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ABSTRACT

We present a seemingly new normal form for braids, where every braid is expressed
using a word in a regular language on some simple alphabet of elementary braids. This
normal form stems from analysing the geometric action of braid groups on curves in a
punctured disk.

Keywords: Braid groups. Normal form. Action of braid groups on free groups. Dehornoy
ordering. Symbolic dynamics

Mathematics Subject Classification 2000: 57M25, 57M27

1. Introduction

For every n ≥ 2, let Bn be the braid group with n strands. There exist several
distinguished normal forms for braids, in particular the well-known greedy normal
form(s) based on Garside’s theory, which consists in expressing every braid as a
fraction involving one positive braid (no σ−1

i ) and one negative braid. Here we
propose a new normal form relying on a different principle, and, in particular, the
positive and negative factors are not separated. This normal form relies on the
geometric idea of relaxing curves in a punctured disk but it can be presented in
purely combinatorial terms. Let us consider the elementary braids (see Figure 3) :
δi,j = σiσi+1 · · ·σj−1, for 1 ≤ i < j ≤ n, and δi,j = δ−1

j,i = σ−1
i−1σ

−1
i−2 · · ·σ

−1
j , for j <

i. For n fixed, we define the alphabet An = {δi,n, δi+1,1, i = 1, . . . , n− 1}, and the
language of finite type Ln on An where the words δi,jδk,l are allowed only if k
is equal to i or between i and j (see Figures 4 and 5). Let us call Tn the set of
braids having a representative in Ln (we shall see that such a representative is then
unique). Not all braids can be written as words in Ln, but we claim that every
braid τ in Bn can be decomposed in a product τ = τnτn−1 · · · τ2, where, for all
2 ≤ p ≤ n, τp ∈ Tp. The resulting writing of τ is a normal form. It is the unique
representative of τ in a regular language denoted L≤n.

Examples. To give a rough idea of how things work, let us have a look at some
examples. Consider for instance the braid τ = σ2

1σ
−2
2 σ2

3σ
−2
1 . As it is easy to check

1
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(see Figure 12), this braid can be written

τ = δ3,1δ2,4δ2,1δ2,4δ3,1δ3,4 ∈ L4,

showing it belongs to T4. Next, consider the braids (σ1σ
−1
2 )N when N varies.

As shown graphically on Figure 1, the normal expression of σ1σ
−1
2 = δ1,2δ3,2 is

δ3,1δ2,3.δ1,2, with δ3,1δ2,3 ∈ L3 and δ1,2 ∈ L2. Thus, for all integers N > 1,

(σ1σ
−1
2 )N = δ3,1(δ2,1δ2,3)N−1δ2,3.δ1,2.

In this case, the normal form is the concatenation of δ3,1(δ2,1δ2,3)N−1δ2,3 ∈ L3 and
δ1,2 ∈ L2.

Fig. 1. Graphical representation : (σ1σ−1
2 )3 = δ3,1(δ2,1δ2,3)2δ2,3.δ1,2.

Geometrical presentation. This normal form is inspired by a more geometrical
point of view. It is to be related to the strategy of relaxing the curve diagram de-
veloped in [4] and with the work [6] of Larue. To be more specific, let us consider
the standard action of the braid group on the fundamental group Fn = 〈u1, . . . , un〉
of the punctured disk. A braid is completely determined by the images of a set of
elementary loops. Obvious geometrical considerations show that images of elemen-
tary loops are loops with no self intersections. Basically we are going to deloop the
images of these loops according to a specific procedure. The delooping strategy we
propose is simple. Let w be a simple loop and write w = uε1

i1
· · ·uεN

iN
in reduced

form. The recursive step consists in applying either δ1,i1 if ε1 < 0 or δn,i1 if ε1 > 0.
This is natural from a geometric point of view (see for instance Figure 8). We claim
that, on the one hand, repeated use of this step eventually yields a trivial loop and
that, on the other hand, the sequence of inverses of the elementary delooping braids
is in Ln. This delooping procedure yields the normal form inductively. Indeed, con-
sider a braid τ ∈ Bn and let w = τ(un) be the image of the elementary loop un.
The procedure provides a delooping braid for w, that is a braid τ (n) such that
τ (n)(w) = un. Now, τ (n) ◦ τ is in Bn−1 because it leaves un invariant. Applying the
same procedure in Bn−1, we can find the delooping braid of τ (n) ◦ τ(un−1), and so
on and so forth. Finally, we obtain n−1 braids τ (n), . . . , τ (2) (with τ (k) ∈ Bk ⊂ Bn)
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such that τ (2) ◦ τ (3) ◦ · · · ◦ τ (n) ◦ τ = Id. The normal form of τ is obtained writing
the inverses of these delooping braids in terms of elementary braids.

