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Abstract

We study transfer operators over general subshifts of sequences of an infinite alphabet. We
introduce a family of Banach spaces of functions satisfying a regularity condition and a deacreasing
condition. Under some assumptions on the transfer operator, we prove its continuity and quasi-
compactness on these spaces. Under additional assumptions - existence of a conformal measure and
topological mixing - we prove that its peripheral spectrum is reduced to 1 and that this eigenvalue
is simple. We describe the consequences of these results in terms of existence and properties of
invariant measures absolutely continuous with respect to the conformal measure. We also give some
examples of contexts in which this setting can be used - expansive maps of the interval, statistical
mechanics.

1 Introduction

Given a measured space (X,m) and an application T mapping X into itself, it is a classical ques-
tion to ask if it admits an invariant measure absolutely continuous with respect to m ([15],[7],[18]).
It is then natural to study the ergodic and statistical properties of the system with respect to this
invariant measure.

When T is a non invertible, piecewise differentiable and expansive map from Rn into itself,
the Ruelle-Perron-Frobenius operator has proved to be a rather efficient tool for these aims:

P (f)(x) =
∑

y|T (y)=x

1
T ′(y)

f(y)

The study of the spectral properties of transfer operators is a slightly more general setting.
Given a function φ - that will be called a potential - defined on X, the transfer operator associated
with φ is a linear operator acting on Banach functional spaces ([19],[16],[25],[27]):

Lφ(f)(x) =
∑

y|T (y)=x

eφ(y)f(y)

Under reasonable assumptions, one proves the existence of a measure for which Lφ is the
RPF operator - such a measure is said to be conformal. A classical and important result is the
quasicompactness of the transfer operators over the Banach space of Hölder functions on the
shift with finite alphabet, if φ itself is Hölder ([19],[16]). It is sufficient to obtain the existence
of a measure absolutely continuous with respect to the conformal measure. Its density is the
eigenfunction associated to the real eigenvalue of maximal modulus of the transfer operator. One
then obtains exponential decay of correlations for Hölder continuous functions. It is also possible,
using the perturbation theory of linear operators to obtain limit theorems for the sums

∑
n f ◦Tn,

for f Hölder ([17],[10],[24]).
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This formulation comes from statistical mechanics ([19]). But these results can be used for
the study of interval maps ([4]) or differentiable hyperbolic dynamical systems ([3]).

These methods are well developed and efficient. But two assumptions are usually required and
limit their possible applications:

• The considered transfer operators are acting on the shift with a finite alphabet. This ensures
the compactness of the original space and hence, the existence of a conformal measure. It
also simplifies the obtention of various uniform bounds.

• The corresponding results for subshifts concern subshifts of finite type. In more general cases,
the space of Hölder functions might not be stable for the transfer operator.

Different authors have studied different ways to extend these results in various particular
cases. For interval maps, see for example [20], [26], [14], [6], [1], [13], for symbolic dynamics, [22],
[9], [23].

In this paper we prove a quasi compactness result for some transfer operators defined on a
general closed subshift of a shift over an infinite alphabet. The assumptions are formulated on the
“potential” φ associated with the transfer operator.

Let us precise the content of our result.

One of the main point is the introduction of particular Banach spaces that will allow us to
deal with the infinite case. These Banach spaces contain bounded functions satisfying a decreasing
condition and a regularity condition . Roughly speaking, they go to zero exponentially fast with
the first coordinate. A weighted sum, Vθ(), of the oscillations on each cylinder is asked to be finite.

On one hand, the usual pressure P (φ) is defined to be the logarithm of the spectral radius
of the transfer operator. We introduce another quantity, called pressure at infinity, P∞(φ), which
plays the same role as the pressure, but taking in account only what happens at infinity. The
system has a nice behavior if P∞(φ) < P (φ).

On the other hand, we have to control the regularity of the Lφ(f). For this aim, we ask φ to
be regular enough (Vθ(eφ) < +∞), and small enough to compress the oscillations (‖φ‖∞ < P (φ)).

Under these conditions, we prove that the transfer operator acting on the introduced Banach
spaces is quasicompact. (Theorem 1)

This first result does not involve any measure. The existence of a conformal measure is
possible to prove under the same kind of assumptions (See [5]) but, here, we assume there exists
one. In this case and under a topological mixing condition, we prove that the only peripheral
eigenvalue is 1 and that it is simple (Theorem 2).

We deduce that there exists a unique invariant measure absolutely continous with respect to
the conformal measure; it is mixing and has exponential decay of correlations. (Corollary 1). We
then apply these results to the case of a statistical mechanics setting (Corollary 2) and to the case
of an interval map with an infinite coding partition (Corollary 3 and 4).

Acknoweldgements Most results presented in this paper are direct consequences of the work I
did during my phd thesis. I wish to thank François Ledrappier who friendly and wisely directed
this work. I also thank the IME of the University of São Paulo and the FAPESP who supported
me during the redaction of this paper (Grant 96/04860-7).
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2 Statement of results

2.1 Shift and subshift

Let A be a countable set (say A = N∗) and S = AN∗ the set of all the sequences of elements
of A. The elements of S are denoted by x = (xn)n∈N∗ = (x1, . . . , xn, . . .). For any integer n and
any elements i1, . . . , in of A, the subset {x ∈ S|x1 = i1, . . . , xn = in} of S is called a n−cylinder
and is simply denoted by (i1, . . . , in). S is endowed with the σ−algebra B, generated by the finite
cylinders.

Let then T : S → S, x → Tx, where : ∀n ∈ N∗, (Tx)n = xn+1. T is not invertible; let
ix denote the preimage of x in (i): ix = (i, x1, . . . , xn, . . .). In the same way, let i1 · · · inx =
(i1, . . . , in, x1, . . . , xn, . . .). T is called one-sided full shift (or simply shift). We shall denote by U
the linear operator (acting on various functional spaces) defined by: Uf = f ◦ T .

Let F be a T -invariant closed subset of S. The induced σ−algebra on F is generated by the
traces (i1, . . . , in) ∩ F of the cylinders. The restriction of the map T to the subset F is called a
one-sided subshift. Notice that it is either of finite or infinite type.

Definition 1 (Topological mixing) We shall say that the subshift TF is topologically mixing if
and only if for any cylinder (i1, . . . , in) intersecting F , there exists an integer N such that

TN ((i1, . . . , in) ∩ F) = F

2.2 Banach spaces

Let α and θ be two reals, α > 1 and 0 < θ < 1. We shall denote by α̃ the application α̃ : S → R
depending only of the first coordinate, defined for all i and all x in the cylinder (i) by α̃(x) = α−i.

Given a function f : F → C, we can define the followings:

vari1,...,in(f) := sup
x,y∈(i1,...,in)∩F

(|f(x)− f(y)|)

Vθ(f) :=
+∞∑
n=1

θn(
∑

i1,...,in

vari1,...,in(f)) and [f ]
α

:= sup
j∈N

(αj sup
x∈(j)∩F

(f(x))) = ‖f
α̃
‖∞

Let now consider the family of sets Xα,θ := {f : F → C | Vθ(f) < +∞, [f ]α < +∞}
endowed with the norm ‖.‖ := Vθ(.) + [.]

α
. We will prove that these spaces are Banach spaces

(proposition 3).

Let then Xθ denote the space X1,θ and Xα the space Xα,0.

Let us define notations for the corresponding local quantities. Given a cylinder (j1, . . . , jN ), let

f(i1, . . . , in) := sup
x∈(i1,...,in)∩F

|f(x)|

and let V (j1,...,jN )
θ (f) denote the variation of f , restricted to the cylinder (j1, . . . , jN ). Namely:

V
(j1,...,jN )
θ (f) :=

+∞∑
n=1

θn(
∑

i1,...,in|(i1,...,in)⊂(j1,...,jN )

vari1,...,in(f))

=
∑
n>N

θn(
∑

iN+1,...,in

varj1,...,jN ,iN+1,...,in(f))
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Let us introduce a very similar quantity that will be useful to deal with the case of subshifts of
infinite type.

Definition 2 Let N ∈ N∗. We shall say that the N-cylinder (j1, . . . , jN ) in S is non regular for
F if and only if

∃x, y ∈ (j2, · · · , jN ) ∩ F | j1x ∈ (j1, . . . , jN ) ∩ F and j1y 6∈ (j1, . . . , jN ) ∩ F

We shall then distinguish:

• The set Mo of the non regular cylinders

• The set M+ of the regular cylinders that intersect F .

• The set M− of the regular cylinders that do not intersect F .

