− 1) + 1 is a purely iterative root-finding algorithm of order σ.

Problem. Given two integers d ≥ 2 and σ ≥ 2, what is the smallest integer
k = k(d, σ) for a purely iterative root-finding algorithm T : Polyd → Ratk to be of
order σ?
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It is clear that generically, the rational map Tf has at least d(σ − 1) critical
points at the roots of f . Then, the Riemann-Hurwitz formula implies that

k(d, σ) ≥ d(σ − 1)
2

+ 1.

The previous discussion shows that k(d, σ) ≤ (σ − 1)(d− 1) + 1.
Using McMullen’s result on rigidity of algebraic families of rational maps (see

[McM1] Thm. 2.2), one may prove that there must be at least d− 3 extra critical
points (see the remark at the end of Sect. 3.2). Thus,

k(d, σ) ≥ d(σ − 1) + d− 3
2

+ 1 =
dσ − 1

2
,

and
dσ − 1

2
≤ k(d, σ) ≤ (d− 1)(σ − 1) + 1.

This result is clearly optimal for σ = 2.

2.4. Proof of Prop. 4. Prop. 1 shows that when f(z) =
∏

i(z−αi)ni , the König’s
method Kf,σ satisfies the following properties:

• the points αi are (super)attracting fixed points with multipliers (ni−1)/(σ+
ni − 2) and when ni = 1, the local degree at αi is at least σ;

• the point ∞ is a repelling fixed point with multiplier 1 + (σ − 1)/(d− 1);
• the remaining fixed points βj are repelling with multipliers of the form

1 + (σ − 1)/mj .

On the one hand, the following example shows that those conditions are not suffi-
cient to characterize rational maps which are König’s methods of polynomials with
possibly multiple roots.
Example. The rational map h : P1 → P1 defined by

h(z) = z − 2
(z − 1)(z + 1)(z − 2)

5z2 − 12z + 1

has attracting fixed points at ±1 with multiplier 1/3 = (2−1)/(3+2−2), a repelling
fixed point at 2 with multiplier 3 = 1 + (3 − 1)/1 and a repelling fixed point at
∞ with multiplier 5/3 = 1 + (3 − 1)/(4 − 1). It is a good candidate to be the
König’s method of order 3, i.e., the Halley’s method, for the quartic polynomial
f(z) = (z − 1)2(z + 1)2. However,

Kf,3(z) = z − 2
z(z − 1)(z + 1)

5z2 + 1
6= h.

On the other hand, Prop. 4 asserts that those conditions are sufficient to char-
acterize rational maps which arise as König’s methods of polynomials with simple
roots. We will now prove this proposition.

Let us recall the problem. We have a rational map h : P1 → P1, whose fixed
points are either superattracting or repelling. The local degree of h at any su-
perattracting fixed point αi is at least σ and the multiplier at any repelling fixed
point βj is of the form 1 + (σ − 1)/mj , where mj ≥ 1 is an integer. Finally, ∞
is a repelling fixed point of h with multiplier 1 + (σ − 1)/(d − 1), where d is the
number of superattracting fixed points of h. We must show that h = Kf,σ, where
f(z) =

∏
i(z − αi).
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Step 1. We claim that h = Id+(σ−1)g/g′, where g : P1 → P1 is the rational map
defined by

g(z) =

∏
j(z − βj)mj

∏
i(z − αi)σ−1

.

Indeed, let us define h1 = Id+(σ−1)g/g′. The fixed points in C of the rational map
h1 are exactly the zeros and poles of g. One can easily check that the multiplier at
αi is 0 and the multiplier at βj is 1 + (σ − 1)/mj . Thus, the two rational maps h
and h1 have the same fixed points in C with the same multipliers.

If α is a fixed point of a rational map f , one can define a quantity ι(f, α) ∈ C∗
which is called the residue fixed point index of f at α. If the multiplier λ of f at α
differs from 1, we have

ι(f, α) =
1

1− λ
.

The holomorphic fixed point formula (see [M] Sect. 10) asserts that the sum of the
residue fixed point indices of a rational map at all its fixed points is always equal
to 1.

By assumption, ∞ is a fixed point of h. Since h and h1 have the same fixed
point in C with the same multipliers, and since those multipliers differ from 1, it
follows from the holomorphic fixed point formula that h1 fixes ∞ (the sum of the
residue fixed point indices at the fixed points in C is not equal to 1) and

ι(h1,∞) = ι(h,∞).

Note that
g′(z)
g(z)

=
∑

j

mj

z − βj
−

∑

i

σ − 1
z − αi

−→
z→∞

0.

Therefore, h1(z) is not equivalent to z as z → ∞, and so, the multiplier of h1 at
∞ differs from 1. Since the holomorphic fixed point residues of h1 and h at ∞
coincide, the multipliers also coincide. As a consequence, the rational maps h and
h1 have the same fixed points. Their multipliers are equal and all differ from 1.
The following lemma shows that h = h1.

Lemma 7. Assume that two rational maps h1 and h2 have the same fixed points
βi with the same multipliers λi 6= 1. Then, the two rational maps are equal.

