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Abstract. We consider the so-called one-dimensional forest-fire process. At each site
of Z, a tree appears at rate 1. At each site of Z a fire starts at rate λ > 0, destroy-
ing immediately the whole corresponding connected component of trees. We show that
when making λ tend to 0, with a correct normalization, the forest-fire process tends to
a uniquely defined process, of which we describe precisely the dynamics. The normal-
ization consists of accelerating time by a factor log(1/λ) and of compressing space by a
factor λ log(1/λ). The limit process is quite simple: it can be built using a graphical con-
struction, and can be perfectly simulated. Finally, we derive some asymptotic estimates
(when λ → 0) for the cluster-size distribution of the forest-fire process.
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1. Introduction and main results

1.1. The model. Consider two independent families of independent Poisson processes N =
(Nt(i))t≥0,i∈Z and Mλ = (Mλ

t (i))t≥0,i∈Z, with respective rates 1 and λ > 0. Denote by

FN,Mλ

t := σ(Ns(i), M
λ
s (i), s ≤ t, i ∈ Z). For a, b ∈ Z, with a ≤ b, we set Ja, bK = {a, ..., b}.

Definition 1. Consider a {0, 1}Z-valued (FN,Mλ

t )t≥0-adapted process (ηλ
t )t≥0, such that

(ηλ
t (i))t≥0 is a.s. càdlàg for all i ∈ Z.

We say that (ηλ
t )t≥0 is a λ-FFP (forest-fire process) if a.s., for all t ≥ 0, all i ∈ Z,

ηλ
t (i) =

∫ t

0

1{ηλ
s−(i)=0}dNs(i) −

∑

k∈Z

∫ t

0

1{k∈Cλ
s−(i)}dMλ

s (k),

where Cλ
s (i) = ∅ if ηλ

t (i) = 0, while Cλ
s (i) = Jlλs (i), rλ

s (i)K if ηλ
s (i) = 1, with

lλs (i) = sup{k < i; ηλ
s (k) = 0} + 1 and rλ

s (i) = inf{k > i; ηλ
s (k) = 0} − 1.

Formally, saying that ηλ
t (i) = 0 if there is no tree at site i at time t and ηλ

t (i) = 1 else,
Cλ

t (i) stands for the connected component of occupied sites around i at time t. Thus the
forest-fire process starts from an empty initial configuration, trees appear on vacant sites
at rate 1 (according to N), and a fire starts on each site at rate λ > 0 (according to Mλ),
burning immediately the corresponding connected component of occupied sites.

This process can be shown to exist and to be unique (for almost every realization of N, Mλ),
by using a graphical construction. Indeed, to build the process until a given time T > 0,
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Créteil Cedex, France. E-mail: nicolas.fournier@univ-paris12.fr

1



2 XAVIER BRESSAUD, NICOLAS FOURNIER

it suffices to work between sites i which are vacant until time T (because NT (i) = 0).
Interaction cannot cross such sites. Since such sites are a.s. infinitely many, this allows us
to handle a graphical construction. We refer to Van den Berg-Jarai [4], see also Liggett [15]
for many examples of graphical constructions. Let us observe that this construction works
only in dimension 1.

1.2. Motivation and references. The study of self-organized critical (SOC) systems has
become rather popular in physics since the end of the 80’s. SOC systems are simple models
supposed to illuminate temporal and spatial randomness observed in a variety of natural
phenomena showing long range correlations, like sand piles, avalanches, earthquakes, stock
market crashes, forest fires, shapes of mountains, clouds, ... Roughly, the idea, present in
Bak-Tang-Wiesenfeld [1] about sand piles, is that of systems growing towards a critical state
and relaxing through catastrophic events (avalanches, crashes, fires, ...). The most classical
model is the sand pile model introduced in 1987 in [1], but a lot of variants or related models
have been proposed and studied more or less rigorously, describing earthquakes (Olami-
Feder-Christensen, [16]) or forest fire (Henley [13], Drossel-Schwabl, [8]). For surveys on the
subject, see Bak-Tang-Wiesenfeld [1, 2], Jensen [14], and the references therein.

From the point of view of SOC systems, the forest-fire model is interesting in the asymptotic
regime λ → 0. Indeed fires are less frequent, but when they occur, destroyed clusters may be
huge. This model has been subject to a lot of numerical and heuristic studies, see Drossel-
Clar-Schwabl [9] and Grassberger [12] for references. But there are few rigorous results.
Even existence of the (time-dependent) process for a multidimensionnal lattice and given
λ > 0 has been proved only recently [10, 11], and uniqueness is known to hold only for
λ large enough. The existence, uniqueness of an invariant distribution (as well as other
qualitative properties) even in dimension 1, have been proved only recently in [5] for λ = 1.
These last results can probably be extended to the case where λ ≥ 1, but the method in [5]
completely breaks down for small values of λ.

The asymptotic behaviour of the λ-FFP as λ → 0 has been studied numerically and heuris-
tically [8, 9, 7, 12]. To our knowledge, the only mathematical rigorous results are the
following.
(a) Van den Berg and Jarai [4] have proved that for t ≥ 3, P[ηλ

t log(1/λ)(0) = 0] ≃ 1/ log(1/λ),

thus giving an idea of the density of vacant sites. This result was conjectured by Drossel-
Clar-Schwabl [9].
(b) Van den Berg and Brouwer [3] have obtained some results in the two-dimensional case
concerning the behaviour of clusters near the critical time. However, these results are not
completely rigorous, since they are based on a percolation-like assumption, which is not
rigorously proved.
(c) Brouwer and Pennanen [6] have proved the existence of an invariant distribution for
each fixed λ > 0, as well as a precise version of the following estimate, which extends (a):
for λ ∈ (0, 1), at equilibrium P[#(Cλ(0)) = x] ≃ c/[x log(1/λ)] for x ∈ {1, ..., (1/λ)1/3}. It
was conjectured in [9] that this actually holds for x ∈ {1, ..., 1/(λ log(1/λ))}, but this was
rejected in [4].

In this paper, we derive rigorously a limit theorem, which shows that the λ-FFP converges,
under rescaling, to some limit forest-fire process (LFFP). We describe precisely the dynamics
of the LFFP, and show that it is quite simple: in particular, it is unique, can be built by
using a graphical construction, and thus can be perfectly simulated. Our result allows us to
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prove a very weak version of (c) for x ∈ {1, ..., (1/λ)1−ε}, for any ε > 0, see Corollary 6
below.

1.3. Notation. We denote by #(I) the number of elements of a set I.
For a, b ∈ Z, with a ≤ b, we set Ja, bK = {a, ..., b} ⊂ Z.
For I = Ja, bK ⊂ Z and α > 0, we will set αI := [αa, αb] ⊂ R. For α > 0, we of course take
the convention that α∅ = ∅.
For J = [a, b] an interval of R, |J | = b − a stands for the length of J , and for α > 0, we set
αJ = [αa, αb].
For x ∈ R, ⌊x⌋ stands for the integer part of x.

1.4. Heuristic scales and relevant quantities. Our aim is to find some time scale for
which tree clusters see about one fire per unit of time. But for λ very small, clusters will
be very large just before they burn. We thus also have to rescale space, in order that just
before burning, clusters have a size of order 1.

Time scale. Consider the cluster Cλ
t (x) around some site x at time t. It is quite clear that

for λ > 0 very small and for t not too large, one can neglect fires, so that roughly, each
site is occupied with probability 1− e−t, and thus Cλ

t (x) ≃ Jx −X, x + Y K, where X, Y are
geometric random variables with parameter 1− e−t. As a consequence, #(Cλ

t (x)) ≃ et for t
not too large. On the other hand, the cluster Cλ

t (x) burns at rate λ#(Cλ
t (x)) (at time t), so

that we decide to accelerate time by a factor log(1/λ). By this way, λ#(Cλ
log(1/λ)(x)) ≃ 1.

Space scale. Now we rescale space in such a way that during a time interval of order log(1/λ),
something like one fire starts per unit of (space) length. Since fires occur at rate λ, our space
scale has to be of order λ log(1/λ): this means that we will identify J0, ⌊1/(λ log(1/λ))⌋K ⊂ Z

with [0, 1] ⊂ R.

Rescaled clusters. We thus set, for λ ∈ (0, 1), t ≥ 0, x ∈ R, recalling Subsection 1.3,

(1) Dλ
t (x) := λ log(1/λ)Cλ

t log(1/λ)(⌊x/(λ log(1/λ))⌋) ⊂ R.

However, this makes appear an immediate difficulty: recalling that #(Cλ
t (x)) ≃ et for t not

too large, we see that for all site x, |Dλ
t (x)| ≃ λ log(1/λ)et log(1/λ) = λ1−t log(1/λ), of which

the limit as λ → 0 is 0 for t < 1 and +∞ for t ≥ 1.
For t ≥ 1, there might be fires in effect, and one hopes that this will make finite the possible
limit of |Dλ

t (x)|. But fires can only reduce the size of clusters, so that for t < 1, the limit of
|Dλ

t (x)| will really be 0. Thus, for a possible limit |D(x)| of |Dλ(x)|, we should observe some
paths of the following form: |Dt(x)| = 0 for t < 1, |Dt(x)| > 0 for some times t ∈ (1, τ),
then it might be killed by a fire and thus come back to 0, then it remains at 0 during a time
interval of length 1, and so on...
This cannot be a Markov process because |D(x)| always remains at 0 during a time interval
of lenght exactly 1. We thus have to keep in mind more information, in order to control
when it exits from 0.

Degree of smallness. As said previously, we hope that for t < 1, |Dλ
t (x)| ≃ λ1−t log(1/λ) ≃

λ1−t. Thus we will try to keep in mind the degree of smallness. We will denote, for λ ∈ (0, 1),
x ∈ R, t > 0,

(2) Zλ
t (x) :=

log
[

1 + #
(

Cλ
t log(1/λ)(⌊x/(λ log(1/λ))⌋)

)]

log(1/λ)
∈ [0,∞).



4 XAVIER BRESSAUD, NICOLAS FOURNIER

Final description. We will study the λ-FFP through (Dλ
t (x), Zλ

t (x))x∈R,t≥0. The main idea
is that for λ > 0 very small:
(i) if Zλ

t (x) = z ∈ (0, 1), then |Dλ
t (x)| ≃ 0, and the (rescaled) cluster containing x is

microscopic, but we control its smallness, in the sense that |Dλ
t (x)| ≃ λ1−z in a very unprecise

way;
(ii) if Zλ

t (x) = 1 (we will show below that Zλ
t (x) will never exceed 1 in the limit λ → 0),

then automatically the (rescaled) cluster containing x is macroscopic, and has a length equal
to |Dλ

t (x)| ∈ (0,∞).

1.5. The limit process. We now describe the limit process. We want this process to be
Markov, and this forces us add some variables.
We consider a Poisson measure M(dt, dx) on [0,∞)×R, with intensity measure dtdx. Again,
we denote by FM

t = σ(M(A), A ∈ B([0, t] × R)). We also denote by I := {[a, b], a ≤ b} the
set of all closed finite intervals of R.

Definition 2. A (FM
t )t≥0-adapted process (Zt(x), Dt(x), Ht(x))t≥0,x∈R with values in R+×

I × R+ is a limit forest-fire process (LFFP) if a.s., for all t ≥ 0, all x ∈ R,

(3)















Zt(x) =

∫ t

0

1{Zs(x)<1}ds −

∫ t

0

∫

R

1{Zs−(x)=1,y∈Ds−(x)}M(ds, dy),

Ht(x) =

∫ t

0

Zs−(x)1{Zs−(x)<1}M(ds × {x}) −

∫ t

0

1{Hs(x)>0}ds,

where Dt(x) = [Lt(x), Rt(x)], with

Lt(x) = sup{y ≤ x; Zt(y) < 1 or Ht(y) > 0},

Rt(x) = inf{y ≥ x; Zt(y) < 1 or Ht(y) > 0}.

A typical path of the finite box-version of the LFFP (see Section 2) is drawn and commented
on Figure 2, and a simulation algorithm is explained in the proof of Proposition 8.

Let us explain the dynamics of this process. We consider T > 0 fixed, and set BT = {x ∈
R; M([0, T ] × {x}) > 0}. For each t ≥ 0, x ∈ R, Dt(x) stands for the occupied cluster
containing x. We call this cluster microscopic if Dt(x) = {x}. We also have Dt(x) = Dt(y)
for all y in the interior of Dt(x): if Dt(x) = [a, b], then Dt(y) = [a, b] for all y ∈ (a, b).

1. Initial condition. We have Z0(x) = H0(x) = 0 and D0(x) = {x} for all x ∈ R.

2. Occupation of vacant zones. We consider here x ∈ R\BT . Then we have Ht(x) = 0 for all
t ∈ [0, T ]. When Zt(x) < 1, then Dt(x) = {x}, and Zt(x) stands for the degree of smallness
of the cluster containing x. Then Zt(x) grows linearly until it reaches 1, as described by
the first term on the RHS of the first equation in (3). When Zt(x) = 1, then the cluster
containing x is macroscopic, and is described by Dt(x).

3. Microscopic fires. Here we assume that x ∈ BT , and that the corresponding mark of M
happens at some time t where z := Zt−(x) < 1. In such a case, the cluster containing x
is microscopic. Then we set Ht(x) = Zt−(x), as described by the first term on the RHS of
the second equation of (3), and we leave unchanged the value of Zt(x). We then let Hs(x)
decrease linearly until it reaches 0, see the second term on the RHS of the second equation
in (3). At all times where Hs(x) > 0, i.e. during [t, t + z), the site x acts like a barrier (see
Point 5. below).

4. Macroscopic fires. Here we assume that x ∈ BT , and that the corresponding mark of
M happens at some time t where Zt−(x) = 1. This means that the cluster containing x
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is macroscopic, and thus this mark destroys the whole component Dt−(x), that is for all
y ∈ Dt−(x), we set Dt(y) = {y}, Zt(y) = 0. This is described by the second term on the
RHS of the first equation in (3).

