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Abstract

We present an upper bound on the mixing rate of the equilibrium state of a dynamical
systems defined by the one-sided shift and a non Hölder potential of summable variations. The
bound follows from an estimation of the relaxation speed of chains with complete connections
with summable decay, which is obtained via a explicit coupling between pairs of chains with
different histories.

1 Introduction

Let µφ be the equilibrium state associated to the continuous function φ. In this paper we obtain
upper bounds for the speed of convergence of the limit∫

X

f ◦ Tn g dµφ −→
n→∞

∫
X

f dµφ

∫
X

g dµφ (1.1)

for φ with summable variations and T the one-sided shift. We show that this speed is (at least)
summable, polynomial or exponential according to the decay rate of the variations of φ. The
bounds apply for f ∈ L1(µφ) and g with variations decreasing proportionally to those of φ.

Previous approaches to the study of the mixing properties of the one-sided shift rely on the use
of the transfer operator Lφ, defined by the duality,∫

X

f ◦ Tn g dµφ =
∫
X

f Lnφg dµφ . (1.2)

If φ is Hölder, this operator, acting on the subspace of Hölder observables, has a spectral gap and
the limit (1.1) is attained at exponential speed (Bowen, 1975). When φ is not Hölder, the spectral
gap of the transfer operator may vanish and the spectral study becomes rather complicated. To
estimate the mixing rate, Kondah, Maume and Schmitt (1996) proved first that the operator
is contracting in the Birkhoff projective metric, while Pollicott (1997), following Liverani (1995),
considered the transfer operator composed with conditional expectations. In contrast, our approach
is based on a probabilistic interpretation of the duality (1.2) in terms of expectations, conditioned
with respect to the past, of a chain with complete connections The convergence (1.1) is therefore
related to the relaxation properties of this chain. In this paper, such relaxation is studied via a
coupling method.
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Chains with complete connections are processes characterized by having transition probabilities
that depend on the whole past in a continuous manner. They were first introduced by Onicescu and
Mihoc (1935, 1935a) and soon taken up by Doeblin (1937). These authors proved the first existence
and convergence results for these processes, later extended by Harris (1955). [The definition
adopted in these works is written in a slightly different manner than current usage in the random-
processes literature (see eg. Lalley, 1986). We adopt the latter.] Moreover, their studies were geared
towards more complicated objects —called random systems with complete connections— where the
chain acts as an underlying “index sequence” used to define very general Markov processes. In
this form, the chains have ben applied to studies of urn schemes (Onicescu and Mihoc, 1935a),
continued fractions (Doeblin, 1940; Iosifescu 1978), learning processes (Karlin, 1953; Iosifescu and
Theodorescu, 1969; Norman, 1972) and image coding (Barnsley et al, 1988). As a general reference
on the subject we mention the book by Iosifescu and Grigorescu (1990) as well as the historical
review presented in Kaijser (1981) and the brief and clear update by Kaijser (1994). These last
two references were our main sources for the preceding account. (We thank an anonymous referee
for pointing to us key bibliographical sources on the theory of random systems with complete
connections.) Our work introduces a novel application of this useful objects to the field of dynamical
systems, where they appear in a rather natural way.

Coupling ideas were first introduced by Doeblin in his 1938 work on the convergence to equi-
librium of Markov chains. He let two independent trajectories evolve simultaneously, one starting
from the stationary measure and the other from an arbitrary distribution. The convergence fol-
lows from the fact that both realizations meet at a finite time. [Doeblin published his results in a
hardly known paper in the Revue Mathématique de l’Union Interbalkanique. For a description of
Doeblin’s contributions to probability theory we refer the reader to Lindvall (1991)]. This idea was
soon applied to study the existence and relaxation properties of chains with complete connections
(Doeblin and Fortet, 1937; Harris, 1955); see also the account by Iosifescu, 1992). Instead of letting
the trajectories evolve independently (trivial or product coupling), one can couple them from the
beginning so that they continue to evolve together once they meet. This reduces the “meeting
time” and, hence, yields a better rate of convergence. This procedure is what nowadays is known
as coupling in the stochastic-processes literature. In this setting, it is particularly efficient to use
couplings that “load” the diagonal as much as possible. In our work, we apply a particular cou-
pling with this property, sometimes called the Vaserstein coupling (eg. in Kaijser, 1981, Lindval,
in his 1992 lectures, calls it γ-coupling). For instance, when applied to a Markov processes, this
coupling prescription leads to the so-called Dobrushin’s ergodic coefficient. The sharpness of the
convergence rates provided by different types of Markovian couplings has been recently discussed
by Burdzy and Kendall (1998).

