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Abstract: Given a complex number λ of modulus 1, we show that the bifur-
cation locus of the one parameter family {fb(z) = λz + bz2 + z3}b∈C contains
quasi-conformal copies of the quadratic Julia set J(λz + z2). As a corollary, we
show that when the Julia set J(λz + z2) is not locally connected (for example
when z 7→ λz + z2 has a Cremer point at 0), the bifurcation locus is not lo-
cally connected. To our knowledge, this is the first example of complex analytic
parameter space of dimension 1, with connected but non-locally connected bi-
furcation locus. We also show that the set of complex numbers λ of modulus 1,
for which at least one of the parameter rays has a non-trivial accumulation set,
contains a dense Gδ subset of S1.
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1. Introduction

In this article, we study the one parameter family of cubic polynomials

fb(z) = λz + bz2 + z3, b ∈ C,

where λ = e2iπθ is a fixed complex number of modulus 1. We call K(fb) the filled-
in Julia set of the polynomial fb, J(fb) its Julia set, and Mλ the connectedness
locus of the family:

K(fb) =
{
z ∈ C

∣∣ (
f◦nb (z)

)
n∈N is bounded

}
,

J(fb) = ∂K(fb), and
Mλ =

{
b ∈ C ∣∣ J(fb) is connected

}
.

The notations Kb and Jb are kept for other purposes.
In Sects. 2 and 3, we recall some classical results related to the study of the

dynamics of cubic polynomials. Those results can be found in [BH1]. In partic-
ular, we prove that the connectedness locus Mλ is connected and we construct
dynamically a conformal representation Φλ : C \ Mλ → C \ D (compare with
[Z1]). This enables us to define the parameter rays Rλ(θ), θ ∈ R/Z.

In Sect. 4, we prove that the parameter rays Rλ(1/6) and Rλ(1/3) land at
a common parameter b0. The techniques we use are not new. They are similar
to those developed by Douady and Hubbard in [DH1] to study the landing
properties of parameter rays in the quadratic family {z 7→ z2 + c}c∈C. We then
define the wake W0 as the connected component of C \

(
Rλ(1/6) ∪ Rλ(1/3)

)

that contains the parameter ray Rλ(1/4) (see Fig. 5). In Sect. 5, we study the
dynamical features of the polynomials fb when the parameter b ranges in the
wake W0.

Matters get interesting in Sect. 6. Let us define Θ ⊂ R/Z (respectively Θ′ ⊂
R/Z) to be the Cantor set of angles that can be written in base 3 with only
0’s and 1’s (respectively with only 1’s and 2’s). We denote by Xb the set of
dynamical rays whose arguments belong to Θ. In Sect. 6, we prove that the set
Xb moves holomorphically as long as the parameter b remains in the wake W0.
As a consequence, we show that for any parameter b ∈ W0, the filled-in Julia set
K(fb) contains a quasi-conformal copy of the filled-in Julia set K(λz + z2) (see
Fig. 11).

Theorem A. For any parameter b ∈ W0 and for any θ ∈ Θ, the dynamical ray
Rb(θ) does not bifurcate. We define Xb to be the set

Xb =
⋃

θ∈Θ

Rb(θ).

We also define Jb to be the set Jb = Xb \Xb and Kb to be the complement of the
unbounded connected component of C \Jb. Then, Kb is contained in the filled-in
Julia set K(fb), its boundary Jb is contained in the Julia set J(fb) and Kb is
quasi-conformally homeomorphic to the filled-in Julia set K(λz + z2).

In the wake W0, one can see a copy M ′ of a Mandelbrot set (see Fig. 1). We
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Mλ

K(λz + z2)

Fig. 1. Zooms in Mλ for λ = eiπ(
√

5−1).

give a precise definition of the set M ′, but we do not prove that it is homeomor-
phic to the Mandelbrot set. This has been done in [EY] in the case λ 6= 1, and
is not known in the case λ = 1. However, we show that the boundary of M ′ is
equal to the accumulation set of the parameter rays Rλ(θ/3), θ ∈ Θ′ (see Fig.
12):

∂M ′ = X ′ \ X ′, where X ′ =
⋃

θ∈Θ′
Rλ(θ/3).

At the same time, we show that the connected components of W0 \ X ′ can be
indexed by dyadic angles ϑ ∈ R/Z. The connected component Wϑ is bounded
by two parameter rays Rλ(ϑ−) and Rλ(ϑ+) landing at a common parameter
bϑ ∈ M ′. The angles ϑ− and ϑ+ are two consecutive endpoints of the Cantor
set Θ′. We prove that given any dyadic angle ϑ = (2p + 1)/2k, we have ϑ+ =
ϑ− + 1/(2 · 3k+1). We then define the sets Xϑ, Jϑ and Kϑ in the following way:

Xϑ =
⋃

θ∈Θ

Rλ

(
ϑ−

3
+

θ

3k+1

)
,
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Jϑ = Xϑ \Xϑ, where the closure is taken in C, and Kϑ is the complement of the
unbounded connected component of C \ Jϑ. Our main results are the following
(see Fig. 1).

Main Theorem. Let λ ∈ S1 be a complex number of modulus 1 and ϑ ∈ R/Z
be a dyadic angle. The set Kϑ is contained in Mλ ∩ Wϑ, its boundary Jϑ is
contained in the boundary of Mλ and the parameter bϑ belongs to Jϑ. Besides,
there exists a quasi-conformal homeomorphism defined in a neighborhood of Kϑ,
sending Kϑ to K(λz + z2).

Corollary A. For each complex number λ of modulus 1, the bifurcation locus of
the one parameter family fb(z) = λz + bz2 + z3, b ∈ C, contains quasi-conformal
copies of the quadratic Julia set J(λz + z2).

Corollary B. If the Julia set J(λz + z2) is not locally connected, then the
bifurcation locus ∂Mλ is not locally connected.

We would like to mention that one has to be careful. Indeed, in the context
of Newton’s method of cubic polynomials, Pascale Roesch [R] has an example
of a locally connected Julia set containing a copy of a quadratic Julia set which
is not locally connected. In our case, this does not occur because the set Mλ is
full.

Observe that when t ∈ R \ Q does not satisfy the Bruno condition, the
quadratic Julia set J(e2iπtz + z2) is known to be non-locally connected. Hence,
the set of values of λ ∈ S1 for which Mλ is not locally connected contains a dense
Gδ subset of S1. Lavaurs [La] proved that the connectedness locus of the whole
family of cubic polynomials is not locally connected. In the parameter space
of real cubic polynomials, the bifurcation locus is also known to be non-locally
connected (see [EY]). To our knowledge, we give the first example of complex
parameter space of dimension 1 with connected but non-locally connected bifur-
cation locus.

Shizuo Nakane brought to our attention that we could prove the existence of
parameter rays with a non-trivial accumulation set. He has already proved this
result in the family of real cubic polynomials in a joint work with Y. Komori
(see [NK]). To state the next corollary, we need to introduce some notations.

Given any complex number λ of modulus 1, we define Pλ to be the quadratic
polynomial Pλ(z) = λz + z2. For any angle θ ∈ R/Z, we define RPλ

(θ) to be
the dynamical ray of the polynomial Pλ of angle θ. We also consider the Cantor
map (or devil staircase) χΘ : R/Z → R/Z which is constant on the closure of
each connected component of R/Z \Θ and is defined on Θ by:

χΘ


∑

i≥1

εi

3i


 =

∑

i≥1

εi

2i
, where εi ∈ {0, 1}.

Corollary C. Given any complex number λ of modulus 1, any dyadic angle
ϑ = (2p+1)/2k and any angle θ ∈ Θ, the accumulation set of the parameter ray
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Rλ(ϑ−/3 + θ/3k+1) is reduced to a point if and only if the accumulation set of
the quadratic ray RPλ

(χΘ(θ)) is reduced to a point.

Using an accumulation theorem due to Douady (see [Sø]), we then prove
that the set of complex numbers λ of modulus 1, for which at least one of the
parameter rays Rλ(θ) ⊂ C \Mλ has a non-trivial accumulation set, contains a
dense Gδ subset of S1.

We would like to make some comments about the choice of the family fb.
We wanted to work with a family of cubic polynomials having a persistently
indifferent fixed point. We decided to put this fixed point at the origin. This
condition is achieved, since the map fb has an indifferent fixed point at 0 with
multiplier λ. The reason why we have chosen this parametrization is that the
polynomial fb is monic and thus, has a preferred Böttcher coordinate. This
will be useful to define a conformal representation Φλ : C \ Mλ → C \ D in a
dynamical way. This is important since we want to be able to transfer results
from the dynamical plane to the parameter plane. However, one should observe
that the maps fb and f−b are always conjugate by the affine map z 7→ −z.
Indeed,

−fb(−z) = −(−λz + bz2 − z3) = f−b(z).
This explains why parameter pictures are symmetric with respect to the origin.

The central argument we use is inspired from techniques developed by Tan Lei
in [TL]. There, she proves that there are similarities between the Mandelbrot set
and certain Julia sets. We would also like to mention that Pia Willumsen proved
the existence of copies of the quadratic Julia set J(z2−1) in the parameter space
of a well-chosen family of cubic polynomials.

Hubbard made the suggestion that the two dimensional connectedness locus
of the space of cubic polynomials may contain homeomorphic copies of the set

{
(c, z) | K(z2 + c) is connected and z ∈ K(z2 + c)

}
.

After we exposed our results in Crete 1, Lyubich and McMullen made the ob-
servation that pushing further our arguments, we should be able to prove this
result. This would show the existence of cubic polynomials being in the same
combinatorial class, but not being topologically conjugate. Such a result has
been conjectured by Kiwi in his thesis [K].

2. Conformal Representation of C \Mλ

In this section, we will use results by Branner and Hubbard [BH1] to prove that
Mλ is full, connected and has capacity 3/ 3

√
4. We will construct, in a dynamical

way, the Riemann mapping Φλ : C\Mλ → C\D, that is tangent to b 7→ b · 3
√

4/3
at infinity. A similar study has already been done by Zakeri [Z1]. Working with
the escaping critical value, he defines an analytic map from C \ Mλ to C \ D
which turns out to be a covering map of degree 3. We will instead work with the
escaping co-critical point. We will need this approach later, to transfer dynamical
results to the parameter plane. In [Z2], Zakeri also gives an interesting proof of
the connectivity of Mλ based on Teichmüller theory of rational maps.

1 Euroconference in Mathematics on Crete; Holomorphic Dynamics; Anogia, June 26 – July
2, 1999.
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2.1. Potential functions. Recall that Fatou proved that the Julia set of any poly-
nomial is connected if and only if the orbit of each critical point is bounded. In
our case, the map fb has two critical points. However, fb has an indifferent fixed
point at 0. Hence, there is always one critical point with a bounded orbit. Indeed,
there are only three possible cases:

• the fixed point is parabolic (θ ∈ Q), and there is at least one critical point of
fb in its basin of attraction;

• the fixed point is linearizable (it could be the case even if θ is not a Bruno
number), and the boundary of the Siegel disk is accumulated by the orbit of
at least one critical point of fb;

• the fixed point is a Cremer point and is contained in the limit set of at least
one critical point of fb.

Remark. We will say that this critical point is “captured” by 0.
In particular, when J(fb) is disconnected, there is exactly one critical point

ω1 with bounded orbit, and one escaping critical point ω2.
Let us now recall some classical results that can be found in [DH1] and [BH1].

Definition 1 (Potential functions). For any b ∈ C, define gb : C → [0,+∞[
by

gb(z) = lim
n→∞

1
3n

log+
∣∣f◦nb (z)

∣∣,

where log+ is the supremum of log and 0. Also define the function G : C→ R+

by
G(b) = sup

{ω | f ′b(ω)=0}
gb(ω).

Remark. When the Julia set J(fb) is connected, G(b) = 0. Otherwise, G(b) =
gb(ω2).

Proposition 1. We have the following properties:

1. gb is continuous and subharmonic on all of C;
2. gb(fb(z)) = 3gb(z);
3. gb vanishes exactly on K(fb) and is harmonic on C \K(fb);
4. the critical points of gb in C\K(fb) are the preimages of the escaping critical
point ω2 by an iterate f◦nb , n ≥ 0;
5. the mapping (b, z) 7→ gb(z) is a continuous plurisubharmonic function;
6. the function G is continuous and subharmonic.

Remark. We will see that G vanishes exactly on the set Mλ and is harmonic
outside Mλ.

Definition 2 (Equipotentials). The level curve g−1
b {η} is called the dynamical

equipotential of level η. The level curve G−1{η} is called the parameter equipo-
tential of level η.

When the Julia set is connected, the two critical points are contained in
K(fb), and the harmonic map gb : C \K(fb) → R+ has no critical point. Hence,
every dynamical equipotential of fb is a real-analytic simple closed curve. More
generally, observe that gb has no critical point in the region {z ∈ C | gb(z) >
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G(b)}, and every dynamical equipotential of level η > G(b) is a real-analytic
simple closed curve.

The orthogonal curves to dynamical (respectively parameter) equipotentials
will be called dynamical (respectively parameter) rays. We will be more precise
about the definition of rays below.

Fig. 2 shows a filled-in Julia set with two dynamical equipotentials of level
1/3 and 1, together with four segments of dynamical rays.

fb

fb

4− 4i−4− 4i Rb(9/12)

ω2

ω′2

4 + 4i

Rb(1/12)

Rb(1/4)−4 + 4i

Rb(5/12)

Ub

U ′b

fb

Fig. 2. A disconnected Julia set; Φλ(b) = ϕb(ω
′
2) = e1/3+2iπ/12.

2.2. The Böttcher coordinate at infinity. The vector field

ξb =
1
2
grad(gb)/|grad(gb)|2

is a meromorphic vector field on C \K(fb), having poles exactly at the critical
points of gb in C \K(fb).

Definition 3. We define Sb to be the union of the critical points of gb in C \
K(fb) and their stable manifolds for the vector field ξb. For any b ∈ C, we define
Vb to be the open set C \ (K(fb) ∪ Sb).

We have normalized our cubic polynomials so that they are monic. Hence,
there exists a unique Böttcher coordinate ϕb defined in a neighborhood of infinity,
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and tangent to the identity at infinity. Consider the flow (z, τ) 7→ Fb(z, τ) of the
vector field ξb, where τ ∈ R is a real time. For any point z ∈ Vb, we can extend
ϕb at z using the formula ϕb(z) = e−τϕb(Fb(z, τ)), where τ ∈ [0,+∞[ is chosen
large enough so that Fb(z, τ) ∈ Ub. The following proposition is then easily
derived from the analyticity of ξb and its analytic dependence on b.

Proposition 2 (Böttcher coordinate). There exists a unique analytic iso-
morphism ϕb defined in a neighborhood of infinity, tangent to the identity at
infinity, and satisfying

ϕb ◦ fb ◦ ϕ−1
b (z) = z3.

The mapping ϕb extends to an analytic isomorphism ϕb : Vb → C and satisfies
log |ϕb| = gb on this set. Furthermore, ϕb depends analytically on b, i.e., the set

V =
⋃

b∈C
{b} × Vb

is open and the mapping Φ : V → C2 defined by Φ(b, z) = (b, ϕb(z)) is an analytic
isomorphism from V onto its image.

Remark. An easy computation shows that near infinity, we have ϕb(z) = z +
b/3 +O(1/|z|).