5. Clusters. Finally the definition of the clusters (Dt(x))x∈R becomes more clear: these
clusters are delimited by zones with microscopic sites (i.e. Zt(y) < 1) or by sites where their
has (recently) been a microscopic fire (i.e. Ht(y) > 0).

1.6. Main results. First of all, it is not quite clear that the limit process exists.

Theorem 3. For any Poisson measure M , there a.s. exists an unique LFFP, recall Defini-
tion 2. Furthermore, it can be constructed graphically, and thus its restriction to any finite
box [0, T ]× [−n, n] can be perfectly simulated.

To describe the convergence of the λ-FFP to the LFFP, we need some more notation. Let
D([0, T ], E) denote the space of right continuous and left limited functions from the interval
[0, T ] to a topological space E.

Notation 4. (i) For two intervals [a, b] and [c, d], we set δ([a, b], [c, d]) = |a − c| + |b − d|.
We also set by convention δ([a, b], ∅) = |b − a|.
(ii) For (x, I), (y, J) in D([0, T ], R × I ∪ {∅}), let

δT ((x, I), (y, J)) = sup
[0,T ]

|x(t) − y(t)| +

∫ T

0

δ(I(t), J(t))dt.

We are finally in a position to state our main result.

Theorem 5. Consider, for all λ > 0, the processes (Zλ
t (x), Dλ

t (x))t≥0,x∈R associated to
some the λ-FFP, see Definition 1 and (1)-(2). Let (Zt(x), Dt(x), Ht(x))t≥0,x∈R be a LFFP
as in Definition 2.
(a) For any T > 0, any finite subset {x1, ..., xp} ⊂ R, (Zλ

t (xi), D
λ
t (xi))t∈[0,T ],i=1,...,p goes in

law to (Zt(xi), Dt(xi))t∈[0,T ],i=1,...,p, in D([0, T ], R×I)p, as λ tends to 0. Here D([0,∞), R×
I) is endowed with the distance δT , see Notation 4.
(b) For any finite subset {(t1, x1), ..., (tp, xp)} ⊂ R+ × R, (Zλ

ti
(xi), D

λ
ti
(xi))i=1,...,p goes in

law to (Zti(xi), Dti(xi))i=1,...,p in (R × I)p.

Observe that the process H does not appear in the limit, since for each x ∈ R, a.s., for all
t ≥ 0, Ht(x) = 0. (Of course, it is false that a.s., for all x ∈ R, all t ≥ 0, Ht(x) = 0).
We obtain the convergence of Dλ to D only when integrating in time. We cannot hope for
a Skorokhod convergence, since the limit process D(x) jumps instantaneously from {x} to
some interval with positive length, while Dλ(x) needs many small jumps (in a very short
time interval) to become macroscopic.
As a matter of fact, we will obtain some convergence in probability, using a coupling argu-
ment. Essentially, we will consider a Poisson measure M(dt, dx) as in Subsection 1.5, and
set, for λ ∈ (0, 1) and i ∈ Z,

Mλ
t (i) = M

(

[0, t/ log(1/λ)] × [iλ log(1/λ), (i + 1)λ log(1/λ))
)

.

Then (Mλ
t (i))t≥0,i∈Z is an i.i.d. family of Poisson processes with rate λ.

The i.i.d. family of Poisson processes (Nt(i))t≥0,i∈Z with rate 1 can be chosen arbitrarily,
but we will decide to choose the same family for all values of λ ∈ (0, 1).
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1.7. Heuristic arguments. Let us explain here roughly the reasons why Theorem 5 holds.
We consider a λ-FFP (ηλ

t )t≥0, and the associated process (Zλ
t (x), Dλ

t (x))t≥0,x∈R. We assume
below that λ is very small.

0. Scales. With our scales, there are 1/(λ log(1/λ)) sites per unit of length; about one fire
starts per unit of time per unit of length; a vacant site becomes occupied at rate log(1/λ).

1. Initial condition. We have, for all x ∈ R, (Zλ
0 (x), Dλ

0 (x)) = (0, ∅) ≃ (0, {x}).

2. Occupation of vacant zones. Assume that a zone [a, b] (which corresponds to the zone
J⌊a/(λ log(1/λ))⌋, b/(λ log(1/λ))⌋K before rescaling) becomes completely vacant at some time
t (or t log(1/λ) before rescaling) because it has been destroyed by a fire.
(i) For s ∈ [0, 1), and if no fire starts on [a, b] during [t, t + s], we have Dλ

t+s(x) ≃ [x± λ1−s]

and thus Zλ
t+s(x) ≃ s for all x ∈ [a, b].

Indeed, Dλ
t+s(x) ≃ [x−λ log(1/λ)X, x+λ log(1/λ)Y ], where X and Y are geometric random

variables with parameter 1 − e−s log(1/λ) = 1 − λs. This comes from the fact that each site
of [a, b] is vacant at time t, and becomes occupied at rate log(1/λ).
(ii) If no fire starts on [a, b] during [t, t + 1], then Zλ

t+1(x) ≃ 1 and all the sites in [a, b] are
occupied (with very high probability) at time t + 1. Indeed, we have (b − a)/(λ log(1/λ))
sites, and each of them is occupied at time t + 1 with probability 1 − e− log(1/λ) = 1 − λ,
so that all of them are occupied with probability (1 − λ)(b−a)/(λ log(1/λ)) ≃ e−(b−a)/ log(1/λ)

which goes to 1 as λ → 0.

3. Microscopic fires. Assume that a fire starts at some location x (i.e. ⌊x/(λ log(1/λ))⌋
before rescaling) at some time t (or t log(1/λ) before rescaling), with Zλ

t−(x) = z ∈ (0, 1).
Then the possible clusters on the left and right of x cannot be connected during (approxi-
mately) [t, t + z], but can be connected after (approximately) t + z. In other words, x acts
like a barrier during [t, t + z].
Indeed, the fire makes vacant a zone A of approximate length λ1−z around x, which thus
contains approximately λ1−z/(λ log(1/λ)) ≃ λ−z sites. The probability that a fire starts
again in A after t is very small. Thus, using the same computation as in Point 2-(ii), we

observe that P[A is completely occupied at time t+s] ≃ (1−λs)λ−z

≃ e−λs−z

. When λ → 0,
this quantity tends to 0 if s < z and to 1 if s > z.

4. Macroscopic fires. Assume now that a fire starts at some place x (i.e. ⌊x/(λ log(1/λ))⌋
before rescaling) at some time t (or t log(1/λ) before rescaling), and that Zλ

t (x) ≃ 1. Thus
Dλ

t (x) is macroscopic (that is its length is of order 1 in our scales). This will thus make
vacant the zone Dλ

t (x). Such a (macroscopic) zone needs a time of order 1 to be completely
occupied, as explained in Point 2-(ii).

5. Clusters. For t ≥ 0, x ∈ R, the cluster Dλ
t (x) resembles [x ± λ1−z] ≃ {x} if Zλ

t (x) = z ∈
(0, 1). We then say that x is microscopic. Now macroscopic clusters are delimited either by
microscopic zones, or by sites where their has been a microscopic fire (see Point 3).

Comparing the arguments above to the rough description of the LFFP, see Subsection 1.5,
we hope that the λ-FFP resembles the LFFP for λ > 0 very small.

1.8. Decay of correlations. A by-product of our result is an estimate on the decay of corre-
lations in the LFFP, for finite times. We refer to Proposition 11 below for a precise statement.
The main idea is that for all T > 0, there are some constants CT > 0, αT > 0 such that for
all λ ∈ (0, 1), all A > 0, the values of the λ-FFP inside [−A/(λ log(1/λ)), A/(λ log(1/λ))]
are independent of the values outside [−2A/(λ log(1/λ)), 2A/(λ log(1/λ))] during the time
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interval [0, T log(1/λ)], up to a probability smaller that CT e−αT A. In other words, for times
of order log(1/λ), the range of correlations is at most of order 1/(λ log(1/λ)).

1.9. Cluster-size distribution. We finally give results on the cluster-size distribution,
which are to be compared with [4, 6], see Subsection 1.2 above.

Corollary 6. For each λ > 0, consider a λ-FFP process (ηλ
t )t≥0.

(i) For some 0 < c < C, for all t ≥ 5/2, all 0 ≤ a < b < 1,

c(b − a) ≤ lim
λ→0

P

(

#(Cλ
t log(1/λ)(0)) ∈ [λ−a, λ−b]

)

≤ C(b − a).

(ii) For some 0 < c < C and some 0 < κ1 < κ2, for all t ≥ 3/2, all B > 0,

ce−κ2B ≤ lim
λ→0

P

(

#(Cλ
t log(1/λ)(0)) ≥ B/(λ log(1/λ))

)

≤ Ce−κ1B.

Point (i) says approximately that for t large enough (say at equilibrium), for x << 1/λ (say
for x ≤ (1/λ)1−ε), choosing a = log(x)/ log(1/λ) and b = log(x + 1)/ log(1/λ),

P(#(Cλ(0)) = x) ≃ P(#(Cλ(0)) ∈ [x, x + 1]) ≃ P(#(Cλ(0)) ∈ [λ−a, λ−b])

≃ (b − a) ≃
1

x log(1/λ)
,

Thus it is a very weak form of the result of [6], but it holds for a much wider class of x: here
we allow x ≤ 1/λ1−ε, while x ≤ 1/λ1/3 was imposed in [6]. Another advantage of our result
is that we can prove that the limit exists in (i).
Point (ii) describes roughly the cluster-size distribution of macroscopic components, that is
of components of which the size is of order 1/(λ log(1/λ)). Here again, rough computations
show that for x > ε/(λ log(1/λ)), for t large enough (say at equilibrium),

P(#(Cλ(0)) = x) ≃ λ log(1/λ)e−κxλ log(1/λ).

Thus there is clearly a phase transition near the critical size 1/(λ log(1/λ)). See Figure 1
for an illustration.

1.10. Organization of the paper. The paper is organized as follows. In Section 2, we
give the proof of Theorem 3. We show in Section 3 that in some sense, the λ-FFP can be
localized in finite box, uniformly in λ > 0. Section 4 is devoted to the proof of Theorem 5.
Finally, we check Corollary 6 in Section 5.

1.11. Acknoweldgments. We are grateful to the referee who helped us make the proof
more readable and, indeed, correct. The second author was supported during this work by
the grant from the Agence Nationale de la Recherche with reference ANR-08-BLAN-0220-01.

2. Existence and uniqueness of the limit process

The goal of this section is to show that the LFFP is well-defined, unique, and that it can be
obtained from a graphical construction. First of all, we show that when working on a finite
space interval, the LFPP is somewhat discrete.
We consider a Poisson measure M(dt, dx) on [0,∞) × R, with intensity measure dtdx. We

denote by FM,A
t = σ(M(B), B ∈ B([0, t]× [−A, A])).
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Definition 7. A (FM,A
t )t≥0-adapted process (ZA

t (x), DA
t (x), HA

t (x))t≥0,x∈[−A,A] with values
in R+ × I × R+ is called a A-LFFP if a.s., for all t ≥ 0, all x ∈ [−A, A],















ZA
t (x) =

∫ t

0

1{ZA
s (x)<1}ds −

∫ t

0

∫

[−A,A]

1{ZA
s−(x)=1,y∈DA

s−(x)}M(ds, dy),

HA
t (x) =

∫ t

0

ZA
s−(x)1{ZA

s−(x)<1}M(ds × {x}) −

∫ t

0

1{HA
s (x)>0}ds,

where DA
t (x) = [LA

t (x), RA
t (x)], with

(4)

{

LA
t (x) = (−A) ∨ sup{y ∈ [−A, x]; ZA

t (y) < 1 or HA
t (y) > 0}

RA
t (x) = A ∧ inf{y ∈ [x, A]; ZA

t (y) < 1 or HA
t (y) > 0}.

A typical path of (ZA
t (x), DA

t (x), HA
t (x))t≥0,x∈[−A,A] is drawn on Figure 2.

The following proposition is actually almost obvious, but its proof shows the construction
of the A-LFFP in an algorithmic way.

Proposition 8. Consider a Poisson measure M(dt, dx) on [0,∞)×R, with intensity mea-
sure dtdx. For any A > 0, there a.s. exists an unique A-LFFP, and it can be perfeclty
simulated.

Proof. We omit the superscript A in this proof. We consider the marks (Ti, Xi)i≥1 of
M |[0,∞)×[−A,A], with 0 < T1 < T2 < .... We set T0 = 0 for convenience. We describe the
construction through an algorithm, which also shows uniqueness in the sense that there is
no choice for the construction.

Step 0. First, we set Z0(x) = H0(x) = 0 and D0(x) = {x} for all x ∈ [−A, A].

Step n+1. Assume that the process has been built until Tn for some n ≥ 0, that is we know
the values of (Zt(x), Dt(x), Ht(x))t∈[0,Tn],x∈[−A,A].

We build (Zt(x), Dt(x), Ht(x))t∈(Tn,Tn+1),x∈[−A,A] in the following way: for t ∈ (Tn, Tn+1),
x ∈ [−A, A], we set Zt(x) = min(1, ZTn(x)+t−Tn), we set Ht(x) = max(0, HTn(x)−(t−Tn))
and we define Dt(x) = [Lt(x), Rt(x)] as in (4).

Next we build (ZTn+1
(x), DTn+1

(x), HTn+1
(x))x∈[−A,A].