The Vasserstein coupling has been applied before to chains with complete connections —for
instance by Kaijser (1981, 1994) and by us (Bressaud, Fernández, Galves, 1997)— for different
purposes. In this paper we use it to obtain a more careful estimation of the relaxation properties of
such chains. As the transition probabilities of the chains considered here depend on the whole past,
the coupling can not ensure that two different trajectories will remain equal after their first meeting
time. But the coupling has the property that if the trajectories meet they have a large probability
of remaining equal, and this probability increases with the number of consecutive agreements. In
the summable case, the coupling is such that with probability one the trajectories disagree only a
finite number of times. In fact, the approach can also be applied under an assumption weaker than
summability [(4.7) below]. This assumption, which was previously put forward by Harris (1955),
ensures that trajectories that differ infinitely often do so with a probability of disagreement that
goes to zero. The method leads, in particular, to a criterium of uniqueness for g-measures proven
by Berbee (1987). The mean time between succesive disagreements provides a bound on the speed
of relaxation of the chain and hence, through our probabilistic interpretation of (1.2), of the mixing
rate.

Let us mention, as related developments in the context of dynamical systems, the recent papers
by Coelho and Collet (1995) and Young (1997). These papers consider the time two independent
systems take to become close. This is reminiscent of the coupling ideas.
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The paper is organized as follows. The main results and definitions relevant to dynamical systems
are stated in Section 2. The relation between chains with complete connections and the transfer
operator is spelled out in Section 3. In Section 4, we state and prove the central result on relaxation
speeds of chains with complete connections. Theorem 1 on mixing rates for normalized functions
is proven in Section 5, while Theorem 2 on rates for the general case is proven in Section 6. The
upper bounds on the decay of correlations depend crucially on estimations of the probability of
return to the origin of an auxiliary Markov chain, which are presented in Section A.

2 Definitions and statement of the results

Let A be a finite set henceforth called alphabet. Let us denote

A =
{
x = (xj)j≤−1 , x ∈ A

}
(2.1)

the set of sequences of elements of the alphabet indexed by the strictly negative integers. Each
sequence x ∈ A will be called a history. Given two histories x and y, the notation x m= y indicates
that xj = yj for all −m ≤ j ≤ −1.

As usual, we endow the set A with the product topology and the σ-algebra generated by the
cylinder sets. We denote by C0(A,R) the space of real-valued continuous functions on A.

We consider the one-sided shift T on A,

T : A −→ A
x 7−→ T (x) = (xi−1)i≤−1.

Given an element a in A and an element x in A, we shall denote by xa the element z in A such
that z−1 = a and T (z) = x.

Given a function φ on A, φ : A→ R, we define its sequence of variations (varm(φ))m∈N,

varm(φ) = sup
x

m
=y

|φ(x)− φ(y)| . (2.2)

We shall say that it has summable variations if,∑
m≥1

varm(φ) < +∞ , (2.3)

and that it is normalized if it satisfies,

∀x ∈ A ,
∑
a∈A

eφ(xa) = 1 . (2.4)

We say that a shift-invariant measure µ on A is compatible with the normalized function φ if and
only if, for µφ-almost-all x in A,

Eµφ

(
1{x−1=a}|F≤−2

)
(x) = eφ(T (x)a) , (2.5)

where the left-hand side is the usual conditional expectation of the the indicator function of the
event {x−1 = a} with respect to the σ-algebra of the past up to time −2.

An equivalent way of expressing this is by saying that µφ is a g-measure for g = eφ. If φ has
summable variations, and even under a slightly weaker conditions, then such a measure is unique
and will be denoted µφ. The measure µφ can also be characterized via a variational principle, in
which context it is called equilibrium state for φ. For details see Ledrappier (1974), Walters (1975),
Quas (1996) and Berbee (1987).
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For a non-constant φ, we consider the seminorm

||g||φ = sup
k≥0

vark(g)
vark(φ)

(2.6)

and the subspace of C0(A) defined by,

Vφ =
{
g ∈ C0(A,R) , ||g||φ < +∞

}
. (2.7)

Given a real-valued sequence (γn)n∈N, let (S(γ)
n )n∈N be the Markov chain taking values in the

set N of natural numbers starting from the origin

P(S(γ)
0 = 0) = 1 (2.8)

whose transition probabilities are defined by

pi,i+1 = 1− γi
pi,0 = γi ,

(2.9)

for all i ∈ N. For any n ≥ 1 we define

γ∗n = P(S(γ)
n = 0) . (2.10)

We now state our first result.

Theorem 1 Let φ : A→ R be a normalized function with summable variations and set

γn = 1− e−varn(φ) . (2.11)

Then, ∣∣∣∣∫ f ◦ Tn g dµφ −
∫
f dµφ

∫
g dµφ

∣∣∣∣ ≤ ||f ||1 ||g||φ
n∑
k=0

vark(φ) γ∗n−k (2.12)

≤ C ||f ||1 ||g||φ γ∗n , (2.13)

for all f ∈ L1(µφ) and g ∈ Vφ, for a computable constant C.

This theorem is proven in Section 5, using the results obtained in Section 4 on the relaxation speed
of chains with complete connections.

For each non-normalized function φ with summable variations there exists a unique positive
function ρ such that the function

ψ = φ+ log ρ− log ρ ◦ T (2.14)

is normalized (Walters, 1975). We call ψ the normalization of φ. The construction of compatible
measures given in (2.5) looses its meaning for non-normalized φ. It is necessary to resort to an
alternative characterization in terms of a variational principle (see eg. Bowen 1975) leading to
equilibrium states. In Walters (1975) it is proven that:

(a) φ with summable variations admits a unique equilibrium state, that we denote also µφ;

(b) the corresponding normalized ψ, given by (2.14), admits a unique compatible measure µψ
(even when the variations of ψ may not be summable), and

(c) µφ = µψ.
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Our second theorem generalizes Theorem 1 to non-normalized functions.