When J(fb) is connected, Vb = C \K(fb) and the Böttcher coordinate ϕb is
a univalent mapping

ϕb : C \K(fb) → C \ D,

and on C\K(fb), we have gb = log |ϕb|. In particular, the dynamical equipotential
of level η is the set

ϕ−1
b

{
eη+2iπθ | θ ∈ R/Z

}
,

i.e., the preimage by ϕb of the circle of radius eη centered at 0.
When J(fb) is disconnected this property still holds for equipotentials of level

η > G(b), i.e., in the region {z ∈ C | gb(z) > G(b)}.
In both cases, the push-forward (ϕb)∗(ξb) is the radial vector field w∂/∂w. In

particular, ϕb maps every trajectory of the vector field ξb to a segment of line
with constant argument. Hence, ϕb(Vb) is a star-shaped domain with respect
to infinity, i.e., for every angle θ ∈ R/Z, there exists a radius r(b, θ) ≥ 1 such
that w ∈ ϕb(Vb) and arg(w) = 2πθ if and only if |w| > r(b, θ). Finally, along a
trajectory z(τ) of the vector field ξb, we have gb(z(τ)) = gb(z(0)) + τ .

Definition 4 (Dynamical Rays). For any b ∈ C, the dynamical ray Rb(θ) is
defined as

Rb(θ) = ϕ−1
b

{
re2iπθ | r > r(b, θ)

}
.

Remark. The vector field ξb = 1
2grad(gb)/|grad(gb)|2 can be extended holomor-

phically to C \K(fb). Then, it has a sink at infinity and the dynamical rays are
exactly the stable manifolds of infinity for the vector field ξb.

When r(b, θ) = 1, the accumulation set of a dynamical ray is contained in the
Julia set J(fb). This is true for any angle θ ∈ R/Z when J(fb) is connected. If
the limit

z0 = lim
r↘1

ϕ−1
b (re2iπθ)
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exists, we will say that the dynamical ray Rb(θ) lands at z0. When J(fb) is
disconnected and when r(b, θ) > 1, then the limit

z0 = lim
r↘r(b,θ)

ϕ−1
b (re2iπθ)

exists and is a critical point ω of gb. In this case, we will say that the dynamical
ray Rb(θ) bifurcates on ω.

If b2 = 3λ, then there is unique critical point. This critical point cannot
escape (because 0 “captures” a critical point), and b ∈ Mλ. On the other hand,
if b2 6= 3λ and b /∈ Mλ, then fb(ω2) has a preimage ω′2 6= ω2. Following Branner
and Hubbard, we call it the co-critical point to ω2.

Let us observe that ϕb is well defined at the co-critical point ω′2. Indeed, ω′2
cannot be a critical point of gb since it is not an inverse image of ω2. Let us
consider the trajectory z(τ) defined by the initial condition z(0) = ω′2. We have
gb(z(τ)) = gb(ω′2) + τ . In particular, since the region {z ∈ C | gb(z) > gb(ω′2)}
does not contain critical points of gb we see that the trajectory z(τ) is defined
on [0, +∞[. Hence, ω′2 belongs to Vb, and ϕb(ω′2) is well defined.

Definition 5. Given b ∈ C \Mλ, the escaping critical point is called ω2 and the
co-critical point to ω2 is called ω′2 . We define the mapping Φλ : C \Mλ → C by

Φλ(b) = ϕb(ω′2).

Proposition 3 (Branner-Hubbard [BH1] and Zakeri [Z1], [Z2]). The set
Mλ is full and connected. Besides, the map Φλ : C\Mλ → C\D is the conformal
isomorphism which is tangent to b 7→ b · 3

√
4/3 at infinity.

Proof. We have seen that if b2 = 3λ, then b ∈ Mλ. Now, if b2 6= 3λ, the two
critical points are the two distinct roots of the equation f ′b(z) = 0, and by
the implicit function theorem, we can follow them locally. Hence, we can follow
holomorphically the two critical points locally outside Mλ. For the same reason,
we can follow holomorphically the two distinct co-critical points locally outside
Mλ.

Lemma 1. The mapping Φλ : C \Mλ → C \ D is analytic.

Proof. Fix a parameter b0 /∈ Mλ, let ω2 be the escaping critical point and ω′2
be the co-critical point to ω2. There exist two holomorphic maps defined in a
neighborhood U of b0 that follow the two co-critical points. Let ω′ : U → C be
the one which coincides with ω′2 at b0. The set

W = {(b, z) ∈ C2 | z ∈ C \K(fb)}
is the preimage of ]0,+∞[ by the map g(b, z) = gb(z) which is continuous by 5)
of proposition 1. Hence, W is open. Thus, by restricting U if necessary, we may
assume that for any b ∈ U , the co-critical point ω′(b) belongs to C \K(fb). This
shows that, for any b ∈ U , the escaping co-critical point is ω′(b).

Furthermore, the mapping (b, z) 7→ ϕb(z) is analytic in a neighborhood of
any point (b0, z0) such that z0 ∈ Vb0 . Hence, it is analytic in a neighborhood of
(b0, ω

′
2). It follows immediately that Φλ(b) = ϕb(ω′2(b)) is analytic in a neighbor-

hood of b0. ¤
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The proof that Φλ is an isomorphism between C \Mλ and C \D is an appli-
cation of the principle: an analytic mapping is an isomorphism if it is proper of
degree 1. We shall use a similar argument for quasi-regular mappings in section
8.

Lemma 2. Outside Mλ, we have G(b) = log |Φλ(b)|. Besides, the function G
vanishes exactly on Mλ.

Proof. If b 6∈ Mλ, we can write:

log
∣∣∣Φλ(b)

∣∣∣ =
1
3n

log
∣∣∣ϕb

(
f◦n(ω′2)

)∣∣∣

=
1
3n

log
∣∣∣∣f◦n(ω′2) +O

(
1

|f◦n(ω′2)|
)∣∣∣∣ = G(b).

Since ϕb takes values outside D, so does Φλ. Hence, G is positive outside Mλ.
Besides, if b ∈ Mλ, both critical points are in the filled-in Julia set K(fb). So,
their orbits are bounded and G(b) = 0. ¤

We can now see that Mλ is full. This is an immediate consequence of the fact
that sub-harmonic functions satisfy the maximum principle. Thus, level sets are
full.

By Picard’s theorem, the mapping Φλ : C \ Mλ → C \ D has a removable
singularity at infinity. Hence, we can extend it to infinity. We necessarily have
Φλ(∞) = ∞ since otherwise G would be a non-constant bounded subharmonic
function on P1.

More precisely, a simple computation shows that when |b| tends to infinity,

ω2 = −2b

3
+ o(1), and ω′2 = −b− 2ω2 =

b

3
+ o(1).

Then,
fb(ω′2)
(ω′2)3

= 4 +O
(

1
|b|

)
,

and for any integer n ≥ 1, we have

f
◦(n+1)
b (ω′2)
(f◦nb (ω′2))3

= 1 +O
(

1
|b|

)
.

Hence, we obtain

Φλ(b) = ω′2
∏(

f
◦(n+1)
b (ω′2)
(f◦nb (ω′2))3

)1/3n+1

=
3
√

4
3

b +O
(

1
|b|

)
.

We will now show that Φλ : C \Mλ → C \ D is a proper mapping. Since G
is continuous, G(b) tends to 0 as b tends to the boundary of Mλ. Hence, Φλ(b)
tends to ∂D when b tends to ∂Mλ from outside Mλ. Since Φλ is analytic, it is a
proper mapping.

We can finally see that it has degree 1 since infinity has only one preimage
counted with multiplicity. Hence, it is an isomorphism between C\Mλ and C\D.
In particular, Mλ is connected.
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We have defined parameter equipotentials. We can now define parameter rays
(see Fig. 5).

Definition 6 (Parameter Rays). The parameter ray Rλ(θ) is defined as

Rλ(θ) = Φ−1
λ

{
eη+2iπθ | η > 0

}
.

If the limit
b0 = lim

r↘1
Φ−1

λ (re2iπθ)

exists, we will say that the parameter ray Rλ(θ) lands at b0.

3. Copies of Quadratic Julia Sets in the Dynamical Plane

In this section, we will first recall a result which is essentially due to Branner
and Hubbard [BH2] (see also [Br]): when the parameter b is not in Mλ, there
exists a restriction of fb which is a quadratic-like mapping. The reader will find
information on polynomial-like mappings and related results in [DH2].

Definition 7 (Polynomial-like mappings). A polynomial-like mapping f :
U ′ → U of degree d is a ramified covering of degree d between two topological
disks U ′ and U , with U ′ relatively compact in U . One can define its filled-in
Julia set K(f) and its Julia set J(f) as follows:

K(f) = {z ∈ U ′ | (∀n ∈ N) f◦n(z) ∈ U ′}, and J(f) = ∂K(f).

A polynomial-like mapping of degree 2 will be called a quadratic-like mapping.

Let us recall the so-called Straightening Theorem due to Douady and Hub-
bard.

Proposition 4 (Straightening Theorem). If f : U ′ → U is a polynomial-like
mapping of degree d, then there exists

• a polynomial P : C→ C of degree d,
• a neighborhood V of the filled-in Julia set K(P ) such that the mapping P :
P−1(V ) = V ′ → V is a polynomial-like map, and
• a quasiconformal homeomorphism ϕ : U → V with ϕ(U ′) = V ′, such that
∂ϕ = 0 almost everywhere on K(f) and such that on U ′

ϕ ◦ P = f ◦ ϕ.

Moreover, if K(f) is connected, then P is unique up to conformal conjugacy.

Definition 8. Two polynomial-like mappings f and g are said to be hybrid equiv-
alent if there is a quasi-conformal h that conjugates f and g, with ∂h = 0 almost
everywhere on the filled-in Julia set K(f).

Proposition 5. For any b ∈ C \ Mλ, let us denote by Ub the open set {z ∈
C | gb(z) < 3G(b)} and U ′

b the connected component of f−1(Ub) that contains
the non-escaping critical point ω1. Then, the restriction fb : U ′

b → Ub is a
quadratic-like mapping and its hybrid class contains the polynomial z 7→ λz+z2.
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Fig. 2 shows the domains U ′
b and Ub for the parameter Φ−1

λ (e1/3+2iπ/12).
Proof. We have seen that any dynamical equipotential of level η > G(b) is a
real-analytic simple closed curve. This applies to the dynamical equipotential
of level 3G(b). Thus, the set Ub is a topological disk. Besides, it only con-
tains one critical value of fb (the non-escaping one). The set f−1(Ub) is the
set {z ∈ C | gb(z) < G(b)} which is bounded by a lemniscate pinching at the
escaping critical point ω2. Each connected component of f−1(Ub) is a topological
disk compactly contained in Ub. Besides, the restriction of fb to the connected
component of f−1(Ub) containing the non-escaping critical point ω1 is a ram-
ified covering of degree 2, ramified at ω1. This is precisely the definition of a
quadratic-like mapping.

Next, to see that the hybrid class of this quadratic-like mapping contains
z 7→ λz + z2, we will use the following result.

Lemma 3. The multiplier of an indifferent fixed point is a quasi-conformal in-
variant.

Remark. Năıshul′ [Năı] shows a much better result since he proves that the
multiplier of an indifferent fixed point is a topological invariant. Pérez-Marco
[PM] gave a new proof of this result which is much simpler. The case of quasi-
conformal conjugacy is easier to handle. R. Douady gave an easy proof based on
the compacity of the space of quasi-conformal mappings with bounded dilatation
(see [Y]). We will present a new proof based on holomorphic motions and the
Ahlfors-Bers theorem. Those tools are more complicated than the ones used by
Douady, but the idea of the proof fits very well within this article.
Proof. Assume that two germs f0 : U0 → C and f1 : U1 → C are quasi-
conformally conjugate. Call ψ the quasi-conformal conjugacy. Then µ = ∂ψ/∂ψ
is a Beltrami form invariant by f0. Integrating the Beltrami form µε = εµ,
ε ∈ D(0, 1/||µ||∞), we get a family of quasi-conformal homeomorphisms ψε de-
pending analytically on ε, and a family of analytic germs

fε = ψε ◦ f0 ◦ ψ−1
ε .

We claim that this family of germs depend analytically on ε (this is not imme-
diate since ψ−1

ε does not need to depend analytically on ε; Douady explained a
geometric proof to us, and Lyubich explained an analytic proof to us which we
give here). Since fε ◦ ψε = ψε ◦ f0, for any z ∈ U we can write

∂fε

∂ε

∣∣∣
ψε(z)

+
∂fε

∂z
· ∂ψε

∂ε

∣∣∣
z

+
∂fε

∂z
· ∂ψε

∂ε

∣∣∣
z

=
∂ψε

∂ε

∣∣∣
f0(z)

.

Since both ∂fε/∂z and ∂ψε/∂ε vanish, we see that ∂fε/∂ε vanishes.
In particular, the multiplier λ(ε) of the fixed point depends analytically on

ε. Since it cannot become repelling or attracting (all the germs are conjugate to
f0 which has an indifferent fixed point), the modulus of λ(ε) is constant. Hence,
λ(ε) is a constant function, and λ(1) = λ(0). ¤

The hybrid class of the quadratic-like map fb : U ′
b → Ub contains a quadratic

polynomial having an indifferent fixed point with multiplier λ. Such a polynomial
is always analytically conjugate to the polynomial z 7→ λz + z2.
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Definition 9. For any parameter b ∈ C \ Mλ, the filled-in Julia set of the
quadratic-like map fb : U ′

b → Ub is called Kb and its Julia set is called Jb.

We will now give more information about the dynamics of fb1 for the param-
eter b1 with potential η = 1/3 and external argument θ = 1/4 (we could have
picked any parameter with potential η > 0 and external argument θ ∈]1/6, 1/3[).

Proposition 6. Let b1 be the parameter b1 = Φ−1
λ (e1/3+2iπ/4). If λ 6= 1, the two

dynamical rays Rb1(0/1) and Rb1(1/2) both land at a common fixed point β 6= 0
which is repelling. If λ = 1, the rays Rb1(0/1) and Rb1(1/2) both land at the
parabolic fixed point β = 0.

Rb1 (7/12)

Rb1 (1/4)

g−1
b1
{1/3}

Rb1 (1/2)

−4− 5i

−4 + 3i 4 + 3i

4− 5i

Rb1 (−1/12)

Rb1 (0/1)

g−1
b1
{1}

ω′2

β

α

ω2

U ′′b1

Ub1

U ′b1

Fig. 3. The rays Rb1 (0/1) and Rb1 (1/2) both land at a common fixed point β.

Proof. We still denote by Ub1 the set Ub1 = {z ∈ C | gb1(z) < 3G(b1)}. Its
preimage f−1

b1
(Ub1) has two connected components. Note that U ′

b1
is the one

containing ω′2 in its boundary. Denote by U ′′
b1

the other component (see Fig.
3). Remember that fb1 : U ′

b1
→ Ub1 is a degree 2 proper mapping. Similarly

fb1 : U ′′
b1
→ Ub1 is a degree 1 proper mapping and since U ′′

b1
is compactly

contained in Ub1 , fb1 has exactly one fixed point in U ′′
b1

. This fixed point is
repelling. We will denote it by α.

Next, observe that the rays Rb1(−1/12) and Rb1(7/12) bifurcate on ω2, and
since −1/12 < 0 < 1/2 < 7/12, they separate α from the rays Rb1(0/1) and
Rb1(1/2).
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Since fb1 : U ′
b1
→ Ub1 is a degree 2 proper mapping, and since U ′

b1
is compactly

contained in Ub1 , Rouché’s Theorem shows that fb1 has exactly two fixed points
in U ′

b1
, counted with multiplicity. If λ 6= 1, those two fixed points are distinct.