Let now set:

varC(f) :=

 varC(f) if C ∈M+

supx∈C f(x) if C ∈Mo

0 if C ∈M−

We then denote by V θ(f) the corresponding total variation:

V θ(f) :=
+∞∑
n=1

θn(
∑

i1,...,in

vari1,...,in(f))

Remark 1 It is equivalent to count the variations of f as a function defined on T−1F and equal
to zero on T−1F \ F .

Remark 2 Notice that if all the cylinders are regular (the subshift is then called Markovian), or
equivalently if the sets {j ∈ N∗|jx ∈ F} do not depend on i1(x), then V θ(f) = Vθ(f) for all f .

2.3 Transfer operators

To any function φ : F −→ R, one can associate an operator, called transfer operator , Lφ, by :

Lφ(f)(x) :=
∑

y|T (y)=x

eφ(y)f(y)

or, using the introduced notations:

Lφ(f)(x) =
∑

j∈N∗|jx∈F

eφ(jx)f(jx)

Notice that it is defined only if the serie converges. Assumptions on φ will make it defined at any
x if f remains in a correct functional space. For example, if ‖Lφ(1)‖∞ < +∞, it is defined on the
space of bounded functions.

Let φN denote : φN =
∑N−1
k=0 φ ◦T k. The iterates of the operator have the following expression:

LNφ (f)(x) =
∑

i1,...,iN |j1···jNx∈F

eφN (j1···jNx)f(j1 · · · jNx)

Remark 3 We also can think of φ as defined over S and set φ(x) = −∞ if x 6∈ F . It then makes
sense to write: LNφ (f)(x) =

∑
i1,...,iN

eφN (j1···jNx)f(j1 · · · jNx) without defining f out of F .

We shall say that a potential φ defined over a subset F of S is topologically mixing if the subshift
over the subset F is.

When it is not ambiguous, we shall write simply L instead of Lφ.

4



2.3.1 Pressure

We now introduce a quantity which will play the same role as the usual pressure in statistical
mechanics.

Definition 3 We will denote by P (φ) and call Pressure of φ over L∞ the real number :

P (φ) := lim
n→+∞

1
n

log(‖Lnφ(1)‖∞).

The following proposition gives a criterion for the existence of the pressure.

Proposition 1 If ‖L(1)‖∞ < +∞, then, the sequence ( 1
n log(‖Ln(1)‖∞))n∈N∗ converges to a limit

−∞ ≤ P (φ) < +∞.

The sequence is convergent because (‖Ln(1)‖∞)n∈N is sub-multiplicative. 2

In practice, we will use a condition stronger than ‖L(1)‖∞ < +∞. We will ask φ to satisfy:

sup
j∈N∗

+∞∑
i=1

eφ(ij) < +∞

Notice that:

‖L(1)‖∞ = sup
j∈N∗

sup
x∈(j)

+∞∑
i=1

eφ(ix) ≤ sup
j∈N∗

+∞∑
i=1

eφ(ij)

To deal with this kind of quantities that take in account only the supremum of eφ on cylinders,
let introduce the following notations:

∆p(φ) := sup
j>p

(
+∞∑
i=1

eφ(ij)) and ∆N,p(φ) := sup
j>p

(
∑

i1,...,iN

eφN (i1···iN j))

The next proposition gives a relationship between pressures of different potentials.

Proposition 2 If P (φ) < +∞ then, for any c real and h function satisfying ‖log h‖∞ < +∞, one
has:

• P (φ+ c) = P (φ) + c

• P (φ+ log h ◦ T − log h) = P (φ)

The proof is immediate. 2

The first equality implies P (φ− P (φ)) = 0. Hence, it always is possible to reduce a problem
to the case of potentials with pressure zero. Notice that the second equality does not hold if h is
only non negative or if h is unbounded.

2.3.2 Pressure at infinity

The set F is not compact. Usual results existing for the shift over a finite alphabet use the
compactness of the set on which acts the shift. For some potentials, some of these results do not
stand.

To overcome this difficulty, and be able to state results for some classes of potentials, we
introduce a quantity that measures the importance of what ’happens’ outside of compact subsets
of F . In a general setting, these quantities would be of the form: inf

K compact
( sup
x∈Kc

Lnφ1(x)).
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To state our result, we shall use simpler criterions. Let then introduce:

∆∞(φ) := inf
p∈N

(∆p(φ)) = inf
p∈N

(sup
j>p

(
+∞∑
i=1

eφ(ij))) = lim sup
j→+∞

+∞∑
i=1

eφ(ij)

We can define the same kind of quantity for iterated operators:

∆N,∞(φ) := inf
p∈N

(∆N,p(φ)) = inf
p∈N

(sup
j>p

(
∑

i1,...,iN

eφN (i1···iN j))) = lim sup
j→+∞

∑
i1,...,iN

eφN (i1···iN j)

We define the pressure at infinity as follows:

Definition 4 If ∆0(φ) < +∞, we define the Pressure at infinity of φ by:

P∞(φ) := lim sup
N→∞

1
N

log ∆N,∞(φ)

It is not necessary to estimate this quantity. We only need upper bounds. If there exists δ such
that P∞(φ) < log δ, then, there exists two integers N and pN such that ∆N,pN < δN .

2.4 Properties of the invariant elements

Assume that the spectral radius of Lφ is 1.

Definition 5 We shall say that a measure m is conformal if it satisfies

∀f ∈ Xα,θ,
∫
F
Lφ(f)dm =

∫
F
fdm

It is quite easy to check that if m is a conformal measure for the potential φ and h is in Xθ, then
h.m is a conformal measure for the potential φ− log (h ◦ T ) + log (h).

If m is a conformal measure and ρ is an invariant function (Lφ(ρ) = ρ), then the measure
dµ = ρdm absolutely continuous with respect to m is invariant (we shall say it is an a.c.i.m.).

We shall denote by Σ(P) the spectrum of a bounded operator P and by %(P) its spectral radius.
The essential spectral radius of P is the infimum over all the compact operators Q of the spectral
radius of the operators P − Q. An operator is said to be quasicompact, or equivalently to have
a spectral gap, if its essential spectral radius is strictly smaller than its spectral radius. Then, its
dominating behaviour is compact-like.

The existence of a spectral gap for L induces ergodic properties for the corresponding a.c.i.m.
because of the relation: ∫

F
f.g ◦ Tndµ =

∫
F
Lnφ(f.ρ).gdm

2.5 Suitable classes of potential

Let α > 1 and 0 < θ < 1 be two reals.

Definition 6 We will say that φ is in the class Cθ if it satisfies the following conditions :

(C00) P (φ) = 0

(C01) limN→∞ ‖eφN ‖
1
N
∞
< θ2

(C02) P∞(φ) < P (φ).

(C03) ∀N ∈ N∗, Vθ(eφN ) < +∞
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We want to deal with some potentials for which the condition (C03) is not satisfied, but only
the weaker: supi(V

(i)
θ (eφ)) < +∞. This means the variation of eφ on each cylinder is uniformly

bounded but that the sum of these variations can be infinite. (This is for example the case in [2]).

We have to enforce the other assumptions, to compensate this effect. Mainly, we will ask
(C00) and (C02) to remain satisfied for a potential which is ’less expansive at infinity’.

Let us introduce ϕ := φ− log (α̃ ◦ T ) + log α̃. Roughly speaking, eϕ(ij) is much greater than
eφ(ij) when i is fixed and j goes to infinity. If x is in the cylinder (ij), we have eϕ(x) = αj−ieφ(x).

Remark 4 We set α̃(x) = α−i for x ∈ (i) for simplicity. But the results and the proofs remain
the same if we replace α−i by any sequence αi with

∑
i αi < +∞.

We shall denote by Pα(φ) := P (ϕ) and by Pα∞(φ) := P∞(ϕ). In general, the exponent α will
mean that the quantity is calculated for ϕ instead of φ.

Definition 7 We will say that φ is in the class Cα,θ if it satisfies the following conditions :

(C0) Pα(φ) = 0
(C1) limN→∞ ‖eφN ‖

1
N
∞
< θ2

(C2) Pα∞(φ) < Pα(φ)
(C3) supi(V

(i)

θ (eφ)) < +∞

As (C2) is difficult to check, we will also give some criterions that make easy a majoration of
Pα∞(φ). Namely, one has the following results:

Proposition 6 If (a) ∆0(φ) < +∞, (b) ∆∞(φ) < δ and (c) limj→∞ eφ(ij) = 0, then
P∞(φ) < log δ

The proof is in section 3.6.4, page 20.

We will also introduce other classes of potentials more directly adapted to the proofs.