Theorem 2 Let φ : A → R be a function with summable variations and let ψ be its normaliza-
tion. Let (nm)m∈N be an increasing subadditive sequence such that the subsequence of the rests,(∑

k≥nm
vark(φ)

)
m≥0

, is summable, and

γm = 1− e−3
∑

k≥nm
vark(φ) ; (2.15)

then, ∣∣∣∣∫ f ◦ Tn g dµφ −
∫
f dµφ

∫
g dµφ

∣∣∣∣ ≤ ||f ||1 ||g||φ
n∑
k=0

varnk
(φ) γ∗n−k (2.16)

≤ C ||f ||1 ||g||φ γ∗n , (2.17)

for all f ∈ L1(µφ) and g ∈ Vφ, for a computable constant C. Here γ∗ is defined as in (2.10) but
using the sequence (γ∗n)n∈N.

The estimation of the large-n behavior of the sequence (γ∗n)n∈N given the behavior of the original
(γn)n∈N only requires elementary computations. For the convenience of the reader we summarize
some results in Appendix A.

3 Transfer operators and chains.

Let P be a family of transition probabilities on A×A,

P : A×A −→ [0; 1]
(a, z) 7−→ P (a | z) . (3.1)

Given a history x, a chain with past x and transitions P , is the process (Zxn)n∈Z whose conditional
probabilities satisfy

P(Zxn = a |Zxn+j = zj , j ≤ −1) = P (a | z) for n ≥ 0 , (3.2)

for all a ∈ A and all histories z with zj−n = xj , j ≤ −1, and such that

Zxn = xn , for n ≤ −1 . (3.3)

This chain can be interpreted as a conditioned version of the process defined by the transition
probabilities (3.1), given a past x (for more details, see Quas 1996).

Let φ : A → R be a continuous normalized function. The transfer operator associated to φ is
the operator Lφ acting on C0(A,R) defined by,

Lφf(x) =
∑

y :T (y)=x

eφ(y)f(y) . (3.4)

This operator is related to the conditional probability (2.5) in the form

Eµφ

(
f | F≤−2

)
=
(
Lφf

)
◦ T . (3.5)

This relation shows the equivalence of (1.2) and (3.4) as definitions of the operator. In addition,
if φ is normalized we can construct, for each history x ∈ A, the chain Zxφ = (Zxn)n∈Z with past x
and transition probabilities

P (a |x) = eφ(xa) . (3.6)
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Iterates of the transfer operator, Lnφg(x), on functions g ∈ C0(A) can be interpreted as expecta-
tions E[g((Zxn+j)j≤−1)] of the chain. Indeed,

Lnφg(x) =
∑

a1,...,an∈A
e
∑n

k=1 φ(xa1···ak)g(xa1 · · · an)

=
∑

a1,...,an∈A

(
n∏
k=1

P (ak | ak−1 · · · a1x)

)
g(xa1 · · · an)

= E[g((Zxn+j)j≤−1)] .

¿From this expression and the classical duality (1.2) between the composition by the shift and
the transfer operator Lφ in L2(µφ), we obtain the following expression for the decay of correlations,∫

f ◦ Tn g dµφ −
∫
f dµφ

∫
g dµφ

=
∫
f(x)Lnφg(x) dµφ(x)−

∫
f(x)

(∫
Lnφg(y) dµφ(y)

)
dµφ(x)

=
∫
f(x)

∫ (
E[g((Zxn+j)j≤−1)]−E[g((Zyn+j)j≤−1)]

)
dµφ(y) dµφ(x) . (3.7)

This inequality shows how the speed of decay of correlations can be bounded by the speed with
which the chain loosses its memory. We deal with the later problem in the next section.

4 Relaxation speed for chains with complete connections

4.1 Definitions and main result

We consider chains whose transition probabilities satisfy

inf
x,y:x

m
=y

P (a |x)
P (a | y)

≥ 1− γm , (4.1)

for some real-valued sequence (γm)m∈N, decreasing to 0 as m tends to +∞. Without loss of
generality, this decrease can be assumed to be monotonic. To avoid trivialities we assume γ0 < 1.
In the literature, a stationary process satisfying (4.1) is called a chain with complete connections.

For a set of transition probabilities satisfying (4.1), we consider, for each x ∈ A, the chain
(Zxn)n∈Z with past x and transitions P [see (3.2)–(3.3)]. The following proposition plays a central
role in the proof of our results.

Proposition 1 For all histories x, y ∈ A, there is a coupling
(
(Ũx,yn , Ṽ x,yn )

)
n∈Z of (Zxn)n∈Z and

(Zyn)n∈Z such that the integer-valued process (T x,yn )n∈Z defined by

T x,yn = inf{m ≥ 0 : Ũx,yn−m 6= Ṽ x,yn−m}, (4.2)

satisfies
P(T x,yn = 0) ≤ γ∗n (4.3)

for n ≥ 0, where γ∗n was defined in (2.10).