One is 0 which is indifferent, and has multiplier λ, the other one will be denoted
by β. A theorem due to Douady-Hubbard [DH1] and to Sullivan asserts that
every fixed dynamical ray that does not bifurcate, lands at a fixed point which
is either repelling, or parabolic with multiplier 1. Since the two fixed dynamical
rays Rb1(0/1) and Rb1(1/2) cannot land at 0 (since the multiplier is neither
repelling nor equal to 1), they must both land at the fixed point β. Since β is
the landing point of a ray, either it is repelling or it is a multiple fixed point.
But since there are only two fixed points in U ′

b1
counted with multiplicity the

former case occurs.
On the other hand, if λ = 1, there is only one fixed point in U ′

b1
: the fixed

point at 0 which is parabolic with multiplier 1. Hence the two fixed rays Rb1(0/1)
and Rb1(1/2) must both land at 0.

We will now describe the set of rays that accumulate on the Julia set Jb1 of
the quadratic-like map fb1 : U ′

b1
→ Ub1 .

Definition 10. We define Θ ⊂ R/Z to be the set of angles θ such that for any
n ≥ 0, 3nθ ∈ [0, 1/2] mod 1.

Remark. The set Θ is the set of angles θ that can be written in base 3 with only
0’s and 1’s. It is a Cantor set and is forward invariant under multiplication by
3.

Fig. 4 shows the dynamical rays Rb1(θ) for θ ∈ Θ. The following proposi-
tion shows that those rays accumulate on the Julia set Jb1 of the quadratic-like
restriction of fb1 .

ω2

Rb1 (1/2) Rb1 (0/1)

Rb1 (1/3) Rb1 (1/6)

Rb1 (4/9) Rb1 (1/18)

Fig. 4. The dynamical rays Rb1 (θ), θ ∈ Θ, accumulate on the Julia set Jb1 of the quadratic-
like restriction of fb1 .
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Proposition 7. Let b1 be the parameter b1 = Φ−1
λ (e1/3+2iπ/4) and Jb1 be the

Julia set of the quadratic-like mapping fb1 : U ′
b1
→ Ub1 . Then, for any θ ∈ Θ,

the dynamical ray Rb1(θ) does not bifurcate. Besides, if we define

Xb1 =
⋃

θ∈Θ

Rb1(θ),

then Xb1 \Xb1 = Jb1 .

Proof. Let us first recall that the rays Rb1(0/1) and Rb1(1/2) do not bifurcate
and land at the same fixed point β. Hence, the curve {β} ∪Rb1(0/1)∪Rb1(1/2)
cuts the plane in two connected components V1 and V2. We call V2 the one
containing the escaping critical point ω2. Observe that for any θ ∈ [0, 1/2], the
dynamical ray Rb1(θ) is contained in C \ V2. Now, assume that there exists an
angle θ ∈ Θ such that the dynamical ray Rb1(θ) bifurcates. Then, it bifurcates
on a preimage of the escaping critical point ω2 and one of its forward images
bifurcates on ω2. But since by definition of Θ, we have 3kθ ∈ [0, 1/2] mod 1, for
any k ≥ 0, the forward orbit of the ray Rb1(θ) is contained in C \ V2. Hence no
forward image of Rb1(θ) can bifurcate on the escaping critical point ω2 ∈ V2.

Since the set Θ is closed (it is an intersection of closed sets), Xb1 is closed in
C \K(fb1). Hence,

Xb1 \Xb1 ⊂ J(fb1).

We will now show that for any angle θ ∈ Θ, the accumulation set I of the ray
Rb1(θ) is contained in the Julia set Jb1 of the quadratic-like mapping fb1 : U ′

b1
→

Ub1 . Indeed, the accumulation set I is contained in the Julia set J(fb1) of fb1 ,
and its forward orbit is contained in C \ V2. In particular, it cannot enter the
region U ′′

b1
, and the forward orbit of I is entirely contained in U ′

b1
. This shows

that I ⊂ Kb1 . Since I is contained in the boundary of K(fb1), we see that
I ⊂ Jb1 , and

Xb1 \Xb1 ⊂ Jb1 .

To prove the reverse inclusion, we will use the fact that the backward orbit
of the fixed point β by the quadratic-like map fb1 : U ′

b1
→ Ub1 is dense in Jb1 .

Let us show by induction on n that if z ∈ Jb1 satisfies f◦nb1
(z) = β, then there

is an angle θ ∈ Θ such that Rb1(θ) lands at z. This is true for n = 0 since the
rays Rb1(0/1) and Rb1(1/2) land at β. Now, if the induction property holds for
some n, let us show that it is true for n + 1. Given a point z ∈ Jb1 satisfying
f
◦(n+1)
b1

(z) = β, its image fb1(z) satisfies the induction hypothesis. Thus, there
is an angle θ ∈ Θ such that the ray Rb1(θ) lands at fb1(z). Observe that, on
one hand, this ray cannot contain the escaping critical value (indeed, the ray
containing the escaping critical value has argument 3/4 /∈ Θ), and its three
preimages land at the three preimages of fb1(z). On the other hand, there are
three angles θ1, θ2 and θ3 such that 3θi = θ, i = 1, 2, 3. Two of them, let’s say θ1

and θ2, are in Θ, and the third one, θ3, is contained in ]2/3, 5/6[ mod 1. Hence,
the ray Rb1(θ3) lands at the preimage of fb1(z) which is contained in U ′′

b1
. This

shows that one of the two rays Rb1(θ1) or Rb1(θ2) lands at z.

Remark. It is easy to see that no other dynamical ray can accumulate on Jb1

since their forward orbits eventually enter V2.
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4. Definition of the Wake W0

We will now restrict our study to a particular region in the parameter plane: the
wake W0.

Definition 11. The wake W0 is defined to be the connected component of

C \ Rλ(1/6) ∪Rλ(1/3) ∪Rλ(2/3) ∪Rλ(5/6)

that contains the parameter ray Rλ(1/4).

Remark. In fact, we will show that the parameter rays Rλ(1/6) and Rλ(1/3)
land at a common parameter b0 which satisfies the equation b2

0 = 4(λ− 1). The
wake W0 is the region contained between those two rays (see Fig. 5).

There are several ways of proving the landing property of the parameter rays
Rλ(1/6) and Rλ(1/3). We will use an argument similar to the one used by
Douady and Hubbard in [DH1]. We will need to modify it slightly in the case
λ = 1.

Rλ(1/2)

Rλ(1/3) Rλ(1/6)W0

Rλ(0/1)

Rλ(2/3) Rλ(5/6)

Mλ

Fig. 5. The parameter rays Rλ(1/6) and Rλ(1/3) land at b0, whereas the rays Rλ(2/3) and
Rλ(5/6) land at −b0.

Proposition 8. The parameter rays Rλ(1/6) and Rλ(1/3) land at the same
parameter b0 satisfying b2

0 = 4(λ−1). The parameter rays Rλ(2/3) and Rλ(5/6)
land at −b0.
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−3− 3i 3− 3i

3 + 3i−3 + 3i Rλ(1/3)

Rλ(2/3) Rλ(5/6)

Rλ(1/6)

Fig. 6. The parameter space for λ = 1. The four rays Rλ(1/6), Rλ(1/3), Rλ(2/3) and
Rλ(5/6) land at 0.

Remark. When λ = 1, we have b0 = 0 and the four rays land at 0 (see Fig. 6).

Proof. In the case λ 6= 1, we will show that for any parameter b0 contained in
the accumulation set of the ray Rλ(1/6), fb0 has a parabolic fixed point with
multiplier 1. The set of such parameters is discrete – in fact b2

0 = 4(λ − 1).
Since the accumulation set of any ray is connected, this will prove that the ray
Rλ(1/6) lands. A similar argument shows that the rays Rλ(1/3), Rλ(2/3) and
Rλ(5/6) land at b0 or −b0. We will then have to show that the rays Rλ(1/6)
and Rλ(1/3) land at the same parameter.

In the case λ = 1, we will show that the only parameter in the accumulation
set of the rays Rλ(1/6), Rλ(1/3), Rλ(2/3) and Rλ(5/6) is b0 = 0. This will
conclude the proof of the proposition.

Lemma 4. For any parameter b0 contained in the accumulation set of the ray
Rλ(1/6), Rλ(1/3), Rλ(2/3) or Rλ(5/6), the polynomial fb0 has a parabolic fixed
point with multiplier 1.

Proof. Let us prove this lemma for the ray Rλ(1/6). We will proceed by contra-
diction. Assume that fb0 has no parabolic fixed point with multiplier 1. Since
b0 ∈ Mλ, the dynamical ray Rb0(1/2) does not bifurcate. It is a fixed dynamical
ray. Hence, it lands at a fixed point α, which is either repelling, or parabolic
with multiplier 1. By hypothesis on b0, the second case is not possible.
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We claim that for b sufficiently close to b0, the ray Rb(1/2) still lands on a
repelling fixed point of fb. The proof is classical and can be found in the Orsay
Notes [DH1].

Thus, for any b ∈ U1, the ray Rb(1/2) does not bifurcate on a critical point. In
particular, the dynamical ray Rb(1/6) cannot contain the co-critical point. But
this precisely shows that the parameter ray Rλ(1/6) omits the neighborhood U1

of b0 which gives the contradiction. ¤

The fixed points of the polynomial fb are 0 and the roots of the equation
λ − 1 + bz + z2 = 0. If λ 6= 1, there is a multiple root (i.e., a parabolic fixed
point with multiplier 1) if and only if the discriminant is zero: b2− 4(λ− 1) = 0.
Hence, when λ 6= 1, we see that the parameter rays Rλ(1/6), Rλ(1/3), Rλ(2/3)
and Rλ(5/6) can only accumulate on b0 or −b0, where b2

0 = 4(λ− 1). Since the
accumulation set of a ray is connected, we have proved that those rays land at
b0 or −b0.

When λ = 1, the origin is a persistently parabolic fixed point with multiplier
1. Hence, to be able to conclude that the parameter rays land, we must improve
our lemma. The following lemma completes the proof of the proposition in the
case λ = 1.

Lemma 5. When λ = 1 the parameter rays Rλ(1/6), Rλ(1/3), Rλ(2/3) and
Rλ(5/6) land at b0 = 0.

Proof. Let us prove this lemma for the parameter ray Rλ(1/6). The proof is
essentially the same as in Lemma 4. We proceed by contradiction, assuming
that the parameter ray Rλ(1/6) accumulates on b0 6= 0.

On the one hand, the dynamical ray Rb0(1/2) cannot land at a repelling fixed
point, since otherwise there would be a neighborhood U1 of b0 in which the
dynamical ray Rb(1/2) would not bifurcate (as in Lemma 4).

On the other hand, if the dynamical ray Rb0(1/2) were landing at a parabolic
fixed point with multiplier 1 (i.e., the fixed point 0) then we could still show
that there exists a neighborhood U1 in which the dynamical ray Rb(1/2) would
not bifurcate. The idea of the proof is the following.

Since b0 6= 0, the parabolic fixed point 0 is simple, i.e., f ′′b0(0) 6= 0. We will
show that we can follow continuously a repelling petal Prep(b) in a neighborhood
U0 of b0. On this repelling petal, the inverse branches f−1

b : Prep(b) → Prep(b)
are well defined and iterates of these inverse branches converge to 0. We will
also show that the dynamical ray Rb0(1/2) enters the repelling petal Prep(b0).
Consequently, there exists a neighborhood U1 of b0 such that for any b ∈ U1, the
dynamical ray Rb(1/2) enters the repelling petal Prep(b), and thus lands at the
parabolic fixed point 0.

Let us fill in the details. Since we assume b0 6= 0, there exists a neighbor-
hood U0 of b0 and a radius ε > 0 such that for any b ∈ U0, fb restricts to
an isomorphism between the disk V (b) centered at 0 with radius ε/|b| and
fb(V (b)). Now, observe that the change of coordinates z 7→ Z = −1/bz con-
jugates fb : V (b) → fb(V (b)) to an isomorphism Fb : V̂ → Fb(V̂ ), where

V̂ = {Z ∈ P1 | 1/ε < |Z|} and Fb(Z) = Z + 1 +O
(

1
|Z|

)
.



Julia Sets in Parameter Spaces 19

−1− i

1 + i

Rb(1/2)

Rb(0/1)

Prep(b)

Patt(b)

Fig. 7. An attracting petal Patt(b) and a repelling petal Prep(b). The attracting petal Patt(b)
is contained in K(fb) and the ray Rb(1/2) eventually enters and stays in Prep(b).

Let us choose ε sufficiently small, so that |Fb(Z)−Z− 1| < √
2/2 for any b ∈ U0

and any Z ∈ V̂ . Then, denote by P̂att and P̂rep the sectors

P̂att = {Z ∈ C
∣∣ √2/ε− Re(Z) < |Im(Z)|},

and
P̂rep = {Z ∈ C

∣∣ √2/ε + Re(Z) < |Im(Z)|}.
Besides, denote by Patt(b) and Prep(b) the sets

Patt(b) = {z ∈ C∗ | − 1/bz ∈ P̂att},

and
Prep(b) = {z ∈ C∗ | − 1/bz ∈ P̂rep}.

The set Patt(b) is called an attracting petal and the set Prep(b) is called a
repelling petal (see Fig. 7). One can easily check that the assumptions on ε
implies that for any b ∈ U0, we have

(1) fb(Patt(b)) ⊂ Patt(b);
(2) f◦nb converges uniformly on compact subsets of Patt(b) to 0;
(3) there exists an inverse branch f−1

b : Prep(b) → Prep(b);
(4) [f−1

b ]◦n converges uniformly on compact subsets of Prep(b) to 0.
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Let us express the ray Rb0(1/2) as a countable union of segments

Sj = ϕ−1
b0

{
− et | 3j ≤ t ≤ 3j+1

}
, j ∈ Z,

so that fb0(Sj) = Sj+1. Clearly, we see that Patt(b0) is contained in the filled-in
Julia set K(fb0). Thus, Rb0(1/2) does not intersect Patt(b0). Since we assumed
that the ray Rb0(1/2) lands at 0, there exists an integer j0 such that Sj0 is
contained in Prep(b0). Again, by shrinking U0 if necessary, we may assume that
U0 ⊂ {b ∈ C | G(b) < 3j0}. This condition implies that for any b ∈ U0, the ray
Rb(1/2) is defined up to potential at least 3j0 , and

Sj(b) = ϕ−1
b

{
− et | 3j ≤ t ≤ 3j+1

}
, j ≥ j0

is well defined. Finally, since {(z, b) | b ∈ U0, z ∈ Prep(b)} is open and since
ϕ−1

b depends continuously (even analytically) on b, we see that there exists a
neighborhood U1 ⊂ U0 of b0, such that for any b ∈ U1 the segment Sj0(b) is
contained in Prep(b). Hence, Sj0+k(b) = [f−1

b ]◦k(Sj0(b)) is well defined for any
k ≥ 0, and the ray Rb(1/2) lands at 0. However, this implies that the parameter
ray R(1/6) does not intersect U1. ¤

We still need to prove that when λ 6= 1, the parameter rays Rλ(1/6) and
Rλ(1/3) land at the same parameter. Remember that we defined the wake W0

as the connected component of

C \ Rλ(1/6) ∪Rλ(1/3) ∪Rλ(2/3) ∪Rλ(5/6)

that contains the parameter ray Rλ(1/4).
Let us call b0 the landing point of the parameter ray Rλ(1/6). We will use the

fact that the connectedness locus Mλ is symmetric with respect to 0 (remember
that fb and f−b are conjugate by z 7→ −z). The symmetry of Mλ shows that
two of the four rays Rλ(1/6), Rλ(1/3), Rλ(2/3) or Rλ(5/6) land at b0 and the
other two land at −b0. Moreover, the parameter rays Rλ(1/6) and Rλ(2/3) are
symmetric, so that Rλ(2/3) cannot land at b0 (6= −b0). Hence, if the parameter
ray Rλ(1/3) were not landing at b0, then the ray Rλ(5/6) would. In that case,
the wake W0 would contain the parameter b = 0 (see Fig. 8). We will get a
contradiction by proving that for any parameter b ∈ W0, the dynamical rays
Rb(0/1) and Rb(1/2) land at the same point, whereas this is not the case for
b = 0.