2.6 Statement of the main results

We now are able to state the main result we will prove:

Theorem 1 Let φ be a potential of Cα,θ. The operator Lφ : Xα,θ → Xα,θ is quasicompact. More
precisely, there exists τ ′ < 1 such that it has the following spectral decompostion :

Lφ = Q+R, Q compact, {1} ⊂ Σ(Q) ⊂ {0} ∪ {z||z| = 1}, %(R) ≤ τ ′ < 1, QR = RQ = 0

It is enforced by the following:

Theorem 2 Let φ be a potential of Cα,θ. Assume that there exists a conformal measure and that
the system is mixing. Then, the operator has only one eigenvalue of modulus 1. This eigenvalue is
simple. It is 1. Let ρ denote the corresponding eigenfunction. It is strictly positive. The conformal
measure is unique. It charges all the cylinders in F . The spectral projector on the eigenfunction ρ
is:

Q(f) = (
∫
F
fdm)ρ
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Let us make a few remarks about these results.

Remark 5 τ∞ = max(θ−1 limN→∞ ‖eφN ‖
1
N
∞
, exp(Pα∞(φ))) is an upper bound of the essential spec-

tral radius of Lφ over Xα,θ. Notice that we do not give any bound for the modulus τ ′ of the second
eigenvalue of the operator. We only know it is strictly less than 1.

Remark 6 In many cases, such results also imply the existence of a lower bound (away from 0)
for the density ρ. Under our assumptions, the density is strictly positive but can tend to zero.

Remark 7 The fact that the conformal measure charges all the cylinders comes from the topolog-
ical mixing condition and is important. If we already knew that it is true, then, we could use a
weaker topological mixing property as, for example:

∀n, i1, . . . , in, ∀x ∈ F , ∃N, j1, . . . , jN , | i1 · · · inj1 · · · jNx ∈ F

.

2.7 Consequences

2.7.1 Ergodic results

The following corollary is a direct consequence of the spectral decomposition of the transfer
operator.

Corollary 1 Let T be a mixing subshift over a part F of S. Let α > 1, 0 < θ < 1 be two reals
and φ a potential in (Cα,θ). Denote by m a conformal measure of the system.

T has a unique invariant probability µ, absolutely continuous with respect to m. Its density
ρ with respect to m is in Xα,θ. The measure dµ = ρdm is ergodic, mixing and the functions of Xθ
have exponential decay of correlations with respect to µ.

Under the same assumptions, and using quite classical methods, it is possible to prove limit
theorems for the system. The central limit theorem follows directly of the summability of the
iterates Ln1 (see [12]). Large deviations results can be obtained using pertubations of quasicompact
operators theory (see [6], [5]). Convergence of the laws of entrance times in families of rare events
can be obtained following [8].

2.7.2 Statistical mechanics

One can notice that φ gives raise to a compatible system of conditional probabilities:

Πφ(X1 = i1, . . . , Xn = in|σ ((Xp)p>n))(x) =
eφn(i1···inTnx)∑

j1,···,jn e
φn(j1···jnTnx)

A Gibbs state for this system of conditional probabilities is a probability measure whose con-
ditional probabilities are precisely these values. Namely, m is a Gibbs state for the system of
conditional probabilities associated to φ if and only if it satisfies:

m(f |TnB)(x) =
Lnφf(Tnx)
Lnφ1(Tnx)

, for m− a.e. x

Adopting this point of view, it is not very difficult to deduce from theorem 1 and theorem 2
the following:

Corollary 2 Let (F , T ) be a one-sided mixing subshift. Let φ be a potential of the class Cα,θ. Let
m = mφ be a conformal measure for this potential. It is also a Gibbs state for this potential.
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There exists a unique function ρ and a unique invariant measure µ = µφ satisfying,

µ(f |TnB)(x) = Lnφ−log (ρ◦T )+log (ρ)f(Tnx), for µ− a.e. x

This measure is a Gibbs state for the new potential, absolutely continuous with respect to m. It
is translation invariant, ergodic and mixing. The decay of correlations for functions of Xθ is
exponential.

2.7.3 Interval maps

Let (I, F ) be a topologically mixing, piecewise C1 interval map with a countable number of
subintervals of monotonicity. If it is expanding, it is possible to encode it using its monotonicity
partition. We shall identify it with a subshift F on an infinite alphabet.

Let m be the image of the Lebesgue measure on F . It is conformal for the potential φ =
− logF ′. The corresponding transfer operator is then called Ruelle-Perron-Frobenius operator.

We can deduce from theorem 1 and theorem 2 the following:

Corollary 3 Let (I, F ) be a topologically mixing interval map, with an infinite coding partition.
If − logF ′ is in Cα,θ then there exists a unique probability measure µ, invariant and absolutely
continuous with respect to the Lebesgue measure. Moreover, µ is ergodic, mixing and functions
with bounded variations have exponential decay of correlations.

We now consider as an example a set of assumptions - close to the assumptions of the Folklore
Theorem - under which it is possible to use our result.

Corollary 4 Let I = [0, 1] be the unit interval, and suppose {I1, I2, ...} is a countable collection of
disjoint open subintervals of I such that ∪iIi has the full Lebesgue (dl) measure in I. Suppose there
are constants K0 > 1 and K1 > 0 and mappings fi : Ii → I satisfying the following conditions.

1. fi extends to a C2 diffeomorphism from Īi onto I, and infx∈Ii |f ′i(x)| > K0 for all i.

2. supx∈Ii
f ′′i (x)
f ′
i
(x) |Ii| < K1 for all i.

3. M = −
∑
i |Ii| log |Ii| < +∞

Then, the mapping F defined by F (x) = fi(x) for x ∈ Ii, has unique invariant ergodic probability
measure µ absolutely continuous with respect to Lebesgue measure on I. This measure is mixing
and functions with bounded variations have exponential decays of correlations.

In this context, the result cannot be applied directly because the corresponding potential does not
satisfy Pα∞ < 0 for any suitable sequence α. We introduce a conjugate potential which fits the
assumptions of our result and leads to the conclusion for the original system.

3 Proof of the theorems

3.1 Main steps of the proof

The section 3.2 contains preliminary results. The introduced functional spaces are proved to be
complete. Then, we prove an inequality bounding the variation of the image of a function of Xα,θ.
In particular, we precise how it can be proved in the case of the subshift. This inequality plays the
same kind of role as the “basic inequality” in [16].
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Let us introduce the following notations:

• γN = θ−N‖eφN ‖∞

• vN = θ−2N supj1,...,jN∈NN V
(j1,...,jN )

θ (eφN )

• aαN = θ−1
∑+∞
i=1 α

−iV
(i)

θ (eφN ) =
∑+∞
n=1

∑
i1,...,in

θnα−i1vari1,...,in(eφN )

• δN > ∆α
N,∞(φ)

• τN = N
√

4max(γN ; vN ; δN )

In the section 3.3, we exhibit a criterion for the continuity of a transfer operator over both Xα
and Xα,θ.

Lemma 2 If γN , aαN and ∆α
N,0 are finite, then, the operators Lφ : Xα → Xα and

Lφ : Xα,θ → Xα,θ are continuous.

In section 3.4, under the same assumptions we obtain an upper bound for the spectral radius of
Lφ as an operator over Xα,θ.

Proposition 4 If γN , aαN and ∆α
N,0 are finite, then, the essential spectral radius of

Lφ : Xα,θ → Xα,θ is strictly less than τN

We complete the proof of this result in three steps:

• We explicit a linear decomposition of the operator in three parts:

– A part deals with the action of Lφ on the oscillations of f on the N -cylinders.

– A part deals with what happens to f on each cylinder except a finite number of them.

– The last part concerns what happens on the remaining finite number of cylinders. The
corresponding operator is compact. It will not contribute to the essantial spectral radius.

• We introduce a balanced norm ‖‖b wich is equivalent to the usual norm on Xα,θ. It depends
on the properties of the potential φ:

– [f ] = α−pN [f ]α , where pN is such that ∆α
N,pN

< δN .

– ‖f‖b = Vθ(f) + [f ]

• We then need inequalities to control the norm of the two first parts of the decomposition.
As the last part is compact, this provides an upper bound for the essential radius.

These two results make natural the introduction of the following classes of potentials depending
on an integer N :

Definition 8 We shall say that φ is in C(N)
α,θ if:

(CN0) Pα(φ) = 0
(CN1) ‖eφN ‖∞ < θN

4
(CN2) ∆α

N,0 < +∞ and ∆α
N,∞ < 1

4

(CN3.1) supi1,...,iN (V
(i1,...,iN )

θ (eφN )) < θ2N

4

(CN3.2) aαN < +∞

The potentials of these classes will give raise to continous transfer operators with essantial spectral
radius strictly smaller than 1, whereas their spectral radius is exactly 1. This will ensure the
existence of a spectral gap.