(i) If ZTn+1−(Xn+1) = 1, set HTn+1
(x) = HTn+1−(x) for all x ∈ [−A, A] and consider

[a, b] := DTn+1−(Xn+1). Set ZTn+1
(x) = 0 for all x ∈ (a, b) and ZTn+1

(x) = ZTn+1−(x)
for all x ∈ [−A, A] \ [a, b]. Set finally ZTn+1

(a) = 0 if ZTn+1−(a) = 1 and ZTn+1
(a) =

ZTn+1−(a) if ZTn+1−(a) < 1, and ZTn+1
(b) = 0 if ZTn+1−(b) = 1 and ZTn+1

(b) = ZTn+1−(b)
if ZTn+1−(b) < 1.
(ii) If ZTn+1−(Xn+1) < 1, we set HTn+1

(Xn+1) = ZTn+1−(Xn+1), we set ZTn+1
(Xn+1) =

ZTn+1−(Xn+1) and (ZTn+1
(x), HTn+1

(x)) = (ZTn+1−(x), HTn+1−(x)) for all x ∈ [−A, A] \
{Xn+1}.
(iii) Using the values of (ZTn+1

(x), HTn+1
(x))x∈[−A,A], we finally compute the values of

(DTn+1
(x))x∈[−A,A]. �

In case (i) above, we detailed precisely what to do at the boundary of burning macroscopic
components. This is not so important: it does not affect the uniqueness statement but
corresponds to taking a slightly different definition of the process; we could have made other
choices for this.

We now prove a refined version of Theorem 3.
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Proposition 9. Consider a Poisson measure M(dt, dx) on [0,∞)×R, with intensity mea-
sure dtdx. For A > 0, consider the A-LFFP (ZA

t (x), DA
t (x), HA

t (x))t≥0,x∈[−A,A] built in
Proposition 8 (using M).
There a.s. exists an unique LFFP (Zt(x), Dt(x), Ht(x))t≥0,x∈R (corresponding to M), and
it furthermore satisfies: for all T > 0, there are some constants αT > 0 and CT > 0 such
that for all A ≥ 2,

P

[

(Zt(x),Dt(x), Ht(x))t∈[0,T ],x∈[−A/2,A/2](5)

= (ZA
t (x), DA

t (x), HA
t (x))t∈[0,T ],x∈[−A/2,A/2]

]

≥ 1 − CT e−αT A.

Proof. We divide the proof into several steps. We fix T > 0, and work on [0, T ].

Step 1. For a ∈ Z, we define the event Ωa in the following way (see Figure 3 for an
illustration): the Poisson measure M has exactly 3n marks in [0, T ] × [a, a + 1], for some

n ≥ 1, and it is possible to call them (Tk, Xk)k=1,...n, (T̃k, X̃k)k=1,...n and (Sk, Yk)k=1,...n in

such a way that we have the following properties for all k = 1, ..., n (we set T0 = T̃0 = S0 = 0

and X0 = a, X̃0 = a + 1 for convenience).

(i) Tk and T̃k belong to (Sk−1 + 1/2, Sk−1 + 1) and Xk−1 < Xk < X̃k < X̃k−1;

(ii) Sk ∈ (Sk−1 + 1, Sk−1 + 2(Tk ∧ T̃k − Sk−1)) and Yk ∈ (Xk, X̃k);
(iii) Sn > T − 1.

Step 2. Then we observe that if the LFFP exists, then necessarily,

Ωa ⊂ {∀ t ∈ [0, T ], ∃ x ∈ (a, a + 1), Ht(x) > 0 or Zt(x) < 1} .

Indeed, Zt(x) = t < 1 for all t ∈ [0, 1), all x ∈ R. Then HT1
(X1) = ZT1

(X1) = T1, whence

Ht(X1) > 0 on [T1, 2T1], and Ht(X̃1) > 0 on [T̃1, 2T̃1]. As a consequence, we know that for

all x ∈ (X1, X̃1), all t ∈ [1, S1), Dt(x) = [X1, X̃1]. Since now 1 < S1 < 2(T1 ∧ T̃1), and

since Y1 ∈ (X1, X̃1), we deduce that ZS1
(x) = 0 for all x ∈ (X1, X̃1), and as a consequence,

Zt(x) = t− S1 < 1 for all t ∈ [S1, S1 + 1). But now Ht(X2) > 0 on [T2, T2 + (T2 − S1)), and

Ht(X̃2) > 0 on [T̃2, T̃2 +(T̃2−S1)). As a consequence, we know that for all x ∈ (X2, X̃2), all

t ∈ [S1 + 1, S2), Dt(x) = [X2, X̃2]. Since now S1 + 1 < S2 < S1 + 2(T1 ∧ T̃1 − S1), and since

Y2 ∈ (X2, X̃2), we deduce that ZS2
(x) = 0 for all x ∈ (X2, X̃2), and thus Zt(x) = t−S2 < 1

for all t ∈ [S2, S2 + 1). And so on...

Step 3. We deduce that for all a ∈ Z, conditionally on Ωa, clusters on the left of a are never
connected (during [0, T ]) to clusters on the right of a + 1. Thus on Ωa, fires starting on
the left of a do not affect the zone [a + 1,∞), and fires starting on the right of a + 1 do
not affect the zone (−∞, a]. Since furthermore Ωa concerns the Poisson measure M only
in [0, T ]× [a, a + 1], we deduce that on Ωa, the processes (Zt(x), Dt(x), Ht(x))t≥0,x∈[a+1,∞)

and (Zt(x), Dt(x), Ht(x))t≥0,x∈(−∞,a] can be constructed separately.

Step 4. Clearly, qT = P[Ωa] does not depend on a, by invariance by translation (of the law
of M), and obviously qT > 0. Thus a.s., there are infinitely many a ∈ Z such that Ωa is
realized. This allows a graphical construction: it suffices to work between such a’s (i.e. in
finite boxes) as in Proposition 8.

Step 5. Using the same arguments, we easily deduce that for A ≥ 2, the LFFP and the
A-LFFP coincide on [−A/2, A/2] during [0, T ] as soon as there are a1 ∈ [−A,−A/2−1] and
a2 ∈ [A/2, A − 1] with Ωa1

∩ Ωa2
realized. Furthermore, since M is a Poisson measure, Ωa

is independent of Ωb for all a 6= b (with a, b ∈ Z). Thus the probability on the LHS of (5) is
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bounded below, for A ≥ 2, by

1 − P[∩a∈Z∩[−A,−A/2−1]Ω
c
a] − P[∩a∈Z∩[A/2,A−1]Ω

c
a] ≥ 1 − 2(1 − qT )A/2−2,

whence (5) with αT = − log(1 − qT )/2 > 0 and CT = 2/(1 − qT )2. �

3. Localization of the FFP.

We first introduce the (λ, A)-FFP. We consider two independent families of i.i.d. Poisson
processes N = (Nt(i))t≥0,i∈Z and Mλ = (Mλ

t (i))t≥0,i∈Z, with respective rates 1 and λ > 0.
For A > 0 and λ > 0, we define

(6) Aλ := ⌊A/(λ log(1/λ)⌋ and Iλ
A := J−Aλ, AλK,

and we set FN,Mλ,A
t := σ(Ns(i), M

λ
s (i), s ≤ t, i ∈ Iλ

A).

Definition 10. Consider a (FN,Mλ,A
t )t≥0-adapted process (ηλ,A

t )t≥0 with values in {0, 1}Iλ
A,

such that (ηλ,A
t (i))t≥0 is a.s. càdlàg for all i ∈ Iλ

A.

We say that (ηλ,A
t )t≥0 is a (λ, A)-FFP if a.s., for all t ≥ 0, all i ∈ Iλ

A,

ηλ,A
t (i) =

∫ t

0

1{ηλ,A
s− (i)=0}dNs(i) −

∑

k∈Iλ
A

∫ t

0

1{k∈Cλ,A
s− (i)}dMλ

s (k),

where Cλ,A
s (i) = ∅ if ηλ,A

t (i) = 0, while Cλ,A
s (i) = Jlλ,A

s (i), rλ,A
s (i)K if ηλ,A

s (i) = 1, where

lλ,A
s (i) = (−Aλ) ∨

(

sup{k < i; ηλ,A
s (k) = 0} + 1

)

,

rλ,A
s (i) = Aλ ∧

(

inf{k > i; ηλ,A
s (k) = 0} − 1

)

.

For x ∈ [−A, A] and t ≥ 0, we introduce

(7) Dλ,A
t (x) = λ log(1/λ)Cλ,A

t (⌊x/(λ log(1/λ))⌋) ⊂ [−A, A],

(8) Zλ,A
t (x) =

log
[

1 + #
(

Cλ,A
t (⌊x/(λ log(1/λ))⌋)

)]

log(1/λ)
≥ 0.

We now prove the following result, which is similar to Proposition 9 for the λ-FFP.

Proposition 11. Let T > 0 and λ ∈ (0, 1). Consider two families of Poisson processes
N = (Nt(i))t≥0,i∈Z and Mλ = (Mλ

t (i))t≥0,i∈Z, with respective rates 1 and λ > 0. Let

(ηλ
t )t≥0 be the corresponding λ-FFP, and for each A > 0, let (ηλ,A

t )t≥0 be the corresponding
(λ, A)-FFP. Recall (1)-(2) and (7)-(8). There are some constant αT > 0 and CT > 0, not
depending on λ ∈ (0, 1), A ≥ 2, such that, recall (6),

P

[

(ηλ
t (i))t∈[0,T log(1/λ)],i∈Iλ

A/2
= (ηλ,A

t (i))t∈[0,T log(1/λ)],i∈Iλ
A/2

]

≥ 1 − CT e−αT A,

P

[

(Zλ
t (x), Dλ

t (x))t∈[0,T ],x∈[−A/2,A/2] = (Zλ,A
t (x), Dλ,A

t (x))t∈[0,T ],x∈[−A/2,A/2]

]

≥ 1 − CT e−αT A.

Proof. The proof is similar (but more complicated) to that of Proposition 9. Consider
the true λ-FFP (ηλ

t (i))t≥0,i∈Z. Assume for a moment that for a ∈ R, there is an event
Ωλ

a , depending only on the Poisson processes Nt(i) and Mλ
t (i) for t ∈ [0, T log(1/λ)] and

i ∈ Jλ
a := J⌊a/(λ log(1/λ))⌋, ⌊(a + 1)/(λ log(1/λ))⌋K, such that

(i) on Ωλ
a , a.s., for all t ∈ [0, T log(1/λ)], there is some i ∈ Jλ

a such that ηλ
t (i) = 0;
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(ii) there is qT > 0 such that for all a ∈ R, all λ ∈ (0, 1), P(Ωλ
a) ≥ qT .

Then we conclude using similar arguments to Steps 3, 4, 5 of the proof of Proposition 9.

Fix some α > 0 and some εT > 0 small enough, say α = 0.01 and εT = 1/(32T ). Let λT > 0
be such that for λ ∈ (0, λT ), we have 1 < λα−1 < ǫT /(λ log(1/λ)).

For λ ∈ [λT , 1) and a ∈ R, we set Ωλ
a = {NT log(1/λ)(⌊a/(λ log(1/λ))⌋) = 0}, on which of

course ηλ
t (i) = 0 for all t ∈ [0, T log(1/λ)] with i = ⌊a/(λ log(1/λ))⌋ ∈ Jλ

a . Then we observe
that q′T = infλ∈[λT ,1) P (Ωλ

a) = infλ∈[λT ,1) e−T log(1/λ) = (λT )T > 0.

For λ ∈ (0, λT ) and a ∈ R, we define the event Ωλ
a on which points 1, 2, 3 below are

satisfied.

1. The family of Poisson processes (Mλ
t (i))t∈[0,T log(1/λ)],i∈Jλ

a
has exactly 3n marks, for

some 1 ≤ n ≤ ⌊T ⌋, and it is possible to call them (T λ
k , Xλ

k )k=1,...n, (T̃ λ
k , X̃λ

k )k=1,...n and
(Sλ

k , Y λ
k )k=1,...n in such a way that we have the following properties for all k = 1, ..., n (we

set T λ
0 = T̃ λ

0 = Sλ
0 = 0 and Xλ

0 = ⌊a/(λ log(1/λ))⌋, X̃λ
0 = ⌊(a + 1)/(λ log(1/λ))⌋).

(1a) Xλ
k−1 < Xλ

k < Y λ
k < X̃λ

k < X̃λ
k−1, with min{Xλ

k − Xλ
k−1, Y

λ
k − Xλ

k , X̃λ
k − Y λ

k , X̃λ
k−1 −

X̃λ
k } ≥ 4ǫT /(λ log(1/λ));

(1b) T λ
k and T̃ λ

k belong to [Sλ
k−1 + (1

2 + α) log(1/λ), Sλ
k−1 + (1 − α) log(1/λ)];

(1c) Sλ
k ∈ [Sλ

k−1 + (1 + α) log(1/λ), Sλ
k−1 + 2(T λ

k ∧ T̃ λ
k − Sλ

k−1) − α log(1/λ)];

(1d) Sλ
n ≥ (T − 1 + α) log(1/λ).