Idea of the proof. The proof we propose is based on a combinatorial presentation
of this delooping procedure. To manipulate these objects in a combinatorial setting,
the key point is to understand the action of elementary braids on words which code
loops. In the computation of the image of a word, each letter is replaced with
a word (substitution) ; then, the result is put in reduced form ; at this stage,
some cancellations may occur. The technical point is hence to control where these
cancellations occur : this is the object of Lemma 2. This analysis together with a
few remarks on the coding of simple loops (Lemma 3) shows that, while delooping,
the (combinatorial) length of the loop reduces (Lemma 4). It is then easy to prove
recursively that the loop eventually becomes trivial and it is straightforward to see
that the sequence (of the inverses of) the elementary braids needed to deloop w is
in Ln (Proposition 1). The argument to prove uniqueness of the normal form of
a braid relies on another consequence of Lemma 2 : we show (Proposition 2) that
the beginning of the image of an elementary loop by a braid in normal form is
determined by the first letter of the normal form.

Connection with the Dehornoy ordering. Our normal form seems to be
adapted to tackling questions about the Dehornoy ordering of braids. It is known
that every nontrivial braid admits an expression by a σ-word in which the generator
with higher index appears only positively, or only negatively. The latter property,
called Comparison Property in [4], is the key point in the construction of the above
ordering of braids. Our normal form easily provides a variant (Theorem 2 and Corol-
lary 1) of this property and hence yields a new effective proof for the existence of
this ordering.

Algorithm. To compute the normal form of a given braid, one can compute the
images of the elementary loops and compute algorithmically the delooping braids.
But it is also possible to avoid the study of the action of the braid group on the
free group. Indeed, we propose simple rewriting rules which allow one to compute
the normal form of a braid from an expression for it in terms of the standard gen-
erators; this is based solely on the subshift point of view. We note that proving the
correctness and termination of the algorithm yields another, purely combinatorial,
proof of the existence of the normal form.

Perspectives. We conclude with some remarks about algorithmic properties of
the normal form and several projects related to our initial motivations.

The picture. Most results are presented here in combinatorial terms. Since intu-
ition is often geometric, we illustrate the statements with diagram representations.
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In an appendix we give a more detailed description of the way things can be pre-
sented in a geometric setting. We conclude with an analysis of some geometric
properties of the normal form and its relationship with an efficient coding of simple
loops which are in the orbit of elementary loops.

2. Definitions, notations and statement of the main result

2.1. Braid groups

For all n ≥ 2, let Bn be the braid group with n strands. The standard presentation
using the set G = {σ1, . . . , σn−1} of standard generators is

Bn = 〈σ1, . . . σn−1;σiσj = σjσi, |i− j| > 1;σiσi+1σi = σi+1σiσi+1〉 .

This group has a classical interpretation in terms of homotopy classes of strands

σ
1

σ
4

σ
3σ

2

σ
1
−1 σ

2
−1 σ

3
−1 σ

4
−1

Fig. 2. The generators σi for B5

between two disks. For our purposes, we will simply formally identify the generators
with pictograms following Figure 2. Concatenation is compatible with this repre-
sentation and the relations have intuitive graphical interpretation. The group has
also an interpretation in terms of homotopy classes of homeomorphisms of punc-
tured disks. In this context, the action of the group on the free group we will define
and study in Section 3 is naturally interpreted as an action on (homotopy classes
of) simple loops. The correspondence is intuitive and pictures are intended to help
intuition while most results are stated and proved in combinatorial terms. We will
make this interpretation more specific and prove more geometric properties of the
normal form in Appendix A.

Remark 1. We stress that, we will represent σiσj as σi above σj . With this con-
vention, the left action of the group on the free group we are going to define will
read graphically from bottom to top (see Figure 7).

As natural in the context of finitely presented groups, we will often identify words
in (G ∪ G−1)∗ and elements of the group. We must keep in mind that, in fact, an
element of the group is an equivalence class of such words. We define the σ-length
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of a braid to be the minimal (word) length of a word in the class. We note that for
p < n, Bp is a subgroup of Bn.

The quotient of Bn by the relations {σ2
i = 1, i = 1, . . . , n} is the symmetric

group Sn (= group of permutations of {1, . . . , n}). We will denote by sg ∈ Sn the
equivalence class of g ∈ Bn. For instance, sσi

denotes the transposition (i, i+ 1).

2.2. Elementary braids

For 1 ≤ i < j ≤ n integers, we will use the notation,

δi,j = σiσi+1 · · ·σj−1,

and, for j < i,

δi,j = δ−1
j,i = σ−1

i−1σ
−1
i−2 · · ·σ

−1
j .

The geometrical operation is to take strand i and put it (over the others) at place
j, shifting everything in between, as shown on Figure 3. From the point of view of
the left action we will define, the move is reversed. We will refer to these braids as
elementary braids and denote by En the set of elementary braids of Bn.

i

jj

i

Fig. 3. The δi,j

For W = δi,j , we write i(W ) = i, j(W ) = j and ξ(W ) for the sign of j − i. We
denote by [i, j] the set of integers between i and j. That is if i < j we denote by
[i, j] the set {i, i+ 1, . . . , j} and if i > j the set {j, . . . , i}. We put [i, j[= [i, j] \ {j}.
We call range of δi,j and denote [δi,j ] the set [i, j]. In the same spirit, the strict
range of δi,j is the interval [δi,j [= [i, j[.