More precisely, in section 3.5, we shall prove the following lemma,

Lemma 4 Let a positive operator L be continuous on Xα, with a spectral radius %.
Assume it is also continuous on Xα,θ, with an essential spectral radius %e < %.

10



The spectral radius of Lφ on Xα,θ is exactly %. Moreover, the real % is an eigenvalue
of L.

Using this lemma, we will be able to prove a result slightly more general than theorem 1:

Theorem 1-(N) If φ is in C(N)
α,θ , then, there exists τ ′ < 1 such that the operator

Lφ : Xα,θ → Xα,θ has the following spectral decomposition.

Lφ = Q+R, Q compact, Σ(Q) ⊂ {0}∪{z||z| = 1}, %(R) ≤ τ ′ < 1, QR = RQ = 0

To conclude, we have to explicit the links between the different introduced classes of potentials.
In section 3.6, we shall see that for any φ ∈ Cα,θ, there exists an integer N such that φ ∈ C(N)

α,θ .

Proposition 5
Cα,θ ⊂

⋃
M≥1

⋂
N≥M

C(N)
α,θ

This achieves the proof of theorem 1.

In the section 3.7, we prove:

Proposition 7 If φ is in Cα,θ, is topologically mixing, and if there exists a conformal
measure for φ, then 1 is a simple eigenvalue of L, over Xα,θ, and it is the only eigenvalue
of modulus 1.

The proof is completed in three steps:

• The existence of a conformal measure implies that the positive part of any invariant function
is almost invariant. This provides a simple way to exhibit a positive invariant function.

• Using the topological mixing property, we prove that such a positive invariant function is
strictly positive. From this argument we deduce that there cannot exist any other invariant
direction. We deduce that the conformal measure is the only one.

• We then prove that 1 is the only eigenvalue of modulus 1.

Remark 8 The property of topological mixing is equivalent to the irreductibility of the operator in
the sense of Schaefer ([21], Définition III.8.1, page 186). The previous results could be obtained
using the results describing the peripheral spectrum of a positive irreductible operator ([21] V.5,
pages 328-333).

The theorem 2 easily follows from proposition 7.

3.2 Preliminary results

3.2.1 Completness of the spaces

We first prove:

Proposition 3 The spaces Xα,θ are Banach spaces.

Proof We must prove they are complete. Let (fn)n∈N be a Cauchy sequence of Xα,θ. The
sequence (gn)n∈N defined by gn = fn

α̃ is a Cauchy sequence in L∞, which is a Banach space.
Hence, it converges in L∞ toward a limit g. We deduce that fn converges in (Xα) toward f = α̃g.

We choose a real ε > 0 (ε < 1
2(1+θ) ). We will exhibit an integer N1 such that if n > N1, we

have:
Vθ(fn − f) ≤ 4ε

11



To do this, let first choose a way of counting the cylinders: to each integer k we associate
a cylinder Ck in such a way that each cylinder is counted (the set of all the finite cylinders is
countable). Let l(k) denote the lenght of the cylinder Ck.

To the kth cylinder Ck = (i1, . . . , il(k)), we now associate an integer Nk with the following
properties:

• ∀n ≥ Nk, ‖fn − f‖∞ ≤ εi1+···+il(k) (fn → f in Xα and also in L∞)

• ∀n,m ≥ Nk, Vθ(fn − fm) ≤ εk ((fn) is a Cauchy sequence in Xα,θ)

Let n > N1. We have, for all integer k (and hence for all cylinder Ck):

varCk(fn − f) ≤ varCk(fn − fN2) +
k∑
j=3

varCk(fNj−1 − fNj ) + varCk(fNk − f)

Hence, summing:

Vθ(fn − f) =
+∞∑
k=1

θl(k)varCk(fn − f)

≤ Vθ(fn − fN2) +
k∑
j=3

Vθ(fNj−1 − fNj ) +
+∞∑
k=1

θl(k)‖fNk − f‖∞

≤
k∑
j=2

εj−1 +
+∞∑
l=1

θl
∑
i1,...,il

εi1+···+il

≤ ε

1− ε
+

θε

1− ε− θε
≤ 4ε

The proof is complete. 2

3.2.2 Regularity of the images

We wish to prove the following inequality:

Lemma 1 If γN and vN are finite, the following inequality holds:

Vθ(LNf) ≤ γN
∑

j1,...,jN

V
(j1,...,jN )
θ (f) + θ−N

∑
j1,...,jN

V
(j1,...,jN )

θ (eφN )‖f.1(j1,...,jN )‖∞ (1)

Proof Let complete the proof only for N = 1. It works exactly in the same way when N is
larger. We first assume that all the cylinders are regular. For all x and y in F , one has:

|Lf(x)− Lf(y)| = |
+∞∑
j=1

(eφ(jx)f(jx)− eφ(jy)f(jy))|

≤
+∞∑
j=1

eφ(jx)|f(jx)− f(jy)|+
+∞∑
j=1

|f(jy)(eφ(jx) − eφ(jy))|

Hence, if x, y ∈ (i1, . . . , in) ∩ F ,

|Lf(x)− Lf(y)| ≤ ‖eφ‖∞
+∞∑
j=1

|f(jx)− f(jy)|+
+∞∑
j=1

‖f.1(ji1···in)‖∞ |eφ(jx) − eφ(jy)|

12



Taking the supremum, we obtain:

vari1,...,in(Lf) = sup
x,y∈(i1,...,in)∩F

|Lf(x)− Lf(y)|

≤ ‖eφ‖∞
+∞∑
j=1

varj,i1,...,in(f) +
+∞∑
j=1

‖f.1(ji1···in)‖∞varj,i1,...,in(eφ)

A sum over all the cylinders gives:

Vθ(Lf) =
+∞∑
n=1

θn
∑

i1,...,in

vari1,...,in(Lf)

≤ ‖eφ‖∞θ−1Vθ(f) +
+∞∑
n=1

θn
∑

j,i1,...,in

varj,i1,...,in(eφ)‖f.1(j)‖∞

If some cylinders are not regular, then the sum Lφ(f)(x) =
∑
j∈N|jx∈F e

φ(jx)f(jx) might depend
on x. Then, for two x et y in the same 1-cylinder, the sum is made over two different subsets of the
alphabet N∗. More precisely, |Lf(x)−Lf(y)| can not any longer be written as |

∑
(eφ(jx)f(jx)−

eφ(jy)f(jy))|. It is to overcome this problem that we introduced the V θ(). Let verify that this fits
the problem. For x, y ∈ (i1, . . . , in),

|Lf(x)−Lf(y)| ≤ |
∑

j|(j,i1,...,in)∈M+

(eφ(jx)f(jx)−eφ(jy)f(jy))|+|
∑

j|(j,i1,...,in)∈Mo

eφ(ji1···in)f(ji1 · · · in)|

We get:

Vθ(Lf) =
+∞∑
n=1

θn
∑

i1,...,in

var(i1,...,in)(Lf)

≤ ‖eφ‖∞θ−1Vθ(f)

+
+∞∑
n=1

θn
∑

j,i1,...,in∈M+

var(j,i1,...,in)(eφ)‖f.1(j)‖∞

+
+∞∑
n=1

θn
∑

j,i1,...,in∈Mo

eφ(ji1···in)|f |(ji1 · · · in)

And finally,

Vθ(Lf) ≤ ‖eφ‖∞θ−1Vθ(f) +
+∞∑
n=1

θn
∑

j,i1,...,in

var(j,i1,...,in)∩F (eφ)‖f.1(j)‖∞

or,

Vθ(Lf) ≤ γ1Vθ(f) + θ−1
+∞∑
j=1

V
(j)

θ (eφ)‖f.1(j)‖∞

The proof of the iterated inequality is the same. The only point to notice is that the non
regular cylinders for LN (Let denote by Mo

N their set) also are non regular for L (Meaningly:
Mo

N ⊂Mo), because, if i1, . . . , in is such that there exist x, y ∈ (iN+1, . . . , in) with i1 · · · iNx ∈ F
and i1 · · · iNy 6∈ F , then, x′ = i2 · · · iNx and y′ = i2 · · · iNy are such that i1x′ ∈ F and i1y′ 6∈ F . 2
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3.3 Continuity of L
Let us recall the introduced notations:

• γN = θ−N‖eφN ‖∞

• δN > ∆α
N,∞(φ)

• vN = θ−2N supj1,...,jN∈NN V
(j1,...,jN )

θ (eφN )

• aαN = θ−1
∑+∞
i=1 α

−iV
(i)

θ (eφN ) =
∑+∞
n=1

∑
i1,...,in

θnα−i1vari1,...,in(eφN )

• τN = N
√

4max(γN ; vN ; δN )

Lemma 2 If γN , aαN and ∆α
N,0 are finite, then, the operators Lφ : Xα → Xα and Lφ : Xα,θ → Xα,θ

are continuous.