Proof. Let us work in a coordinate where ∞ is not one of the fixed points βi. The
rational function 1/(z − h1) tends to 0 as z tends to ∞. Moreover, the poles of
1/(z − h1) are the fixed points βi. Since λi 6= 1 these are all simple poles, and the
residue of 1/(z − h1) at βi is 1/(1 − λi). The same is true for 1/(z − h2). Thus,
we see that the rational map 1/(z − h1) − 1/(z − h2) has no pole in C and tends
to 0 as z tends to ∞. Thus, this rational map is equal to 0. This proves that the
rational maps h1 and h2 are equal. ¤

Remark. It is necessary to forbid multiple fixed points. For example, the poly-
nomials z 7→ z + z2 and z 7→ z + 2z2 have the same fixed points, with the same
multipliers (and even the same holomorphic indices) but they are not equal. Also,
note that we are not explicitely assuming that the maps have the same degree, but
this follows since there are no multiple fixed points.
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Step 2. We next claim that there exist λi ∈ C∗ such that

(1) g(z) =
∑

i

λi

(z − αi)σ−1
.

In other words, we claim that there is only one term in the polar part of the Laurent
series of g at any of its poles αi. It is clear that the points αi are poles of order
σ − 1. Let us write

g(z) =
λi

(z − αi)σ−1

(
1 + µ(z − αi)j + o(|z − αi|j)

)
,

with µ 6= 0. We must prove that j ≥ σ − 1. Observe that

g′(z) = − (σ − 1)λi

(z − αi)σ

(
1− µ

j − σ + 1
σ − 1

(z − αi)j + o(|z − αi|j)
)

.

Therefore,

z + (σ − 1)
g(z)
g′(z)

= αi − µ
j

σ − 1
(z − αi)j+1 + o(|z − αi|j+1).

Since αi is superattracting with order at least σ, it follows that j ≥ σ − 1.

Step 3. Let us now consider the rational map

G(z) =
∑

i

λi

z − αi
,

where the λi’s are given by equation 1. We claim that G has a zero of order d at ∞.
Indeed, G(z) tends to 0 as z tends to ∞ and thus, G(z) ∼ a/zn for some integer n

and some complex number a ∈ C∗. Moreover, the (σ − 2)th derivative of G is

G[σ−2] = (−1)σ−2(σ − 2)!g.

Hence, g(z) ∼ b/zn+σ−2 for some complex number b ∈ C∗. Observe that

z + (σ − 1)
g(z)
g′(z)

∼
(

1− σ − 1
n + σ − 2

)
z.

Since h = Id+(σ−1)g/g′ has a repelling fixed point with multiplier 1+(σ−1)/(d−1)
at ∞, it follows that 1/(1 − (σ − 1)/(n + σ − 2)) = 1 + (σ − 1)/(d − 1). After
simplifications, this gives n = d.

Step 4. The zeros of the rational map 1/G are exactly the points αi. They are
simple zeros. Thus, 1/G is a rational function of degree d. Moreover, 1/G has a
pole of order d at ∞. Thus, 1/G is equal to the polynomial f(z) =

∏
i(z − αi) up

to multiplication by a non-zero constant. The rational maps g and (1/f)[σ−2] are
equal up to multiplication by a non-zero constant. Therefore,

h = Id + (σ − 1)
g

g′
= Id + (σ − 1)

(1/f)[σ−2]

(1/f)[σ−1]
= Kf,σ.

This concludes the proof of Prop. 4.

3. The number of extraneous non-repelling cycles.

Before studying the number of extraneous non-repelling cycles of König’s meth-
ods, we need to determine which König’s methods might be conjugate.
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3.1. Affine conjugacy classes. We will first prove that König’s methods behave
nicely under affine changes of coordinates. This result has been proved by Plaza
(see [Pl] Thm. 6).
Lemma 8. Let A : C→ C be an affine automorphism and λ ∈ C∗ be any non zero
constant. For any meromorphic map f : U → P1, define g = λf ◦A : A−1(U) → P1.
Then, for any integer σ ≥ 2, the König’s methods Kf,σ : U → P1 and Kg,σ :
A−1(U) → P1 are affine conjugate:

Kf,σ ◦A = A ◦Kg,σ.

Proof. The proof is elementary. Let us write A(z) = az + b with a ∈ C∗ and let
us assume that g = λf ◦A. Then,

(
1
g

)[j]

=
aj

λ

(
1
f

)[j]

◦A,

and thus

A ◦Kg,σ(z) = az + b + (σ − 1)
(1/f)[σ−2]

(1/f)[σ−1]
◦A(z) = Kf,σ ◦A(z).

We also prove that the König’s methods of two polynomials are affine conju-
gate if and only if the polynomials are equal up to pre-composition with an affine
automorphism of C and up to post-composition with a scaling map.
Lemma 9. Let f and g be two polynomials, and A : C → C an arbitrary affine
automorphism. Then A conjugates Kg,σ to Kf,σ (i.e., Kf,σ ◦A = A ◦Kg,σ) if and
only if there exists λ ∈ C∗ such that g = λf ◦A.
Remark. In particular, this shows that the König’s methods of two polynomials f
and g are equal if and only if f/g is a non-zero constant.
Proof. The proof is again elementary. Lemma 8 gives the reverse implication,
so assume Kf,σ ◦ A = A ◦ Kg,σ Define h = f ◦ A. Using Lemma 8, we see that
Kg,σ = Kh,σ. Since the roots of a polynomial and their multiplicities are determined
by the König’s method of the polynomial (see Prop. 1), the polynomials g and h
have the same roots with the same multiplicities. Thus, there exists a non-zero
constant λ ∈ C∗ such that g = λ ◦ h. ¤

Those two results are very useful in order to decrease the number of dimensions
when studying parameter spaces of König’s methods (see for example Sect. 4.2.1).