Lemma 6. For any parameter b ∈ W0, the two dynamical rays Rb(0/1) and
Rb(1/2) do not bifurcate.

Remark. This lemma and the following one are in fact true as soon as b does not
belong to one of the parameter rays Rλ(1/6), Rλ(1/3), Rλ(2/3) or Rλ(5/6).
Proof. If b /∈ Rλ(1/3) ∪ Rλ(2/3), the dynamical ray Rb(0/1) does not bifur-
cate. Indeed, if Rb(0/1) were bifurcating, it would bifurcate on a preimage of
the escaping critical point ω2, i.e., there would be a non-negative n, such that
f−n

b (ω2) belongs to the ray Rb(0/1). Since this is a fixed ray, ω2 would belong
to the ray Rb(0/1) and consequently ω′2 would lie on either Rb(1/3) or Rb(2/3)
which contradicts that b /∈ Rλ(1/3)∪Rλ(2/3). A similar argument shows that if
b /∈ Rλ(1/6) ∪ Rλ(5/6), the dynamical ray Rb(1/2) does not bifurcate and also
lands at a fixed point which is either repelling or parabolic with multiplier 1. ¤
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−b0 b0
0

b1

−b1

W0

Rλ(1/6)

Rλ(5/6)Rλ(2/3)

Rλ(1/3)

Rλ(3/4)

Rλ(1/4)

Fig. 8. If the parameter rays Rλ(1/6) and Rλ(1/3) were not landing at the same parameter,
the wake W0 would contain the parameter b = 0.

Lemma 7. If λ 6= 1, then given any b ∈ W0, the rays Rb(0/1) and Rb(1/2) both
land at the same repelling fixed point β(b) 6= 0. If λ = 1, then given any b ∈ W0,
the rays Rb(0/1) and Rb(1/2) both land at the parabolic fixed point β(b) = 0.

Proof. To prove this lemma, we will use an idea due to Peter Häıssinsky which
has been explained to us by Carsten Petersen. We have seen that in the domain
W0, the dynamical rays Rb(0/1) and Rb(1/2) do not bifurcate. It follows that the
set X = Rb(0/1)∪Rb(1/2) moves holomorphically with respect to the parameter
b. Hence, the λ-Lemma by Mañe, Sad and Sullivan [MSS] shows that the closure
of X in P1 moves holomorphically. In particular, if for some parameter b1 ∈ W0

the two dynamical rays Rb(0/1) and Rb(1/2) land at the same fixed point, they
do so everywhere in W0, i.e., there exists a holomorphic function β(b) such that
β(b) is a fixed point of fb and is the landing point of the two rays Rb(0/1) and
Rb(1/2). Besides, the multiplier at β(b) is a univalent function, that takes values
in C\D. Hence, either the multiplier is constantly equal to 1 (which corresponds
to a persistently parabolic landing point) or it takes values in C \ D (and the
landing point remains repelling in all W0).

Thus, we just need to show that there is a parameter b ∈ W0 for which the
two rays Rb(0/1) and Rb(1/2) land at a common fixed point, and that this point
is repelling when λ 6= 1, whereas it is parabolic with multiplier 1 when λ = 1.
This is precisely given by Proposition 6 for the parameter b1 = Φ−1

λ (e1/3+2iπ/4).
¤

To conclude the proof of the proposition, it is enough to see that when b = 0
and λ 6= 1, the two dynamical rays R0(0/1) and R0(1/2) cannot land at the
same point. The polynomial f0(z) = λz + z3 is an odd polynomial. Thus, the
filled-in Julia set is symmetric with respect to the origin. In particular, the
dynamical rays R0(0/1) and R0(1/2) are symmetric. Thus, if they land (in fact,
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the two critical orbits are symmetric, the Julia set is connected, and the rays
land) the landing points are symmetric with respect to the origin. However, the
origin cannot be the landing point of those rays because it is indifferent with
multiplier λ 6= 1. Hence, the two dynamical rays R0(0/1) and R0(1/2) land at
two symmetric, distinct fixed points.

We have proved that in the wake W0, the two dynamical rays Rb(0/1) and
Rb(1/2) both land at a common fixed point β(b) which depends holomorphically
on b. If λ = 1, we have seen that β(b) = 0 is a double fixed point, and the cubic
polynomial fb has only one other fixed point: α(b) = −b. If λ 6= 1, the map fb

has three distinct fixed points: 0, β(b) and α(b) = −b− β(b).

Definition 12. For any b ∈ W0, we call β(b) the landing point of the dynamical
rays Rb(0/1) and Rb(1/2), and we call α(b) = −b − β(b) the fixed point of fb

which is neither 0 nor β(b).

Remark. Since the function β is holomorphic in W0, the function α is also holo-
morphic in W0. In fact, since W0 is simply connected and does not contain the
parameters ±b0, it is clear that the three fixed points of fb depend holomorphi-
cally on b in W0, without using the fact that β(b) is the landing parameter of
the rays Rb(0/1) and Rb(1/2).

5. Dynamics of fb in the Wake W0

We will now improve our description of the dynamical behaviour of the polyno-
mial fb, when b ∈ W0 (see Fig. 9).

Proposition 9. For any b ∈ W0, the dynamics of the map fb is as follows:

1. the two critical points of fb are distinct and there exist two holomorphic
functions ω1(b) and ω2(b) defined in W0, such that for any b ∈ W0, ω1(b) and
ω2(b) are the two critical points of fb, ω2(b) being the escaping critical point
whenever b ∈ W0 \Mλ; the co-critical points are ω′i(b) = −b− 2ωi(b);
2. the dynamical rays Rb(1/6) and Rb(1/3) do not bifurcate and both land at a
preimage β1(b) 6= β(b) of β(b); the rays Rb(2/3) and Rb(5/6) do not bifurcate
and land at the other preimage β2(b) /∈ {β(b), β1(b)}; we define Vi to be the
connected component of C \Rb(0/1) ∪Rb(1/2) that contains βi(b);
3. each of the four connected components of C \⋃

{θ|6θ∈Z}Rb(θ) contains ex-
actly one of the four points ω1(b), ω2(b), ω′1(b) or ω′2(b); we call Ui, i = 1, 2,
the one containing ωi(b) and U ′

i , i = 1, 2, the one containing ω′i(b);
4. the map fb : U ′

i → Vi, i = 1, 2, is an isomorphism and the map fb : Ui → Vi,
i = 1, 2, is a ramified covering of degree 2 ramified at ωi(b).

Proof. We will first show that we can follow the two critical points holomorphi-
cally when b ∈ W0.

Lemma 8. For any b ∈ W0, the two critical points of fb are distinct. Moreover,
there exist two holomorphic functions ω1(b) and ω2(b) defined in W0, such that
for any b ∈ W0, ω1(b) and ω2(b) are the two critical points of fb.
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β1(b)

Rb(1/2)

Rb(0/1)

Rb(1/3) Rb(1/6)

Rb(5/6)Rb(2/3)

ω′2(b)

ω1(b)
0

β(b)

ω2(b)

ω′1(b)

β2(b)

α(b)

U ′1

U1

U2

U ′2

Fig. 9. The dynamical picture of the polynomial fb when the parameter b belongs to W0.

Proof. When the two critical points of fb are distinct, i.e., b2 6= 3λ, we can
locally follow them. Since W0 is simply connected, the proof of the lemma will
be completed once we have proved that for any b ∈ W0, the two critical points
of fb are distinct.

We will proceed by contradiction and assume that for some parameter b ∈ W0,
the polynomial fb has a unique critical point ω. The polynomial fb is then
conjugate by the affine change of coordinate z 7→ w = z − ω to a polynomial
of the form w 7→ w3 + c. The Julia set of such a polynomial is invariant under
the rotation w 7→ e2iπ/3w. This shows that the Julia set of fb is invariant under
the rotation of angle 1/3 around ω. In particular, the dynamical ray Rb(1/3)
(respectively Rb(2/3)) is the image of the dynamical ray Rb(0/1) by the rotation
of angle 1/3 (respectively 2/3) of center ω (see Fig. 10). For the same reason,
the dynamical ray Rb(5/6) (respectively Rb(1/6)) is obtained from Rb(1/2) by
rotating with angle 1/3 (respectively 2/3) around ω. We will show that the
dynamical rays Rb(0/1) and Rb(1/2) cannot land at the same point β(b).

Indeed, when b ∈ W0, the two dynamical rays Rb(0/1) and Rb(1/2) land at
β(b). By rotating with angle 1/3, we see that the two rays Rb(1/3) and Rb(5/6)
land at e2iπ/3β(b). Since those two rays are separated by the curve {β(b)} ∪
Rb(0/1)∪Rb(1/2), they can only meet at β(b). Hence, β(b) = e2iπ/3(β(b)−ω)+
ω = ω. But this would imply that ω is a super-attracting fixed point, and no ray
could land at ω. This gives the contradiction. ¤
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−2 + 2i

2− 2iRb(5/6)Rb(2/3)

Rb(1/2)

ω
Rb(0/1)

Rb(1/6)Rb(1/3)

Fig. 10. The Julia set of fb for b2 = 3λ. There is a unique critical point ω and the Julia set
is invariant by rotation of angle 1/3 around ω.

Then, it is not difficult to check that the co-critical points ω′i(b) are defined
by ω′i(b) = −b − 2ωi(b), i = 1, 2. We still have a choice on which critical point
will be labelled ω1 and which one will be labelled ω2. To complete the proof
of (1), we need to prove that we can choose ω2 such that ω2(b) is the escaping
critical point of fb for any b ∈ W0 \Mλ. This will be done later and we will now
focus on the proof of (2).

Lemma 9. For any b ∈ W0 the dynamical rays Rb(1/6) and Rb(1/3) do not
bifurcate. They both land at a preimage β1(b) ∈ f−1

b {β(b)} \ {β(b)} of β(b).
The rays Rb(2/3) and Rb(5/6) do not bifurcate and land at the other preimage
β2(b) ∈ f−1

b {β(b)} \ {β(b), β1(b)}.
Proof. Let us assume that Rb(1/6) bifurcates for some parameter b ∈ W0. Then it
bifurcates on a preimage of the escaping critical point ω2, and one of its forward
images bifurcates on ω2. Since fb(Rb(1/6)) = Rb(1/2) is fixed, this means that
ω2 belongs to the ray Rb(1/6) or to the ray Rb(1/2). On the one hand, the latter
case is not possible since the ray Rb(1/2) does not bifurcate. On the other hand,
since b ∈ W0, the escaping co-critical point ω′2 belongs to a dynamical ray Rb(θ),
with θ ∈]1/6, 1/3[. Hence, the rays bifurcating on ω2 have angle θ−1/3 ∈]−1/6, 0[
and θ + 1/3 ∈]1/2, 2/3[. Thus, the ray Rb(1/6) cannot bifurcate on ω2.

A similar argument shows that the rays Rb(1/3), Rb(2/3) and Rb(5/6) do not
bifurcate.

To complete the proof of the lemma, it is enough to prove that β(b) has three
distinct preimages: β(b), β1(b) and β2(b). In other words, we need to show that
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β(b) is not a critical value of fb. Indeed, we can then argue that since fb is a
local isomorphism in a neighborhood of βi(b) and since the rays Rb(0/1) and
Rb(1/2) land at β(b), two of the rays Rb(1/6), Rb(1/3), Rb(2/3) and Rb(5/6)
land at β1(b) and two of them land at β2(b). The only possibility is that Rb(1/6)
and Rb(1/3) land at the same preimage, let us say β1(b), and the rays Rb(2/3)
and Rb(5/6) land at the other preimage β(b).

To see that β(b) is not a critical value of fb, we will proceed by contradiction.
Hence, we assume that for some parameter b ∈ W0, one critical point ω is mapped
by fb to β(b). Then, since β(b) is either repelling or parabolic with multiplier 1,
we see that ω 6= β(b). Besides, we have seen that the two critical points of fb

are distinct. Hence, in a neighborhood of ω, the map fb is a two-to-one ramified
covering, and the four rays Rb(1/6), Rb(1/3), Rb(2/3) and Rb(5/6) have to land
at ω. But this is not possible since the rays Rb(1/6), Rb(2/3) are separated by
Rb(0/1) and Rb(1/2). ¤

We will now prove (3) using a holomorphic motion argument.

Lemma 10. The set

Xb = {ω1(b), ω2(b), ω′1(b), ω
′
2(b)} ∪


 ⋃

{θ|6θ∈Z}
Rb(θ)




undergoes a holomorphic motion as b moves in W0.

Proof. The functions ωi(b) and ω′i(b), i = 1, 2, are holomorphic when b ∈ W0.
Besides, we have seen that the dynamical rays Rb(θ), 6θ ∈ Z, do not bifurcate
when b ∈ W0, and thus, move holomorphically when b ∈ W0. To prove the
lemma, we need to prove the injectivity condition of holomorphic motions. Since
we already know that the critical points are distinct, we only need to show that
for any b ∈ W0, the critical points and co-critical points cannot belong to any of
the rays Rb(θ), 6θ ∈ Z. But this is clear since otherwise, one of those rays would
have to bifurcate on a critical point. ¤

The dynamical picture for the polynomial fb1 has been studied in section 3,
and it is not difficult to check that each connected component of

C \
⋃

{θ|6θ∈Z}
Rb1(θ)

contains exactly one of the four points ω1(b1), ω2(b1), ω′1(b1) or ω′2(b1). None of
the four points are contained in the set

⋃
{θ|6θ∈Z}Rb1(θ) for any b ∈ W0. Since

the four points and
⋃
{θ|6θ∈Z}Rb1(θ) move continuously when b changes and W0

is connected, statement (3) follows.
We can now complete the proof of (1). We choose the functions ω1(b) and

ω2(b) so that ω2(b1) is the escaping critical point of fb1 . Then, the boundary of
U ′

2(b1) is the union of the two dynamical rays Rb1(1/6), Rb1(1/3) and their land-
ing point β1(b1). Using the holomorphic motion, we see that the same property
holds for U ′

2(b), i.e., the boundary of U ′
2(b) is the union of the two dynamical

rays Rb(1/6), Rb(1/3) and their landing point β1(b). In particular, the region
U ′

2(b) contains the dynamical rays Rb(θ), θ ∈]1/6, 1/3[. On the other hand, we
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know that when b ∈ W0 \Mλ, the escaping co-critical point belongs to one of
those rays. Hence, for any b ∈ W0 \ Mλ the escaping co-critical point belongs
to the region U ′

2(b). Thus the escaping co-critical point is ω′2(b) and for any
b ∈ W0 \Mλ, the escaping critical point is ω2(b).