Proof

• On one hand, according to (1), we have:

Vθ(LNf) ≤ γN
∑

j1,...,jN

V
(j1,...,jN )
θ (f) + θ−N

∑
j1,...,jN

V
(j1,...,jN )

θ (eφN )‖f.1(j1,...,jN )‖∞

Using the finiteness of aαN , we deduce:

Vθ(LNf) ≤ γNVθ(f) +
+∞∑
n=1

θn
∑

j1,...,jN ,i1,...,in

varj1,...,jN ,i1,...,in(eφN )‖f.1(j1,...,jN )‖∞

≤ γNVθ(f) +
∑

j1,...,jN

α−j1
+∞∑
n=1

θn
∑

i1,...,in

varj1,...,jN ,i1,...,in(eφN )αj1‖f.1(j1)‖∞

≤ γNVθ(f) + aαN [f ]α

• On the other hand, we have:

|αiLNf(ix)| ≤ (
∑

i1,...,iN

αi−i1eφN (i1···iN ix)αi1‖f1(i1)‖∞)

≤ ∆α
N,0[f ]

α

We can conclude that LN is bounded on Xα and Xα,θ. 2

3.4 Essential spectral radius

We shall now prove the following proposition:

Proposition 4 If γN , aαN and ∆α
N,0 are finite, then, the essential spectral radius of Lφ : Xα,θ →

Xα,θ is strictly less than τN

3.4.1 Explicit decomposition of L

If LN = Q + R, with Q a compact operator, the spectral radius of R maximizes the essential
spectral radius of LN . The following decomposition of LN will enable us to derive the anounced
estimation.

14



The compact part will concern the action of the operator over finite approximations of func-
tions measurable with respect to the N-cylinders. Let m be a measure and consider:

E(N)(f) =
∑

i1,...,in

1(i1,...,in)
1

m(i1, . . . , in)

∫
(i1,...,in)

fdm

For any finite family of N-cylinder K (this letter shall denote the family as well as the union of the
corresponding cylinders), we define:

E
(N)
K (f) = E(N)(f).1K

The operator Q(N)
K = LNE(N)

K clearly is compact. Let then write:

f̄ = f − E(N)(f) and f∗ = E(N)(f)− E(N)
K (f)

The next relations clearly stand for any function f in Xα,θ and any (i1, . . . , iN ), N -cylinder,

• V (i1,...,iN )
θ (E(N)(f)) = 0.

• ‖f̄1(i1,...,iN )‖∞ ≤ vari1,...,iN (f̄) = vari1,...,iN (f)

• [f̄ ]
α
≤ 2[f ]

α

3.4.2 Inequalities

Let pN be an integer such that ∆α
N,pN

< δN and set [f ] = α−pN [f ]
α

. We define the balanced
norm ‖‖b as follows: ‖f‖b = Vθ(f) + [f ]. The next lemma will enable us to control the norm ‖‖b
of the operator LN −Q(N)

K :

Lemma 3 There exists K such that the following inequalities stand for all f in Xα,θ.

Vθ(LNf∗) ≤ δN [f ] (2)
Vθ(LN f̄) ≤ (γN + vN )Vθ(f) (3)

[LNf∗] ≤ δN [f ] (4)
[LN f̄ ] ≤ γNVθ(f) + 2δN [f ] (5)

Proof

• Using (1) and V
(i1,...,iN )
θ (f∗) = 0, we obtain:

Vθ(LNf∗) ≤
∑

j1,...,jN

V
(j1,...,jN )

θ (eφN )‖f∗.1(j1,...,jN )‖∞

≤
∑

j1,...,jN∈Kc
α−j1

+∞∑
n=1

θn
∑

i1,...,in

varj1,...,jN ,i1,...,in(eφN )αj1‖f.1(j1)‖∞

≤ aαN (K) αpN [f ]

Where aαN (K) denotes the sum aαN restricted to the cylinders which are not in K. As aαN is
finite, one can choose K enough big for aαN (K) to be small. In particular, it can be chosen
such that aαN (K) ≤ δNα−pN .

• Using (1) and ‖f̄1C‖∞ ≤ varC(f), we obtain:

Vθ(LN f̄) ≤ γN
∑

j1,...,jN

(V (j1,...,jN )
θ (f̄)) + θ−N

∑
j1,...,jN

V
(j1,...,jN )

θ (eφN )‖f̄ .1(j1,...,jN )‖∞

≤ γN
∑

j1,...,jN

(V (j1,...,jN )
θ (f)) + θ−N sup

j1,...,jN

(V
(j1,...,jN )

θ (eφN ))
∑

j1,...,jN

varj1,...,jN (f)

≤ (γN + vN )Vθ(f)
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• The hypothesis says that the sum
∑
i1,...,iN

αi−i1eφN (i1···iN i) is finite for all i and, hence,
converges uniformly for i ≤ pN . K can then be chosen such that

max
i≤pN

(
∑

i1,...,iN∈Kc
αi−i1eφN (i1···iN i)) < δN

Then, if i ≤ pN :

|αiLNf∗(ix)| ≤ max
i≤pN

(
∑

i1,...,iN∈Kc
αi−i1eφN (i1···iN i))[f ]

α

≤ δN [f ]
α

If i > pN , let use the definition of δN :

|αiLNf∗(ix)| ≤ sup
i>pN

(
∑

i1,...,iN

αi−i1eφN (i1···iN i))[f ]α

≤ δN [f ]α

Finally,
[LNf∗] ≤ δN [f ]

• If i ≤ pN :

|αiLN f̄(ix)| ≤ αi
∑

i1,...,iN

eφN (i1···iN i)vari1,...,iN (f)

≤ αpN ‖eφN ‖∞
∑

i1,...,iN

vari1,...,iN (f)

≤ αpNγNVθ(f)

Notice that the balanced norm will be useful here to erase the term αpN .

And, if i > pN :

|αiLN f̄(ix)| ≤ sup
i>pN

(
∑

i1,...,iN

αi−i1eφN (i1···iN i))[f̄ ]α

≤ δN2[f ]α

Hence,
[Lf̄ ] ≤ γNVθ(f) + 2δN [f ]

The lemma 3 is proved. 2

3.4.3 Conclusion

Let us chooseK such that the inequalities of the lemma 3 are satisfied. We obtain, by combination
of these inequalities:

‖LN (f̄ + f∗)‖b ≤ (2γN + vN )Vθ(f) + 4δN [f ]

We have established, for all N, the existence of a compact operator Q(N)
K such that:

‖LN −Q(N)
K ‖b ≤ max(2γN + vN ; 4δN ) ≤ τNN

We can conclude that the essential spectral radius of L over Xα,θ is less than τN . As the
spectrum of an operator does not change when a norm is replaced by an equivalent norm, this
achieves the proof of the proposition 4. 2
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3.5 Spectral decomposition of L
We first prove:

Lemma 4 Let a positive operator L be continuous on Xα, with a spectral radius %. Assume it is
also continuous on Xα,θ, with an essential spectral radius %e < %.

The spectral radius of L on Xα,θ is exactly %. Moreover, the real % is an eigenvalue of L.

Proof The points of the spectrum of L over Xα,θ whose modulus is more than the essential
spectral radius are eigenvalues. But, an eigenfunction of L in Xα,θ also is in Xα: the modulus of
the corresponding eigenvalue is less than the spectral radius of L over Xα. Hence, the spectral
radius of L over Xα,θ is less than %.

As α̃ is in Xα,θ, the following inequalities: 1
n log ‖Ln(α̃)‖ ≥ 1

n log [Ln(α̃)]
α
≥ log % prove that

the spectral radius of L over Xα,θ is greater than %.

Let then λ be one of the eigenvalues of modulus %. There exists a sequence of complex
numbers with modulus strictly greater than %, (λn)n∈N, going to λ as n tend to infinity, and a
function h such that the sequence: (‖R(λn,L)h‖ = ‖

∑+∞
k=0 λ

k
n,Lk(h)‖)n∈N is not bounded.