The proof of this proposition is given in Section 4.4.
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An immediate consequence of this proposition is the following bound on the relaxation rate of
the processes Zx.

Corollary 1 For all histories x and y, for all a ∈ A,∣∣∣P(Zxn = a)−P(Zyn = a)
∣∣∣ ≤ γ∗n , (4.4)

and, for k ≥ 1,∣∣∣P((Zxn, . . . , Zxn+k) = (a0, . . . , ak)
)
−P

(
(Zyn, . . . , Z

y
n+k) = (a0, . . . , ak)

)∣∣∣
≤

k∑
j=0

(
j−1∏
m=1

(1− γm)

)
γ∗n−j . (4.5)

This lemma is proved in Section 4.5.

Remark 1 Whenever
γ∗n → 0 , (4.6)

inequality (4.4) implies the existence and uniqueness of the invariant measure compatible with a
system of conditional probabilities satisfying (4.1). In fact, property (4.6) holds under the condition∑

m≥1

m∏
k=0

(1− γk) = +∞ ., (4.7)

which is weaker than summability. In this case, the Markov chain (S(γ)
n )n∈N is no longer transient

but it is null recurrent and the property P(S(γ)
n = 0) → 0 remains true.

Remark 2 If X = (Xn)n∈Z is a stationary process with transition P satisfying (4.1), then Corol-
lary 1 implies ∣∣∣P(Zxn = a)−P(Xn = a)

∣∣∣ ≤ γ∗n , (4.8)

uniformly in the history x.

4.2 Maximal coupling

Given two probability distributions µ = (µ(a))a∈A and ν = (ν(a))a∈A we denote by µ×̃ν =
(µ×̃ν(a, b))(a,b)∈A×A the so-called maximal coupling of the distributions µ and ν defined as follows:

µ×̃ν(a, a) = µ(a) ∧ ν(a) if a = b

µ×̃ν(a, b) =
(µ(a)− ν(a))+(ν(b)− µ(b))+∑

e∈A(µ(e)− ν(e))+
if a 6= b .

(4.9)

For more details on maximal couplings see Appendix A.1 in Barbour, Holst and Janson (1992).

The coupling is maximal in the sense that the distribution µ×̃ν on A×A maximizes the weight

∆(ζ) =
∑
a∈A

ζ(a, a)

of the diagonal among the distributions ζ on A×A satisfying simultaneously∑
a∈A

ζ(a, b) = ν(b) and
∑
b∈A

ζ(a, b) = µ(a) .

For this coupling, the weight ∆(µ×̃ν) of the diagonal satisfies,

∆(µ×̃ν) =
∑
a∈A

µ(a) ∧ ν(a) = 1−
∑
a∈A

(µ(a)− ν(a))+ = 1− 1
2

∑
a∈A

|µ(a)− ν(a)|. (4.10)

Moreover,

∆(µ×̃ν) = 1−
∑
a∈A

µ(a)
(

1− ν(a)
µ(a)

)+

≥ 1−
∑
a∈A

µ(a)
(

1− inf
a′∈A

ν(a′)
µ(a′)

)
= inf
a∈A

ν(a)
µ(a)

. (4.11)
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4.3 Coupling of chains with different pasts

Given a double history (x, y), we consider the transition probabilities defined by the maximal
coupling

P̃ ((a, b) |x, y) =
[
P (· |x)×̃P (· | y)

]
(a, b) . (4.12)

By (4.1) we have,

inf
a∈A,um

=v

P (a |u)
P (a | v)

≥ 1− γm.

By (4.11) this implies that
∆
(
P̃ ( · , · |x, y)

)
≥ 1− γm , (4.13)

whenever x m= y.

Now, we fix a double history (x, y) and we define
(
(Ũx,yn , Ṽ x,yn )

)
n∈Z to be the chain taking values

in A2, with past (x, y) and transition probabilities given by (4.12). If x m= y, (4.13) yields

P(Ũx,y0 6= Ṽ x,y0 ) ≤ γm. (4.14)

We denote
∆m,n :=

{
Ũj = Ṽj , m ≤ j ≤ n

}
. (4.15)

Notice that ∆−m,−1 is the reunion over all the sequences x, y with x m= y of the events {(Ũj , Ṽj) =
(xj , yj) ; j ≤ −1}. Using the stationarity of the conditional probabilities, we obtain

P(Ũn 6= Ṽn |∆n−m,n−1) ≤ γm , (4.16)

for all n ≥ 0.

4.4 Proof of Proposition 1

¿From this subsection on, will be working with bounds which are uniform in x, y, hence we will
omit, with a few exceptions, the superscript x, y in the processes T x,yn (defined below), Ũx,yn and
Ṽ x,yn .