3.2. The lower bound on N(d, σ). Let us fix d ≥ 2 and σ ≥ 2 and denote by Pd,σ

the subset of Polyd ' Cd+1 whose elements are polynomials f with simple roots
such that (1/f)[σ−2] has simple roots. This set is open for the Zariski topology (see
Prop. 3) and its dimension is d + 1.
Definition 6. We say that an analytic family of rational maps {fλ, λ ∈ Λ}, is
stable if there is a uniform bound on the period of superattracting cycles of the
rational maps fλ. We say the family is trivial if all of its members are conjugate
by Moebius transformations.

McMullen [McM1] defines a family to be stable if there is a uniform bound on
the period of attracting cycles of the rational maps occuring in the family. Our
definition is equivalent (see [McM3] for example).
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Lemma 10. If {Kf,σ, f ∈ Λ ⊂ Pd,σ} is a trivial family of König’s methods, then
the dimension of Λ is at most 3.
Proof. For all polynomial f ∈ Pd,σ, ∞ is the only repelling fixed point of Kf,σ

with multiplier 1+(σ−1)/(d−1) (for d = 2, ∞ is the only repelling fixed point and
by proposition 3 (d), for d > 2 and f ∈ Pd,σ, the other repelling fixed points have
multiplier σ > 1 + (σ − 1)/(d − 1)). By definition, all the König’s methods Kf,σ,
f ∈ Λ are conjugate via Moebius transformations. Those Moebius transformations
must fix ∞. Therefore, they are affine maps. Lemma 9 implies that the family
{Kf,σ, f ∈ Λ} is contained in the family {λf0(az + b), (λ, a, b) ∈ C∗×C∗×C}, f0

being any polynomial in Λ. ¤

Lemma 11. For any (quasiprojective) variety X ⊂ Pd,σ of dimension greater than
3, there is no uniform bound on the period of superattracting cycles of the König’s
methods Kf,σ, f ∈ X.
Proof. McMullen’s rigidity result (see [McM1] Thm. 2.2) asserts that a stable
algebraic family of rational maps is either trivial or its members are Lattès examples.
Lattès examples do not have attracting cycles and thus, König’s methods cannot
be Lattès examples. ¤

Lemma 12. For any degree d ≥ 2 and any integer σ ≥ 2, there exists a polynomial
f of degree d such that Kf,σ has at least d− 2 extraneous superattracting cycles.
Proof. If d = 2, there is nothing to be proved. If d > 2, the dimension of Pd,σ is
(d+1) > 3 and Lemma 11 asserts that one can find a polynomial f1 ∈ Pd,σ such that
Kf1,σ has a periodic critical point ω1 which is periodic with some period n1 > 1.
If d = 3, the proof is completed: Kf1,σ has at least one extraneous superattracting
cycle.

If d > 3 we can repeat this argument. For each polynomial f ∈ Pd,σ, a point
z ∈ C is a periodic point of Kf,σ with period n1 if and only if z is a root of some
polynomial Pf (z) whose coefficients are rational functions in the coefficients of f .
For each polynomial f ∈ Pd,σ, a point z ∈ C is a critical point of Kf,σ if and only
if z is a root of some polynomial Qf (z) whose coefficients are rational functions
in the coefficients of f . The König’s method, Kf,σ, has a periodic critical point
with period n1 if and only if the resultant of Pf and Qf vanishes. Therefore the
subset of Pd,σ for which Kf,σ has a critical point which is periodic with period
n1, is an algebraic subset of Pd,σ. The polynomial f1 obtained above belongs to
this subset. We define X1 to be the irreducible component containing f1. It is an
irreducible quasiprojective variety contained in Pd,σ. By the dimension theorem,
the dimension of X1 is at least (d + 1)− 1 = d.

When d > 3, McMullen’s rigidity result implies that there exists a polynomial
f2 ∈ X1 such that Kf2,σ has a critical point ω2, periodic with period n2 > n1. The
subset of X1 for which Kf,σ has such a critical point is an algebraic subset, and the
irreducible component X2 containing f2 has dimension at least d− 1.

We can repeat this procedure, until we exhibit a quasiprojective variety Xd−2 ⊂
Pd,σ of dimension at least (d+1)− (d−2) = 3 and whose elements are polynomials
f for which Kf,σ has d − 2 critical points ω1, ω2, . . . , ωd−2, periodic with periods
n1 < n2 < . . . < nd−2. ¤

Remark. The above argument generalizes to arbitrary purely iterative root-finding
algorithms T : Polyd → Ratk. The algorithm T is defined on an open subset of
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Polyd which has dimension d+1. If two rational maps T (f) and T (g) are conjugate
by a Moebius transformation, the (super)attracting fixed points of T (f) and the
(super)attracting fixed points of T (g) are related by the Moebius transformation.
Since cross-ratios between those points must be preserved, and since there are at
least d− 3 such cross-ratios, the dimension of conjugacy classes is at most 4. The
above argument implies that there exists a polynomial f of degree d such that T (f)
has at least d− 3 periodic critical points.