2. We now set, for k = 1, ..., n, τλ
k = (Sλ

k − Sλ
k−1)/(2 log(1/λ)), which belongs to [(1 +

α)/2, 1 − α] due to 1 We consider the intervals

Iλ
k = JXλ

k − ⌊λ−τλ
k ⌋, Xλ

k + ⌊λ−τλ
k ⌋K,

Iλ
k,− = JXλ

k − ⌊λ−τλ
k ⌋ − ⌊εT /λ log(1/λ)⌋, Xλ

k − ⌊λ−τλ
k ⌋ − 1K,

Iλ
k,+ = JXλ

k + ⌊λ−τλ
k ⌋ + 1, Xλ

k + ⌊λ−τλ
k ⌋ + ⌊εT /λ log(1/λ)⌋K,

Lλ
k = JXλ

k + ⌊λ−τλ
k ⌋ + ⌊εT /λ log(1/λ)⌋ + 1, X̃λ

k − ⌊λ−τλ
k ⌋ − ⌊εT /λ log(1/λ)⌋ − 1K,

and we consider similar intervals Ĩλ
k , Ĩλ

k,−, Ĩλ
k,+, around X̃λ

k . For all k = 1, . . . , n the family

of Poisson processes (Nt(i))t≥0,i∈Jλ
a

satisfies :

(2a) ∀i ∈ Iλ
k , NT λ

k
(i) − NSλ

k−1
(i) > 0 and ∀i ∈ Ĩλ

k , NT̃ λ
k
(i) − NSλ

k−1
(i) > 0;

(2b) ∃i ∈ Iλ
k,−, NT λ

k
(i)−NSλ

k−1
(i) = 0, ∃i ∈ Iλ

k,+, NT λ
k
(i)−NSλ

k−1
(i) = 0, ∃i ∈ Ĩλ

k,−, NT̃ λ
k
(i)−

NSλ
k−1

(i) = 0 and ∃i ∈ Ĩλ
k,+, NT̃ λ

k
(i) − NSλ

k−1
(i) = 0;

(2c) ∃i ∈ Iλ
k , NSλ

k
(i) − NT λ

k
(i) = 0 and ∃i ∈ Ĩλ

k , NSλ
k
(i) − NT̃ λ

k
(i) = 0;

(2d) ∀i ∈ Lλ
k , NSλ

k
(i) − NSλ

k−1
(i) > 0.

3. We finally assume that ∃i ∈ Lλ
n, NT log(1/λ)(i) − NSλ

n
(i) = 0.

To show that on Ωλ
a , a.s., for all t ∈ [0, T log(1/λ)], there is some i ∈ Jλ

a such that ηλ
t (i) = 0,

we proceed recursively. At time 0 all sites are vacant. Fix k ∈ {1, ..., n}. Assume that, for
t ≤ Sλ

k−1, there is some i ∈ Jλ
a such that ηλ

t (i) = 0 and that, at time Sλ
k−1, all sites in the

interval Lλ
k−1 are vacant.

Then, for Sλ
k−1 ≤ t < T λ

k (resp. Sλ
k−1 ≤ t < T̃ λ

k ), (2b) shows that there are vacant sites

both in Iλ
k,+ and in Iλ

k,− (resp. both in in Ĩλ
k,+ and in Ĩλ

k,−). This together with (2a) shows
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that, at time T λ
k − (resp. T̃ λ

k −), all the sites in the intervals Iλ
k and Ĩλ

k are occupied (no fire

may burn those sites, because they are protected by the vacant sites in Iλ
k,+, Iλ

k,−, Ĩλ
k,+, Ĩλ

k,−).

Hence the interval Iλ
k (resp. Ĩλ

k ) becomes completely vacant at time T λ
k (resp. T̃ λ

k ). Between

time T λ
k (resp. T̃ λ

k ) and time Sλ
k , since Iλ

k (resp. Ĩλ
k ) is completely vacant at time T λ

k (resp.

T̃ λ
k ), (2c) shows that there is a vacant site in Iλ

k (resp. Ĩλ
k ).

At time Sλ
k−, the interval Lλ

k is completely occupied thanks to (2d) and since it cannot be

burnt, because it is protected by vacant sites in Iλ
k,+ (resp. Ĩλ

k,−) between Sλ
k−1 and T λ

k (resp.

T̃ λ
k ) and in Iλ

k resp Ĩλ
k between T λ

k (resp. T̃ λ
k ) and Sλ

k . As a consequence, since Y λ
k ∈ Lλ

k ,
the interval Lλ

k becomes completely vacant at time Sλ
k−.

All this shows that on Ωλ
a , there are vacant sites in Jλ

a for all t ∈ [0, Sλ
n ], and Lλ

n is com-
pletely vacant at time Sλ

n . Finally, 3 implies that there are vacant sites in Lλ
n ⊂ Jλ

a during
[Sλ

n , T log(1/λ)].

It remains to prove that there is q′′T > 0 such that for all a ∈ R, all λ ∈ (0, λT ), P(Ωλ
a) ≥ q′′T .

We treat separately the conditions 1 on Mλ and 2 on N (conditionally on Mλ) and use
independence of these two families of Poisson processes to conclude.

Firstly, for λ ∈ (0, λT ), we observe that we can construct Mλ using a Poisson measure M
on [0,∞) × R with intensity dtdx, by setting, for all i ∈ Z :

Mλ
t (i) = M

(

[0, t/ log(1/λ)] × [iλ log(1/λ), (i + 1)λ log(1/λ))
)

.

Hence (since εT /(λ log(1/λ)) > 1) the event on which Mλ satisfies 1 contains the event Ω′
a

on which M has exactly 3n marks in [0, T ]× [a, a + 1], for some 1 ≤ n ≤ ⌊T ⌋ which can be

called (Tk, Xk)k=1,...n, (T̃k, X̃k)k=1,...n and (Sk, Yk)k=1,...n in such a way that we have the

following properties (we set T0 = T̃0 = S0 = 0 and X0 = a, X̃0 = a + 1 for convenience) for
all k = 1, ..., n:
• min({Xk − Xk−1, Yk − Xk, X̃k − Yk, X̃k−1 − X̃k}) > 5ǫT .

• Tk and T̃k belong to (Sk−1 + 1/2 + α, Sk−1 + 1 − α)

• Sk ∈ (Sk−1 + 1 + α, Sk−1 + 2(Tk ∧ T̃k − Sk−1) − α).
• Sn ≥ (T − 1) + α.
Then we have P(Ω′

a) > 0 (as in the proof of Proposition 9 and since εT and α are suffi-
ciently small), and this probability does not depend on a (by invariance of the law of M by
translation) nor on λ ∈ (0, λT ) (since it concerns only M).

Then, we use basic computations on i.i.d. Poisson processes with rate 1 to show that there is
a (deterministic) constant c > 0 such that for all k = 1, . . . , n, all λ ∈ (0, λT ), conditionally
on Mλ, (we write PM for the conditional probability w.r.t. Mλ),

• since T λ
k − Sλ

k−1 ≥ (τλ
k + α/2) log(1/λ) due to (1c) and since #(Iλ

k ) = 2⌊λ−τλ
k ⌋ + 1,

PM (∀i ∈ Iλ
k , NT λ

k
(i) − NSλ

k−1
(i) > 0) =

(

1 − e−(T λ
k −Sλ

k−1)
)2⌊λ−τλ

k ⌋+1

≥
(

1 − λτλ
k +α/2

)2⌊λ−τλ
k ⌋+1

≥ c

(it tends to 1 as λ → 0) and the same computation works for Ĩλ
k ;
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• since T λ
k − Sλ

k−1 ≤ (1 − α) log(1/λ) by (1b), and since #(Iλ
k,+) = ⌊εT /(λ log(1/λ))⌋,

PM (∃i ∈ Iλ
k,+, NT λ

k
(i) − NSλ

k−1
(i) = 0) = 1 −

(

1 − e−(T λ
k −Sλ

k−1)
)⌊εT /λ log(1/λ)⌋

≥ 1 −
(

1 − λ1−α
)⌊εT /(λ log(1/λ))⌋

≥ c

and the same computation works for Iλ
k,−, Ĩλ

k,+, Ĩλ
k,−;

• since Sλ
k − T λ

k ≤ (τλ
k −α/2) log(1/λ) due to (1c) (use that Sλ

k ≤ 2T λ
k − Sλ

k−1 − α log(1/λ),

whence 2Sλ
k ≤ 2T λ

k + Sλ
k − Sλ

k−1 − α log(1/λ) = 2T λ
k + 2(τλ

k − α/2) log(1/λ)), and since

#(Iλ
k ) = 2⌊λ−τλ

k ⌋ + 1,

PM (∃i ∈ Iλ
k , NSλ

k
(i) − NT λ

k
(i) = 0) = 1 −

(

1 − e−(Sλ
k−T λ

k )
)2⌊λ−τλ

k ⌋+1

≥ 1 −
(

1 − λτλ
k −α/2

)2⌊λ−τλ
k ⌋+1

≥ c

and this also holds for Ĩλ
k ;

• since Sλ
k − Sλ

k−1 ≥ (1 + α) log(1/λ) thanks to (1c), and since #(Lλ
k) ≤ ⌊(1/λ log(1/λ))⌋,

PM (∀i ∈ Lλ
k , NSλ

k
(i) − NSλ

k−1
(i) > 0) =

(

1 − e−(Sλ
k−Sλ

k−1)
)#(Lλ

k)

≥
(

1 − λ1+α
)⌊1/λ log(1/λ)⌋

≥ c;

• since T log(1/λ) − Sλ
n ≤ (1 − α) log(1/λ) by (1d) and #(Lλ

n) ≥ 4εT /(λ log(1/λ)) by (1a),

PM (∃i ∈ Lλ
n, NT log(1/λ)(i) − NSλ

n
(i) = 0) = 1 −

(

1 − e−(T log(1/λ)−Sλ
n)
)#(Lλ

n)

≥ 1 −
(

1 − λ1−α
)4εT /(λ log(1/λ))

≥ c.

We observe that the domains Iλ
k × (Sλ

k−1, T
λ
k ], Ĩλ

k × (Sλ
k−1, T̃

λ
k ], Iλ

k,+ × (Sλ
k−1, T

λ
k ], Iλ

k,− ×

(Sλ
k−1, T

λ
k ], Ĩλ

k,+×(Sλ
k−1, T̃

λ
k ], Ĩλ

k,−×(Sλ
k−1, T̃

λ
k ], Iλ

k ×(T λ
k , Sλ

k ], Ĩλ
k ×(T̃ λ

k , Sλ
k ], Lλ

k ×(Sλ
k−1, S

λ
k ],

for k = 1, . . . , n, and Lλ
n × (Sλ

n , T log(1/λ)] are pairwise disjoint thanks to 1 and to the

smallness of εT and λT : we have ⌊λ−τλ
k ⌋ ≤ λα−1 ≤ εT /(λ log(1/λ)).

Since n ≤ T , we deduce from all the previous estimates the existence of q′′T > 0 such that
for all a ∈ R, all λ ∈ (0, λT ), P(Ωλ

a) ≥ q′′T . We conclude choosing qT = min(q′T , q′′T ). �

4. Convergence proof

The goal of this section is to check Theorem 5.

4.1. Coupling. We introduce a coupling between the λ-FFP, the LFFP, and their localized
versions.

Notation 12. We consider a Poisson measure M(dt, dx) on [0,∞) × R with intensity
measure dtdx. We consider an independent family of Poisson processes (Nt(i))t≥0,i∈Z with
rate 1. For λ ∈ (0, 1) and i ∈ Z, we set

Mλ
t (i) = M

(

[0, t/ log(1/λ)] × [iλ log(1/λ), (i + 1)λ log(1/λ))
)

.

Then (Mλ
t (i))t≥0,i∈Z is a family of independent Poisson processes with rate λ. We con-

sider, for all λ ∈ (0, 1), the λ-FFP (ηλ
t )t≥0 (see Definition 1), and for all A > 0, the
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(λ, A)-FFP (ηλ,A
t )t≥0 (see Definition 10) built with N, Mλ. We also introduce the processes

(Zλ
t (x), Dλ

t (x))t≥0,x∈R as in (1)-(2) and (Zλ,A
t (x), Dλ,A

t (x))t≥0,x∈[−A,A] as in (7)-(8).
We denote by (Zt(x), Dt(x), Ht(x))t≥0,x∈R the LFFP built with M (see Definition 2), and
by (ZA

t (x), DA
t (x), HA

t (x))t≥0,x∈[−A,A] the A-LFFP built with M (see Definition 7).

4.2. Localization. Assume for a moment that the following result holds.

Proposition 13. Adopt Notation 12 as well as Notation 4.
(a) For any T > 0, any A > 0, any x0 ∈ (−A, A), in probability, as λ → 0,

δT

(

(Zλ,A(x0), D
λ,A(x0)), (Z

A(x0), D
A(x0))

)

tends to 0.

(b) For any t ∈ [0,∞), any A > 0, any x0 ∈ (−A, A), in probability, as λ → 0,

|Zλ,A
t (x0) − ZA

t (x0)| + δ
(

Dλ,A
t (x0)), D

A
t (x0)

)

tends to 0.

Then we are in a position to give the

Proof of Theorem 5. We only prove point (a), (b) being similarly checked. Let T > 0
and {x1, ..., xn} ⊂ [−B, B] ⊂ R be fixed. Consider the coupling introduced in Notation 12.
Proposition 13 ensures us that for any ε > 0, any A > B,

lim
λ→0

P

[

n
∑

1

δT

(

(Zλ,A(xi), D
λ,A(xi)), (Z

A(xi), D
A(xi))

)

> ε

]

= 0.

Let now

Ωλ
A,T :=

{

∀ i = 1, ..., n, ∀ t ∈ [0, T ], (Zλ
t (xi), D

λ
t (xi)) = (Zλ,A

t (xi), D
λ,A
t (xi))

and (Zt(xi), Dt(xi)) = (ZA
t (xi), D

A
t (xi))

}

.

Now for all A > 2B,

Ωλ
A,T ⊂

{

(Zλ
t (x), Dλ

t (x))t∈[0,T ],x∈[−A/2,A/2] = (Zλ,A
t (x), Dλ,A

t (x))t∈[0,T ],x∈[−A/2,A/2]

and (Zt(x), Dt(x))t∈[0,T ],x∈[−A/2,A/2] = (ZA
t (x), DA

t (x))t∈[0,T ],x∈[−A/2,A/2]

}

.

But Propositions 9 and 11 yield that P[(Ωλ
A,T )c] ≤ 2CT e−αT A. Thus for any A > 2B,

lim sup
λ→0

P

[

n
∑

1

δT

(

(Zλ(xi), D
λ(xi)), (D(xi), Z(xi))

)

> ε

]

≤ 0 + 2CT e−αT A.