We finally prove (4). We have called V1(b) and V2(b) the two connected com-
ponents of C \ Rb(0/1) ∪ Rb(1/2). Since the preimages of the rays Rb(0/1) and
Rb(1/2) are the rays Rb(θ), 6θ ∈ Z, the connected components of f−1

b (Vi),
i = 1, 2, are the connected components of C \⋃

{θ|6θ∈Z}Rb(θ). Let U be one of
them. Since the polynomial fb : C→ C is a ramified covering, the restriction of
fb to U is a ramified covering onto its image. Since U is simply connected, the
Riemann-Hurwitz formula shows that the degree of the restriction of fb to U is
n + 1, where n is the number of critical points of fb in U , counted with multi-
plicity. Hence, to finish the proof of (4), we only need to show that fb(Ui) = Vi

and fb(U ′
i) = Vi for i = 1, 2.

Lemma 11. For any b ∈ W0, the component U ′
2 contains the two dynamical

rays Rb(2/9) and Rb(5/18) that both land at a preimage of β2(b).

Proof. We have seen previously that for any b ∈ W0, the region U ′
2 contains the

dynamical rays Rb(θ), θ ∈]1/6, 1/3[. Since 2/9 ∈]1/6, 1/3[ and 5/18 ∈]1/6, 1/3[,
the first part of the lemma is proved.

Next, we have seen that fb is an isomorphism between U ′
2 and its image. Since

U ′
2 contains the two dynamical rays Rb(2/9) and Rb(5/18), its image contains

the two dynamical rays fb(Rb(2/9)) = Rb(2/3) and fb(Rb(5/18)) = Rb(5/6) that
both land at β2(b) ∈ V2 and the lemma is proved. ¤

Since fb maps the rays Rb(2/9) and Rb(5/18) which are in U ′
2 to the rays

Rb(2/3) and Rb(5/6) which land at β2(b) ∈ V2, we see that fb(U ′
2) = V2. Since

ω2(b) and ω′2(b) have the same image, we immediately obtain that fb(U2) = V2.
Hence, fb : U ′

2 → V2 is an isomorphism and fb : U2 → V2 is a ramified covering
of degree 2, ramified at ω2. Since the polynomial fb has degree 3, the component
V2 has no other preimage, and fb(U1) = fb(U ′

1) = V1. This finishes the proof of
the proposition.

6. Holomorphic Motion of Rays

In the rest of this article, we will work in the wake W0. We will constantly have
to deal with the critical point ω2(b), b ∈ W0. Thus, the reader must keep in mind
that the function ω2 is a holomorphic function defined throughout all the wake
W0, and that for any parameter b ∈ W0 \Mλ, the point ω2(b) is the escaping
critical point.

Theorem A. For any parameter b ∈ W0 and for any θ ∈ Θ, the dynamical ray
Rb(θ) does not bifurcate. We define Xb to the set

Xb =
⋃

θ∈Θ

Rb(θ).

We also define Jb to be the set Jb = Xb \Xb and Kb to be the complement of the
unbounded connected component of C \Jb. Then, Kb is contained in the filled-in
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Julia set K(fb), its boundary Jb is contained in the Julia set J(fb) and Kb is
quasi-conformally homeomorphic to the filled-in Julia set K(λz + z2).

Fig. 11 shows the set Kb and the set of dynamical rays Xb for a parameter
b ∈ Mλ ∩W0.

Rb(1/18)

Rb(0/1)Rb(1/2)

Rb(4/9)

Fig. 11. The set Kb and the set of set of dynamical rays Xb for a parameter b ∈ Mλ ∩W0.

Proof. Let us first prove that for any parameter b ∈ W0 and any θ ∈ Θ, the
dynamical ray Rb(θ) does not bifurcate. We will mimic the proof of Proposition
7.

For any b ∈ W0, we have defined V2(b) to be the connected component of
C\Rb(0/1)∪Rb(1/2) that contains β2(b). Since the two dynamical rays Rb(2/3)
and Rb(5/6) land at β2(b), they are contained in V2(b), and for any θ ∈ [0, 1/2],
the dynamical ray Rb(θ) is contained in C \ V2(b). Since for any θ ∈ Θ, we
have 3kθ ∈ [0, 1/2] mod 1, for any k ≥ 0, the forward orbit of the ray Rb(θ) is
contained in C \ V2(b). Next, for any b ∈ W0, we claim that the critical point
ω2(b) – which is the escaping critical point when b ∈ W0 \Mλ – belongs to the
region V2(b). Indeed, we have seen that β(b) cannot be a critical value of fb.
Hence, the set {ω2(b), β2(b)} ∪ Rb(0/1) ∪ Rb(1/2) moves holomorphically when
b ∈ W0. Hence, ω2(b) and β2(b) are always in the same connected component
of C \ Rb(0/1) ∪ Rb(1/2). Now, assume that there exists an angle θ ∈ Θ such
that the dynamical ray Rb(θ) bifurcates. Then, it bifurcates on a preimage of the
escaping critical point ω2(b) and one of its forward images bifurcates on ω2(b).
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But this contradicts the fact that the forward orbit of the ray Rb(θ) is contained
in C \ V2(b) which does not contain ω2(b).

Next, observe that the mapping h : W0 × Xb1 → Xb defined by h(b, z) =
ϕ−1

b ◦ ϕb1(z) is a holomorphic motion of Xb1 parametrized by b ∈ W0. The λ-
Lemma by Mañe, Sad and Sullivan [MSS] shows that h extends to a holomorphic
motion of the closure Xb1 of Xb1 in C. Since W0 is a simply connected Riemann
surface, SÃlodkowski’s Theorem (see [Sl], [D2]) shows that one can in fact extend
h to a holomorphic motion of the whole complex plane C, still parametrized
by b ∈ W0. We will keep the notation h for this extension. The mapping z 7→
hb(z) = h(b, z) is a K(b)-quasi-conformal homeomorphism, where K(b) is the
exponential of the hyperbolic distance between b1 and b in W0. It maps the set
of dynamical rays Xb1 to the set of dynamical rays Xb, and hb

(
Xb1 \Xb1

)
=

Xb \Xb. Since Θ is closed, the set Jb is contained in the Julia set J(fb). Since
K(fb) is full, the set Kb is contained in the filled-in Julia set K(fb). Finally, hb

provides a quasi-conformal homeomorphism between Kb and Kb1 , and since Kb1

is quasi-conformally homeomorphic to the quadratic Julia set K(λz + z2) (see
Propositions 5 and 7), Theorem A is proved.

Observe that the mapping hb conjugates the polynomials fb1 and fb on the
set of rays Xb1 , i.e., for any z ∈ Xb1 we have hb ◦ fb1 = fb ◦ hb. By continuity of
hb, this property holds on the closure Xb1 and in particular on Jb1 .

Observe also that the fixed point 0 never belong to the set Xb so that the
set Xb ∪ {0} moves holomorphically when b moves in W0. In particular, we can
choose the extension h so that h(b, 0) = 0 for any b ∈ W0. Since 0 ∈ Kb1 , this
shows that for any b ∈ W0, 0 belongs to Kb.

We finally would like to mention that we could choose the extension of h so
that hb conjugates the polynomials fb1 and fb on the whole set Kb1 , and such
that the distributional derivative ∂hb/∂z vanishes on Kb1 . But this would require
extra work and we will just mention the idea of the proof. We could first prove
that for any b ∈ W0, there is a restriction of fb : U ′

b → Ub to a neighborhood
of Kb which is a quadratic-like map. We could then prove as in Proposition
5 that the hybrid class of this quadratic-like restriction contains the quadratic
polynomial z 7→ λz+z2. In particular, for any b ∈ W0, the polynomial-like maps
fb : U ′

b → Ub and fb1 : U ′
b1
→ Ub1 would be hybrid conjugate, i.e., there would

exist a quasi-conformal homeomorphism hb : Ub1 → Ub such that hb◦fb1 = fb◦hb

on U ′
b1

and such that the distributional derivative ∂hb/∂z vanishes on Kb1 . We
would finally have to prove that the restriction of the mapping (b, z) 7→ hb(z) to
W0 ×Kb1 gives a holomorphic motion Kb1 extending h.

7. The Dyadic Wakes Wϑ

Observe that in the wake W0 we see a copy M ′ of a Mandelbrot set, with root
point at b0. In this section, we will explain why we see such a copy, and we will
determine a Cantor set Θ′ such that the boundary of M ′ is the accumulation
set of the parameter rays Rλ(θ), θ ∈ Θ′.

The reason why such a copy appears is that for any b ∈ W0, the mapping
fb : U2 → V2 is a ramified covering of degree 2, ramified at ω2. The sets U2

and V2 are topological disks and U2 ⊂ V2, and the family (fb : U2 → V2)b∈W0

is almost a Mandelbrot-like family (see [DH2]). The problem is that U2 is not
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relatively compact in V2. If λ 6= 1, one can cut along equipotentials and thicken
domains (see [M]) to construct quadratic-like mappings. Such an approach has
already been developed by Epstein and Yampolsky [EY] who proved that there
exists a homeomorphism χ : M ′ \ {b0} → M \ {1/4} such that for any b ∈ M ′,
there exists a quadratic-like restriction fb : V ′

b → Vb which is hybrid conjugate
to z 7→ z2 + χ(b).

The case λ = 1 is different and less understood. Indeed, when λ = 1, the
fixed point β(b) is parabolic with multiplier 1. In this case, no more thickening
is possible. We would like to mention that in [Ha], Häıssinsky has made a major
step in the direction of proving that in the case λ = 1, the set M ′ is nevertheless
homeomorphic to the Mandelbrot set. Since the thickening is not possible when
λ = 1, we need to adopt an approach that is not based on surgery.

Definition 13.

K ′
b =

{
z ∈ K(fb) | (∀n ≥ 0) f◦nb (z) ∈ U2

}
, J ′b = ∂K ′

b and

M ′ = {b0} ∪
{
b ∈ W0 | K ′

b is connected
}
.

Proposition 10. The sets K ′
b and M ′ have the following properties:

1. for any b ∈ W0, K ′
b is a compact set, K ′

b ⊂ K(fb) and J ′b ⊂ J(fb);
2. a parameter b ∈ W0 belongs to M ′ if and only if ω2(b) belongs to K ′

b;
3. M ′ is a compact subset of Mλ and ∂M ′ ⊂ ∂Mλ.
4. if b ∈ W0 \M ′, then any cycle of fb which entirely lies in U2 is repelling.

Proof.
1. For any b in W0, we have

K ′
b =

⋂

n≥0

Kn, where K0 = K(fb) ∩ U2 and Kn+1 =
(
fb

∣∣
U2

)−1(Kn).

Each Kn is compact. Hence, K ′
b is also compact. By definition, K ′

b ⊂ K(fb).
Given any point z in a connected component U of the interior of K(fb), if
f◦nb (z) /∈ U2, for some integer n ≥ 0, then f◦nb (U) entirely lies in C \ U2. Hence,
∂K ′

b ⊂ ∂K(fb), i.e., J ′b ⊂ J(fb).

2. Let us now consider a parameter b ∈ W0. If ω2(b) ∈ K ′
b, then ω2(b) ∈ K(fb),

and K0 = K(fb)∩U2 is connected. By induction, assume Kn is connected. Then,
since ω2(b) ∈ K ′

b, we see that fb(ω2(b)) ∈ Kn, and Kn+1 is also connected. Hence,
K ′

b is the intersection of a nested sequence of connected closed sets. Thus, K ′
b is

connected and b ∈ M ′. Conversely, if ω2(b) /∈ K ′
b, there exists an integer n ≥ 1

such that f◦nb (ω2(b)) /∈ U2. Since K0 ∈ U2, we see that Kn has at least two
connected components. This shows that K ′

b is not connected and b /∈ M ′.

3. If b belongs to M ′, then ω2(b) ∈ K ′
b ⊂ K(fb). Hence, M ′ ⊂ Mλ. We have

seen that b ∈ W0 \ M ′ if and only if there exists an integer n ≥ 1 such that
f◦nb (ω2(b) /∈ U2. Since U2 moves holomorphically, hence continuously, when b
moves inW0, we see that this is an open condition. Hence,W0\M ′ is open inW0.
Since the closure of M ′ is contained in the closure of Mλ, since Mλ∩∂W0 = {b0},
and since by definition M ′ ∩ ∂W0 = {b0}, we see that M ′ is closed, hence
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compact. Let us now show that ∂M ′ ⊂ ∂Mλ. Take a parameter b 6= b0 in
the boundary of M ′. Then in any neighborhood U ⊂ W0 of b, we can find a
parameter b′ ∈ U\M ′ so that there exists an integer n ≥ 1 with f◦nb′ (ω2(b′)) /∈ U2.
Since f◦nb (ω2(b)) ∈ U2, and since the boundary of U2 moves holomorphically
when the parameter moves in U , we can find a parameter b′′ ∈ U such that
f◦nb′′ (ω2(b′′)) ∈ ∂U2. There are two possibilities:

either f◦nb′′ (ω2(b′′)) belongs to a dynamical ray; in that case b′′ /∈ Mλ;
or f◦nb′′ (ω2(b′′)) is one of the two points β(b′′) or β1(b′′); in that case the
critical point ω2(b) is eventually mapped to a repelling fixed point, and it is
well-known that b′′ ∈ ∂Mλ.

4. Assume that b ∈ W0\M ′. Then there exists a smallest integer n ≥ 1 such that
f◦nb (ω2(b)) /∈ U2. Define U ′′ to be the nth preimage of U2 by fb|U2 and define U ′

to be the image of U ′′ by fb. Then, fb : U ′′ → U ′ is a non-ramified covering map
of degree 2. Hence, there are two well-defined inverse branches g1 : U ′ → U ′′

and g2 : U ′ → U ′′. By Schwarz’s lemma, those two branches are contracting for
the Poincaré metric of U ′′ and thus, every periodic orbit of fb contained in U ′

is repelling (there may be periodic orbits contained in the closure of U ′, but we
are only concerned by the ones contained inside U ′).

Definition 14. We define Θ′ ⊂ R/Z to be the set of angles θ such that for any
n ≥ 0, 3nθ ∈ [1/2, 1] mod 1. We also define X ′ to be the set of parameter rays

X ′ =
⋃

θ∈Θ′
Rλ(θ/3),

and for any b ∈ M ′, we define X ′
b to be the set of dynamical rays

X ′
b =

⋃

θ∈Θ′
Rb(θ).

Remark. The set Θ′ is the set of angles θ′ that can be written in base 3 with
only 1’s and 2’s. It is a Cantor set, invariant under multiplication by 3. In fact,
θ ∈ Θ′ if and only if θ − 1/2 ∈ Θ. Observe also that for any θ ∈ Θ′, the two
angles θ/3 + 1/3 and θ/3 + 2/3 also belong to Θ′.

Definition 15. We will say that b ∈ M ′ is a tip of M ′ if and only if the orbit
of ω2(b) is eventually mapped to β(b), i.e., if there exists an integer k ≥ 1 such
that f◦k(ω2(b)) = β(b).

Proposition 11. We have the following dynamical result:

1. for any parameter b ∈ M ′, we have J ′b = X ′
b \X ′

b, where the closure is taken
in C;
2. for any b ∈ M ′, any z ∈ J ′b which is eventually mapped to β(b) is the landing
point of at least two rays Rb(θ−) and Rb(θ+), where θ± ∈ Θ′. Moreover, if
f◦k(z) = β and (f◦k)′(z) 6= 0, then, there are exactly two dynamical rays
landing at z.