We will consider words on the alphabet {δi,j , 1 ≤ i 6= j ≤ n}. For such a word
W = W1 · · ·WK , and 1 ≤ k ≤ K, we write ik(W ) = i(Wk), jk(W ) = j(Wk) and
ξk(W ) = ξ(Wk). We extend the notation for the range to words taking the range
of the last letter : [W1 · · ·WK ] = [WK ].

2.3. A language for each level

Assume n is fixed. We consider the alphabet An = {δi,n, δi+1,1, i = 1, . . . , n− 1}
⊂ (G ∪G−1)∗. We denote by Ln the language :

Ln = {W ∈ An; i(Wk+1) ∈ [i(Wk), j(Wk)[} .
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The restriction means that i(Wk+1) lies between i(Wk) and j(Wk), being different
from j(Wk). We note this by i(Wk+1) ∈ [Wk[.

S1
+ S2

+ S3
+

S4
+

S2
- S3

-
S4

- S5
-

Fig. 4. The alphabet A5

Remark 2. A word W = δi1,j1 · · · δiN ,jN
is in Ln if and only if for all 1 ≤ k ≤ N ,

jk ∈ {1, n}, ik 6= jk (so that δik,jk
∈ An) and, for all 1 ≤ k < N , 1 < ik+1 ≤ ik

if jk = 1 and ik ≤ ik+1 < n if jk = n, or equivalently, ik+1 ∈ [ik, jk[ (so that
WkWk+1 ∈ Ln).

Remark 3. Considering the subset of set of A2
n,

L = {W1W2; i(W1) ≤ i(W2) < n = j(W1) or j(W1) = 1 < i(W2) ≤ i(W1)},

we see that Ln is a language of finite type : Ln = {W ∈ An; WkWk+1 ∈ L}.

Fig. 5. The subshift for L4.
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2.4. The complete language

For every integer n we define a language L≤n as follows. A word W is in L≤n if it
is a concatenation of n− 1 words W (p) ∈ Lp, p = 2, . . . , n :

W = W (n) · · ·W (3)W (2).

Note that W (p) may be empty for some p. Note that the decomposition may not
be unique since some letters (and even words) could occur at the end of W (p) or at
the beginning of W (p−1). We say that the splitting is good if for every p with W (p)

non empty, p is in the range of W (p), or equivalently the last letter of W (p) does
not belong to Ap−1.

Remark 4. It turns out that the language L≤n is sofic. To see this properly, let
us propose the construction of a language using a bigger alphabet which is of finite
type and obviously projects on L≤n. We consider the alphabet

An =
{
(i, j, p) ∈ {1, . . . , n}3 : i ∈ {1, p}; j ∈ {1, . . . , p} \ {i}

}
.

For all a = (i, j, p) ∈ A, we set Σa = δ
(p)
i,j := δi,j ∈ Ap. A word (ik, jk, pk)1≤k≤N ∈

A∗n is in L̂≤n if and only if for all 1 ≤ k < N , either{
pk+1 = pk

ik+1 ∈ [ik, jk[,
or

{
pk+1 < pk

pk ∈ {ik; jk}
.

We say that a word W is in L≤ if there is an integer n such that W is in L≤n. For
W ∈ L≤, we denote n∗(W ) = min {m ≥ 2 : W ∈ L≤m} and |W | its word length.

2.5. Normal form

Our main result provides a normal form for all braids in Bn.

Theorem 1. Let τ ∈ Bn. There is a unique word W = W1 · · ·WK ∈ L≤n such
that

τ = W1 · · ·WK .

The proof relies on the understanding of the action of τ on Fn. It is given in
Section 4.

2.6. Notation

It will be convenient, when n is fixed, to write :

Σ+
i = δi,n, and, Σ−i = δi,1,

and, for their inverses,

Σ
+

i = δn,i, and, Σ
−
i = δ1,i.
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The alphabet becomes An = {Σ+
i ,Σ

−
i+1, i = 1, . . . , n− 1}. The letters are different

but correspond to the same braids. The set L can be written as

L = {Σ+
i Σε

j ; i ≤ j < n, ε = ±} ∪ {Σ−i Σε
j ; 1 < j ≤ i, ε = ±},

and the language Ln is still Ln = {W ∈ An; WkWk+1 ∈ L}.

To stress the use of this notation, we will use I and Ξ to denote I(Σε
i) = i and

Ξ(Σε
i) = ε ; the correspondence is, if W and Σ are the same, I(Σ) = i(W ) and

Ξ(Σ) = ξ(W ). For the strict range, we notice that [Σε
i [ is the interval [i, n[ if ε > 0

and ]1, i] if ε < 0.

Remark 5. We immediately notice that Σ+
1 and Σ−n play a particular role. They

can only appear in the beginning of a word. It could be convenient to work with
the alphabet A = {Σ+

i ,Σ
−
i , i = 2, . . . , n− 1} and allow occurrences of Σ+

1 or Σ−n
at the beginning of a word to describe the language.