Making A tend to infinity, we deduce that
∑n

i=1 δT ((Zλ(xi), D
λ(xi)), (D(xi), Z(xi))) tends

to 0 in probability as λ → 0, whence the result. �

4.3. Heart of the proof. The aim of this subsection is to prove Proposition 13. We fix
T > 0 and A > 0. We consider the (λ, A)-FFP and the A-LFFP coupled as in Notation 12
and we use the notation introduced in (6). Along this proof we will omit the superscript A,
and we do not take into account the possible dependences in A and T .

For J = (a, b) an open interval of (−A, A), λ ∈ (0, 1) and µ ∈ (0, 1], we consider

Jλ,µ =

s⌊
a

λ log(1/λ)
+

µ

λ log2(1/λ)

⌋

,

⌊

b

λ log(1/λ)
−

µ

λ log2(1/λ)

⌋{
⊂ Z,(9)

Z̃λ,µ
t (J) = 1 −

log(1 + #{k ∈ Jλ,µ, ηλ
t log(1/λ)(k) = 0})

log(1 + #(Jλ,µ))
.
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Observe that Z̃λ,µ
t (J) = 1 if and only if all the sites of Jλ,µ are occupied at time t log(1/λ).

The quantity Z̃λ,µ
t (J) is a function of the density of vacant clusters in the (rescaled) zone

J . Under some exhangeability properties, it should be closely related to the size of occupied
clusters in that zone, i.e. to Zλ

t (x), for x ∈ J .

For x ∈ (−A, A), λ ∈ (0, 1) and µ ∈ (0, 1], we introduce

xλ,µ =

s⌊
x

λ log(1/λ)
−

µ

λ log2(1/λ)

⌋

+ 1,

⌊

x

λ log(1/λ)
+

µ

λ log2(1/λ)

⌋

− 1

{
⊂ Z,(10)

H̃λ,µ
t (x) =

log(1 + #{k ∈ xλ,µ, ηλ
t log(1/λ)(k) = 0})

log(1 + #(xλ,µ))
.

Here again, H̃λ,µ
t (x) = 0 if and only if all the sites of xλ,µ are occupied at time t log(1/λ).

Assume that a microscopic fires starts at some x. Then the process H̃λ,µ
t (x) will allow us

to quantify the duration for which this fire will be in effect.

Observe that we always have log(1 + #(xλ,µ)) ∼ log(1 + #(Jλ,µ)) ∼ log(1/λ) as λ → 0.

Observe also that if Z̃λ,µ
t (J) = z, then there are (1+#(Jλ,µ))1−z − 1 ≃ λz−1 vacant sites in

Jλ,µ at time t log(1/λ). By the same way, H̃λ,µ
t (x) = h says that there are (1+#(xλ,µ))h−1 ≃

λ−h vacant sites in xλ,µ at time t log(1/λ).

We work conditionally to M . We denote PM the conditional probability given M . We recall
that conditionally to M , (Zt(x), Dt(x), Ht(x))t∈[0,T ],x∈[−A,A] is deterministic. We denote
by n = M([0, T ] × [−A; A]), which is a.s. finite. We set T0 = 0 and consider the marks
(Xq, Tq)1≤q≤n of M , ordered in such a way that T0 < T1 < ... < Tn < T .

We set B0 = ∅, and for q = 1, . . . , n, we consider Bq = {X1, . . . , Xq}, as well as the set Cq of
connected components of (−A, A) \ Bq (sometimes referred to as cells).

Observe that by construction, we have, for c ∈ Cq and x, y ∈ c, Zt(x) = Zt(y) for all
t ∈ [0, Tq+1), thus we can introduce Zt(c).

We consider λµ > 0 (which depends on M) such that for all λ ∈ (0, λµ), (Xi)λ,µ 6= ∅ and
(Xi)λ,µ ∩ (Xj)λ,µ = ∅ for all i 6= j with i, j ∈ {1, ..., n}.
Then we observe that for λ ∈ (0, λµ), for each q = 0, ..., n, {xλ,µ, x ∈ Bq} ∪ {cλ,µ, c ∈ Cq} is

a partition of J−Ãλ,µ, Ãλ,µK, where Ãλ,µ = ⌊A/(λ log(1/λ)) − µ/(λ log2(1/λ))⌋.

With our coupling, for the (λ, A)-FFP (ηλ
t )t≥0, for each i = 1, . . . , n, a fire starts at the site

⌊Xi/(λ log(1/λ))⌋ at time Ti log(1/λ), and this describes all the fires during [0, T log(1/λ)].

The lemma below shows some exchangeability properties inside cells (connected components
of (−A, A) \ Bq). This will allow us to prove that for c a cell and x ∈ c, the size of occupied
cluster around x (described by Zλ(x)) is closely related to the global density of occupied

clusters in c (described by Z̃λ,µ(c)).

Lemma 14. For λ ∈ (0, 1) and µ ∈ (0, 1], set Eλ,µ
0 = Ω, and for q = 1, ..., n, consider the

event (recall Definition 10 and (9))

Eλ,µ
q =

{

∀ i = 1, ..., q, ∀ c ∈ Ci, either cλ,µ ⊂ Cλ
Ti log(1/λ)−(Xi)

or ηλ
Ti log(1/λ)−(k) = 0 for some max cλ,µ < k < min Cλ

Ti log(1/λ)−(Xi)

or ηλ
Ti log(1/λ)−(k) = 0 for some maxCλ

Ti log(1/λ)−(Xi) < k < min cλ,µ

}

.
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Conditionally to M and Eλ,µ
q , for all c ∈ Cq, the random variables (ηλ

Tq log(1/λ)(k))k∈cλ,µ
are

exchangeable.

Proof. Let c ∈ Cq, let σ be a permutation of cλ,µ, and set for simplicity σ(i) = i for
i ∈ Iλ

A \ cλ,µ (recall (6)).
Consider the (λ, A)-FFP process (ηλ

t )t≥0 built with M and the family of Poisson processes
(N(i))i∈Iλ

A
. Consider also the (λ, A)-FFP process (η̃λ

t )t≥0 built with M and the family of

Poisson processes (Ñ(i))i∈Iλ
A

defined by Ñ(i) = N(σ(i)).

Observe that Eλ,µ
k+1 ⊂ Eλ,µ

k . For all k = 0, ..., q, c ⊂ ck for some ck ∈ Ck. We will show the
following claims, by induction on k = 0, ..., q.

(i) If Ẽλ,µ
k is the same event as Eλ,µ

k corresponding to (η̃λ
t )t≥0, then Ẽλ,µ

k = Eλ,µ
k .

(ii) On Eλ,µ
k , for all t ∈ [0, Tk log(1/λ)], η̃λ

t (i) = ηλ
t (σ(i)) for all i ∈ Iλ

A (in particular,

η̃λ
t (i) = ηλ

t (i) for all i /∈ cλ,µ).

Of course, (i) and (ii) with k = q imply the Lemma. Indeed, let ϕ : {0, 1}#(cλ,µ) 7→ R. We
have EM [1Eλ,µ

q
ϕ((ηλ

Tq log(1/λ)(i))i∈cλ,µ
))] = EM [1Ẽλ,µ

q
ϕ((η̃λ

Tq log(1/λ)(i))i∈cλ,µ
))]. Then using

(i) and (ii), we deduce that

EM [1Eλ,µ
q

ϕ((ηλ
Tq log(1/λ)(i))i∈cλ,µ

))] = EM [1Eλ,µ
q

ϕ((ηλ
Tq log(1/λ)(σ(i)))i∈cλ,µ

))],

which proves the Lemma.

First, (i) and (ii) with k = 0 are obviously satisfied. Assume now that for some k ∈

{0, ..., q−1}, we have (i) and (ii). Then on Eλ,µ
k , for all t ∈ [0, Tk+1 log(1/λ)), η̃λ

t (i) = ηλ
t (σ(i))

for all i ∈ Iλ
A. Indeed, they are equal on [0, Tk log(1/λ)] by assumption and they use the

same Poisson process Ñ(i) = N(σ(i)) on the time interval [Tk log(1/λ), Tk+1 log(1/λ))).

We now check that Eλ,µ
k+1 = Ẽλ,µ

k+1. We know that Eλ,µ
k = Ẽλ,µ

k , and the additional condition
(at time Tk+1 log(1/λ)−) concerns:
• sites outside cλ,µ, for which the values of ηλ and η̃λ at time Tk+1 log(1/λ)− are the same;
• the event cλ,µ ⊂ Cλ

Tk+1 log(1/λ)−, which is the same for ηλ and η̃λ, (it can be realized only

if there are no vacant sites in cλ,µ, which occurs or not simultaneously for ηλ and η̃λ).

We now conclude that (ii) remains true at time Tk+1 log(1/λ), since the zone subject to fire
• either is disjoint of cλ,µ, so that the values of ηλ, η̃λ are left invariant in cλ,µ, while they
are modified in the same way outside cλ,µ;
• or contains the whole zone cλ,µ, which is thus destroyed simultaneously for ηλ and η̃λ, and
the values of ηλ, η̃λ are modified in the same way outside cλ,µ. �

The next Lemma shows in some sense that if a cell is almost completely occupied at time t,
then it will be really completely occupied at time t+; and if the effect of a microscopic fire
is almost ended at time t, then it will be really ended at time t+.

Lemma 15. Let µ ∈ (0, 1]. Consider k ∈ {0, ..., n}, c ∈ Ck, x ∈ Bk, and t ∈ [Tk, Tk+1).

(i) Assume that for all ε > 0, limλ→0 PM (Z̃λ,µ
t (c) < 1 − ε) = 0. Then for all s ∈ (t, Tk+1),

limλ→0 PM (Z̃λ,µ
s (c) = 1) = 1.

(ii) Assume that for all ε > 0, limλ→0 PM (H̃λ,µ
t (x) > ε) = 0. Then for all s ∈ (t, Tk+1),

limλ→0 PM (H̃λ,µ
s (x) = 0) = 1.

Proof. The proofs of (i) and (ii) are similar. Let us for example prove (i). Let thus Tk ≤
t < t + ε = s < Tk+1. We start with

PM (Z̃λ,µ
t+ε(c) = 1) ≥ PM (Z̃λ,µ

t+ε(c) = 1 | Z̃λ,µ
t (c) > 1 − ε/2)PM (Z̃λ,µ

t (c) > 1 − ε/2),
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so that it suffices to check that limλ→0 PM (Z̃λ,µ
t+ε(c) = 1 | Z̃λ,µ

t (c) > 1 − ε/2) = 1. Call

vλ,µ
t the number of vacant sites in cλ,µ (for ηλ

t log(1/λ)). Then Z̃λ,µ
t+ε(c) = 1 is equivalent to

vλ,µ
t+ε = 0, and one easily checks that Z̃λ,µ

t (c) > 1−ε/2 implies that vλ,µ
t ≤ (1+#(cλ,µ))ε/2 ≤

(1 + 2A/(λ log(1/λ)))ε/2.
Since M((t, s] × [−A, A]) = 0 by assumption, we deduce that Mλ

s log(1/λ)(i) = Mλ
t log(1/λ)(i)

for all i ∈ Iλ
A: no fire starts during (t log(1/λ), s log(1/λ)]. Hence each occupied site at

time t log(1/λ) remains occupied at time s log(1/λ), and each vacant site at time t log(1/λ)
becomes occupied at time s log(1/λ) with probability 1 − e(t−s) log(1/λ) = 1 − λε. Thus

PM (Z̃λ,µ
t+ε(c) = 1 | Z̃λ,µ

t (c) > 1 − ε/2) ≥ (1 − λε)(1+2A/(λ log(1/λ)))ε/2

,

which tends to 1 as λ → 0. �

We end preliminaries with a last lemma, which concerns estimates about the time needed
to occupate vacant zones.

Lemma 16. Let µ ∈ (0, 1]. Let (ζλ
0 (i))i∈Iλ

A
∈ {0, 1}Iλ

A, and consider a family of i.i.d.

Poisson processes (Pλ
t (i))t≥0,i∈Iλ

A
, with rate log(1/λ), independent of ζλ

0 . Set ζλ
t (i) =

min(ζλ
0 (i) + Pλ

t (i), 1).

1. Let J = (a, b) ⊂ (−A, A) and h ∈ [0, 1]. Set vλ,µ
t = #{i ∈ Jλ,µ, ζλ

t (i) = 0}. Assume that

∀ ε > 0, P

(
∣

∣

∣

∣

∣

log(1 + vλ,µ
0 )

log(1 + #(Jλ,µ))
− h

∣

∣

∣

∣

∣

≥ ε

)

= 0.

(a) Then for all T > 0, all ε > 0,

lim
λ→0

P

(

sup
[0,T ]

∣

∣

∣

∣

∣

log(1 + vλ,µ
t )

log(1 + #(Jλ,µ))
− (h − t)+

∣

∣

∣

∣

∣

≥ ε

)

= 0.

(b) If the family (ζλ
0 (i))i∈Jλ,µ

is exchangeable, then for all x ∈ J , all T > 0, all ε > 0,

lim
λ→0

P

(

sup
[0,T ]

∣

∣

∣

∣

log(1 + #(Gλ
t (x)))

log(1/λ)
− (1 − (h − t)+)

∣

∣

∣

∣

≥ ε

)

= 0,

where Gλ
t (x) is the connected component of occupied sites around ⌊x/λ log(1/λ)⌋ in ζλ

t .

2. Let x ∈ (−A, A), and h ∈ [0, 1]. Set vλ,µ
t = #{i ∈ xλ,µ, ζλ

t (i) = 0}.
Assume that

∀ ε > 0, P

(∣

∣

∣

∣

∣

log(1 + vλ,µ
0 )

log(1 + #(xλ,µ))
− h

∣

∣

∣

∣

∣

≥ ε

)

= 0

Then for all T > 0, all ε > 0,

lim
λ→0

P

(

sup
[0,T ]

∣

∣

∣

∣

∣

log(1 + vλ,µ
t )

log(1 + #(xλ,µ))
− (h − t)+

∣

∣

∣

∣

∣

≥ ε

)

= 0.