The parameter counterpart of this statement is the following:

3. the boundary of M ′ is the accumulation set of X ′: ∂M ′ = X ′ \ X ′;
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4. for any tip b ∈ M ′, there are exactly two angles θ− ∈ Θ′ and θ+ ∈ Θ′

such that ω′2(b) is the landing point of the two dynamical rays Rb(θ−/3) and
Rb(θ+/3). Furthermore, the parameter rays Rλ(θ−/3) and Rλ(θ+/3) land at
b ∈ M ′.

Fig. 12 shows the set X ′ of parameter rays and the set M ′.

X ′

W3/4
W1/2

W1/4

M ′

Fig. 12. The set X ′ of parameter rays and the set M ′.

Proof.
1. Let us fix a parameter b ∈ M ′. Then, the dynamical rays Rb(θ), θ ∈ Θ′, do
not bifurcate and the set X ′

b is exactly the set of rays in U2(b) whose forward
orbit remains in U2(b). Take any point z0 in the accumulation set of X ′

b. Since
Θ′ is closed, z0 ∈ J(fb). Then, since Θ′ is forward invariant by multiplication
by 3, for any integer n ≥ 0, the point zn = f◦nb (z0) is in the accumulation set
of X ′

b. Since X ′
b ⊂ U2(b), we obtain zn ∈ U2(b). But this precisely shows that

z0 ∈ J ′b. Hence X ′
b \X ′

b ⊂ J ′b.
Conversely, given any point z0 ∈ J ′b and any connected neighborhood W0

of z0, we must show that W0 contains points of X ′
b. Since z0 ∈ J ′b, for any

integer n ≥ 0, the point zn = f◦nb (z0) belongs to U2(b). Since J ′b ⊂ J(fb) (see
Proposition 10), the family of iterates f◦nb : W0 → C is not normal. Hence, there
exists a first integer n ≥ 0 such that Wn = f◦nb (W0) intersects C \ U2. Since
Wn is connected and contains the point zn ∈ U2(b), we see that Wn intersects
at least one of the rays Rb(0/1), Rb(1/2), Rb(2/3), or Rb(5/6). Besides, for any
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integer k ∈ [0, n− 1], Wk is contained in U2(b). Hence, W0 intersect a ray which
is eventually mapped to one of the rays Rb(0/1), Rb(1/2), Rb(2/3), or Rb(5/6)
and whose forward orbit remains in U2. Such a ray necessarily belongs to the
set X ′

b.

2. We only need to observe that for any z ∈ J ′b, if there exists an integer k ≥ 0
such that f◦kb (z) = β(b), then there exists a neighborhood U of z such that
f◦kb : U → f◦kb (U) is a covering. This covering may be ramified if z is a preimage
of ω2(b). However, by restricting U if necessary, we may assume that z is the only
ramification point. Since the two rays Rb(0/1) and Rb(1/2) land at β(b), there
are at least two rays Rb(θ−) and Rb(θ+) that land at z, satisfying f◦kb (Rb(θ−)) =
Rb(0/1) and f◦kb (Rb(θ+)) = Rb(1/2). Finally, since the forward orbit of z remains
in V2, we immediately see that the forward orbit of Rb(θ±) also remains in V2.
Thus, θ± ∈ Θ′. Furthermore, if (f◦kb )′(z) 6= 0, we have to show that there are
exactly two dynamical rays landing at z. Since Rb(0/1) is landing at β(b), every
dynamical ray landing at β must have combinatorial rotation number 0/1. Hence,
the dynamical rays landing at β(b) are exactly the rays Rb(0/1) and Rb(1/2).
Since f◦kb is a local isomorphism at z, mapping z to β(b), there are exactly two
dynamical rays landing at z.

3. Since Θ′ is closed, the accumulation set X ′ \ X ′ is contained in the boundary
of Mλ. Given any parameter b′ in this accumulation set, we want to show that
b′ ∈ M ′. Since, by definition of M ′, the parameter b0 belongs to M ′, we may
assume that b′ 6= b0. In this case, b′ ∈ W0. Given any parameter b ∈ X ′, and
any integer n ≥ 1, the point f◦nb (ω2(b)) belongs to a dynamical ray Rb(3nθ), for
some θ ∈ Θ′. Hence, the whole orbit {f◦nb (ω2(b))}n≥0 belongs to U2(b). Then,
by continuity of U2(b) at b′ ∈ W0, the whole orbit {f◦nb′ (ω2(b′))}n≥0 belongs
to U2(b′). But since b′ ∈ Mλ, we know that ω2(b′) ∈ K(fb′). This shows that
b′ ∈ M ′. Hence X ′ \ X ′ ⊂ ∂M ′.

Conversely, we want to prove that ∂M ′ ⊂ X ′ \ X ′. We know that b0 is the
landing point of the rays Rλ(1/6) and Rλ(1/3). Hence b0 ∈ X ′ \ X ′. Given any
parameter b∗ ∈ ∂M ′ \ {b0} ⊂ ∂Mλ ∩ W0, and any neighborhood U ⊂ W0 of
b∗, we want to show that there exists a parameter b ∈ U such that one of the
rays Rb(θ), θ ∈ Θ′ bifurcates on ω2(b). Assume this is not the case. Then, the
set X ′

b =
⋃

θ∈Θ′ Rb(θ) moves holomorphically when b ∈ U , and therefore X ′
b

remains connected for all b ∈ U and X ′
b \X ′

b ⊂ J(fb). By Proposition 10 we have
∂M ′ ⊂ ∂Mλ, so there exists a parameter b′ ∈ U such that ω2(b′) /∈ K(fb′). Since
the rays Rb′(θ), θ ∈ Θ′ do not bifurcate on ω2(b′) and since X ′

b′ \X ′
b′ ⊂ J(fb),

we see that ω2(b′) does not belong to X ′
b′ . Besides, since b′ is in the wake W0,

the critical point ω2(b′) is in the region U2(b′) Hence, there exists an angle
θ1 ∈ ]1/2, 2/3[ such that the dynamical rays Rb′(θ1) and Rb′(θ1+1/3), bifurcate
on ω2(b′). Since the set Rb′(θ1)∪Rb′(θ1 + 1/3)∪{ω2(b′)} does not intersect and
does not disconnect X ′

b, and since it separates β(b′) ∈ X ′
b′ and β2(b′) ∈ X ′

b′ , we
get a contradiction.

4. Let us now consider a tip b∗ ∈ M ′. Then, fb∗(ω2(b∗)) ∈ J ′b∗ , there exists a

smallest integer k ≥ 1 such that f◦kb∗ (ω2(b∗)) = β2(b∗) and f
◦(k−1)
b∗ is a local
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isomorphism at fb∗(ω2(b∗)). Hence, the dynamical statement shows that there
are exactly two dynamical rays landing at fb∗(ω2(b∗)). Those rays are of the
form Rb∗(θ

+) and Rb∗(θ
−), θ± ∈ Θ′.

We will now show that the parameter rayRλ(θ+/3) lands at the parameter b∗.
A similar proof can be carried out for the parameter ray Rλ(θ−/3). Observe that
the two dynamical rays Rb∗(θ

−/3) and Rb∗(θ
+/3) land at ω′2(b∗). Besides, since

the k− 1 first iterates of ω2(b∗) omit the rays Rb∗(0/1) and Rb∗(1/2), and since
the rays Rb(0/1) and Rb(1/2) move holomorphically when b ∈ W0, it follows
that there exists a neighborhood U ⊂ W0 of b∗ such that for any b ∈ U and any
i ≤ k− 1, f◦ib (ω2(b)) omits the two rays Rb(0/1) and Rb(1/2). In particular, for
any b ∈ U , the two dynamical rays Rb(θ−) and Rb(θ+) do not bifurcate. Pulling-
back once more, we see that for any b ∈ U , the dynamical rays Rb(θ−/3) and
Rb(θ+/3) do not bifurcate when b ∈ U , and so, move holomorphically when b
moves in U . Next, for every η ∈ [0, +∞[, define hη : U → C to be the holomorphic
function

hη(b) = ϕ−1
b (eη+2iπθ+/3).

When η tends to 0, one can show that hη converges uniformly on U to a function
h0 (this is in fact the way one proves that the holomorphic motion of the ray
extends to its closure). For any b ∈ U , h0(b) is the landing point of the dynamical
ray Rb(θ+). Moreover, the function h0 − ω′2 vanishes at b∗. Besides, it does not
vanish on U\Mλ since for any b ∈ U\Mλ, ω′2(b) /∈ K(fb), whereas h0(b) ∈ K(fb).
Let us assume that the parameter ray Rλ(θ+/3) does not land at b∗. Then there
exist a neighborhood U and a sequence ηk ↘ 0 such that Φ−1

λ (eηk+2iπθ+/3) /∈ U ,
i.e., the function hηk

−ω′2 does not vanish on U . Then, Hurwitz’s theorem shows
that h0−ω′2 either does not vanish on U , or vanishes everywhere on U . This is in
contradiction to the previous observation. Hence, the parameter ray Rλ(θ+/3)
lands at b∗.

Remark. We don’t claim that the only rays accumulating on J ′b are rays of the
form Rb(θ), θ ∈ Θ′, or that the only rays accumulating on M ′ are rays of the
form Rλ(θ/3), θ ∈ Θ′. This would be of the same order of difficulty as proving
that for a quadratic polynomial, the only dynamical ray accumulating the β-
fixed point is the ray of angle 0/1. In the case of Cremer polynomials, this is not
known.

We will now consider the unbounded connected components of

W0 \
⋃

θ∈Θ′
Rλ(θ/3).

We will show that those connected components are naturally indexed by the
dyadic angles ϑ = (2p + 1)/2k, k ≥ 1 and 2p + 1 < 2k, and we will denote them
by Wϑ. We will also show that the boundary of a component Wϑ is the union of
two parameter rays Rλ(ϑ−/3) and Rλ(ϑ+/3), ϑ± ∈ Θ′, that land at a common
parameter bϑ ∈ M ′.

In the next section, we will show that for every dyadic angle ϑ, Mλ ∩ Wϑ

contains a quasi-conformal copy Kϑ of the filled-in Julia set K(λz + z2), such
that bϑ ∈ ∂Kϑ ⊂ ∂Mλ.
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Definition 16. Any dyadic angle ϑ = (2p + 1)/2k, k ≥ 1 and 0 < 2p + 1 < 2k,
can be expressed in a unique way as a finite sum

2p + 1
2k

=
k∑

i=1

εi

2i
,

where each εi, i = 1, . . . k, takes the value 0 or 1. We define ϑ− and ϑ+ by the
formulae:

ϑ− =
k∑

i=1

εi + 1
3i

, and ϑ+ = ϑ− +
1

2 · 3k
.

Remark. There are two ways of writing a dyadic number ϑ in base 2:

ϑ = 0.ε1ε2 . . . εk−101111 . . . = 0.ε1ε2 . . . εk−110000 . . . .

Read those two numbers in base 3 and add 1/2. You will obtain ϑ− and ϑ+.

Proposition 12. Given any dyadic angle ϑ = (2p + 1)/2k, k ≥ 1, 0 < 2p + 1 <
2k, the two parameter rays Rλ(ϑ−/3) and Rλ(ϑ+/3) land at a common tip
bϑ ∈ M ′. More precisely,

f
◦(k+1)
bϑ

(ω2(bϑ)) = β(bϑ),

and the two dynamical rays Rbϑ
(ϑ−/3) and Rbϑ

(ϑ+/3) land at ω′2(bϑ).

Proof.
Step 1. Let us first prove that the parameter ray Rλ(ϑ−/3) lands either at b0

or at a tip bϑ ∈ M ′ (a similar proof works for the parameter ray Rλ(ϑ+/3)).
The argument we use is very similar to the one written in the Orsay notes
[DH1]. Let us choose any parameter bϑ in the accumulation set of the parameter
ray Rλ(ϑ−/3) and assume bϑ 6= b0. Then, bϑ belongs to the wake W0 and
Proposition 11 shows that bϑ ∈ M ′. Moreover, observe that 3kϑ− ≡ 0 mod 1.
Hence, if b is the point of the parameter ray Rλ(ϑ−/3) of potential η, then
f
◦(k+1)
b (ω2(b)) is the point of the dynamical ray Rb(0/1) of potential 3k+1η.

Since bϑ is in the wake W0, the dynamical ray Rb(0/1) moves holomorphically
in a neighborhood of bϑ and lands at β(b). Hence, by continuity as η tends to
0, we obtain that f

◦(k+1)
bϑ

(ω2(bϑ)) = β(bϑ). This shows that bϑ is a tip of M ′.

Furthermore, the set of parameters b such that f
◦(k+1)
b (ω2(b)) = β(b) is discrete

and the accumulation set of the parameter ray Rλ(ϑ−/3) is connected. Hence,
the parameter ray Rλ(ϑ−/3) land either at b0 or at a tip bϑ ∈ M ′.

Let us now show that if the parameter ray Rλ(ϑ−/3) lands at a tip bϑ ∈ M ′,
then the dynamical ray Rbϑ

(ϑ−/3) lands at ω′2(bϑ). For this purpose we need
the following lemma:

Lemma 12. Let θ be any angle such that 3kθ = 0 mod 1 or 3kθ = 1/2 mod 1
for some integer k, and let b∗ be any parameter in Mλ∩W0. Then the dynamical
ray Rb∗(θ) lands at a preimage z∗ of β(b∗). Assume z∗ is not a preimage of the
critical point ω2(b∗). Then, when b moves in a sufficiently small neighborhood of
b∗, the ray Rb(θ) does not bifurcate, and thus, moves holomorphically.
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Proof. We will treat the case 3kθ = 1/2 mod 1. The other case is similar. Since
b∗ ∈ Mλ, the dynamical ray Rb∗(θ) does not bifurcate. Besides, 3kθ = 1/2 mod 1,
we have

f◦kb∗ (Rb∗(θ)) = Rb∗(1/2).

Since the ray Rb∗(1/2) lands at β(b∗), we see that the ray Rb∗(θ) lands at a
preimage z∗ of β(b∗). The lemma now follows directly from [DH1], Proposition
3, exposé 8. ¤

We can apply the above lemma to the angle ϑ−/3 and the parameter bϑ. It
shows that the ray Rbϑ

(ϑ−/3) lands at a preimage zϑ of β(bϑ).
If zϑ is not a preimage of the critical point ω2(bϑ) then the ray moves holo-

morphically in a neighborhood of bϑ. We define bη to be the point of potential
η on the parameter ray Rλ(ϑ−/3). Then ω′2(bη) is the point of potential η on
the dynamical ray Rbη

(ϑ−/3). When η tends to 0, bη tends to bϑ and ω′2(bη)
converges to the landing point of the dynamical ray Rbϑ

(ϑ−/3). By continuity
of the function ω′2, it proves that the dynamical ray Rbϑ

(ϑ−/3) lands at ω′2(bϑ).
Hence, the only remaining difficulty is proving that zϑ is not a preimage

of the critical point ω2(bϑ). If this were the case, one could find an integer k1

such that f◦k1
bϑ

(zϑ) = ω2(bϑ). Note that k1 ≥ 1 since ω2(bϑ) and the dynamical
ray Rbϑ

(ϑ−/3) are separated by Rbϑ
(0/1) ∪Rbϑ

(1/2) ∪ {β(bϑ)}. Since ω2(bϑ) is
strictly preperiodic (this is our assumption that bϑ 6= b0), iterating once more,
we know that f

◦(k1+1)
bϑ

(zϑ) = fbϑ
(ω2(bϑ)) is not a preimage of ω2(bϑ) and is the

landing point of the dynamical ray Rbϑ
(3k1ϑ−). Hence, we can apply Lemma

12. It shows that the ray Rb(3k1ϑ−) moves holomorphically in a neighborhood
of bϑ. Then again, defining bη to be the point of potential η on the parameter
ray Rλ(ϑ−/3), we get by continuity that f

◦(k1+1)
bϑ

(ω2(bϑ)) = fbϑ
(ω2(bϑ)). Hence,

either f◦k1
bϑ

(ω2(bϑ)) = ω2(bϑ) or f◦k1
bϑ

(ω2(bϑ)) = ω′2(bϑ). The first case is not
possible since ω2(bϑ) is not periodic. The second case is also impossible since bϑ ∈
M ′ and thus ω2(bϑ) and ω′2(bϑ) are separated by Rbϑ

(0/1)∪Rbϑ
(1/2)∪{β(bϑ)}.