3. Action of Bn on Fn

We denote Fn the free group with n generators. We consider the set of free gener-
ators S+ = {u1, u2, . . . un}. We denote S− the set of inverses S− = {u−1

1 , . . . u−1
n }

and S = S+ ∪ S−. To a word in S∗ we associate an element of Fn. Conversely,
every element of Fn has a unique expression as a word in S∗ in reduced form (i.e.
a word in S∗ with no factor uε

iu
−ε
i ). For w ∈ Fn, we denote |w| the word length of

its representative in reduced form. If w = uε1
i1
· · ·uε|w|

i|w|
is in reduced form, we write,

for all 1 ≤ k ≤ |w|, ik(w) = ik and εk(w) = εk.

An action of Bn on the free group Fn can be expressed as follows. We define a
morphism π : Bn → Aut Fn by the images of the generators. For every i, π(σi) acts
as, 

π(σi)(ui) = uiui+1u
−1
i ,

π(σi)(ui+1) = ui,

π(σi)(uj) = uj ,∀i 6= j, i+ 1 6= j.

For τ ∈ Bn, we will write, τ(uk) instead of π(τ)(uk) if it is not ambiguous. In
fact, we will even often write W (u) with W ∈ A∗n to denote π(τ(u)) where τ is the
braid associated to the word W . For a geometric interpretation of this action, we
will think of Fn as the fundamental group of the punctured disk (see Figure 6).
For a formal explanation, we refer to Appendix A. For now, we stress that the
graphical interpretation of a word must be written from top to bottom as can be
seen in Figure 7, so the (left) action on loops reads from bottom to top. Notice that
given the pictogram of an elementary braid, we also can read the (left) action of its
inverse, from top to bottom (Figure 8). Finally, notice that on most pictures, loops
are replaced by separatrices : we used the obvious correspondence formally stated
in Lemma 11 to simplify the pictures.
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Fig. 6. Action of σ1 on elementary loops.

Fig. 7. Graphical representation of W = W1W2W3 and left action on the elementary loop u5 :
W1W2W3(u5) = u−1

4 u2u4u5u−1
4 u−1

2 u4

We let s ∈ Sn act naturally on Fn by s(ui) = us(i).

3.1. The Artin representation

We can associate to a braid τ ∈ Bn the n-tuple of images of the generators of the
free group :

ψ : τ −→ (τ(u1), . . . , τ(un)).

The point is that this object completely determines τ . Indeed, if two braids are
different, then at least one of the generators have different image. This presentation
of braid group is called Artin presentation of Bn. The next lemma states that the
representation π is faithful.

Lemma 1. The map ψ is an injection
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We do not give a proof of this standard result. We refer to [2] or to [4], Chapter 5.
Notice that it is immediate in view of the definition of the braid group as homotopy
classes of homeomorphisms of the punctured disk, since images of a base of the
fundamental group characterizes image of all loops and hence the braid.

3.2. Action of elementary braids

We investigate the action of the elementary braids on the free group. It is straight-
forward to show that for i < j,

δi,j(uk) =


uk if k < i

uiuk+1u
−1
i if i ≤ k < j

ui if k = j

uk if k > j,

and for j < i,

δi,j(uk) =


uk if k < j

ui if k = j

u−1
i uk−1ui if j < k ≤ i
uk if k > i.

Remark 6. We summarize, putting ε = sign(j − i),

δi,j(uk) =


uk if k 6∈ [i, j]
uε

iuk+εu
−ε
i if k ∈ [i, j[

ui if k = j.

Figure 8 shows a the geometrical interpretation of the action of such a braid (from
top to bottom).

Fig. 8. Action of Σ
+
3 . This is a representation of Σ+

3 so the action reads from top to bottom.
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Now we investigate the action of the {δi,j} on Fn. The point is to understand
where the cancellations occur. Fix w ∈ Fn and write w = uε1

i1
· · ·uεN

iN
in reduced

form. We are going to give an expression of δi,j(w) in reduced form. We work with
i < j but the same result holds if i > j.

For this purpose, we decompose w in blocks according to ik 6∈ [i, j], ik = j and
ik ∈ [i, j[.

w = uη1
j V1u

η2
j V2u

η3
j V3 · · ·uηR−1

j VR−1u
ηR

j , (3.1)

where either Vp ∈ 〈u1, . . . , ui−1, uj+1, . . . , un〉 (block of type 0), or Vp ∈
〈ui, . . . , uj−1〉 (block of type 1) and ηp ∈ Z. Notice that some ηp may be equal
to 0. We denote T (p) the type of the block Vp. We set T (0) = T (R) = 0. If the
Vp are written in reduced form, then it is easy to recover the reduced form of w,
erasing the uηp

j whenever ηp = 0.

Lemma 2.

δi,j(w) = uζ1
i Ṽ1u

ζ2
i Ṽ2 · · · Ṽp−1u

ζp

i Ṽp · · · ṼR−1u
ζR

i

where Ṽ = sδi,j
(V ), and, for all 1 ≤ p ≤ R,

ζp = ηp + T (p+ 1)− T (p).