3.3. The upper bound on N(d, σ) in the general case. In this subsection, we
show that for any d ≥ 2 and any σ ≥ 2, N(d, σ) ≤ (σ − 1)(d− 2). This inequality
is obtained by counting the number of critical points of Kf,σ which do not coincide
with the roots of f .
Lemma 13. Assume f is a polynomial and σ ≥ 2 is an integer such that Kf,σ has
k extraneous non-repelling cycles. Then, there must be at least k critical points of
Kf,σ outside the basins of attractions of the roots of f .
Proof. This lemma is essentially due to Fatou who proved that for any rational
map,

• the immediate basin of attraction of an attracting or parabolic cycle always
contains at least one critical point;

• the boundary of a cycle of Siegel disks is always accumulated by a critical
orbit;

• a non-linearizable indifferent cycle is always contained in the closure of a
critical orbit.

In other words, each non-repelling cycle must “trap” the orbit of at least one critical
point. The only problem is that two distinct indifferent cycles need not trap two
distinct critical points. However, using quasiconformal surgery, Douady-Hubbard
[DH] and Shishikura [Shi] overcame this difficulty.

Roughly speaking, one can find a rational h which may be thought as a pertur-
bation of Kf,σ and which has the following properties:

• every non-repelling cycle of h is attracting;
• there is a bijection between the attracting cycles of h and the non-repelling

cycles of Kf,σ;
• there is a bijection between the set of critical points of h and the set of

critical points of Kf,σ;
• the critical points attracted by the roots of f under iteration of Kf,σ corre-

spond to critical points attracted by the attracting fixed points of h under
iteration of h.

By construction, such a map h has k attracting cycles which correspond to the k
extraneous non-repelling cycles of Kf,σ. Those attracting cycles attract k critical
points of h by Fatou’s theorem. Those critical points are in bijection with k critical
points of Kf,σ which are not attracted by the roots of f under iteration of Kf,σ. ¤

Definition 7. A critical point of Kf,σ which does not coincide with a root of f is
called a free critical point of Kf,σ.
Lemma 14. Let f be a polynomial of degree d ≥ 2. For any integer σ ≥ 2, the
König’s method Kf,σ has at most (σ − 1)(d− 2) free critical points.
Remark. Generically, the number of free critical points of Kf,σ is exactly (σ −
1)(d− 2).
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Proof. Assume f has N distinct roots, N1 of them being simple roots, and N2

of them being multiple roots. Then, we have N = N1 + N2 and N1 + 2N2 ≤ d.
Prop. 3 (b) asserts that the degree of Kf,σ is at most (σ − 1)(N − 1) + 1. Thus,
the Riemann-Hurwitz formula implies that the number of critical points of Kf,σ is
at most 2(σ− 1)(N − 1). Moreover, N1(σ− 1) critical points of Kf,σ coincide with
the roots of f . Therefore, there are at most

2(σ − 1)(N − 1)−N1(σ − 1) = (σ − 1)(N1 + 2N2 − 2) ≤ (σ − 1)(d− 2)

free critical points. ¤

3.4. The upper bound on N(d, σ) in the case 2 < d ≤ σ. We will now show
that when σ ≥ d > 2, the König’s method Kf,σ has at most (σ − 1)(d − 2) − 1
non-repelling cycles. Let N1 denote the number of simple zeros of f and N2 the
number of multiple zeros. As above, we have N1+2N2 ≤ d. Let k denote the degree
of Kf,σ; then k ≤ (σ − 1)(N1 + N2 − 1) + 1, by Prop. 3 (b).

Counting multiplicity, the number of critical points of Kf,σ is 2k − 2. Of these
at least (σ − 1)N1 are trapped in basins corresponding to simple roots and N2 in
basins corresponding to multiple roots. Using Lemma 13 we get

N(d, σ) ≤ 2k − 2− (σ − 1)N1 −N2 ≤ (σ − 1)(N1 + 2N2 − 2)−N2

≤ (σ − 1)(d− 2)−N2 ≤ (σ − 1)(d− 2).

Equality can only be achieved if all the roots of f are simple (N2 = 0), if each
basin corresponding to such a root contains only σ − 1 critical points of Kf,σ, and
if k = (σ− 1)(N1 + N2− 1) + 1 = (σ− 1)(d− 1) + 1. In this case properties (c), (d)
and (e) of Prop. 3 are satisfied. Hence the bound holds for trivial reasons except
in this case, which we settle by the following lemma.
Lemma 15. Assume σ ≥ d > 2 and f is a polynomial of degree d whose König’s
method Kf,σ satisfies properties (c), (d) and (e) of Prop. 3. Then, there is at least
one free critical point of Kf,σ in the immediate basin of one superattracting fixed
point of Kf,σ.
Sketch of proof. Denote by α1, . . . , αd, the d roots of f , by Ω1, . . . , Ωd, the d im-
mediate basins of those points under iteration of Kf,σ and assume by contradiction
that none of those basins contains a free critical point of Kf,σ.