Step 2. Let us now show that the parameter rays Rλ(ϑ+/3) and Rλ(ϑ−/3) land
at the same parameter. Either, both of them land at b0, or one of them lands
at a tip bϑ 6= b0 of M ′. Without loss of generality, assume that Rλ(ϑ−/3) lands
at bϑ 6= b0. We just proved in Step 1 that the dynamical ray Rbϑ

(ϑ−/3) lands
at ω′2(bϑ). Proposition 11 (4) shows that there are exactly two rays landing at
ω′2(bϑ). It is not difficult to check that the other dynamical ray landing at ω′2(bϑ)
is Rbϑ

(ϑ+/3). Proposition 11 (4) then shows that the parameter ray Rλ(ϑ+/3)
lands at bϑ.

Step 3. We now need to prove that the parameter rays Rλ(ϑ+/3) and Rλ(ϑ−/3)
do not land at b0. The usual techniques to prove this kind of result is based on
a careful study of parabolic implosion (see for example the Orsay notes [DH1]).
We will use a different approach based on Yoccoz inequality (see Hubbard [Hu]
or Petersen [P]).

Let us first define Wϑ to be the connected component of W0 \ Rλ(ϑ−/3) ∪
Rλ(ϑ+/3) that contains the parameter rays Rλ(θ), with θ ∈ ]ϑ−/3, ϑ+/3[. We
claim that the componentWϑ cannot intersect M ′. Indeed, Proposition 10 shows
that if Wϑ intersect M ′, there is a parameter b′ ∈ Wϑ such that b′ is a tip of M ′
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(tips of M ′ are dense in ∂M ′). But Proposition 11 then shows that there are two
parameter rays landing at b′ whose angles are in Θ′. However, no angle between
ϑ− and ϑ+ can be written with only 1’s and 2’s.

Let us now assume that the parameter rays Rλ(ϑ−/3) and Rλ(ϑ+/3) land
at b0. Since Wϑ ∩ M ′ = ∅, Proposition 10 shows that for any b ∈ Mλ ∩ Wϑ,
the fixed point α(b) is repelling and thus, has a rotation number. This rotation
number is constant on any connected component L of Mλ ∩Wϑ. Besides, since
Mλ is connected, we necessarily have b0 ∈ L. Since at b0 the fixed point α(b)
collapses with β(b) and becomes a multiple fixed point, the multiplier at α(b)
tends to 1 as b tends to b0, and the Yoccoz inequality shows that the rotation
number of α(b) is 0/1 for any b ∈ L. But in this case, for any b ∈ L one of the
two dynamical rays Rb(0/1) or Rb(1/2) has to land at α(b), which is impossible
since they both land at β(b) 6= α(b). This gives the required contradiction.

Definition 17. For any dyadic angle ϑ, we define the wake Wϑ to be the con-
nected component of

C \ Rλ(ϑ−/3) ∪Rλ(ϑ+/3)

that contains the parameter rays Rλ(θ), with θ ∈ ]ϑ−/3, ϑ+/3[.

Proposition 13. Given any dyadic angle ϑ = (2p + 1)/2k, k ≥ 1, 0 < 2p + 1 <
2k, and any parameter b ∈ Wϑ, the dynamical rays Rb(ϑ−/3) and Rb(ϑ+/3) do
not bifurcate and land at a common preimage of β(b).

Proof. Let us assume that b belongs to the parameter ray Rλ(θ) and that the
dynamical ray Rb(ϑ−/3) bifurcates. Then, note that the dynamical ray Rb(θ) bi-
furcates on ω′2(b). Hence, Rb(3θ) contains the critical value fb(ω2(b)). Moreover,
the dynamical ray Rb(ϑ−/3) bifurcates on a preimage of ω2(b). Hence, there
exists an integer n ≥ 0 such that f◦nb (Rb(ϑ−/3)) = Rb(3n−1ϑ−) bifurcates on
ω2(b). Since Rb(ϑ−/3) ⊂ U ′

2, we necessarily have n ≥ 1, and Rb(3nϑ−) contains
the critical value fb(ω2(b)). This shows that the set of parameters b ∈ W0, where
the dynamical ray Rb(ϑ−/3) bifurcates is precisely the union of parameter rays
Rλ(θ), where θ ∈ ]1/6, 2/3[ and 3θ = 3nϑ− mod 1 for some integer n ≥ 1.

It is not difficult to check that for any n ≥ 1, the angle 3nϑ− mod 1 does
not belong to the interval [ϑ−, ϑ+]. Besides, the parameter ray Rλ(3nϑ−) lands
at a tip of M ′ and this tip cannot be bϑ (see Proposition 12). Hence, the set of
parameter b ∈ W0 for which the dynamical ray Rb(ϑ−/3) does not bifurcate is a
neighborhood ofWϑ. A similar argument shows that the set of parameter b ∈ W0

for which the dynamical ray Rb(ϑ+/3) does not bifurcate is a neighborhood of
Wϑ. Since at bϑ the two dynamical rays Rb(ϑ−/3) and Rb(ϑ+/3) land at the
common point bϑ, we see that this property holds for any parameter b in Wϑ.
Finally, since f

◦(k+1)
b (Rb(ϑ−/3)) = Rb(0/1) lands at β(b), the landing point of

the rays Rb(ϑ−/3) and Rb(ϑ+/3) is a preimage of β(b).

Definition 18. Given any dyadic angle ϑ = (2p+1)/2k, k ≥ 1, 0 < 2p+1 < 2k,
and any parameter b ∈ Wϑ, we define Wϑ to be the connected component of

C \
(
Rb(ϑ−/3) ∪Rb(ϑ+/3)

)

that contains the dynamical rays Rb(θ), θ ∈ ]ϑ−/3, ϑ+/3[.
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Proposition 14. Given any dyadic angle ϑ = (2p + 1)/2k, k ≥ 1, 0 < 2p + 1 <
2k, and any parameter b ∈ Wϑ, the co-critical point ω′2(b) belongs to the region
Wϑ(b) and the mapping f

◦(k+1)
b : Wϑ(b) → V1(b) is an isomorphism.

Proof. We have seen (Proposition 13) that the boundary of the region Wϑ(b)
moves holomorphically when b moves in the wake Wϑ. Furthermore, the co-
critical point ω′2(b) cannot belong to this boundary since this would mean that b
is in the boundary of the wake Wϑ. Hence, to see that for any parameter b ∈ Wϑ,
the co-critical point ω′2(b) belongs to the region Wϑ(b), it is enough to check it
at one particular parameter b ∈ Wϑ. This is clear as soon as b is outside Mλ.
Indeed, in this case b belongs to a parameter ray Rλ(θ) with θ ∈ ]ϑ−/3, ϑ+/3[.
Thus, ω′2(b) belongs to the dynamical ray Rb(θ) ⊂ Wϑ(b).

Since f
◦(k+1)
b : C→ C is a ramified covering, we know that for any connected

component W of
(
f
◦(k+1)
b

)−1

(V1(b)), the restriction f
◦(k+1)
b : W → V1(b) is also

a ramified covering. Those components are the connected components of Cminus
the closure of the dynamical rays Rb(θ), where 3k+1θ mod 1 is equal to 0 or 1/2.
It is not difficult to check that the region Wϑ(b) contains no such ray. Thus,
f
◦(k+1)
b : Wϑ(b) → V1(b) is a ramified covering. Since the boundary of Wϑ(b) is

mapped to the boundary of V1(b) with degree 1, f
◦(k+1)
b : Wϑ(b) → V1(b) is an

isomorphism.

8. Copies of Quadratic Julia Sets in the Parameter Plane

In section 6, we have defined the set

Xb =
⋃

θ∈Θ

Rb(θ)

and we have proved that the mapping h : W0 ×Xb1 → Xb defined by h(b, z) =
ϕ−1

b ◦ ϕb1(z) gives a holomorphic motion of the set Xb1 . In this section we fix
once and for all a holomorphic motion h : W0 × C→ C that coincides with the
previous holomorphic motion on W0×Xb1 . This can be done using SÃlodkowski’s
theorem (see SÃlodkowski [Sl] or Douady [D2]), because W0 is a simply connected
Riemann surface.

We will also fix once and for all a dyadic angle ϑ = (2p + 1)/2k, k ≥ 1,
0 < 2p+1 < 2k, and we will define ϑ−, ϑ+, bϑ, Wϑ and Wϑ(b) as in the previous
section.

Definition 19. We define Xϑ to be the set of parameter rays

Xϑ =
⋃

θ∈Θ

Rλ

(
ϑ−

3
+

θ

3k+1

)
.

Besides, we define Jϑ to be the set Jϑ = Xϑ \ Xϑ, where the closure is taken
in C. Finally, we define Kϑ to be the complement of the unbounded connected
component of C \ Jϑ.
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−1 + i

f−1
b (β)

0

β

f−1
b (0)

K(fb0 )

f◦2b (ω′2)

1− 3i

1 + i

−1− 3i

.2 + 3.4i

b

W0

b0

K(fb)

−.3 + 3.4i

.3 + 2.7i

Fig. 13. The holomorphic motion for λ = −1.

Main Theorem. Let λ ∈ S1 be a complex number of modulus 1 and ϑ ∈ R/Z
be a dyadic angle. The set Kϑ is contained in Mλ ∩ Wϑ, its boundary Jϑ is
contained in the boundary of Mλ and the parameter bϑ belongs to Jϑ. Besides,
there exists a quasi-conformal homeomorphism defined in a neighborhood of Kϑ,
sending Kϑ to K(λz + z2).

Fig. 13 suggests the main idea of the proof in the case λ = −1, p = 0 and
k = 1, i.e., for ϑ = 1/2.
Proof. By definition of Xϑ and Jϑ, we see that Xϑ ⊂ Wϑ and Jϑ ⊂ ∂Mλ. Since
Mλ is full, we also have Kϑ ⊂ Mλ. Finally, since bϑ is the landing point of
the parameter ray Rλ(ϑ−/3), we see that bϑ ∈ Jϑ. Hence, the only difficulty is
proving that Kϑ is quasi-conformally homeomorphic to K(λz + z2).
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Lemma 13. The mapping Hϑ : W0 → C defined by

Hϑ(b) = h−1
b

[
f
◦(k+1)
b (ω2(b))

]
,

is locally quasi-regular. Its restriction to the dyadic wake Wϑ, is a homeomor-
phism which is locally quasi-conformal.

Proof. The argument we use is essentially due to Douady and Hubbard [DH2]
(with some modifications). Let us first show that the restriction of Hϑ to any
open subset of W0 which is relatively compact in W0 is a quasi-regular mapping.
It is enough to prove that there exists a κ ∈ [0, 1[ such that the distributional
derivatives of H with respect to b and b are locally in L2 and satisfy

∣∣∣∣
∣∣∣∣

∂Hϑ/∂b

∂Hϑ/∂b

∣∣∣∣
∣∣∣∣
∞
≤ κ < 1.

Let us take the derivative with respect to b of the equation hb◦Hϑ = f
◦(k+1)
b ◦ω2.

Since ∂hb/∂b and ∂(f◦(k+1)
b ◦ ω2)/∂b identically vanish, we get

∂hb

∂z

∣∣∣
Hϑ(b)

∂Hϑ

∂b

∣∣∣
b
+

∂hb

∂z

∣∣∣
Hϑ(b)

∂Hϑ

∂b

∣∣∣
b

= 0.

Thus, ∣∣∣∣
∂Hϑ/∂b

∂Hϑ/∂b

∣∣∣
b

∣∣∣∣ =
∣∣∣∣

∂Hϑ/∂b

∂Hϑ/∂b

∣∣∣
b

∣∣∣∣ =
∣∣∣∣

∂hb/∂z

∂hb/∂z

∣∣∣
Hϑ(b)

∣∣∣∣ .

The result follows by quasi-conformality of hb.
Now, at every point b ∈ W0, the mapping Hϑ has a local degree which is

positive. To see that the restriction of Hϑ to the wake Wϑ is proper, let us show
that Hϑ maps Wϑ (respectively ∂Wϑ) to V1(b1) (respectively ∂V1(b1)). Indeed, if
b ∈ Wϑ, then ω′2(b) belongs to the region Wϑ(b) which is mapped isomorphically
by f

◦(k+1)
b to V1(b) (see Proposition 14). This shows that for any b ∈ Wϑ,

f◦(k+1)(ω2(b)) = f◦(k+1)(ω′2(b)) ∈ V1(b).

Moreover, by construction, for any b ∈ W0, we have hb(V1(b1)) = V1(b). Since
hb is a homeomorphism, we see that

Hϑ(b) = h−1
b

[
f
◦(k+1)
b (ω2(b))

]
∈ h−1

b (V1(b)) = V1(b1).

Furthermore, the map Hϑ is continuous in the whole wake W0 and in particular
on the boundary of Wϑ, i.e., on Rλ(ϑ−) ∪ Rλ(ϑ+). Since hb maps Rb1(0/1)
(respectively Rb1(1/2)) to Rb(0/1) (respectively Rb(1/2)), we see that when
b ∈ ∂Wϑ, i.e., ω′2(b) ∈ Rb(ϑ−) ∪Rb(ϑ+), we have

Hϑ(b) ∈ h−1
b

(
f◦2b

(
Rb(ϑ−) ∪Rb(ϑ+)

))
= h−1

b

(
Rb(0/1) ∪Rb(1/2)

)

= Rb1(0/1) ∪Rb1(1/2) = ∂V1(b1).

Hence, the mapping Hϑ : Wϑ → V1(b1) is a proper mapping.
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Let us now show that the topological degree of the restriction of Hϑ to Wϑ is
1. Since Hϑ is locally quasi-regular, the topological degree of Hϑ at any point b ∈
Wϑ is positive. Hence, it is enough to show that when b turns once around Wϑ,
Hϑ(b) turns once around V1(b1). But this is straight forward since the point of
potential η on the parameter ray Rλ(ϑ−)/3 (respectively Rλ(ϑ+)/3) is mapped
to the point of potential 3k+1η on the dynamical ray Rb1(0/1) (respectively
Rb1(1/2)). ¤

To conclude the proof of the main theorem, observe that Hϑ (Xϑ) = Xb1 .
Indeed, for any θ ∈ Θ,

Hϑ

(
Rλ

(
ϑ−

3
+

θ

3k+1

))
= Rb1(3

kϑ− + θ) = Rb1(θ).

Hence,
Hϑ(Jϑ) = Hϑ(Xϑ \ Xϑ) = Xb1 \Xb1 = Jb1 ,

and Hϑ(Kϑ) = Kb1 . Since we know that Kb1 is quasi-conformally homeomorphic
to K(λz + z2), the main theorem is proved.