Proof. We put Σ = δi,j , assuming i < j. We compute the image of each type of
blocks.

• Let V ∈ 〈ui, . . . , uj−1〉, say V = uεk
ik
· · ·uεl

il
in reduced form, be a block of

type 1. The obvious cancellations of u−1
i ui yield

Σ(V ) = Σ(uεk
ik
. · · · .uεl

il
)

=
(
uiu

εk
ik+1u

−1
i

) (
uiu

εk+1
ik+1+1u

−1
i

)
· · ·

(
uiu

εl
il+1u

−1
i

)
= uiu

εk
ik+1u

εk+1
ik+1+1 · · ·u

εl
il+1u

−1
i

= uiṼ u
−1
i ,

where Ṽ = uεk
ik+1u

εk+1
ik+1+1 · · ·u

εl
il+1, i.e., Ṽ = sΣ(V ). Notice that |Ṽ | = |V |.

We stress the fact that no other cancellation can occur since V was written
in reduced form.
• If V ∈ 〈u1, . . . , ui−1, uj+1, . . . , un〉 is of type 0, then Σ(V ) = V , while
Ṽ = sΣ(V ) = V .
• We recall that Σ(uη

j ) = uη
i .



March 19, 2007 0:10 WSPC/INSTRUCTION FILE
TressesFinale3Mars2007

12 Xavier Bressaud

Now we check what happens at the boundaries of blocks. Say U and U ′ are of type
0 and V and V ′ of type 1.

Σ(Uuη
jU

′) = Uuη
iU

′

Σ(V uη
jV ) = (uiṼ u

−1
i )uη

i (uiṼ
′u−1

i ) = uiṼ u
η
i Ṽ

′u−1
i

Σ(Uuη
jV

′) = Uuη
i (uiṼ

′u−1
i ) = Uuη+1

i Ṽ ′u−1
i

Σ(V ujU
′) = (uiṼ u

−1
i )uη

iU
′ = uiṼ u

η−1
i U ′.

There are no further cancellations since U,U ′ ∈ 〈u1, . . . , ui−1, uj+1, . . . , un〉 while
Ṽ , Ṽ ′ ∈ 〈ui+1, . . . , uj〉. The proof is the same if j < i. �

3.3. Action of Bn on elementary loops

We investigate the action of a braid τ on one of the generators of the free group u.
τ(u) is an element of the free group, with a particular form. We consider the map
from Bn to Fn

ψu : τ 7→ τ(u).

We consider the set On = ψu(Bn), i.e. the orbit of the generator u ∈ S+. We notice
that it does not depend on the choice of the generator. In other words, this is the
set On ⊂ Fn that can be achieved as images of a generator :

On = {w ∈ Fn : ∃τ ∈ Bn, π(τ)(u1) = w}.

Geometrically, elements of On are (classes of) simple loops starting at a base
point on the boundary with sτ (u) inside. We will give a more specific geometrical
description in Appendix A. For now, we summarize some elementary properties of
these loops in combinatorial terms.

Lemma 3. For all w ∈ On, w = uε1
i1
· · ·uεN

iN
in reduced form

(i) there is h ∈ Fn and u ∈ S+ such that w = huh−1, ; if w = τ(uk) then,
u = sτ (uk).

(ii) there are no squares, i.e., ik+1 6= ik, 1 ≤ k < N .
(iii) ε1(i2 − i1) > 0.
(iv) For all 1 ≤ k < N , (ik − i1)(ik+1 − i1) ≥ 0.

The first statement formalizes the fact we can represent a loop drawing only a
simple curve from the boundary to the terminal point (staying inside the loop).
The last statement means that if (ik − i1) and (ik+1 − i1) are of different sign, one
of ik or ik+1 must be equal to i1. In this case, εk is equal to the sign of ik+1 − ik.

Proof. It is certainly possible but rather tedious (particularly (iv)) to give a com-
binatorial proof of these statements. We will rely on the geometrical point of view
(in which the statements are obvious), see Lemma 11 and 12.
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3.4. Delooping one loop

Fix w ∈ On and write w = uε1
i1
· · ·uεN

iN
in reduced form. We are going to prove that

Σ
ε1
i1 (w) is shorter than w itself.

Let us decompose w in blocks following decomposition (3.1), with j ← i1 and
i← 1 (if ε1 < 0) or i← n otherwise,

w = uη1
i1
V1u

η2
i1
V2u

η3
i1
V3 · · ·uηR−1

i1
VR−1u

ηR

i1
, (3.2)

where either Vp ∈ 〈u1, . . . , ui1−1〉 (block of type L), or Vp ∈ 〈ui1+1, . . . , un〉 (block
of type R). Note that the decomposition itself is independent of the sign of ε1. But,
if ε1 > 0, blocks of type L correspond to blocks of type 0, while if ε1 < 0, they
correspond to blocks of type 1.