Step 1. Then, each immediate basin Ωi is simply connected (the argument is
exactly the same as for proving that the basin of ∞ for a polynomial is simply
connected if and only if the only critical point in this basin is ∞). By assumption,
the local degree of Kf,σ at each point αi is exactly σ. It follows that there exists a
conformal representation ϕi : Ωi → D conjugating Kf,σ : Ωi → Ωi to the mapping
Qσ : D→ D with Qσ(z) = zσ. We can define the internal ray Ri(θ) by

Ri(θ) = ϕ−1
i {re2iπθ : r ∈ ]0, 1[}.

We say that the ray Ri(θ) lands at a point β ∈ P1 if

lim
r→1,r<1

ϕ−1
i

(
re2iπθ

)
= β.

The König’s method Kf,σ maps the ray Ri(θ), θ ∈ R/Z, to the ray Ri(σθ). In
particular, if σθ = θ mod(1), the ray Ri(θ) is fixed and classical arguments that
go back to Fatou imply that these fixed rays must land at fixed points of Kf,σ

which, in our case, must be repelling (see Hubbard-Schleicher-Sutherland [HSS],
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proof of Prop. 6, for more details). Figure 2 illustrates this situation. It shows an
immediate basin where Kf,σ is conjugate to Qσ in the case σ = 3. There are two
fixed rays landing at two repelling fixed points.

Step 2. We claim that if β ∈ P1 is a repelling fixed point of Kf,σ with multiplier λ,
the number of fixed internal rays that can land at β is strictly less than 2 log σ/ log λ.
This result is a version of the Pommerenke-Levin-Yoccoz inequality (see for example
Hubbard [Hub], Levin [L], Petersen [Pe] or Pommerenke [Po]). We will just give
the sketch of the proof. For more details, the reader is invited to consult Hubbard-
Schleicher-Sutherland [HSS], Prop. 7.

In a neighborhood Vβ of β, the dynamics of Kf,σ is conjugate to z 7→ λz.
Therefore, the quotient Vβ modulo Kf,σ is a torus T isomorphic to C∗ modulo
multiplication by λ. The Julia set J (Kf,σ) projects to a set J ⊂ T in this torus.

Each fixed internal ray that lands at β does so in a connected component of
Vβ ∩ Ωi, where Ωi is the immediate basin containing the ray. By hypothesis, the
dynamics of Kf,σ in Vβ ∩Ωi is conjugate to the dynamics of z 7→ zσ in the unit disk
intersected with a neighborhood of 1. Figure 2 illustrates this situation. It shows
fundamental domains for the dynamics of the maps Kf,σ and Qσ in a neighborhood
of the landing points of the two fixed rays.

Ω

0

D

α

ϕ

Kf,σ

QσP1

Figure 2. The conformal representation ϕ : (Ω, α) → (D, 0) be-
tween the immediate basin Ω of α = 4 and the unit disk D, con-
jugates the Halley’s method Kf,σ, for f(z) = (z − 4)(z2 + 1) and
σ = 3, to Qσ : z 7→ zσ. There are two fixed rays landing at two
repelling fixed points. Fundamental domains for the dynamics of
Kf,σ and Qσ near those fixed points are drawn.

As a consequence, one easily proves that the fixed external rays that land at β
project to simple closed curves in T and that the connected components of T \ J
that contain those simple closed curves are disjoint annuli with moduli all equal to
π/ log σ.

Then, a classical length-area inequality asserts that the sum of moduli of the
disjoint annuli is not greater than 2π/ log λ. Moreover, if equality were achieved,
the annuli would be round annuli and the torus T would be equal to the union of
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the closed annuli. As a consequence, the set J ⊂ T would be a union of circles.
Thus, the intersection J (Kf,σ) ∩ Vβ would consist in finitely many analytic arcs.
Therefore, any point of J (Kf,σ) ∩ Vβ would be in the boundary of at most two
Fatou components. However, when d > 2, Kf,σ has at least 3 basins of attraction
and any point of J (Kf,σ) must be in the boundary of all the basins of attraction.
Thus, when d > 2, the sum of moduli of the disjoint annuli is strictly less than
2π/ log λ.

Step 3. By assumption, the König’s method Kf,σ has (σ−2)(d−1) repelling fixed
points in C and their multipliers are all equal to σ. We just saw that each of these
is the landing point of at most one internal ray. In each basin, there are σ− 1 fixed
rays. Thus, there are at least d(σ − 1) − (σ − 2)(d − 1) = d + σ − 2 fixed internal
rays that land at ∞.

The multiplier of Kf,σ at ∞ is 1 + (σ− 1)/(d− 1). Thus, we have the inequality

d + σ − 2 < 2
log σ

log
(

1 +
σ − 1
d− 1

) .

By concavity of the logarithm, we also have

log
(

1 +
1

d− 1
(σ − 1)

)
≥ log 1 +

1
d− 1

(log σ − log 1) =
log σ

d− 1
.

Thus, we get

d + σ − 2 < 2
log σ

log
(

1 +
σ − 1
d− 1

) ≤ 2(d− 1).