Proof. The proof of 2. is the same as that of 1-(a), because log(1 + #(Jλ,µ)) ∼ log(1 +
#(xλ,µ)) ∼ log(1/λ) as λ → 0. We thus prove only 1, and we replace everywhere log(1 +

#(xλ,µ)) by log(1/λ) without difficulty. By assumption, we have, for all ε > 0, limλ→0 P(vλ,µ
0 ∈

(λε−h − 1, λ−ε−h)) = 1. We call ht = (h − t)+, V λ,µ
t = log(1 + vλ,µ

t )/ log(1/λ), and finally
Γλ

t = log(1 + #(Gλ
t (x)))/ log(1/λ).
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Step 1. Let t ≥ 0 be fixed. We first show that for all ε > 0, limλ→0 P

(

|V λ,µ
t − ht| ≥ ε

)

= 0.

Conditionally on vλ,µ
0 , the random variable vλ,µ

t follows a Binomial distribution B(vλ,µ
0 , λt),

because each vacant site at time 0 remains vacant with probability e−t log(1/λ) = λt.

Case ht > 0. Let ε ∈ (0, ht). We have to prove that P

(

vλ,µ
t ∈ (λε−ht , λ−ε−ht)

)

→ 1. We

know that limλ→0 P(vλ,µ
0 ∈ (λε/2−h, λ−ε/2−h)) = 1. The Bienaymé-Chebyshev inequality

implies

P [|vλ,µ
t − vλ

0 λt| ≤ (vλ,µ
0 λt)2/3 | vλ,µ

0 ∈ (λε/2−h, λ−ε/2−h)]

≥ 1 − E[vλ,µ
0 λt(1 − λt)(vλ,µ

0 λt)−4/3 | vλ,µ
0 ∈ (λε/2−h, λ−ε/2−h)]

≥ 1 − E[(vλ,µ
0 λt)−1/3 | vλ,µ

0 ∈ (λε/2−h, λ−ε/2−h)] ≥ 1 − (λε/2−h+t)−1/3,

which tends to 1 since ht = h − t > ε.
But the events |vλ,µ

t − vλ,µ
0 λt| ≤ (vλ,µ

0 λt)2/3 and vλ,µ
0 ∈ (λε/2−h, λ−ε/2−h)] imply that vλ,µ

t ∈
(λε/2−ht − (λ−ε/2−ht)2/3, λ−ε/2−ht + (λ−ε/2−ht)2/3) ⊂ (λε−ht , λ−ε−ht) for λ small enough,
whence the result.

Case ht = 0. We have to show that for all ε > 0, limλ→0 P(vλ,µ
t > λ−ε) = 0, and it suffices

to check that limλ→0 P(vλ,µ
t > λ−ε | vλ,µ

0 < λ−ε/2−h) = 0. But

P(vλ,µ
t > λ−ε | vλ,µ

0 < λ−ε/2−h) ≤ λε
E[vλ,µ

t | vλ,µ
0 < λ−ε/2−h] = λε

E[vλ,µ
0 λt | vλ,µ

0 < λ−ε/2−h]

≤ λε+tλ−ε/2−h = λε/2+t−h,

which tends to 0, since t − h ≥ 0 by assumption.

Step 2. We now prove that for all ε > 0, limλ→0 P(|Γλ
t − (1 − ht)| ≥ ε) = 0. It suffices to

check that limλ→0 P(#(Gλ
t (x)) ∈ (λε+ht−1 − 1, λ−ε+ht−1)) = 1. But we know from Step 1

that there are around (1/λ)ht vacant sites in Jλ,µ, and #(Jλ,µ) ≃ (1/λ log(1/λ)). We also
know that the family (ζλ

t (i))i∈Jλ,µ
is exchangeable, so that the vacant sites are uniformly

distributed in Jλ,µ (this is sligthly false: there cannot be two vacant sites at the same place).
We conclude that #(Gλ

t (x)) ≃ (1/λ log(1/λ))/(1/λ)ht ≃ λht−1. This can be done rigorously
without difficulty.

Step 3. We now prove 1-(a), which relies on Step 1 and an ad hoc version of Dini Theorem.
Let ε > 0. Consider a subdivision 0 = t0 < t1 < ... < tl = T , with ti+1 − ti < ε/2. Using

Step 1, we have limλ→0 P[maxi=0,...l |V
λ,µ
ti

− (h − ti)+| > ε/2] = 0.

Observe now that t 7→ V λ,µ
t and t 7→ (h − t)+ are a.s. nonincreasing, and that t 7→ (h − t)+

is Lipschitz continuous with Lipschitz constant 1.

We deduce that sup[0,T ] |V
λ,µ
t − (h − t)+| ≤ ε/2 + maxi=0,...,l{|V

λ,µ
ti

− (h − ti)+|}. Thus

P(sup[0,T ] |V
λ,µ
t − (h − t)+| > ε) ≤ P[maxi=0,...l |V

λ,µ
ti

− (h − ti)+| > ε/2], which concludes

the proof of 1-(a).

Step 4. Point 1-(b) is deduced from Step 2 exactly as Point 1-(a) is deduced from Step 1,
using that t 7→ Γλ

t and t 7→ 1 − ht are a.s. nondecreasing. �

We finally may handle the

Proof of Proposition 13.
For x ∈ (−A, A) and t ≥ 0, we introduce Zt(x−) = limy→x,y<x Zt(y) and Zt(x+) =
limy→x,y>x Zt(y), which represent the values of Zt in the cells on the left and right of
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x. If x ∈ Bn, it is at the boundary of two cells c−, c+ ∈ Cn, and then Zt(x−) = Zt(c−) and
Zt(x+) = Zt(c+).

For x ∈ Bn and t ≥ 0 we set H̃t(x) = max(Ht(x), 1−Zt(x), 1−Zt(x−), 1−Zt(x+)). Observe

that for the LFFP, x is microscopic (or acts like a barrier) if and only if H̃t(x) > 0, and if

so, it will remain microscopic during exactly [t, t+ H̃t(x)). Note that, in facts, Zt(x) always
equals either Zt(x−) or Zt(x+).

We consider the set of times K := {t ∈ {0, T }, there is x ∈ (−A, A), H̃t(x) = 0 but

H̃t−ε(x) > 0 for all ε > 0 small enough}. By construction, we see that K ⊂ {1, Ti + 1, Ti +
ZTi−(Xi), i = 1, ..., n} ⊂ {1, Ti + 1, Ti + (Ti − Tj), 0 ≤ j < i ≤ n}.

We work conditionally to M , by induction on q = 0, ..., n. Consider the assumption

(Hq): (i) For all 0 < µ ≤ 1, all c ∈ Cq, all ε > 0, limλ→0 PM (|Z̃λ,µ
Tq

(c) − ZTq(c)| > ε) = 0.

(ii) For all x ∈ Bq, all 0 < µ ≤ 1, all ε > 0, limλ→0 PM (|H̃λ,µ
Tq

(x) − H̃Tq(x)| > ε) = 0.

(iii) For all 0 < µ ≤ 1, limλ→0 PM (Eλ,µ
q ) = 1 (recall Lemma 14).

First, (H0) is obviously satisfied, because T0 = 0, C0 = (−A, A), Z̃λ,µ
0 ((−A, A)) = 0 =

Z0((−A, A)), B0 = ∅, and Eλ,µ
0 = Ω.

The proposition will essentially be proved if we check that for q = 0, ..., n − 1, (Hq) implies

(a) for c ∈ Cq, 0 < µ ≤ 1, ε > 0, limλ→0 PM (sup[Tq,Tq+1) |Z̃
λ,µ
t (c) − Zt(c)| > ε) = 0;

(b) for x ∈ (−A, A) \ Bq, ε > 0, limλ→0 PM (sup[Tq,Tq+1) |Z
λ
t (x) − Zt(x)| > ε) = 0;

(c) for x ∈ Bq, t ∈ [Tq, Tq+1), 0 < µ ≤ 1, ε > 0, limλ→0 PM (|H̃λ,µ
t (x) − H̃t(x)| > ε);

(d) for x ∈ (−A, A) \ Bq, t ∈ (Tq, Tq+1) \K, ε > 0, limλ→0 PM (δ(Dλ
t (x), Dt(x)) > ε) = 0;

(e) for x ∈ (−A, A) \ Bq, ε > 0, limλ→0 PM (
∫ Tq+1

Tq
δ(Dλ

t (x), Dt(x))dt > ε) = 0;

(f) (Hq+1) holds.

We thus assume (Hq) for some q ∈ {0, ..., n − 1} fixed, and prove points (a), ..., (f). We
repeatedly use below that on the time interval [Tq, Tq+1), there are no fires at all in (−A, A)
for the LFFP, and no fires at all during [Tq log(1/λ), Tq+1 log(1/λ)) for the λ-FFP.

Set ζλ
0 (i) = ηλ

Tq log(1/λ)(i), and consider the i.i.d. Poisson processes Pλ
t (i) = N(Tq+t) log(1/λ)(i)−

NTq log(1/λ)(i) with rate log(1/λ). Then for t ∈ [Tq, Tq+1), ηλ
t log(1/λ)(i) = min(ζ0(i) +

Pλ
t−Tq

(i), 1).

Point (a). Let 0 < µ ≤ 1. Let c ∈ Cq. Observe that (Hq)-(i) says exactly that with
h = 1 − ZTq(c) ∈ [0, 1], log(1 + #{k ∈ cλ,µ, ζλ

0 (k) = 0})/ log(1 + #(cλ,µ)) tends to h in
probability (for PM ). Applying Lemma 16-1-(a) (with J = c), we get that sup[Tq,Tq+1) |1 −

Z̃λ,µ
t (c)− (h− (t−Tq))+| tends to 0 in probability (for PM ). But for t ∈ [Tq, Tq+1), we have

Zt(c) = min(ZTq(c) + (t− Tq), 1) = min(1− h + (t− Tq), 1) = 1− (h− (t− Tq))+. Point (a)
follows.

Point (b). Let now x ∈ (−A, A) \ Bq. Then x ∈ c, for some c ∈ Cq. Due to Lemma
14, we know that (ζλ

0 (i))i∈cλ,µ
are exchangeable on Eλ,1

q . The previous reasonning, using

Lemma 16-1-(b) instead of Lemma 16-1-(a) shows that for all ε > 0, limλ→0 PM (Eλ,1
q ∩

{sup[Tq,Tq+1) |Z
λ
t (x) − Zt(x)| > ε}) = 0. We conclude using (Hq)-(iii) for µ = 1.
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Point (c). Let 0 < µ ≤ 1. Let x ∈ Bq, and set h = H̃Tq(x). We know by Hq-(ii) that

H̃λ,µ
Tq

(x) tends to H̃Tq(x) = h in probability (for PM ). Using now Lemma 16-2-(a), we deduce

that sup[Tq,Tq+1) |H̃
λ,µ
t (x)− (h− (t−Tq))+| tends to 0 in probability (for PM ). We conclude

observing that by construction, H̃t(x) = (h − (t − Tq))+ for t ∈ [Tq, Tq+1).

Point (d). Let x ∈ (−A, A) \ Bq and t ∈ (Tq, Tq+1) \ K be fixed.

Case Zt(x) < 1. Then Dt(x) = {x}, so that δ(Dt(x), Dλ
t (x)) = |Dλ

t (x)|. But we get

from (1)-(2) that |Dλ
t (x)| ≤ λ1−Zλ

t (x) log(1/λ). Since we know from (b) that Zλ
t (x) goes to

Zt(x) < 1 in probability (for PM ), we easily deduce that |Dλ
t (x)| goes to 0 in probability

(for PM ).

Case Zt(x) = 1. Then Dt(x) = [a, b] for some a, b ∈ Bq ∪ {−A, A}. We assume that
−A < a < b < A for simplicity, the other cases being treated in a similar way. We thus have
Zt(c) = 1 for all c ∈ Cq with c ⊂ (a, b), H̃t(y) = 0 for all y ∈ Bq ∩ (a, b), and H̃t(a)H̃t(b) > 0.

On the one hand, we prove that for any ε > 0, limλ→0 PM (Dλ
t (x) ⊂ [a − ε, b + ε]) = 1. Let

us consider e.g. the left boundary a, and prove that limλ→0 PM (Dλ
t (x) ⊂ [a − ε, A]) = 1.

We have H̃t(a) = ha > 0. We deduce from (c) that limλ→0 PM (H̃λ,1
t (a) ≥ ha/2) = 1, which

implies that there are vacant sites in aλ,1, that is limλ→0 PM (∃ i ∈ aλ,1, ηt log(1/λ)(i) = 0) = 1.

Recalling the definition of aλ,1 (see (10)), we see that this implies that limλ→0 PM (Dλ
t (x) ⊂

[a − 1/ log(1/λ), A]) = 1, whence limλ→0 PM (Dλ
t (x) ⊂ [a − ε, A]) = 1 for any ε > 0.

On the other hand, we prove that limλ→0 PM ((a + 1/ log(1/λ), b− 1/ log(1/λ)) ⊂ Dλ
t (x)) =

1. Since t /∈ K, we deduce that there is s ∈ (Tq, t) such that Zs(c) = 1 for all c ∈

Cq with c ⊂ (a, b) and H̃s(y) = 0 for all y ∈ Bq ∩ (a, b). We deduce from (a) that for

all c ∈ Cq with c ⊂ (a, b), limλ→0 PM (Z̃λ,1
s (c) > 1 − ε) = 0, whence, by Lemma 15-(i)

limλ→0 PM (Z̃λ,1
t (c) = 1) = 1. Similarly, we deduce from (c) that for all y ∈ Bq with

y ∈ (a, b), limλ→0 PM (H̃λ,1
s (y) > ε) = 0, whence, by Lemma 15-(ii) limλ→0 PM (H̃λ,1

t (y) =
0) = 1. As a consequence, limλ→0 PM ((a + 1/ log(1/λ), b − 1/ log(1/λ)) ⊂ Dλ

t (x)) = 1.