We use Lemma 3 to specify the structure of this decomposition. There is an obvious
symmetry implying ηR = −η1 and more generally ηR+1−k = −ηk for all k ≤ R/2
(Statement (i)). The first block, V1 is always of type 1 (Statement (iii)). A priori,
some ηk could be equal to zero, but Statement (iv) shows that there is always a
u±i1 between two blocks of different types. Together with statement (ii) this yields
ηk ∈ {−1, 1}. A more subtle use of Statement (iv) shows that if a block of type 0
is followed by a block of type 1 then necessarily, ηp = η1 (while between two blocks
of type 1, sign can be ±).

Remark 7. It could be that there are no blocks of type 0 (i1 = 1 or i1 = n). There
are never successive blocks of type 0.

It follows from this analysis and from Lemma 2, that,

Σ
ε1
i1 (w) = Ṽ1u

ζ2
∗ Ṽ2 · · · Ṽp−1u

ζp
∗ Ṽp · · · ṼR−1, (3.3)

where ∗ = 1 if ε1 < 0 and ∗ = n if ε1 > 0, Ṽ = sΣε1
i1

(V ), and, for all 1 < p < R,

ζp =
{
ηp if Vp−1 and Vp are of the same type
0 otherwise.

That is to say, if ε1 < 0,

Σ
−
i1(w) = Ṽ1u

ζ2
1 Ṽ2 · · · Ṽp−1u

ζp

1 Ṽp · · · ṼR−1,

and if ε1 > 0,

Σ
+

i1(w) = Ṽ1u
ζ2
n Ṽ2 · · · Ṽp−1u

ζp
n Ṽp · · · ṼR−1.

Lemma 4. If w ∈ On, with |w| > 1 then
∣∣∣Σε1

i1 (w)
∣∣∣ < |w|.
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Proof. Using the notations above, we compute

|w| =
R∑

i=1

|Vi|+ |ηi|.

It is straightforward to compute the length of the image, since |Ṽ | = |V | :

|Σε1
i1w| =

R∑
i=1

|Vi|+ |ζi|.

It is enough to notice that since |w| > 1 there is at least one block (which must be
of type 1). So that there are at least two cancellations. Indeed, ζ0 = ζR = 0 while,
for all i, |ζi| ≤ |ηi|. �

Remark 8. A slightly more precise analysis shows that the difference
∑R

i=1(|ζi| −
|ηi|) is equal to the number of changes of block types plus 2. Indeed, ζp < ηp if
and only if Vp−1 and Vp are of different types. See Figure 16 for a geometrical
interpretation.

Lemma 5.

i1(Σ
ε1(w)

i1(w)w) = i2(w) + ε1(w).

Proof. It follows directly from (3.3). i2(w) + ε1(w) is a condensed way to say that
the first letter of the image is the first letter of the block Ṽ1 which is of type 1. The
block is permuted, and the permutation depends on the sign of ε1. �

We are now in position to prove,

Proposition 1. For every w ∈ On, there is W ∈ Ln such that |W−1(w)| = 1.

We will refer to W−1 as the delooping braid of the loop w. See Figure 9 for
an example. Notice that we obtain a (very) rough bound on the length of W :
|W | ≤ |w|.

Proof. Fix w ∈ On. If |w| = 1, the result is obvious. Assume |w| > 1 and write
w = uε1

i1
· · ·uεN

iN
in reduced form. We define

L(w) = Σ
ε1
i1 (w).

It follows from Lemma 4 that

|L(w)| < |w|.

Henceforth, the length of the loops Lm(w) is strictly decreasing until m = K, the
first index for which |LK(w)| = 1. We consider the finite sequence (Ik,Ξk)1≤k≤K

defined by, for, 0 ≤ m < K,

Im+1 = i1(Lm(w)), and, Ξm+1 = ε1(Lm(w)),
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Fig. 9. Delooping using the Σ
ε
i of w = huh−1 with h = u3u−1

5 u−1
4 u−1

3 u1u3u4u5 and u = u3.

Notice that |L4(w)| = 1. The braid Σ
ε
i act from top to bottom. Hence this is not a conformal

graphical representation of the delooping braid, but of its inverse. The reason is that we will finally
be interested in the inverse.

and the finite word :

W = (ΣΞk

Ik
)1≤k≤K .

It follows from the definition of L that W−1(w) = LK(w). For every m < K, we
consider the loop Lm(w) ; we set i1 = i1(Lm(w)) and i2 = i2(Lm(w)). Assume
ε1(Lm(w)) = −1. By Statement (iii) of Lemma 3, i2 < i1. It follows from Lemma 5
that Σ

−
i1(L

m+1(w)) starts with ui2+1. Hence Im+1 = i2 + 1, so that

2 ≤ Im+1 ≤ Im.