We deduce that the sequence (‖R(|λn|,L)|h|‖)n∈N is not bounded and that, hence, limn |λn| =
% is in the spectrum of L (for more details, see proposition V.4.1 in [21]). As the elements of the
spectrum with modulus % are isolated, they are eigenvalues: % is an eigenvalue of L. 2

We now are able to finish the proof of the theorem 1-(N). Let us recall:

Definition 8 We shall say that φ is in C(N)
α,θ if:

(CN0) Pα(φ) = 0
(CN1) ‖eφN ‖∞ < θN

4
(CN2) ∆α

N,0 < +∞ and ∆α
N,∞ < 1

4

(CN3.1) supi1,...,iN (V
(i1,...,iN )

θ (eφN )) < θ2N

4

(CN3.2) aαN < +∞

We shall prove that if φ is in C(N)
α,θ , then the conclusion of theorem 1 holds (This is what says

the theorem 1-(N)) . In this case, the assumptions of the proposition 4 are satisfied and we have
τN < 1. The lemma 4 implies the existence of a spectral gap.

It becomes possible to precise the decomposition of Lφ. One can find a curve (for example,
a circle) that separates the spectrum in two different subsets:

• One, Σ0 included in the disk of radius τN .

• The other one made of a finite number, k, of isolated points, (λi)i=1..k out of this circle.

According to Kato ([11], theorem 6.17, page 178) one can define two spectral projectors, P0

and P1, each of them associated to one of the subsets, such that, if R0 = LP0 et Q0 = LP1, then,

L = Q0 +R0

with Q0R0 = R0Q0 = 0, Σ(Q0) = (λi)i=1..p, Σ(R0) = Σ0.

The operator Q0 can itself be expressed as the finite sum of the spectral projectors on the (finite
dimensional) eigenspaces associated to each non zero eigenvalue (λi)i=1..k. Let τ ′ be the biggest
modulus of the (λi)i=1..k whose modulus is strictly less than one. It is possible to use the following
decomposition: L = Q +R where the eigenvalues of the compact operator Q all are of modulus
one and the spectrum of R is included in the disk of radius τ ′ < 1. 2
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3.6 Classes of potential

We first will prove intermediate results in order to prove the following proposition:

Proposition 5
Cα,θ ⊂

⋃
M≥1

⋂
N≥M

C(N)
α,θ

Then, we will give independantly a proof of the proposition 6 providing a way to estimate
the pressure at infinity.

3.6.1 Oscillations

A first result concerns the local oscillations of the iterated potentials.

Lemma 5 For any integer p, there exists a constant Cp such that for any N , r integers, with
0 ≤ r ≤ p,

V
(j1,...,jpN+r)
θ (eφpN+r ) ≤ Cp‖eφp‖N∞V

(j1,...,jp)
θ (eφp)

and, more precisely, vpN+r ≤ Cp‖eφp‖N∞vp

Proof We will only prove the result for p = 1 (and r = 0). The general proof works in the same
way. So, we have to prove the existence of a constant C such that for any integer N ,

sup
i1,...,iN

(V (i1,...,iN )
θ (eφN )) ≤ C‖eφ‖N−1

∞
sup
i

(V (i)
θ (eφ)) (6)

We first are going to prove that for any integer N , any integer n > N and any cylinder
(i1, . . . , in) of lenght n, one has:

vari1,...,in(eφN ) ≤ ‖eφ‖N−1
∞

N∑
k=1

(varik,...,in(eφ)) (7)

It clearly stands if N = 1 (equality). Assume it holds at the step N − 1 and write vari1,...,in(eφN ):

vari1,...,in(eφN ) = vari1,...,in(eφN−1eφ ◦ TN−1)
≤ ‖eφ‖∞vari1,...,in(eφN−1) + variN ,...,in(eφ)‖eφ‖N−1

∞

≤ ‖eφ‖∞

(
‖eφ‖N−2

∞

N−1∑
k=1

(varik,...,in(eφ))

)
+ variN ,...,in(eφ)‖eφ‖N−1

∞

≤ ‖eφ‖N−1
∞

N∑
k=1

(varik,...,in(eφ))

Hence, (7) holds for any N , n > N and any cylinder i1, . . . , in. We deduce, by summing over all
the cylinders:

V
(j1,...,jN )
θ (eφN ) =

∑
n>N

θn(
∑

iN+1,...,in

varj1,...,jN ,iN+1,...,in(eφN ))

≤
∑
n>N

θn
∑

iN ,...,in

(
‖eφ‖N−1

∞

N−1∑
k=1

(varjk,...,jN ,iN+1,...,in(eφ))

)

≤ ‖eφ‖N−1
∞

N−1∑
k=1

θk

∑
n>N

θn−k
∑

iN ,...,in

varjk,...,jN ,iN+1,...,in(eφ)


≤ ‖eφ‖N−1

∞

N−1∑
k=1

θk sup
jk,...,jN

(V (jk,...,jN )
θ (eφ))

≤ C‖eφ‖N−1
∞

sup
i

(V (i)
θ (eφ))
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Hence, the inequality (6) is proved.

Using this result, we obtain the corresponding result taking in account the non regular cylinders:

vN ≤ sup
i1,...,iN

(V (i1,...,iN )
θ (eφN )) +

+∞∑
n=0

θn
∑

i1,...,in∈Mo
N

eφN (i1···in)

≤ C‖eφ‖N
∞

sup
i

(V (i)
θ (eφ)) + ‖eφN−1‖∞

+∞∑
n=0

θn
∑

i1,...,in∈Mo

eφ(i1···in)

≤ C ′‖eφ‖N
∞
v1

The anounced result can be proved exactly in the same way. 2

3.6.2 Total weighted variation

The following lemma refers to the quantities aαN , weighted sums of the local oscillations of the
potential defined in section 3.3, page 14. It provides a simple criterion for their finitness.

Lemma 6 If aα1 < +∞, then, for all N ≥ 1, aαN < +∞.

Proof We need an inequality a bit more precise than (7). For any N > 1, and n > 1:

vari1,...,in(eφN ) = vari1,...,in(eφeφN−1◦T )

≤ eφ(i1···in)vari1,...,in(eφN−1 ◦ T ) + vari1,...,in(eφ)eφN−1◦T (i1···in)

≤ eφ(i1i2)vari2,...,in(eφN−1) + vari1,...,in(eφ)‖eφN−1‖∞

If n = 1:

vari1(eφN ) ≤ eφ(i1)‖eφN−1‖∞ + vari1(eφ)‖eφN−1‖∞

Assume that all the cylinders are regular. Then, by recurence, :

aαN =
+∞∑
n=1

θn
∑

i1,...,in

α−i1vari1,...,in(eφN )

≤ θ
∑
i1

α−i1(eφ(i1)‖eφN−1‖∞ + vari1(eφ)‖eφN−1‖∞)

+
+∞∑
n=2

θn
∑

i1,...,in

α−i1
(

(eφ(i1i2)vari2,...,in(eφN−1) + vari1,...,in(eφ)‖eφN−1‖∞
)

≤ θ‖eφ‖N
∞

(
∑
i1

α−i1) + ‖eφN−1‖∞θ
∑
i1

α−i1vari1(eφ)

+
+∞∑
n=2

θn
∑

i1,...,in

αi2−i1eφ(i1i2)α−i2vari2,...,in(eφN−1)

+ ‖eφN−1‖∞
+∞∑
n=2

θn
∑

i1,...,in

α−i1vari1,...,in(eφ)

≤ θ‖eφ‖N
∞

(
∑
i

α−i)

+ sup
i2

(
∑
i1

αi2−i1eφ(i1i2))θ
+∞∑
n=2

θn−1
∑

i2,...,in

α−i2vari2,...,in(eφN−1)
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+ ‖eφN−1‖∞
+∞∑
n=1

θn
∑

i1,...,in

α−i1vari1,...,in(eφ)

≤ θ‖eφ‖N
∞

(
∑
i

α−i) + ∆α
0 θa

α
N−1 + γN−1a

α
1

< +∞

If some cylinders are not regular, the same argument as in the previous lemma ensures the
result. 2

3.6.3 Conclusion

Let φ be a potential in Cα,θ. We are going to exhibit an integer N3 such that if N > N3,
φ ∈ C(N)

α,θ .

• (C0) is the same as (CN0)

• There exists an integer N0 such that ‖eφN0‖∞ is bounded. For N > N0, ‖eφN0 ‖∞ decreases
exponentially fast, strictly faster than θ2N . Hence there exists some integer N1 such that if
N > N1, ‖eφN ‖∞ ≤ θ2N

4 . Meaning that as soon as N > N1, (CN1) holds for φ.

• According to (C2), there exists an integer N2 (say N2 ≥ N1) such that as soon as N > N2,
(CN2) holds.

• (C3) and the inequality (6) prove that vN1 < +∞. The lemma 5 proves that for N > N1,
vN decreases exponentially fast with rate N1

√
‖eφN1 ‖∞ < θ2. Hence, there exists N3 > N2

such that as soon as N > N3, vN < θ2N

4 . This proves that (CN3.1) holds.