This concludes the proof of Point (d).

Point (e). Point (e) follows from (d). Indeed, observe that δ(I, J) ≤ 2A for any inter-
vals I, J ⊂ (−A, A). Thus for x ∈ (−A, A) \ Bq, (d) implies that for t ∈ [Tq, Tq+1) \ K,
limλ→0 EM (δ(Dλ

t (x), Dt(x))) = 0. Since now K is finite, we deduce from the Lebesgue dom-

inated convergence Theorem that limλ→0

∫ Tq+1

Tq
EM (δ(Dλ

t (x), Dt(x)))dt = 0, from which (e)

follows.

Point (f). We show here that (Hq+1) holds. We set z := ZTq+1−(Xq+1), and treat sepa-
rately the cases z ∈ (0, 1) and z = 1. We a.s. never have z = 0, because ZTq+1−(Xq+1) =
min(ZTq (Xq+1) + (Tq+1 − Tq), 1), with ZTq(Xq+1) ≥ 0 and Tq+1 > Tq.

Case z ∈ (0, 1). We fix µ ∈ (0, 1]. In that case DTq+1−(Xq+1) = {Xq+1}, and for all c ∈ Cq+1

(thus c ⊂ c̃ for some c̃ ∈ Cq), ZTq+1
(c) = ZTq+1−(c). We have H̃Tq+1

(Xq+1) = max(z, 1− z),

and for all x ∈ Bq, H̃Tq+1
(x) = H̃Tq+1−(x). Consider the event Ωλ

α = {Zλ
Tq+1−

(Xq+1) ≤

z + α}, for some α ∈ (0, 1 − z). Point (b) implies that limλ→0 PM (Ωλ
α) = 1 (because

Xq+1 /∈ Bq).
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• On Ωλ
α, we have #(Cλ

Tq+1 log(1/λ)−(Xq+1)) ≤ (1/λ)z+α (see (2)). Since z + α < 1,

we deduce that on Ωλ
α, #(Cλ

Tq+1 log(1/λ)−(Xq+1)) < µ/(2λ log2(1/λ)), (for all µ,

provided λ > 0 is small enough). Thus on Ωλ
α, for all c ∈ Cq+1, there is a vacant site

(strictly) between cλ,µ and Cλ
Tq+1 log(1/λ)−(Xq+1). Hence Eλ,µ

q ∩ Ωλ
α ⊂ Eλ,µ

q+1. Using

Hq-(iii), we deduce that limλ→0 PM (Eλ,µ
q+1) = 1.

• This also implies that on Ωλ
α, for all c ∈ Cq+1, Z̃λ,µ

Tq+1
(c) = Z̃λ,µ

Tq+1−
(c), and thus Point

(a) and limλ→0 PM (Ωλ
α) = 1 imply that limλ→0 PM (|Z̃λ,µ

Tq+1
(c) − ZTq+1

(c)| ≥ ε) = 0

for all ε > 0.

• For x ∈ Bq+1 \ {Xq+1} = Bq, still on Ωλ
α, we also have H̃λ,µ

Tq+1
(x) = H̃λ,µ

Tq+1−
(x), thus

point (c) allows us to conclude that Hq+1-(ii) holds for those points x.

We now show that limλ→0 PM (|H̃λ,µ
Tq+1

(Xq+1)− H̃Tq+1
(Xq+1)| ≥ ε) = 0 for all ε > 0,

which implies that Hq+1-(ii) holds for x = Xq+1. Recall that H̃Tq+1
(Xq+1) =

max(z, 1 − z). Consider c ∈ Cq such that Xq+1 ∈ c, and call vλ,µ
t the num-

ber of vacant sites in xλ,µ at time t log(1/λ). Point (a) implies that at time
Tq+1 log(1/λ)−, there are around (1/λ)1−z vacant sites in cλ,µ. Thus by exchange-
ability of the family (ηλ

Tq+1 log(1/λ)−(i))i∈cλ,µ
, (on the event Eλ,µ

q , see Lemma 14),

since xλ,µ ⊂ cλ,µ, and since #(xλ,µ)/#(cλ,µ) ≃ 1/ log(1/λ), we deduce that vλ,µ
Tq+1−

≃

(1/λ)1−z/ log(1/λ) ≃ (1/λ)1−z on Eλ,µ
q . On the other hand, recalling (2), we

have #(Cλ
Tq+1 log(1/λ)−(Xq+1)) ≃ (1/λ)z. At time Tq+1 log(1/λ), this component

is destroyed. Thus, still on Eλ,µ
q , vλ,µ

Tq+1
= vλ,µ

Tq+1−
+ #(Cλ

Tq+1 log(1/λ)(Xq+1)) ≃

(1/λ)1−z + (1/λ)z ≃ (1/λ)max(z,1−z). We conclude that H̃λ,µ
Tq+1

(Xq+1) = log(1 +

vλ,µ
Tq+1

)/ log(#((Xq+1)λ,µ)) ≃ max(z, 1 − z) = H̃Tq+1
(Xq+1). All this can be done

rigorously without difficulty, and we deduce that for ε > 0 and all µ ∈ (0, 1],

limλ→0 PM (|H̃λ,µ
Tq+1

(Xq+1) − H̃Tq+1
(Xq+1)| ≥ ε) = 0.

Case z = 1. Let a, b ∈ Bq ∪ {−A, A} such that DTq+1−(Xq+1) = [a, b]. We assume that

a, b ∈ Bq, the other cases being treated in a similar way. We thus have ha := H̃Tq+1−(a) > 0,

hb := H̃Tq+1−(b) > 0. We also have H̃Tq+1
(x) = H̃Tq+1−(x) for all x ∈ Bq\[a, b], H̃Tq+1

(x) = 1
for all x ∈ Bq ∩ (a, b), ZTq+1

(c) = ZTq+1−(c) for all c ∈ Cq+1 with c ∩ (a, b) = ∅, and
ZTq+1

(c) = 0 for all c ∈ Cq+1 with c ⊂ (a, b).

Let µ ∈ (0, 1]. Consider here Ω̃λ,µ the event that for all c ∈ Cq such that c ⊂ (a, b), we have

Z̃λ,µ
Tq+1−

(c) = 1, that H̃λ,µ
Tq+1−

(a) > 0, that H̃λ,µ
Tq+1−

(b) > 0, and that for all x ∈ Bq ∩ (a, b),

H̃λ,µ
Tq+1−

(x) = 0. Then (a), (c) and Lemma 15 imply that limλ→0 PM (Ω̃λ,µ) = 1 for all

µ ∈ (0, 1].

• We easily check that Eλ,µ
q ∩ Ω̃λ,µ ⊂ Eλ,µ

q+1 (because for c ∈ Cq+1 with c ⊂ [a, b], we

have cλ,µ ⊂ Cλ
Tq+1 log(1/λ)−(Xq+1), while for c ∈ Cq+1 with c ∩ [a, b] = ∅, the vacant

sites in aλ,µ and bλ,µ separate cλ,µ from Cλ
Tq+1 log(1/λ)−(Xq+1)). As a consequence,

Hq+1-(iii) holds for all µ ∈ (0, 1].
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• On Ω̃λ,µ, we have Z̃λ,µ
Tq+1

(c) = 0 = ZTq+1
(c) for all c ∈ Cq+1 with c ⊂ [a, b], and

Z̃λ,µ
Tq+1

(c) = Z̃λ,µ
Tq+1−

(c) for c ∈ Cq+1 with c ∩ (a, b) = ∅, from which Hq+1-(i) easily

follows (using (a)).

• We also have, still on Ω̃λ,µ, H̃λ,µ
Tq+1

(x) = 1 = H̃Tq+1
(x) for all x ∈ Bq+1 with x ∈

(a, b), and Hq+1-(ii) follows for those x. For x ∈ Bq+1 with x /∈ [a, b], we have

H̃λ,µ
Tq+1

(x) = H̃λ,µ
Tq+1−

(x), whence Hq+1-(ii) by point (c).

Finally, we have to check that Hq+1-(ii) holds for x = a and x = b. Consider e.g.
the case of a. We are here in the situation where ZTq+1

(a+) = 0, so that of course,

H̃Tq+1
(a) = 1. Let c be the cell containing a+. We know that Z̃

λ,µ/2
Tq+1−

(c) = 1 which,

on Ω̃λ,µ/2, implies that all sites between a + µ
2 log(1/λ) and a + µ

log(1/λ) , i.e. on an

interval of length µ
2 log(1/λ) are empty at time Tq+1, showing that a fixed proportion

of aλ,µ is empty. Recalling that limλ→0 PM (Ω̃λ,µ/2) = 1, it readily follows that,

for all ε > 0, limλ→0 PM (H̃λ,µ
Tq+1

(a) > 1 − ε) = 1. Recalling that H̃λ,µ
Tq+1

(a) ≤ 1 we

conclude that Hq+1-(ii) holds for x = a.

Conclusion. Using points (b) and (e) above (with q = 0, ..., n), plus very similar arguments
on the time interval (Tn, T ] (during which there are no fires), we deduce that for all x0 ∈
(−A, A) \ Bn, all ε > 0,

lim
λ→0

PM

(

sup
[0,T ]

|Zλ
t (x0) − Zt(x0)| +

∫ T

0

δ(Dλ
t (x0), Dt(x0))dt ≥ ε

)

= 0.

But of course, for x0 ∈ (−A, A), we have P(x0 ∈ Bn) = 0, so that

lim
λ→0

P

(

sup
[0,T ]

|Zλ
t (x0) − Zt(x0)| +

∫ T

0

δ(Dλ
t (x0), Dt(x0))dt ≥ ε

)

= 0.

It remains to prove that for t ∈ [0, T ] and x0 ∈ (−A, A), limλ→0 P(δ(Dλ
t (x0), Dt(x0))) = 0.

Case t 6= 1. We deduce from point (d) above that if x0 /∈ Bn and t /∈ K, then we have
limλ→0 PM (δ(Dλ

t (x0), Dt(x0))) = 0. Since P(x0 ∈ Bn) = 0 and since P(t ∈ K) = 0 (because
t 6= 1, recall the definition of K), we easily conclude.

Case t = 1. Then t ∈ K, but the result still holds. Observe that Z1(x0) = 1 by construction.
Consider q ∈ {0, ..., n} such that Tq < 1 < Tq+1 (with the convention T0 = 0, Tn+1 = T ),
and consider a, b ∈ Bq ∪{−A, A} such that D1(x0) = [a, b]. Then using the same arguments
as in the proof of (d) (see Step 1), we easily check that limλ→0 PM (Dλ

1 (x0) ⊂ [a−ε, b+ε]) = 1
for all ε > 0 (the set K was not considered there). We also check as in the proof of (d)

(see Step 2) that for all y ∈ Bq with y ∈ (a, b), limλ→0 PM (Hλ,1
1 (y) = 0) = 1 (the set K

was under consideration there, but the time 1 was not usefull, since 1 is a.s. not a time
where some H(x) reaches 0 for the first time). Finally, we just have to prove that for all

c ∈ Cq with c ⊂ (a, b), limλ→0 PM (Z̃λ,1
1 (c) = 1) = 1. Let thus c ∈ Cq with c ⊂ (a, b),

and recall that limλ→0 PM (Eλ,1
q ) = 1. But on Eλ,1

q , there are no death event in cλ during
the time interval [0, log(1/λ)], so that each site of cλ,1 is occupied at time log(1/λ) with

probability 1 − λ, whence all the sites of cλ,1 are occupied with probability (1 − λ)#(cλ,1).

Since #(cλ,1) ≤ 2A/(λ log(1/λ)), we get PM (Z̃λ,1
1 (c) = 1|Eλ,1

q ) ≥ (1−λ)2A/(λ log(1/λ)), which



FOREST FIRE PROCESSES 23

tends to 1 as λ tends to 0. Since we know that limλ→0 PM (Eλ,1
q ) = 1, we deduce that

limλ→0 PM ([a + 1/ log(1/λ), b − 1/ log(1/λ)] ⊂ Dλ
1 (x0)) = 1.

Finally, limλ→0 PM (δ(Dλ
1 (x0), D1(x0)) ≥ ε) = 0 for all ε > 0, which was our goal. �

5. Cluster-size distribution

The aim of this section is to prove Corollary 6. We will use Theorem 5, which asserts that
the λ-FFP behaves as the LFFP for λ > 0 small enough. We start with preliminary results.

Lemma 17. Consider a LFFP (Zt(x), Dt(x), Ht(x))t≥0,x∈R.
(i) For any t ∈ (1,∞), any x ∈ R, any z ∈ [0, 1), P[Zt(x) = z] = 0.
(ii) For any t ∈ [0,∞), any B > 0, any x ∈ R, P [|Dt(x)| = B] = 0.
(iii) There are some constants C > 0 and κ1 > 0 such that for all t ∈ [0,∞), all x ∈ R, all
B > 0, P[|Dt(x)| ≥ B] ≤ Ce−κ1B.
(iv) There are some constants c > 0 and κ2 > 0 such that for all t ∈ [3/2,∞), all x ∈ R, all
B > 0, P[|Dt(x)| ≥ B] ≥ ce−κ2B.
(v) There exist some constants 0 < c < C such that for all t ≥ 5/2, all 0 ≤ a < b < 1, all
x ∈ R, c(b − a) ≤ P(Zt(x) ∈ [a, b]) ≤ C(b − a).

Proof. By invariance by translation, it suffices to treat the case x = 0.

Point (i). By Definition 2, we see that for t ∈ [0, 1], we have a.s. Zt(0) = t. But for t > 1
and z ∈ [0, 1), Zt(0) = z implies that the cluster containing 0 has been killed at time t − z,
so that necessarily M({t − z} × R) > 0. This happens with probability 0, since t − z is
deterministic.