Symmetrically when ε1(Lm(w)) = 1, i2 > i1 and Im+1 = i2 − 1 yield Im ≤ Im+1 <

n− 1. Hence, W ∈ Ln. �
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3.5. The beginning of the image

Consider w ∈ On. We are going to compute Σε
j(w), for all 1 ≤ j ≤ n and all

ε = ±. This will allow us to show that if w = Y (un) and AY is in normal form
then the first letter of A(w) is determined by A, which is the key point to prove
the uniqueness part of Theorem 1. More specifically, we prove :

Proposition 2. Let W ∈ L≤. Denote n∗ = n∗(W ) the minimal index m such that
W ∈ L≤m. Then the first letter of W (un∗) is uΞ1(W )

I1(W ) . That is i1(W (un∗)) = I1(W ),
ε1(W (un∗)) = Ξ1(W ).

Proof. We proceed by recurrence on the length of W . Set i = I1(W ), ε = Ξ1(W )
and n∗ = n∗(W ). For convenience, we omit the ∗, i.e. we assume n = n∗. If |W | = 1
and ε = 1, then W = δi,n and W (un) = ui. If |W | = 1 and ε = −1 then W = δn,1,
(meaning that i = n) and W (un) = u−1

n un−1un.

Assume the result holds for all Y ∈ L≤n, of length |Y | = N . Let W ∈ L≤n

with |W | = N + 1. Again, set i = I1(W ) and ε = Ξ1(W ). Write W = AY with
A = Σε

i ∈ An and Y ∈ L≤n of length |Y | = N . We must distinguish according to
whether n∗(Y ) < n or n∗(Y ) = n.

In the first case, Y (un) = un so W (un) = AY (un) = A(un) and the situation is
the same as if W = A was of length 1 (with respect to un). Hence the conclusion
holds.

In the second case, we consider the image w of un by Y , w = Y (un). The re-
currence assumption guarantees that it starts with u

Ξ1(Y )
I1(Y ) = u

Ξ2(W )
I2(W ) . Firstly, we

assume ε = 1. To compute A(w) using Lemma 2 we divide w in blocks following
decomposition (3.1) (with i← n and j ← i) :

w = uη1
n V1u

η2
n V2 · · ·Vp−1u

ηp
n Vp · · ·VR−1u

ηR
n , (3.4)

where either Vp ∈ 〈u1, . . . , ui−1〉 (block of type 0), either Vp ∈ 〈ui, . . . , un−1〉 (block
of type 1) and ηp ∈ {−1, 0,+1}. We stress that, here, we have introduced symbols
that may correspond to empty words to separate blocks of type 0 and 1. We put
T (0) = T (R) = 0, and for 1 ≤ p < R, T (p) = 1 if Vp is of type 1. We can apply
Lemma 2 to see that

W (un) = Σε
i(w) = uζ1

i Ṽ1u
ζ2
i Ṽ2 · · · Ṽp−1u

ζp

i Ṽp · · · ṼR−1u
ζR

i

where Ṽ = sΣε
i
(V ), and ζp = ηp + T (p + 1) − T (p). So, it remains to show that

ζ1 = 1.
Since AY ∈ Ln, I2(W ) = I1(Y ) = i1(w) is in the strict range of A. Since ε = 1,

it implies i ≤ I2(W ) < n. Hence the first letter of w is in 〈ui, . . . , un−1〉, showing
that η1 = 0 but that the first block is of type 1. We conclude that ζ1 = 1 so we are
done. The case ε = −1 implying 1 < I2(W ) ≤ i is symmetric. �
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Fig. 10. Graphical interpretation of Proposition 2

The proof has a very simple geometric interpretation. The argument is that Σε
i(w)

moves an extremal point (a1 or an) to position ai, crossing the beginning of the
loop w (see Figure 10).

4. Normal form

4.1. Proof of Theorem 1

Proof. Let τ ∈ Bn. To prove existence, we build a word W ∈ L≤n such that

τ = W1 · · ·WK .

The proof is by induction on the number n of strands. It is obvious in B2 because
A2 = {δ1,2, δ2,1} and τ = δK

1,2 for some K ∈ Z. Assume the statement holds
in Bn−1 and let τ ∈ Bn. Consider the loop τ(un). Following Proposition 1, we
construct a word Y ∈ Ln such that |Y −1(τ(un))| = 1. Say Y −1(τ(un)) = uk. We
notice that (since we followed the construction) k is in the strict range of Y , so that
W = Y Σ+

k ∈ Ln. But, Σ
+

k (Y −1(τ(un))) = Σ
+

k (uk) = un. Hence W = Y Σ+
k satisfies

W−1(τ(un)) = un.

It implies that W−1τ ∈ Bn−1. We use the inductive assumption to find V ∈ L≤n−1

such that W−1τ = V . Since n ∈ [W ], we conclude that, WV ∈ L≤n and

τ = WV.

To prove it is unique, we show that two different words (U and V in L≤) yield
two different braids. Without loss of generality, we can assume that the first letter
of the words are distinct (or else erase by taking the inverses). If n∗(U) 6= n∗(V )
(for instance, n∗(U) < n∗(V ) = n∗), then, U(un∗) = un∗ , while V (un∗) 6= un∗ .
If n∗(U) = n∗(V ) = n∗, then we use Proposition 2 to see that the first letter of
U(un∗) is uΞ1(U)

I1(U) while the first letter of V (un∗) is uΞ1(V )
I1(V ) , i.e. they are distinct.