• (CN3.2) holds for any N , according to the lemma 6, because aα1 ≤
∑
i α
−iv1 < +∞.

It appears that φ ∈ C(N)
α,θ for any N > N3. 2

Remark 9 We also get a bound for the essential spectral radius of the operator. As it is smaller
than τN for any N > N3, we can say that it is smaller to the corresponding limits when N tends
to infinity. Hence, using again lemma 5, we obtain:

log τ ≤ max ( lim
N→∞

1
N

log γN , Pα∞(φ))

3.6.4 Pressure at infinity

The following proposition shall be useful to obtain an upper bound of the pressure at infinity of
a potential.

Proposition 6 If (a) ∆0(φ) < +∞, (b) ∆∞(φ) < δ and (c) limj→∞ eφ(ij) = 0, then P∞(φ) <
log δ

Remark 10 We also could state it in the following way. Any potential φ satisfying (C0), (C1),
(C3) and (a) ∆0(ϕ) < +∞, (b) ∆∞(ϕ) < δ and (c) limj→∞ eϕ(ij) = 0 for ϕ = φ− log α̃ ◦ T +log α̃
is in Cα,θ.

Proof Let first notice that, as the sequence (∆α
N,0)N∈N is subadditive, ∆α

0 < +∞ implies for all
N , ∆α

N,0 < +∞.

For any N ∈ N∗, consider the statement HN :

∃pN ∈ N, sup
j>pN

 ∑
i1,...,iN

eφN (i1···iN j)

 < δN
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The statement HN holds for N = 1, as this is one of the assumptions. Assume it holds for
an integer N . Let pN be the corresponding integer (it can be chosen greater than p). Then:

∑
i1,...,iN+1

eφN+1(i1···iN+1j) =
∑
iN+1

eφ(iN+1j)
∑

i1,...,iN

eφN (i1···iN+1j)

=
∑

iN+1≤pN

eφ(iN+1j)
∑

i1,...,iN

eφN (i1···iN+1j) +
∑

iN+1>pN

eφ(iN+1j)
∑

i1,...,iN

eφN (i1···iN+1j)

< (
∑
i≤pN

eφ(ij)) sup
i≤pN

(
∑

i1,...,iN

eφN (i1···iN i))

+ (
∑

iN+1>pN

eφ(iN+1j)) sup
i>pN

(
∑

i1,...,iN

eφN (i1···iN+1i))

< (
∑
i≤pN

eφ(ij))∆N,0 + (
∑

iN+1>pN

eφ(iN+1j))δN

For all ε > 0, one can choose pε enough big to ensure that as soon as j > pε,
∑
i e
φ(ij) < δ

(Assumption (b)) and
∑
i≤pN e

φ(ij) ≤ ε (Assumption (c)). One then has:

sup
j>pε

(
∑

i1,...,iN

eφN (i1···iN j)) ≤ ε∆N,0 + δN+1

This is sufficient to see that HN+1 is satisfied. Hence, HN is satisfied for all integers. We deduce
that P∞(φ) < log δ. 2

3.7 Mixing

We now assume that the system has a conformal measure, say m. We also assume that φ is
topologically mixing.

Proposition 7 (Mixing) If φ ∈ Cα,θ, is topologically mixing and if there exists a conformal
measure m for φ, then 1 is a simple eigenvalue of L, over Xα,θ, and it is the only eigenvalue of
modulus 1.

3.7.1 Existence of a positive invariant function

Lemma 7 There exists a positive invariant function

Proof We first prove that the conformal measure charges all the cylinders of F . Let (i1, . . . , in)
be a cylinder intersecting F . The topological mixing property says that an integer N can be chosen
large enough to ensure that for all x in F , there is a (j1, . . . , jN ) with i1 · · · inj1 · · · jNx ∈ F and
hence eφn+N (i1···inj1···jNx) > 0. As m is conformal,

m(i1, . . . , in) = m(Ln+N1i1,...,in) =
∑

j1,...,jN

m
(
eφn+N (i1···inj1···jNx)

)
> 0

Hence, we can use the conformal measure m in the definition of the part E(N) of the explicit
decomposition of LN (section 3.4). If w is in Xα,θ and

∫
F |w|dm = 0, then E(N)w = 0. We deduce

from the lemma 3 that for such a w, ‖LNw‖b ≤ τNN ‖w‖b.

Let now ρ be an invariant function. ρ+ := max (ρ, 0) is invariant m-almost everywhere in the
following sense. We have L(ρ+) ≥ ρ+ and m(L(ρ+)) = m(ρ+).

Set w = L(ρ+) − ρ+. As w ≥ 0 and m(w) = 0, we know that ‖LNw‖b ≤ τNN ‖w‖b. We deduce
that Ln(ρ+) converges in Xα,θ as n goes to infinity. The limit is a positive invariant function. 2
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3.7.2 Simplicity of the eigenvalue 1

Lemma 8 Let ρ ∈ Xα,θ be a non zero positive invariant function. ρ is strictly positive. All the
invariant functions of Lφ are proportional to ρ. There are no other elements in the characteristic
space associated with the eigenvalue 1. The conformal measure is unique.

Proof Assume that for any cylinder C, infC∩F ρ = 0. Then, for all x ∈ F and all integer n:

ρ(x) = Lnρ(x) =
∑

i1,...,in

eφn(i1···inx)ρ(i1 · · · inx) ≤ θn
∑

i1,...,in

vari1,...,in(ρ)

and hence, as Vθ(ρ) < +∞, ∀x ∈ F , ρ(x) = 0. As ρ is non zero, we deduce that there exists a
cylinder C over which ρ is greater than a strictly positive real.

The topological mixing condition ensures the existence of an integer n such that Tn(C∩F) = F .
Hence, for all x ∈ F , exists i1, . . . , in such that i1 · · · inx ∈ C ∩ F . Hence, ρ(x) = L(ρ)(x) ≥
eφ(i1···inx)ρ(i1 · · · inx) ≥ eφ(i1···inx) infC ρ. Finally:

∀x ∈ F , ρ(x) > 0

Let ρ′ be another invariant function, λ a real, and set ρλ := ρ′−λρ. The function ρλ is invariant.
For the same reasons as in the lemma 7, there exists a set X ⊂ F , with m(X) = 1, such that for
all x ∈ X, L(ρ+

λ )(x) = ρ+
λ (x). On this set, the same argument as for ρ proves that either ρ+

λ is
zero either it is strictly positive. Hence, the set {ρ′ ≤ λρ} = {ρ+

λ = 0} is either of measure 0 or of
measure 1.

We now choose λ as the infimum of the reals such that m{ρ′ ≤ λρ} = 0. We then have
ρ′ = λρ, m-almost everywhere. The same argument as in the proof of the lemma 7 ensures that
‖ρλ‖b = ‖LN (ρλ)‖b ≤ τNN ‖ρλ‖b and, hence, ‖ρλ‖b = 0. We conclude that ρ′ = λρ in Xα,θ. ρ is the
only eigendirection associated to the eigenvalue 1.

Let now assume that ρ′ is such that Lφ(ρ′) = ρ+ρ′. This implies m(ρ+ρ′) = m(Lφ(ρ′)) = m(ρ′)
and, hence, m(ρ) = 0. But ρ is strictly positive. We deduce that such a ρ′ can not exist. Hence,
the eigenvalue 1 is simple.

The unicity of the conformal measure follows from the theorem 6.22, page 184 in [11]. It ensures
that the eigenvalue 1 of the adjoint operator of L also has multiplicity 1. 2

3.7.3 Renormalization

Definition 9 The only strictly positive invariant function, ρ, being given, one can define the
renormalised operator, P, by: P = Lφ+log ρ−log ρ◦T , or equivalently:

∀f ∈ Xα,θ, P(f) =
1
ρ
Lφ(f.ρ)

The real 1 is eigenvalue of P with eigenfunction 1. Notice also that P is the adjoint of U in L2
µ

because: ∫
F
U(f).gdµ =

∫
F
U(f).g.ρdm =

∫
F
f.Lφ(gρ)dm =

∫
F
f.P(g)dµ

3.7.4 Other eigenvalues

Lemma 9 The only eigenvalue of modulus 1 is 1.

Proof We first prove that that if λ is an eigenfunction of modulus 1 of L, then λ is a root of the
unity.
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The set of the eigenvalues of U is a subgroup of the complex unit circle. P is its adjoint: the
eigenvalues of modulus 1 of P also form a subgroup of the circle.