We have a contradiction since d ≤ σ. ¤

4. The Julia sets and bifurcation loci.

4.1. The limit of J (Kf,σ) as σ tends to +∞. Figure 3 shows the Julia sets of
the König’s methods Kf,σ for f(z) = z(z − 1)(z − i)(z + i)(z + 1− i) and σ = 2, 5,
10 and 100. The pixels are colored according to which root of f their orbit under
iteration of Kf,σ converge. The Julia set appears in black.

We will now prove Prop. 6: as σ tends to ∞, the sequence of Julia sets J (Kf,σ)
converges, for the Hausdorff topology on compact subsets of P1, to {∞} union the
bisecting locus of the set of roots of f.

Let f be a polynomial with at least 2 distinct roots and let B denote the union
of {∞} and the bisecting locus of the set of roots of f. For any point z ∈ P1 \ B,
there is a unique zero α of f closest to z. By Prop. 2, there exists a neighborhood
Vz on which the sequence Kf,σ converges uniformly to α as σ tends to +∞.

It follows that for each root α, Kf,σ(Vα) ⊂ Vα for all sufficiently large σ. Thus,
Vα is contained in the immediate basin of attraction of α for Kf,σ, as soon as σ is
sufficiently large. Similarly, if z does not belong to B and α is the root of f closest
to z, Kf,σ(Vz) ⊂ Vα for all sufficiently large σ. As a consequence, Vz is contained
in the immediate basin of α for Kf,σ, as soon as σ is sufficiently large.

Consequently, any spherical ε-neighborhood of B contains the Julia set J (Kf,σ)
for all sufficiently large σ.

To finish the proof we must also show that B is contained in a spherical ε-
neighborhood of J (Kf,σ) for all σ sufficiently large. By compactness it is enough
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−4−4i −4−4iKf,2 Kf,5

Kf,100Kf,10

Figure 3. The Julia sets of the König’s methods Kf,σ for the
polynomial f(z) = z(z − 1)(z − i)(z + i)(z + 1 − i) and σ = 2, 5,
10 and 100.

to show this for each point z ∈ B. Let D denote a spherical ball of radius ε centered
at z. Take z1, z2 ∈ D in different components of the complement of B. This is
possible since f has more than one root. We have just seen that the points z1 and
z2 will be in different basins of attraction of Kf,σ for all sufficiently large σ. This
shows that J (Kf,σ) intersects D for all sufficiently large σ.
Remark. Let f be a degree d polynomial with a unique root α closest to 0, which
is allowed to be multiple. Setting xn = Kn+2,f (0), then xn converges to α by Prop.
2. A computation shows that

xn+1 =
−a0

a1 + a2xn + a3xnxn−1 + · · ·+ adxn · · ·xn−d+2
,

where we have set x−1 = x−2 = . . . = x−d+1 = 0. So this is a simple root finding
algorithm that works for almost every polynomial. The algorithm is known (see for
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example [Ho2]), and convergence is generally slow. Notice that this is not a purely
iterative algorithm in the sense defined previously since it requires keeping track of
d− 1 successive approximations at each step.

4.2. Pictures of parameter spaces for König’s methods of cubic polyno-
mials.

4.2.1. A possible parametrization. The parameter space of cubic polynomials f(z) =
a3z

3+a2z
2+a1z+a0 may be identified with C4. Prop. 9 tells us that when two poly-

nomials f1 and f2 are equal up to pre-composition with an affine automorphism of
C and up to post-composition with a scaling map, then the König’s methods Kf1,σ

and Kf2,σ are conjugate. Therefore, we may restrict our study to centered polyno-
mials (i.e., the barycentre of the roots is equal to 0 or equivalently, a2 = 0). We
may also assume that the polynomial is monic (i.e., a3 = 1). We are still allowed to
normalize our polynomials by pre and post-composing with a scaling map (keeping
the property of being monic). This will reduce the study to a one dimensional pa-
rameter space. There is no canonical way of doing this reduction. One possibility
is to ask that one of the roots be equal to 1. In this way, we omit the polynomial
z 7→ z3. The König’s method of this polynomial is Kf,σ(z) = 2z/(σ + 1). However,
with this normalization, we still have different polynomials with conjugate König’s
methods.

We prefer to normalize our polynomials by setting a0 = a1. Indeed, if a0 6= 0
and a1 6= 0, then setting λ = a1/a0 ∈ C∗ and a = a2

0/a1 ∈ C∗, we have f(λz)/λ3 =
z3 + az + a. For a = 0, we have the polynomial z3. Therefore, up to conjugacy
by an affine map, the only omitted König’s methods are those of the polynomials
z3 + a0 and z3 + a1z. They are respectively conjugate to the König’s method of
the polynomials z3 − 1 and z(z2 − 1). The advantage of this normalization is the
following.

Lemma 16. Let f1(z) = z3 + a1z + a1 and f2(z) = z3 + a2z + a2 be two cubic
polynomials. The two König’s methods Kf1,σ and Kf2,σ are affine conjugate if and
only if a1 = a2.