Let us consider the integer-valued process (Tn)n∈Z defined by:

Tn = inf{m ≥ 0 : Ũn−m 6= Ṽn−m} . (4.17)

For each time n, the random variable Tn counts the number of steps backwards needed to find a
difference in the coupling. First, notice that (4.16) implies that,

P(Tn+1 = k + 1 |Tn = k) ≥ 1− γk (4.18)

and
P(Tn+1 = 0 |Tn = k) ≤ γk , (4.19)

all the other transition probabilities being zero. This process (Tn)n∈Z is not a Markov chain.

We now consider the integer-valued Markov chain (S(γ)
n )n≥0 starting from state 0 and with

transition probabilities given by (2.9), that is pi,i+1 = 1 − γi and pi,0 = γi. Proposition 1 follows
from the following lemma, setting k = 1.

Lemma 1 For each k ∈ N, the following inequality holds:

P(S(γ)
n ≥ k) ≤ P(Tn ≥ k) (4.20)
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Proof We shall proceed by induction on n. Since P(S(γ)
0 = 0) = 1, inequalities (4.20) holds for

n = 0. Assume now that (4.20) holds for some integer n. There is nothing to prove for k = 0.. For
k ≥ 1,

P(Tn+1 ≥ k) =
+∞∑
m=k

P(Tn+1 = m)

=
+∞∑
m=k

P(Tn+1 = m |Tn = m− 1)P(Tn = m− 1)

≥
+∞∑
m=k

(1− γm−1)P(Tn = m− 1)

=
+∞∑
m=k

(1− γm−1)
(
P(Tn ≥ m− 1)−P(Tn ≥ m)

)
= (1− γk−1)P(Tn ≥ k − 1) +

+∞∑
m=k

(γm−1 − γm)P(Tn ≥ m) . (4.21)

By the same computation, we see that

P(S(γ)
n+1 ≥ k) = (1− γk−1)P(S(γ)

n ≥ k − 1) +
+∞∑
m=k

(γm−1 − γm)P(S(γ)
n ≥ m) . (4.22)

Hence, using the recurrence assumption and the fact that (γn)n≥0 is decreasing we conclude that

P(Tn+1 ≥ k) ≥ P(S(γ)
n+1 ≥ k) ,

for all k ≥ 1.

4.5 Proof of Corollary 1

To prove (4.4), first notice that by construction the process (Ũn)n∈Z has the same law as (Zxn)n∈Z
and (Ṽn)n∈Z has the same law as (Zyn)n∈Z. Thus,∣∣∣P(Zxn = a)−P(Zyn = a)

∣∣∣ =
∣∣∣P(Ũn = a)−P(Ṽn = a)

∣∣∣ ≤ P(Ũn 6= Ṽn)) (4.23)

Hence, by definition of the process Tn and Lemma 1,∣∣∣P(Zxn = a)−P(Zyn = a)
∣∣∣ ≤ P(Tn = 0) ≤ P(S(γ)

n = 0) . (4.24)

The proof of (4.5) starts similarly:∣∣∣P((Zxn, . . . , Zxn+k) = (a0, . . . , ak)
)
−P

(
(Zyn, . . . , Z

y
n+k) = (a0, . . . , ak)

)∣∣∣
≤ P(S(γ)

n+k ≤ k + 1).

To conclude, we notice that,

P(S(γ)
n ≤ k) =

k∑
j=0

P(S(γ)
n = j) =

k∑
j=0

(
j−1∏
m=1

(1− γm)

)
P(S(γ)

n−j = 0) . (4.25)

5 Proof of Theorem 1

The proof of Theorem 1 is based on the inequality∣∣∣∣∫ f ◦ Tngdµ−
∫
fdµ

∫
gdµ

∣∣∣∣ ≤ ||f ||1 sup
x,y

E
[∣∣∣g((Ũx,yn+j)j≤−1)− g((Ṽ x,yn+j)j≤−1)

∣∣∣] , (5.1)
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which follows from (3.7) and the fact that
(
(Ũx,y, Ṽ x,y)

)
n∈Z is a coupling between the chains with

pasts x and y, respectively. An upper bound to the right-hand side is provided by Proposition 1.
We see that the transition probabilities (3.6) satisfy condition (4.1), since

P (a |x)
P (a | y)

= eφ(ax)−φ(ay) ≥ e−varm+1(φ) (5.2)

whenever x, y ∈ A are such that x m= y for some m ∈ N. We can therefore apply Proposition 1 with

γm = 1− e−varm+1(φ) , (5.3)

which tends monotonically to zero if
∑
m≥1 varm(φ) < +∞.

To prove (2.12) we use the process (T x,yn )n∈Z to obtain the upper bound

E
[∣∣∣g((Ũx,yn+j)j≤−1)− g((Ṽ x,yn+j)j≤−1)

∣∣∣] = E

[
+∞∑
k=0

1{Tx,y
n =k}

∣∣∣g((Ũn+j)j≤−1)− g((Ṽn+j)j≤−1)
∣∣∣]

≤
+∞∑
k=0

vark(g)P(T x,yn = k)

≤ ||g||φ
+∞∑
k=0

vark(φ)P(T x,yn = k) . (5.4)

Now, in order to use the bound (4.3) of Proposition (1) we resort to the monotonicity of the
variations of φ:

+∞∑
k=0

vark(φ)P(T x,yn = k) ≤
n−1∑
k=0

vark(φ)P(T x,yn = k) + varn(φ)
+∞∑
k=n

P(T x,yn = k)

=
n−1∑
k=0

vark(φ)P(T x,yn−k = 0) + varn(φ)
+∞∑
k=n

P(T x,y0 = k − n)

≤
n∑
k=0

vark(φ)P(S(γ)
n−k = 0) , (5.5)

uniformly in x, y. The bound (2.12) follows from (5.1), (5.4), (5.5) and the fact that

+∞∑
j=0

P(T x,y0 = j) = 1 = P(S(γ)
0 = 0) . (5.6)

To prove (2.13) we use the strong Markov poroperty of the process (S(γ)
n )n∈N to obtain

P(S(γ)
n = 0) =

n∑
k=1

P(τ = k)P(S(γ)
n−k = 0) , (5.7)

where
τ = inf{n > 0;S(γ)

n = 0} . (5.8)

We now use (5.7) to bound the last line in (5.5) in the form

n∑
k=0

vark(φ)P(S(γ)
n−k = 0) ≤

n∑
k=1

[
var0(φ)P(τ = k) + vark(φ)

]
P(S(γ)

n−k = 0)

≤ C
n∑
k=1

P(τ = k)P(S(γ)
n−k = 0)

= C P(S(γ)
n = 0) , (5.9)
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with

C = var0(φ) + sup
k

vark(φ)
P(τ = k)

. (5.10)

To conclude, we must prove that the constant C is finite. By direct computation,

P(τ = 1) = γ0,

P(τ = n) = γn−1

n−2∏
m=0

(1− γm) for n ≥ 2, (5.11)

P(τ = +∞) =
+∞∏
m=0

(1− γm) .

¿From this and (2.11) we obtain

lim
k→∞

vark(φ)
P(τ = k)

= lim
k→∞

vark(φ)
1− e−vark(φ)

1∏k−2
m=0(1− γm)

. (5.12)

Since vark(φ) → 0, the first fraction converges to 1. We see from (5.11) that the second frac-
tion converges to 1/P(τ = +∞). By elementary calculus, this is finite since φ has summable
variations.

Remark 3 The previous computations lead to stronger results for more regular functions g. For
example, when g satisfies

vark(g) ≤ ||g||θ θk (5.13)

for some θ < 1 and some ||g||θ <∞ (Hölder norm of g), a chain of inequalities almost identical to
those ending in (5.4) leads to∣∣∣∣∫ f ◦ Tngdµ−

∫
fdµ

∫
gdµ

∣∣∣∣ ≤ ||f ||1
+∞∑
k=0

||g||θ θk γ∗n−k

≤ ||f ||1 ||g||θ θn
n∑
k=0

θ−k γ∗k . (5.14)

On the other hand, if g is a function that depends only on the first coordinate, we get,∣∣∣∣∫ f ◦ Tngdµ−
∫
fdµ

∫
gdµ

∣∣∣∣ ≤ ||f ||1 sup
x,y

∣∣∣E[g(Zxn)]−E[g(Zyn)]
∣∣∣

≤ ||f ||1 ||g||∞P(Ũn 6= Ṽn)
≤ ||f ||1 ||g||∞ γ∗n . (5.15)

6 Proof of Theorem 2

We now consider the general case where the function φ is not necessarily normalized. In this
case we resort to the normalization ψ define in (2.14) and we consider chains with transition
probabilities

P (a |x) = eφ(xa) ρ(xa)
ρ(x)

=: eψ(xa) . (6.1)

However, the summability of the variations of φ does not imply the analogous condition for ψ,
because there are addition “oscillations” due to the cocycle log ρ− log ρ ◦ T . Instead,

varmψ
varm(log ρ)

}
≤
∑
k≥m

vark(φ) , (6.2)

for all m ≥ 0 (see Walters 1978). Hence, we can apply Theorem 1 only under the condition

+∞∑
k=1

k vark(φ) < +∞ . (6.3)
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If this is the case, the correlations for functions f ∈ L1(µ) and g ∈ Vψ decay faster than γ∗m, where
γm = e

∑
k≥m vark(φ) − 1.

To prove the general result without assuming (6.3) we must work with block transition proba-
bilities, which are less sensitive to the oscillations of the cocycle. More precisely, given a family
of transition probabilities P on A×A, let Pn denote the corresponding transition probabilities on
An ×A:

Pn+1(a0,n |x) = P (an | an−1 · · · a1x) · · ·P (a2 | a1x)P (a1 |x) (6.4)

where
a0,n := (a0, . . . , an) ∈ An+1 . (6.5)

If the transition probabilities P are defined by a normalized function φ as in (3.6), then we see
from (6.4) that the transition probabilities Pn obey a similar relation

Pn(a0,n−1 |x) = eφn(xa0,n−1) , (6.6)

with

φn(xa0,n−1) :=
n−1∑
k=0

φ(xa0 · · · ak) . (6.7)

In particular, for transitions (6.1) the formula (6.4) yields

ψn = φn + log ρ− log ρ ◦ Tn . (6.8)

A comparison of (6.8) with (6.2) shows that it is largely advantageous to bound directly the
oscillations of ψn. This is what we do in this section by adapting the arguments of Section 5.