We say that the family fb is stable at a parameter b0 if and only if the Julia
set J(fb) moves holomorphically in a neighborhood of b0. The bifurcation locus
of the family fb is defined to be the set of parameters where the family is not
stable. Using the results obtained by Mañe, Sad and Sullivan in [MSS], one can
prove that the bifurcation of the family fb, b ∈ C, is precisely the boundary of the
connectedness locus Mλ. The following corollary is an immediate consequence
of the previous theorem.

Corollary A. For each λ = e2iπθ, the bifurcation locus of the one parameter
family fb(z) = λz + bz2 + z3, b ∈ C, contains quasi-conformal copies of the
quadratic Julia set J(λz + z2).

9. Non-local Connectivity in the Parameter Plane

We will now prove that when the Julia set J(λz + z2) is not locally connected
Mλ is not locally connected.

Corollary B. If the Julia J(λz + z2) is not locally connected, Mλ is not locally
connected.

Proof. The proof we will give here was explained to us by Lyubich and McMullen.
Let us recall that if the continuous image of a locally connected compact set is
Hausdorff, then it is locally connected. Thus, it is enough for our purposes to
construct a continuous retraction from Mλ to the set Kϑ.

Let us first plough in the dynamical plane of fb1 . Observe that the unbounded
connected component of C\Xb1 are preimages of V2(b1) by iterates of fb1 . Since
V2(b1) is bounded by the dynamical rays Rb1(0/1) and Rb1(1/2) which both land
at β(b), we see that each unbounded connected component of C\Xb1 is bounded
by two dynamical rays belonging to X ′

b1
which land at a common preimage of

β(b1).
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Harvesting in the parameter plane using Hϑ, we see that each unbounded
connected components of C \ Xϑ is bounded by two parameter rays belonging
to Xϑ which land at a common parameter which belong to Jϑ. We can then
define a retraction ψ : C \Xϑ → Kϑ which is the identity on Kϑ and sends every
unbounded connected component W of C \ Xϑ to the landing point of the two
parameter rays bounding W.

This retraction is continuous. Indeed, every open set in Kϑ can be written
U ∩Kϑ with U open in C \ Xϑ. Then, the preimage of this open set is the union
of U and the unbounded connected components of C \ Xϑ intersecting U . This
is clearly open.

The restriction of ψ to Mλ ⊂ C \ Xϑ gives the required retraction.

Let us finally prove that there exist values of λ for which certain parameter
rays have a non-trivial impression. In order to state our third corollary, we need
to introduce some notations.

Definition 20. Given any complex number λ of modulus 1, we define Pλ to be
the quadratic polynomial Pλ(z) = λz +z2. We define gPλ

: C→ [0, +∞[ to be its
Green function and ϕPλ

: C \K(Pλ) → C \ D to be its Böttcher coordinate. For
any angle θ ∈ R/Z, we define RPλ

(θ) to be the dynamical ray of the polynomial
Pλ of angle θ.

Definition 21. Let χΘ : R/Z → R/Z be the Cantor map (or devil staircase)
which is constant on each connected component of R/Z \Θ and is defined on Θ
by:

χΘ


∑

i≥1

εi

3i


 =

∑

i≥1

εi

2i
, where εi ∈ {0, 1}.

Corollary C. Given any complex number λ of modulus 1 and dyadic angle
ϑ = (2p+1)/2k and any angle θ ∈ Θ, the accumulation set of the parameter ray
Rλ(ϑ−/3 + θ/3k+1) is reduced to a point if and only if the accumulation set of
the quadratic ray RPλ

(χΘ(θ)) is reduced to a point.

The following proof was explained to us by Douady.
Proof. The proof of the main theorem provides a homeomorphism

Hϑ : Wϑ → V1(b1)

which maps each parameter ray Rλ(ϑ−/3 + θ/3k+1), θ ∈ Θ, to the dynamical
ray Rb1(θ). Hence, it is enough to prove that for any θ ∈ Θ, the accumulation set
of the dynamical ray Rb1(θ) is reduced to a point if and only if the accumulation
set of the quadratic ray RPλ

(χΘ(θ)) is reduced to a point.
Let us recall that the mapping fb1 : U ′

b1
→ Ub1 is a quadratic-like mapping

hybrid conjugate to the quadratic polynomial Pλ (see Proposition 5 and Fig. 3).
To fix the ideas, we choose a potential η0 > 0, we set UPλ

= {z ∈ C | gPλ
(z) <

2η0} and U ′
Pλ

= {z ∈ C | gPλ
(z) < η0}. Then, we choose a quasi-conformal

homeomorphism ψ : Ub1 → UPλ
that conjugates fb1 : U ′

b1
→ Ub1 to Pλ : U ′

Pλ
→

UPλ
and that sends the segment of dynamical ray Ub1 ∩ Rb1(0/1) onto UPλ

∩
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RPλ
(0/1). We will construct a continuous mapping ψΘ : Ub1 \Kb1 → UPλ

\K(Pλ)
which semi-conjugates fb1 : U ′

b1
→ Ub1 to Pλ : U ′

Pλ
→ UPλ

and which maps
Rb1(θ)∩Ub1 , θ ∈ Θ, to RPλ

(χΘ(θ)). We will then prove that the distance, for the
hyperbolic metric on C \K(Pλ), between ψ(z) and ψΘ(z), is uniformly bounded
independently on z ∈ UPλ

\K(Pλ). It easily follows that the accumulation sets
of ψ(Rb1(θ)) and ψΘ(Rb1(θ)) = RPλ

(χΘ(θ)) are equal. Since ψ : Ub1 → UPλ
is a

homeomorphism, this will complete the proof of Corollary C.
Let us now fill in the details. We will need to work with the universal coverings

of Vb1 = C \Kb1 and VPλ
= C \K(Pλ). To write things correctly and to avoid

nasty traps, we need to choose basepoints. We choose z0 (respectively z1) to
be the point of potential G(b1) (respectively G(b1)/3) on the dynamical ray
Rb1(0/1). We then define πb1 : Ṽb1 → Vb1 to be the universal covering of Vb1

with basepoint at z0. We choose R̃ to be a lift of Rb1(0/1) and we define z̃0

(respectively z̃1) to be the point of R̃ which is in the fiber of z0 (respectively z1).
Next, we define Ũb1 = π−1

b1
(Ub1 \Kb1) and Ũ ′

b1
= π−1

b1
(U ′

b1
\Kb1). Then, we call

f̃b1 : Ũ ′
b1
→ Ũb1 the lift of fb1 : U ′

b1
→ Ub1 that sends z̃1 to z̃0:

(Ũ ′
b1

, z̃1)
f̃b1 //

πb1

²²

(Ũb1 , z̃0)

πb1

²²
(U ′

b1
, z1)

fb1

// (Ub1 , z0).

Finally, observe that the fundamental group of Vb1 is a cyclic group that acts
on Ṽb1 . We call γb1 : Ṽb1 → Ṽb1 the automorphism of Ṽb1 that corresponds to
turning once around Kb1 counter-clockwise. Since fb1 : U ′

b1
→ Ub1 maps a loop

that turns once around Kb1 counter-clockwise to a loop that turns twice around
Kb1 counter-clockwise, we see that f̃b1 ◦ γb1 = γ◦2b1

◦ f̃b1 .
Similarly, we define w0 (respectively w1) to be the point of potential η0 (re-

spectively η0/2) on the quadratic ray RPλ
(0/1). We define πPλ

: ṼPλ
→ VPλ

to be
the universal covering with basepoint at w0. In this case, we can give an explicit
formula. We identify ṼPλ

with the right half-plane H = {z ∈ C | Re(z) > 0} and
we set πPλ

= ϕ−1
Pλ
◦ exp. The real axis projects to the quadratic ray RPλ

(0/1).
Thus, we define w̃0 = η0 and w̃1 = η0/2, so that πPλ

(w̃0) = w0 and πPλ
(w̃1) =

w1. We define

ŨPλ
= π−1

Pλ

(
UPλ

\K(Pλ)
)

=
{

z ∈ H | Re(z) < 2η0

}

and
Ũ ′

Pλ
= π−1

Pλ

(
U ′

Pλ
\K(Pλ)

)
=

{
z ∈ H | Re(z) < η0

}
.

The lift of Pλ : VPλ
→ VPλ

that sends w̃1 to w̃0 is the map w̃ 7→ 2w̃. Finally, the
automorphism of H that corresponds to turning once around K(Pλ) counter-
clockwise is the translation z 7→ z + 2iπ.

Next, a quasi-conformal homeomorphism ψ : Ub1 → UPλ
, that conjugates

fb1 : U ′
b1
→ Ub1 to Pλ : U ′

Pλ
→ UPλ

and that sends the segment of dynamical
ray Ub1 ∩ Rb1(0/1) onto UPλ

∩ RPλ
(0/1), can be lifted to a quasi-conformal
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homeomorphism ψ̃ : Ũb1 → ŨPλ
that sends z̃0 to w̃0. Then ψ̃ sends R̃ ∩ Ũb1

to R ∩ ŨPλ
. Hence, it also sends z̃1 to w̃1, and it is not difficult to see that it

conjugates f̃b1 to multiplication by 2: ψ̃ ◦ f̃b1 = 2ψ̃.
We now come to the construction of the semi-conjugacy ψΘ. First, consider

the increasing homeomorphism h : [G(b1), 3G(b1)] → [η0, 2η0] defined by

h = gPλ
◦ ψ ◦ ϕ−1

b1
◦ exp

(h(η) is the potential in C \K(Pλ) of the image by ψ of the point of potential
η on the dynamical ray Rb1(0/1)). Then, define the continuous mapping ψΘ :
Ub1 \ U ′

b1
→ UPλ

\ U ′
Pλ

in the following way:

• on U ′′
b1

, the map ψΘ is constantly equal to ϕ−1
Pλ

(eη0), i.e., the point of potential
η0 on the dynamical ray RPλ

(0/1);
• on Ub1 \ (U ′

b1
∪ U ′′

b1
) the map ψΘ sends the point ϕ−1

b1
(eη+2iπθ) to the point

ϕ−1
Pλ

(eh(η)+2iπχΘ(θ)).

Observe that on the boundary of U ′
b1

, we have ψΘ ◦fb1 = Pλ ◦ψΘ. Now, consider

the lift ψ̃Θ : Ũb1 \ Ũ ′
b1
→ ŨPλ

\ U ′
Pλ

that sends z̃0 to w̃0. The map ψ̃Θ semi-
conjugates f̃b1 to multiplication by 2 on the boundary of Ũ ′

b1
. Thus, we can

extend it continuously to Ũb1 using the formula:

ψ̃Θ(z̃) =
1
2n

ψ̃Θ

(
f̃◦nb1 (z̃)

)
,

where n is chosen so that f̃◦nb1
(z̃) belongs to Ũb1 \ Ũ ′

b1
. An easy induction shows

that ψ̃Θ◦γ1 = ψ̃Θ+2iπ. Hence, ψ̃Θ projects to a continuous map ψΘ : Ub1\Kb1 →
UPλ

\K(Pλ) that semi-conjugates fb1 : U ′
b1
→ Ub1 to Pλ : U ′

Pλ
→ UPλ

.
We claim that for any θ ∈ Θ, ψΘ maps Rb1(θ) ∩ Ub1 homeomorphically onto

RPλ
(χΘ(θ) ∩ UPλ

). Indeed, set A0 = Ub1 \ U ′
b1

and for n ≥ 0 define recursively
An+1 = f−1

b1
(An). Similarly, define Bn to be the annulus

Bn =
{

z ∈ C \K(Pλ) | η0/2n ≤ gPλ
(z) ≤ η0/2n−1

}
.

By construction, for every θ ∈ Θ, we have ψΘ(Rb1(θ)∩A0) = RPλ
(χΘ(θ))∩B0.

Besides, since ψΘ semi-conjugates fb1 and Pλ, we see that for every n ≥ 0 and
every θ ∈ Θ, ψΘ(Rb1(θ) ∩ An) is contained in the intersection of the annulus
Bn with a ray of Pλ. Since ψΘ is continuous, the whole set ψΘ(Rb1(θ) ∩ Ub1) is
contained in a single ray of Pλ, i.e., the ray RPλ

(χΘ(θ)). The point of potential
η is mapped to the point of potential h(3nη)/2n, where n is chosen so that
G(b1) ≤ 3nη ≤ 3G(b1). This shows that ψΘ : Rb1(θ) ∩ Ub1 → RPλ

(χΘ(θ) ∩ UPλ
)

is a homeomorphism.
Let us finally show that the distance, for the hyperbolic metric on C\K(Pλ),

between ψ(z) and ψΘ(z), is uniformly bounded independently on z ∈ Ub1 \Kb1 .
It is enough to prove that for any z̃ ∈ Ũb1 , the hyperbolic distance in H between
ψ̃(z̃) and ψ̃Θ(z̃) is uniformly bounded. Since ψ̃ ◦ f̃b1 = 2ψ̃ and ψ̃Θ ◦ f̃b1 = 2ψ̃Θ,
and since multiplication by 2 is an isometry for the hyperbolic metric on H, it is
enough to prove the statement on the intersection of Ũb1\Ũ ′

b1
with a fundamental
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domain for γ1. This is immediate since the closure of such a set is compact in
Ṽb1 and the mappings ψ̃ and ψ̃Θ are continuous on Ṽb1 .

It now follows that we can extend ψΘ continuously to Kb1 by setting ψΘ|Kb1
=

ψ|Kb1
. Given θ ∈ Θ consider the restriction of ψΘ to (Rb1(θ)∩Ub1)∪Kb1 . Since

this map is injective continuous and the domain is compact, it is necessarily a
homeomorphism. Notice that the closure of Rb1(θ)∩Ub1 in C equals the closure
taken in (Rb1(θ) ∩ Ub1) ∪Kb1 . Similarly the closure of RPλ

(χΘ(θ)) ∩ UPλ
in C

equals the closure taken in (RPλ
(χΘ(θ))∩UPλ

)∪K(Pλ). In particular ψΘ|Kb1
=

ψ|Kb1
provides a homeomorphism, mapping the impression of Rb1(θ) onto the

impression of RPλ
(χΘ(θ)).

Let us now consider the function θ2 : (R \Q)/Z → (R \ Q)/Z defined in the
following way: for any irrational angle, first choose the representative t ∈]0, 1[,
then define

θ2(t) =
∑

0<p/q<t

1
2q+1

.

The sum is taken over all pairs (p, q) such that 0 < p/q < t, whether p and
q are relatively prime or not. Douady proved that the set of complex numbers
λ = e2iπt, t ∈ (R \ Q)/Z, for which the accumulation set of the quadratic ray
RPλ

(θ2(t)) is not reduced to a point, is a dense Gδ subset of S1. The proof can
be found in [Sø].

Next, observe that for each t ∈ R \ Q, there is exactly one angle θ3(t) ∈ Θ
which is mapped to θ2(t) by χΘ:

θ3(t) =
∑

0<p/q<t

1
3q+1

.

The previous corollary shows that when the accumulation set of the quadratic ray
RPλ

(θ2(t)) is not reduced to a point, then the accumulation set of the parameter
ray Rλ(2/9 + θ3(t)/9) is also not reduced to a point. This shows that the set of
complex numbers λ of modulus 1 for which at least one of the parameter rays
Rλ(θ) ⊂ C \ Mλ has an accumulation set not reduced to a point, contains a
dense Gδ subset of S1.
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