Let h ∈ Xα,θ be an eigenfunction of L, associated to the eigenvalue λ of modulus 1. Then,
|h| = ρ (because it is an invariant function µ-almost everywhere) and, if we set h = ρeiω, P(eiω) =
λeiω. We see that λp also is eigenvalue of P (with eigenfunction eipω). Hence λp also is an
eigenvalue of L.

The total number of eigenvalues with modulus greater than τ is finite. The subgroup of
eigenvalues of modulus 1 must then be finite. Hence, it is made of a finite number of roots of the
unity.

The eigenfunctions of L corresponding to eigenvalues of modulus 1 are invariant with respect to
an iterate of L. We can prove that they are strictly positive and hence, proportional to ρ, using
the same argument as in lemma 8.

We conclude that 1 is the only eigenvalue of L over Xα,θ. The lemma 9 is proved. 2

The proposition 7 is proved. 2

3.7.5 Decomposition

It now is possible to precise the spectral decomposition of L.

• On one hand, Q(f) = ρ.
∫
F fdm

• On the other hand, R with spectral radius lower than some τ ′ < 1.

4 Consequences

We shall now briefly present the links between the main results and the settings in which they
might be used. The only aim is to give an idea of the possible use of these results.

4.1 Ergodic results

The existence of a real eigenfunction associated with the eigenvalue 1 of L in Xα,θ implies the
existence of an a.c.i.m.. Choose ρ such that m(ρ) = 1 and set dµ = ρdm. The measure µ is
invariant and absolutely continuous with respect to m.

The following proposition proves that the functions of Xθ have exponential decay of correlations.

Proposition 8 (Exponential decay of correlations) There exists τ ′ ∈]0, 1[ such that for all
functions f, g in Xθ, there exists a constant C = C(f, g) with:

Corn(f, g) := |
∫
F
f.g ◦ Tndµ−

∫
F
fdµ.

∫
F
gdµ| ≤ C.τ ′n

Proof In that case, fρ ∈ Xα,θ et g ∈ L∞. We get:

Corn(f, g) = |
∫
F
f.g ◦ Tndµ−

∫
F
fdµ.

∫
F
gdµ|

≤
∫
F

∣∣∣∣Lnφ(fρ)−
∫
F
fρdm.ρ

∣∣∣∣ |g|dm
≤

∫
F
|Rn(fρ)||g|dm ≤ [Rn(fρ)]

α

∫
F
|g|α̃dm ≤ τ ′n‖fρ‖‖g‖∞

≤ C.τ ′n 2
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The set {f | fρ ∈ Xα,θ} which contains Xθ is dense in L2
µ. This proves the strong mixing of the

system because we have the convergence of
∫
F f.f ◦ T

ndµ toward
(∫
F fdµ

)2 for all f in a dense
subset of L2

µ. The corollary 1 is proved. 2

4.2 Statistical mechanics

The only point we have to notice is the following:

Lemma 10 The conformal measure mφ of the operator Lφ is a Gibbs state of the potential φ.

Proof We have to verify that, over m, a version of the conditional expectation of f knowing that
Tnx = Tny can be written:

m(f |TnB)(y) =
(UL)n(f)(y)
(UL)n(1)(y)

First notice that this last quantity is measurable with respect to TnB. Then, let g be a
function measurable with respect to TnB (depending only of the coordinates whose index is more
than n) ; let write g = h ◦ Tn,∫

F
g.

(UL)n(f)
(UL)n(1)

dm =
∫
F

(
h.
Ln(f)
Ln(1)

)
◦ Tndm

=
∫
F
h.Ln(f)dm

= m(g.f) 2

The same computation can prove that if ρ is the unique eigenfunction of L, the measure dµ = ρdm
is a Gibbs state on N∗, translation invariant, associated to the potential φ− log ρ ◦ T + log ρ.

4.3 Interval maps

4.3.1 General result

A simple change of variable proves that the Lebesgue measure is conformal for the RPF operator.

The functions of the interval with bounded variations are in Xθ. The partition of F in cylinders
(i1, . . . , in) corresponds to a partition of the original interval in subintervals Ii1,...,in . Hence, if
V arJ(f) denotes the (usual) variation of f on the interval J ,∑

i1,...,in

vari1,...,in(f) ≤
∑

Ii1,...,in

V arIi1,...,in (f) ≤ V arI(f)

and, hence,
Vθ(f) ≤ (

∑
n

θn)V arI(f)

4.3.2 Example

We now give the proof of the corollary 4.

Proof We denote by dl the Lebesgue measure on I, as well as its image on the shift. We shall
denote by ai := |Ii| = l(Ii) = l(i). Without loss of generality, we can assume that this sequence is
decreasing.

Let notice that the condition 2. implies:

∀x, y ∈ (i), exp (−K1
|x− y|
ai

) ≤ F ′(y)
F ′(x)

≤ exp (K1
|x− y|
ai

) and aie
−K1 ≤ 1

F ′(x)
≤ aieK1
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Let ψ(x) := − logF ′(x). This potential does not satisfy the required properties for the applica-
tion of our theorem. We shall use another one. Let i0 be the first integer i such that ai ≤ e−K1

K0
.

Let (an) be the sequence defined as follows:

ai :=
{
ai0 if i < i0
ai if i ≥ i0

Let then set:
∀x ∈ (ij), φ(x) = ψ(x) + log aj − log ai

Let us set 1√
K0

< θ < 1 and for all integer i, αi = −ai log ai. According to the condition 3.,
the sequence (αi) is summable. We shall use our result enlarged by the remark 4 ; the results
also apply when the sequence is only summable and not exponentially decreasing. Let then set
ϕ(ijx) = φ(ijx)− logαj + logαi and notice that there is a constant M > 0 such that,

+∞∑
i=1

eϕ(ij) ≤
+∞∑
i=1

αi
αj
aie

K1
aj
ai
≤
aj
αj
eK1(

+∞∑
i=1

aiαi
ai

) ≤ eK1

log aj
(
+∞∑
i=1

ai log ai) ≤
−M
log aj

(8)

Let now verify that the potential φ is in Cα,θ.

• (C0) The pressure Pα(φ) = P (ϕ) is finite because
∑+∞
i=1 e

ϕ(ij) is uniformly bounded (proposi-
tion 1). The measure dmϕ = αi

a
i
dl is finite and satisfies mϕ(1) = mϕ(Lnϕ1) ≤ mϕ(1)‖Lnϕ1‖∞ .

We deduce that, Pα(φ) ≥ 0. It is enough here because in what follows, we can replace φ by
φ− Pα(φ). But in facts it is possible to prove Pα(φ) = 0.

• (C1) Let us estimate eφ(ijx) = eψ(ijx)
aj
ai

. Let distiguish three cases:

– If i ≤ j, eφ(ijx) ≤ eψ(ijx) ≤ 1
K0

– If j < i < i0, eφ(ijx) = eψ(ijx) ≤ 1
K0

– If j < i and i > i0, eφ(ijx) ≤ aieK1
aj
ai
≤ ajeK1 ≤ ai0eK1 ≤ 1

K0

• (C2) From (8), we deduce that

(a) ∆0(ϕ) = supj (
∑+∞
i=1 e

ϕ(ij)) ≤ supj ( −1
log aj

)M < +∞

(b) ∆p(ϕ) ≤ supj>p(
−1

log a
j
)M is smaller than 1 if p is large enough.

(c) limj→∞ eϕ(ij) ≤M limj→∞
−1

log aj
= 0

We now apply the proposition 6 to conclude that Pα∞(φ) < 0.

• (C3) If x, y ∈ (ij),

|eφ(x) − eφ(y)| = eφ(y)|eφ(x)−φ(y) − 1| ≤ aieK1
aj
ai
|eK1

|x−y|
ai − 1| ≤ aie2K1

aj
ai
K1
|x− y|
ai

We deduce,∑
i3,···,in

vari,j,i3,···,in(eφ) ≤
∑

i3,···,in

aiK1e
2K1

aj
ai

l(i3, · · · , in)
ai

≤ K1e
2K1

aj
ai
l(i, j)

Hence,

V
(i)
θ (eφ) =

∑
n>1

θn
∑

i2,...,in

vari,i2,...,in(eφ) ≤ (
∑
n>1

θn)K1e
2K1

ai
ai
≤ K < +∞

We have proved that the potential φ is in Cα,θ. The measure a−1
i dl is conformal. The system

is topologically mixing. Hence, applying the corollary 1, we obtain the existence of an invariant
function ρ for Lφ in Xα,θ. The measure dµ = ρa−1

i dl is invariant for the original system and
absolutely continuous with respect to the Lebesgue measure on I. The ergodic properties of this
invariant measure also follow from corollary 1. The proof is complete. 2
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