6.1 Coupling of the transition probabilities for blocks

For every integer n, we define a family of transition probability Pn on (An)2 ×A2 by

P̃n(a0,n−1, b0,n−1 |x, y) =
[
Pn(· |x) ×̃Pn(. | y)

]
(a0,n−1; b0,n−1) . (6.9)

Let (nm)m∈N be an increasing sequence. For each double history x, y, we consider the coupling(
(U

x,y
, V

x,y
)
)
m∈Z of the chains for nm-blocks with past x and y, defined by,

P(U
x,y

0,nm
= a0,nm

, V
x,y

0,nm
= b0,nm

)

=
M∏
m=1

Pnm+1−nm
(anm,nm+1 , bnm,nm+1 | anm

· · · a0x , bnm
· · · b0y) . (6.10)

6.2 The process of last block-differences

We set

γ
(n)
k = 1− inf

{
Pn(a0,n−1 |x)
Pn(a0,n−1 | y)

: x k= y , a1, . . . , an−1 ∈ A
}
. (6.11)

From (4.11) we see that, for x k= y, the weight of the diagonal of each coupling Pn satisfies

∆
(
P̃n(·, · |x, y)

)
≥ inf

a0,...,an−1∈A

P (a0,n−1 |x)
P (a0,n−1 | y)

≥ 1− γ
(n)
k . (6.12)

If we denote
∆
x,y

m,m+q :=
{
U
x,y

j = V
x,y

j , nm ≤ j ≤ nm+q

}
,

we deduce from (6.12) that

P(∆m+k+1 |∆m,m+k) ≥ 1− γ
(nm+k+1−nm+k)
nm+k−nm

. (6.13)
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We construct the process (Tn)n∈N with

T
x,y

m = inf
{
p ≥ 0 : Ux,yi 6= V x,yi for some i, nm−p ≤ i ≤ nm−p+1

}
. (6.14)

By (6.13), the conditional laws of this process satisfy,

P(Tm+1 = k + 1 |Tm = k) ≥ 1− γ
(nm+k+1−nm+k)
nm+k−nm

(6.15)

and
P(Tm+1 = 0 | Tm = k) ≤ γ

(nm+k+1−nm+k)
nm+k−nm

. (6.16)

6.3 The dominating Markov process

Let us choose the length of the blocks in such a way that the sequence (nm)m∈N is subadditive,
i.e.

nm+k − nm ≤ nk (6.17)

for m, k ≥ 0, and that
sup
n≥0

γ
(n)
` < 1 (6.18)

for all ` ≥ 0. These two properties together with (6.15)–(6.16) imply that, for all histories x and
y,

P(T
x,y

m+1 = k + 1 |T x,ym = k) ≥ 1− γk (6.19)

and
P(T

x,y

m+1 = 0 |T x,ym = k) ≤ γk. (6.20)

with
γk := sup

n≥1
γ(n)
nk

, (6.21)

for m ≥ 1.

We now define the “dominating” Markov chain (S(γ)
n )n∈N as in (2.8)–(2.9). Lemma 1 yields

P(T
x,y

m = 0) ≤ P(Sm = 0) ≤ γ∗m . (6.22)

Hence, if nm ≤ n ≤ nm+1,

P(U
x,y

n 6= V
x,y

n ) ≤ P(T x,ym = 0) ≤ γ∗m . (6.23)

6.4 Decay of correlations

We can now mimick the proof of Theorem 5 in terms of barred objects.

As (varm(φ))m∈N is summable, there exists a subadditive sequence (nm)m∈N such that the se-
quence αm of the tails

αm =
∑
k≥nm

vark(φ) (6.24)

is summable: ∑
m≥0

αm < +∞ . (6.25)
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The transitions for blocks of size n satisfy

Pn(a0,n−1 |x)
Pn(a0,n−1 | y)

≥ e−vark(ψn) (6.26)

if x k= y. But from (6.8), (6.7) and (6.2) we have

vark(ψn) ≤

k+n∑
m=k

+
∑

m≥k+n

+
∑
m≥k

 varm(φ)

≤ 3
∑
m≥k

varm(φ) . (6.27)

Hence we can choose in (6.21)
γk ≤ 1− e−3αk , (6.28)

a choice for which ∑
k≥1

γk < +∞ . (6.29)

To prove the theorem, we now proceed as in (5.1) and (5.4)–(5.10) but replacing tildes by bars and
putting bars over the processes (Tn) and (S(γ)

n ). We just point out that, due to the subadditivity
of nm,

var(nm+k−nm)(φ) ≤ varnk
(φ)

uniformly in m.

A Returns to the origin of the dominating Markov chain

In this appendix we collect a few results concerning the probability of return to the origin of
the Markov chain (S(γ)

n )n∈N defined via (2.9). (In the sequel we omit the superscript “(γ)” for
simplicity.)

Proposition 2 Let (γn)n∈N be a real-valued sequence decreasing to 0 as n→ +∞.