Point (ii). Recalling Definition 2, we see that for any t ∈ [0, T ], |Dt(0)| is either 0 or of the
form |Xi −Xj | (with i 6= j), where (Ti, Xi)i≥1 are the marks of the Poisson measure M . We
easily conclude as previously that for B > 0, P(|Dt(0)| = B) = 0.

Point (iii). First if t ∈ [0, 1), we have a.s. |Dt(0)| = 0, and the result is obvious. Next
consider t ≥ 1. Recalling Definition 2, we see that |Dt(0)| = |Lt(0)|+Rt(0). Clearly, |Lt(0)|
and Rt(0) have the same law. For B > 0, {Rt(0) > B} ⊂ {M([t − 1/4, t] × [0, B]) = 0}.
Indeed, on {M([t − 1/4, t] × [0, B]) > 0}, denote by (τ, X) ∈ [t − 1/4, t] × [0, B] a mark of
M .
• Either Zτ−(X) = 1, thus this mark makes start a macroscopic fire, so that Zτ (X) = 0 and
Zs(X) = s− τ < 1 for all s ∈ [τ, τ + 1). Since τ ∈ [t− 1/4, t], we clearly have t ∈ [τ, τ + 1)),
so that Zt(X) < 1. As a consequence, Rt(0) ≤ X ≤ B.
• Or Zτ−(X) ∈ (1/4, 1], so that Hτ (X) = Zτ−(X), and thus Hs(X) = Zτ−(X)− (s−τ) > 0
for all s ∈ [τ, τ + Zτ−(X)). Since τ ∈ [t − 1/4, t] and Zτ−(X) > 1/4, we have t ∈ [τ, τ +
Zτ−(X)). Thus Ht(X) > 0, whence Rt(0) ≤ X ≤ B.
• Or finally Zτ−(X) ≤ 1/4, and in such a case Zs(X) = Zτ−(X) + (s − τ) < 1 for all
s ∈ (τ, τ + 1 − Zτ−(X)) and in particular Zt(X) < 1, whence Rt(0) ≤ X ≤ B.
As a conclusion, for all t ≥ 1, P[Rt(0) > B] ≤ P[M([t−1/4, t]× [0, B]) = 0] = e−B/4, whence
P[|Dt(0)| > B] ≤ P[|Lt(0)| > B/2] + P[Rt(0) > B/2] ≤ 2e−B/8.

Point (iv). We first observe that for all (t0, x0) such that M({t0, x0}) = 1, we have max(1−
Zt(x0), Ht(x0)) > 0 for all t ∈ [t0, t0 + 1/2).
Indeed, if Zt0−(x0) = 1, then Zt0+s(x0) ≤ s < 1 for all s ∈ [0, 1). If now z = Zt0−(x0) < 1,
then Zt0+s(x0) = s + z < 1 for s ∈ [0, 1 − z) and Ht0+s(x0) = z − s > 0 for s ∈ [0, z), so
that max(1 − Zt0+s(x0), Ht0+s(x0)) > 0 for all s ∈ [0, 1/2).
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Once this is seen, fix t ≥ 3/2, Consider the event Ω̃t,B = Ω̃1
t,B ∩ Ω̃2

t ∩ Ω̃3
t,B, where

• Ω̃1
t,B = {M([t − 3/2, t]× [0, B]) = 0};

• Ω̃2
t is the event that in the box [t−3/2, t]× [−1, 0], M has exactly four marks (Si, Yi)i=1,...,4

with Y4 < Y3 < Y2 < Y1 and t− 3/2 < S1 < t− 1, S1 < S2 < S1 + 1/2, S2 < S3 < S2 + 1/2,
S3 < S4 < S3 + 1/2, and S4 + 1/2 > t.

• Ω̃3
t,B is the event that in the box [t − 3/2, t] × [B, B + 1], M has exactly four marks

(S̃i, Ỹi)i=1,...,4 with Ỹ1 < Ỹ2 < Ỹ3 < Ỹ4 and t − 3/2 < S̃1 < t − 1, S̃1 < S̃2 < S̃1 + 1/2,

S̃2 < S̃3 < S2 + 1/2, S̃3 < S̃4 < S̃3 + 1/2, and S̃4 + 1/2 > t.

We of course have p := P(Ω̃2
t ) = P(Ω̃3

t,B) > 0, and this probability does not depend on t ≥ 3/2

nor on B > 0. Furthermore, P(Ω̃1
t,B) = e−3B/2. These three events being independent, we

conclude that P(Ω̃t,B) ≥ p2e−3B/2. To conclude the proof of (iv), it thus suffices to check

that Ω̃t,B ⊂ {[0, B] ⊂ Dt(0)}. But on Ω̃t,B, using the arguments described at the beginning
of the proof of Point (iv), we observe that:
• the fire starting at (S2, Y2) can not affect [0, B], because at time S2 ∈ [S1, S1 + 1/2),
HS2

(Y1) > 0 or ZS2
(Y1) > 0, with Y2 < Y1 < 0;

• then the fire starting at (S3, Y3) can not affect [0, B], because at time S3 ∈ [S2, S2 + 1/2),
HS3

(Y2) > 0 or ZS3
(Y2) > 0, with Y3 < Y2 < 0;

• then the fire starting at (S4, Y4) can not affect [0, B], because at time S4 ∈ [S3, S3 + 1/2),
HS4

(Y3) > 0 or ZS4
(Y3) > 0, with Y4 < Y3 < 0;

• furthermore, the fires starting on the left at −1 during (S1, t] cannot affect [0, B], because
for all t ∈ (S1, t], there is always a site xt ∈ {Y1, Y2, Y3, Y4} ⊂ [−1, 0] with Ht(xt) > 0 or
Zt(xt) < 1;
• the same arguments apply on the right of B.
As a conclusion, the zone [0, B] is not affected by any fire during (S1 ∨ S̃1, t]. Since the
length of this time interval is greater than 1, we deduce that for all x ∈ [0, B], Zt(x) =

min(ZS1∨S̃1
+ t− S1 ∨ S̃1, 1) ≥ min(t− S1 ∨ S̃1, 1) = 1 and Ht(x) = max(HS1∨S̃1

− (t−S1 ∨

S̃1), 0) ≤ max(1 − (t − S1 ∨ S̃1), 0) = 0, whence [0, B] ⊂ Dt(0).

Point (v). We observe, recalling Definition 2, that for 0 ≤ a < b < 1 and t ≥ 1, we have
Zt(0) ∈ [a, b] if and only there is τ ∈ [t − b, t− a] such that Zτ (0) = 0. This happens if and

only if Xt,a,b :=
∫ t−a

t−b

∫

R
1{y∈Ds−(0)}M(ds, dy) ≥ 1. We deduce that

P (Zt(0) ∈ [a, b]) = P (Xt,a,b ≥ 1) ≤ E [Xt,a,b] =

∫ t−a

t−b

E[|Ds(0)|]ds ≤ C(b − a),

where we used point (iii) for the last inequality.
Next, we have {M([t− b, t− a]× Dt−b(0)) ≥ 1} ⊂ {Xt,a,b ≥ 1}: it suffices to note that a.s.,
{Xt,a,b = 0} ⊂ {Xt,a,b = 0, Dt−b(0) ⊂ Ds(0) for all s ∈ [t − b, t − a]} ⊂ {M([t − b, t − a] ×
Dt−b(0)) = 0}. Now since Dt−b(0) is FM

t−b-measurable, we deduce that for t ≥ 5/2

P (Zt(0) ∈ [a, b]) ≥ P [M((t − b, t − a] × Dt−b(0)) > 0]

≥ P [|Dt−b(0)| ≥ 1] (1 − e−(b−a)) ≥ c(1 − e−(b−a)),

where we used Point (iv) (here t − b ≥ 3/2) to get the last inequality. This concludes the
proof, since 1 − e−x ≥ x/2 for all x ∈ [0, 1]. �

We now may handle the
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Proof of Corollary 6. We thus consider, for each λ > 0, a λ-FFP (ηλ
t )t≥0. Let also

(Zt(x), Dt(x), Ht(x))t≥0,x∈R be a LFFP.

Point (i). Using Lemma 17-(v) we only need to prove that for all 0 ≤ a < b < 1, all t ≥ 5/2,

lim
λ→0

P

(

#(Cλ
t log(1/λ)(0)) ∈ [λ−a, λ−b]

)

= P (Zt(0) ∈ [a, b]) .

Recalling (2), we observe that

P

(

#(Cλ
t log(1/λ)(0)) ∈ [λ−a, λ−b]

)

= P
(

Zλ
t (0) ∈ [a + ε(a, λ), b + ε(b, λ)]

)

,

where ε(z, λ) = log(1 + λz)/ log(1/λ) → 0 as λ → 0 (if z ≥ 0).
We conclude using Theorem 5 (which asserts that Zλ

t (0) goes in law to Zt(0)) and Lemma
17-(i) (from which P(Zt(0) = a) = P(Zt(0) = b) = 0).

Point (ii). Using Lemma 17-(iii)-(iv) and recalling (1), it suffices to check that for all t ≥ 3/2,
all B > 0,

lim
λ→0

P
[

|Dλ
t (0)| ≥ B

]

= P [|Dt(0)| ≥ B] .

This follows from Theorem 5 and the fact that P(|Dt(0)| = B) = 0 thanks to Lemma 17-(ii).
�
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Figure 1: Shape of the cluster-size distribution
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Here λ = 0.0001, and the critical size is thus 1/(λ log(1/λ)) ≃ 1085. We have drawn the approximate
value (computed roughly just after Corollary 6) of log(P(#(Cλ(0)) = x)) as a function of log(x), for x =
1, ...,54250. We have made the curve continuous around x = 1085 (without justification). The curve is
linear for x = 1, ...,1085, and nonlinear for x ≥ 1085.
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Figure 2: Limit forest-fire process in a finite box
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The filled zones represent zones in which ZA
t

(x) = 1 and HA
t

(x) = 0, that is macroscopic clusters. The plain

vertical segments represent the sites where HA
t

(x) > 0. In the rest of the space, we always have ZA
t

(x) < 1.
Until time 1, all the particles are microscopic. The 8 first marks of the Poisson measure fall in that zone. As
a consequence, at each of these marks, the process HA starts. Their life-time is equal to the instant where
they have started (for example the segment above t1, x1 ends at time 2t1). At time 1, all the clusters where
there has been no mark become macroscopic and merge together. But this is limited by vertical segments.
Here we have at time 1 the clusters [−A, x6], [x6, x4], [x4, x8], [x8, x5], [x5, x7] and [x7, A]. The segment
above (t4, x4) ends at time 2t4, and thus at this time the clusters [x6, x4] and [x4, x8] merge into [x6, x8].
The 9-th mark falls in the (macroscopic) zone [x6, x8], and thus destroys it immediately. This zone [x6, x8]
will become macroscopic again only at time t9 + 1. Then a process HA starts at x12 at time t12. Since
ZA

t12−
(x12) = t12 − t9 (because ZA

t9
(x12) has been set to 0), the segment above (t12, x12) will end at time

2t12 − t9. On the other hand, the segment [x8, x7] has been destroyed at time t10, and thus will remain
microscopic until t10 + 1. As a consequence, the only macroscopic clusters at time t9 + 1 are [−A,x12],
[x12, x8] and [x7, A]. Then the zone [x8, x7] becomes macroscopic (but their has been marks at x13, x14),
so that at time t10 + 1, we get the macroscopic clusters [−A, x12], [x12, x14], [x14, x13] and [x13, A]. These
clusters merge by pairs, at times 2t12 − t9, 2t13 − t10 and 2t14 − t10, so that we have an unique cluster
[−A, A] just before time t15, where a mark falls and destroys the whole cluster [−A, A].
With this realization, we have 0 ∈ (x11, x15), and thus ZA

t
(0) = t for t ∈ [0, 1], ZA

t
(0) = 1 for t ∈ [1, t10), then

ZA
t

(0) = t − t10 for t ∈ [t10, t10 + 1), then ZA
t

(0) = 1 for t ∈ [t10 + 1, t15),... We also see that DA
t

(0) = {0}

for t ∈ [0, 1), DA
t

(0) = [x8, x5] for t ∈ [1, 2t5), DA
t

(0) = [x8, x7] for t ∈ [2t5, t10), DA
t

(0) = {0} for

t ∈ [t10, t10+1), DA
t

(0) = [x12, x14] for t ∈ [t10+1, 2t12−t9), DA
t

(0) = [−A, x14] for t ∈ [2t12−t9, 2t14−t10),

... Of course, HA
t

(0) = 0 for all t ≥ 0, but for example HA
t

(x11) = 0 for t ∈ [0, t11), HA
t

(x11) = 2t11 − t10 − t

for t ∈ [t11, 2t11 − t10), and then HA
t

(x11) = 0 for t ∈ [2t11 − t10,∞).
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Figure 3: The event Ωa (proof of Theorem 3)
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In hachured zones, we cannot say the values of the LFFP, because one would need to know what happens
outside [a, a + 1].

Microscopic fires start at (T1, X1) and (T̃1, X̃1). Hence at time S1− the connected component [X1, X̃1]
is macroscopic, because S1 ≥ 1, and because during [1, S1), this component has not been subject to fires

starting outside [a, a + 1]: it is protected by X1 and X̃1 until time 2min(T1, T̃1) ≥ S1. As a consequence,

the component [X1, X̃1] is entirely killed by (S1, Y1). Then we iterate the arguments until we reach the final
time T .
With such a configuration, there are always microscopic sites in [a, a+1] during [0, T ]. Indeed, during [0, 1),

all the sites are microscopic, during [1, S1), the sites X1 and X̃1 are microscopic, during [S1, S1 + 1), all the

sites in [X1, X̃1] are microscopic, ...
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