Proof. Let us write A(z) = bz + c. Prop. 9 asserts that Kf1,σ and Kf2,σ are affine
conjugate if and only if there exists λ ∈ C∗ such that

z3 + a1z + a1 = λ
(
(bz + c)3 + a2(bz + c) + a2

)
.

After simplifications, this gives λ = 1, b = 1, c = 0 and a1 = a2. ¤

4.2.2. The pictures. We will now investigate parameter spaces of Kfa,σ for various
values of σ.

As we have seen previously, the König’s method Kfa,σ has generically (σ − 1)
free critical points. A relevant picture consists in coloring the parameters a ∈
C according to the number of critical points attracted by each root of fa. The
bifurcation locus Bσ appears in black on each picture (see definition 4 for the
definition of bifurcation locus). A theorem by Mañe, Sad and Sullivan [MSS] asserts
that this set has empty interior. The bifurcation locus has been defined as the set
of parameters where the period of superattracting cycles is not locally bounded. It
is possible to prove that it is also the closure of the set of parameters where the
Julia set does not vary continuously (see for example McMullen’s book [McM2]).
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The bifurcation locus also coincides with the set of parameters where the behaviour
of the free critical points under iteration is not stable.

Observe that the polynomial fa has multiple roots as soon as the discriminant
∆(fa) = −a2(4a + 27) vanishes, i.e., for a = 0 and a = −27/4 (we plotted those
parameters on the parameter pictures). Thus, when a ∈ C \ {−27/4, 0}, fa has
three distinct roots α1, α2 and α3. In that case, an easy computation shows that
the free critical points of Kfa,σ are α1, α2, α3 and the roots of the polynomial:

Qa,σ(z) =
(z − α1)σ+1

f ′a(α1)
+

(z − α2)σ+1

f ′a(α2)
+

(z − α3)σ+1

f ′a(α3)
.

In fact, the degree of Qa,σ is generically σ − 1 (there are simplifications). When
σ ≤ 5, the equation Qa,σ = 0 is solvable by radicals. However, as soon as σ ≥ 5,
one gets into trouble. To overcome this difficulty, one may try and find a good
approximation of the roots of Qa,σ using Newton’s method. The problem consists in
finding good initial starting points to which apply Newton’s method. One solution
is provided by Hubbard-Schleicher-Sutherland [HSS].

−8−2.5i

2+2.5i

B2

0− 27
4

−3.3−.75i

−1.8+.75i

Figure 4. The parameter space for the family Kfa,2, a ∈ C.

For σ = 2, König’s method is the same as Newton’s method. When a /∈
{0,−27/4}, the König map Kfa,2 has one free critical point: 0. Figure 4 shows
the set of parameters a ∈ C for which this critical point is not in the basin of
attraction of one of the roots of fa. The boundary of this set is the bifurcation
locus B2. It appears in black on Figure 4. The unbounded connected component
of C \ B2 corresponds to parameters a for which 0 is in the immediate basin of one
of the roots of fa. The picture to the right is an enlargement on a copy of the
Mandelbrot set. The existence of such a copy is not surprising: McMullen [McM3]
showed that copies of the Mandelbrot set (or generalizations known as multibrot
sets) are dense in the bifurcation locus of any analytic family of rational maps.

Figure 5 shows the parameter spaces for the families of König’s methods of order
3 and 4. Generically, the König’s methods Kfa,3 have two free critical points. The
set of parameters for which the two free critical points are in the basin of attraction
of the same root of fa is colored white. The set of parameters for which the two
free critical points are in the basin of attraction of a root of fa, but not in the
same basin is colored light grey. The main components Ω0 and Ω1 correspond to
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Ω′1

− 27
4

0
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Figure 5. Left: the parameter space for König’s methods of order
3. Right: the parameter space for König’s methods of order 4.

parameters for which the two free critical points are in the immediate basins of the
roots of fa. The bifurcation locus B3 is colored in black. Again, one may find tiny
copies of the Mandelbrot set by zooming on the bifurcation locus.

Generically, the König’s methods Kfa,4 have three free critical points. The
coloring of the parameter pictures depends on whether the three free critical points
lie in the same basins or not: white when they all belong to the same basin (for
example in Ω0), light grey when two of them are in the same basin and the third
is in another basin (for example in ω1 or ω′1), dark grey when the three critical
points are in three distinct basins (for example in Ω2). The components Ω0, Ω1,
Ω′1 and Ω2 correspond to parameters for which the three free critical points are in
the immediate basins of the roots.

Figure 6 shows a similar picture for König’s methods of order 5. The two top-
right pictures show an enlargement onto a copy of the Mandelbrot set. Generically,
the König’s methods Kfa,5 have four free critical points. The coloring of the pa-
rameter pictures depends on whether the four free critical points lie in the same
basins or not: white when they all are in the same basin (for example in Ω0),
light grey when three of them are in the same basin (for example in Ω1 and Ω′1),
darker grey when one of the basin contains no free critical point and the other two
contains two free critical points (for example in Ω2), and the darkest grey when
two basins contain one free critical point and the remaining basin contains two free
critical points (for example in Ω3). Figure 6 also shows some dynamical pictures
which illustrate each of these cases. The free critical points ωi, i = 1..4, of the
corresponding König’s methods are plotted. On the bottom-right picture, one can
observe that the free critical point ω4 is not in the basin of a root of fa. There is
one extraneous attracting cycle.