(i) If
∑
m≥1

m∏
k=0

(1− γk) = +∞, then P(Sn = 0) → 0.

(ii) If
∑
m≥1

γk < +∞, then
∑
n≥0 P(Sn = 0) < +∞.

(iii) If (γm) decreases exponentially, then so does P(Sn = 0).

(iv) If (γm) decreases polynomially, then P(Sn = 0) = O(γn).

Sketch of the proof

Statement (i) follows from the well known fact that the Markov chain (Sn)n∈N is positive recurent
if and only if, ∑

m≥1

m∏
k=0

(1− γk) < +∞.
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To prove parts (ii) and (iii) we introduce the series

F (s) =
+∞∑
n=1

P(τ = n) sn , (A.1)

and

G(s) =
+∞∑
n=0

P(Sn = 0) sn (A.2)

where the random variable τ is the time of first return to zero, defined in (5.8). The probabilities
P(τ = n) were computed in (5.11) above. The relation (5.7) implies that these series are related
in the form

G(s) =
1

1− F (s)
, (A.3)

for all s ≥ 0 such that F (s) < 1.

It is clear that the radius of convergence of F is at least 1. In fact,

F (1) = P(τ < +∞) . (A.4)

Moreover, if
∑
m≥1 γk < +∞, the radius of convergence of F is

lim
n→∞

[γn]−1/n . (A.5)

This is a consequence of the fact that P(τ = n)/γn−1 → P(τ = +∞) > 0, as concluded from
(5.11).

Statement (ii) of the proposition is a consequence of the fact that the radius of convergence of
the series G is at least 1 if

∑
m≥1 γk < +∞. This follows from the relation (A.3) and the fact that

the right-hand side of (A.4) is strictly less than one when the chain (S(γ)
n ) is transient.

To prove statement (iii) let us assume that γm ≤ Cγm for some constants C < +∞ and
0 < γ < 1. By (A.5), the radius of convergence of F is γ−1 > 1 while, by (A.4), F (1) < 1. By
continuity it follows that there exists s0 > 1 such that F (s0) = 1 and, hence, by (A.3), G(s) < +∞
for all s < s0. By definition of G, this implies that P(Sn = 0) decreases faster than ζn for any
ζ ∈ (1, s−1

0 ).

Statement (iv) is a consequence of the following lemma.

Lemma 2 If

α := sup
i

limk→∞

[
P(τ = i)
P(τ = ki)

]1/k
<

1
P(τ < +∞)

, (A.6)

then
P(Sn = 0) = O (P(τ = n)) .

Proof We start with the following observation. If i1 + · · ·+ ik = n, then max1≤m≤k im.n/k and
thus, for g is an increasing

g(n) ≤ g (k imax) ,

where imax = max1≤m≤k im. If we apply this to g(n) = 1/P(τ = n), which is increasing by (5.11),
we obtain

1 ≤ P(τ = n)
P(τ = k imax)

. (A.7)
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We now invoke the following a explicit relation between the coefficients of F and G.

P(Sn = 0) =
n∑
k=1

∑
i1, . . . , ik ≥ 1

i1 + · · ·+ ik = n

k∏
m=1

P(τ = im) , (A.8)

for n ≥ 1. Multiplying and dividing each factor in the rightmost product by P(τ < +∞), this
formula can be rewritten as

P(Sn = 0) =
n∑
k=1

P(τ < +∞)k
∑

i1, . . . , ik ≥ 1
i1 + · · ·+ ik = n

k∏
m=1

P(τ = im | τ < +∞). (A.9)

Combining this with (A.7) we obtain

P(Sn = 0) ≤ P(τ = n)
n∑
k=1

P(τ < +∞)k
∑

i1, . . . , ik ≥ 1
i1 + · · ·+ ik = n

k∏
m=1

P(τ = im | τ < +∞)
P(τ = k imax)

, (A.10)

If we single out the factor P(τ = imax | τ < +∞) = P(τ = imax)/P(τ < +∞) from the rightmost
product of (A.10) and use the hypothesis (A.6) we get

P(Sn = 0) ≤ C P(τ = n)
n∑
k=1

αk P(τ < +∞)k−1
∑

i1, . . . , ik ≥ 1
i1 + · · ·+ ik = n

∏
1≤m≤k

im 6=imax

P(τ = im | τ < +∞) ,

(A.11)
for some constant C > 0. To bound the last sum on the right-hand side we introduce a sequence
of independent random variables (τ (i))i∈N with common distribution

P(τ (i) = j) = P(τ = j | τ < +∞) . (A.12)

Then
n−k+1∑
j=1

P
(k−1∑
i=1

τ (i) = n− j
)
≤ 1 . (A.13)

Hence, (A.11) implies

P(Sn = 0) ≤ C α
∞∑
k=1

[
α−1P(τ < +∞)

]k−1
P(τ = n) ≤ constP(τ = n) . (A.14)

We notice that, according to (5.11), γn ∼ P(τ = n)/P(τ = +∞). Hence, a sufficient condition
for (A.6) is a similar condition for the sequence (γn). Such a condition holds, for instance, if the
later sequence decays polynomially. Statement (iii) of the proposition follows.
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