Figure 7 shows parameter pictures for higher order König’s methods of cubic
polynomials. The size of the screen is fixed. There does not seem to be any obvious
limit behaviour of the bifurcation locus as σ increases.

While drawing all those pictures, we looked for cubic polynomials whose König’s
methods have several extraneous cycles. For this purpose, while scanning the screen,
we counted the number of free critical points which were outside the basins of the
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Figure 6. The parameter space for the family Kfa,5, a ∈ C, with
enlargements on a copy of the Mandelbrot set and some dynamical
pictures.

roots of fa. We have not been able to locate any König’s method of cubic polynomial
with more than one extraneous cycle.

5. Appendix. On the number of distinct zeros of some rational maps.

In this section, we will use some dynamical results studied above in order to
obtain lower bounds on the number of distinct zeros of some rational maps. This
idea already appears in the work of Bergweiler and Eremenko [BE] and in the work
of Epstein [E].
Proposition 8. Assume P : C→ C is a polynomial having at least 2 distinct zeros
and n multiple zeros. Then, the nonlinearity

NP =
P ′′

P ′
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Figure 7. The parameter spaces for the family Kfa,σ, for a ∈ C
and σ = 6, 7, 8 and 9.

has at least n distinct zeros which do not coincide with the zeros of P .

Proof. The proof is elementary. Each multiple zero of P gives rise to an attracting
(but not superattracting) fixed point of its Newton’s method NP = KP,2. There-
fore, NP has n attracting (but not superattracting) fixed points. The hypothesis
that P has at least two distinct zeors guaranties that NP has degree 2 or more.
By Fatou’s theorem, the basin of attraction of each such fixed point must contain
a critical point of NP . The critical points of NP are the simple zeros of P and the
zeros of P ′′ which are not zeros of P ′. Thus, each of the n basins of attraction
contains a zero of P ′′ which is neither a zero of P nor a zero of P ′.
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This result is sharp. Indeed, for any integer n ≥ 2, the polynomial P : z 7→
(zn − 1)2 has n multiple zeros (the nth roots of unity). Its nonlinearity

NP =
(2n− 1)zn − (n− 1)

z(zn − 1)

has exactly n distinct zeros (the nth root of (n− 1)/(2n− 1)).
The points where the second derivative of P vanishes are the points where P

is best approximated by affine maps. When considering a rational map f : P1 →
P1, it may be more natural to consider the points where the rational maps is
best approximated by Moebius transformations. Those are the points where the
Schwarzian derivative of f vanishes.
Proposition 9. Assume f : P1 → P1 is a rational map having at least 2 distinct
zeros and n multiple zeros. Then, the Schwarzian derivative

Sf = N′
f −

1
2
N2

f

has at least n distinct zeros which do not coincide with the zeros of f .
Proof. The proof is almost the same as above. Instead of considering Newton’s
method, we will consider Halley’s method Hf = Kf,3. Again, the multiple zeros of
Hf give rise to attracting (but not superattracting) fixed points of Hf . The critical
points of Hf are the simple zeros of f and the zeros of the Schwarzian derivative.
The proposition follows as above.

Remark. In this situation, we do not know whether this result is optimal or not.

We have seen that the number of distinct zeros of (1/f)[σ−2] is equal to the
number of repelling fixed points of Kf,σ in C. This leads us to the following result.
Proposition 10. Let αi ∈ C, i = 1, . . . , d be d distinct complex numbers, λi ∈ C∗
be arbitrary complex numbers, and n ≥ 1 be an integer. Define g : P1 → P1 to be
the rational map

g(z) =
d∑

i=1

λi

(z − αi)n
.

Let N be the number of zeros of g in C counted with multiplicities, and M be the
number of distinct zeros. Then, we have

(d− 1)(n− 1) + 1 ≤ N ≤ (d− 1)n and
dn

2
− d + 1 ≤ M ≤ (d− 1)n.

Proof. The bounds on N are obtained as follows. The rational map g is propor-
tional to the (n− 1)-th derivative of the rational map

d∑

i=1

λi

z − αi
.

This rational map has a zero at infinity of order at least 1 and at most d (in which
case it is the reciprocal of a polynomial of degree d). Thus g has a zero at infinity
of order at least 1+ (n− 1) and at most d+(n− 1). Since g has dn poles, counting
multiplicities, it follows that it has dn zeros in P1, counting multiplicities, and the
bounds on N follow.
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We now have to prove the lower bound on M . Let us introduce the rational
map h = Id + ng/g′. This rational map has superattracting fixed points with local
degree at least n + 1 at the points αi. Therefore, its degree is at least dn/2 + 1,
again by Fatou’s theorem. Consequently, it has at least dn/2 + 2 fixed points in
P1, and thus, at least dn/2 + 1− d distinct repelling fixed points in C. Those fixed
points are distinct zeros of g.
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[Kö] J. König, Über eine Eigenschaft der Potenzreihen, Math. Ann. 23, 447–449 (1884).
[L] G.M. Levin, On Pommerenke’s inequality for the eigenvalues of fixed points, Colloq.

Math. 62, 167–177 (1991).
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