Since the free group is free, we use Lemma 1 to conclude. �
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5. Connection with the Dehornoy order

We recall the definition of the Dehornoy ordering of braids [4] (here we consider
the version in which σ1 is smaller than σ2).

Definition 1. (i) A σ-word is said to be σ-positive if the generator σm with max-
imal index occurring in w occurs positively only, i.e., σm occurs but σ−1

m does not.
(ii) Assume that x, y are braids. We say that x < y holds if the quotient braid x−1y

admits at least one expression by a σ-positive word.

Then the relation < is a linear ordering on braids that is compatible with multi-
plication on the left. Our normal form seems to be adapted to tackling questions
about this ordering of braids. Indeed, we prove that one of the normal forms of τ
and τ−1, when re-written in terms of σ is positive in the sense of Dehornoy.

For every braid τ , we denote ς(τ) the σ-word obtained by rewriting all δi,j in terms
of {σε

i} in the normal form W of τ . Assume n∗(W ) = n. In ς(τ), the letter σn−1

appears only in Σ+
i (positively) and in Σ−n (negatively). Hence τ is positive if W

does not contain Σ−n , i.e. if it does not start with Σ−n .

Theorem 2. Let τ ∈ Bn. One of the two words ς(τ) or ς(τ−1) is positive.

To prove this result we need the following lemma :

Lemma 6. Assume i1(τ(un)) = n. Then i1(τ−1(un)) < n

Proof. Let τ be such that i1(τ(un)) = n. We are going to show that the first letter
of τ−1(un) can not be un. Let W = W (n) · · ·W (2) be the normal form of τ and
write W = ZY , with Z = W (n) and Y = W (n−1) · · ·W (2) ∈ Bn−1. First, we show
that the first letter of v = Z−1(un) must be u1 ; then, we check that no un can
appear in the beginning of Y −1(v) since Y is in Bn−1.

First, we show that i1(Z−1(un)) = 1. Write Z = W (n) = W1 · · ·WK . Its inverse
is the delooping braid of τ(un). The assumption implies W1 = Σ−n , and hence,
W−1

1 (un) = u1. It also implies that Wk 6= Σ+
1 for all 2 ≤ k ≤ K.

We proceed by induction on the length of W (n). For k < K, set w =
W−1

k · · ·W−1
1 (un) and assume i1(w) = 1. We apply Lemma 2 to compute W−1

k+1(w).
We distinguish according to the sign ξ(Wk+1). If positive, (recalling that then,
Wk+1 6= Σ+

1 ), then the first block is of type 0 and hence left unchanged, so that and
i1(W−1

k+1(w)) = i1(w) = 1. If negative, then the first block is of type 1 and W−1
k+1(w)

starts with u1u2 · · · . In both cases, i1(W−1
k+1(w)) = 1. We conclude by induction.

Next, set v = Z−1(un) and Y = W (1) · · ·W (n−1) ∈ Bn−1, so that τ−1(un) =
Y −1(v). Write v = V1u

η1
n V2 · · ·uηr

n Vr+1 with Vp ∈ 〈u1, . . . , un−1〉 and ηp 6= 0. Notice
that for every 1 ≤ p ≤ r + 1, Y −1(Vp) in reduced form is not empty. Hence,
Y −1(v) = Y −1(V1)uη1

n Y
−1(V2) · · ·uηr

n Y
−1(Vr+1) is in reduced form. Since V1 is not



March 19, 2007 0:10 WSPC/INSTRUCTION FILE
TressesFinale3Mars2007

A normal form for braids 19

empty, Y −1(V1) is not empty.
It remains to show that Y −1(V1) does not contain any un. We apply again

Lemma 2 with the δi,j appearing in Y −1, for which, i < n and j < n. Here, the
induction argument is the following : assume i1(w) < n. Then, we consider δi,j(w)
where i < n and j < n. If i2(w) < n, then either i1(δi,j(w)) = i1(w), or i1(δi,j(w)) =
sδi,j

(i2(w)) < n (because sδi,j
{1, . . . , n − 1} = {1, . . . , n − 1}). If i2(w) = n, then

we have T (1) = T (0) = 0 and hence, ξ1 = η1, so that i1(δi,j(w)) = i1(w). Repeated
use of this argument shows that i1(Y −1(V1)) < n and yields the result. �

Fig. 11. The geometrical argument for the proof of Lemma 6. Consider the loop τ(un) (dark) and
the segment dn on the left hand side. The loop τ(un) is mapped onto un and dn is mapped onto
a separatrix τ−1(dn) starting on the top (on the right hand side), by τ−1. The shadowed domain
delimited by these curves and the boundary of the disk is mapped to the shadowed domain on the
right hand side. Now, the point is that the separatrix τ−1(dn) after its (two) first intersections
with the loop un must reach one of the di with i < n. But τ−1(un) is on the left side of τ−1(dn)
and they intersect only at the end. So τ−1(un) must intersect some dj , with j ≤ i < n before to
reach dn. Hence i1(τ−1(un)) < n.

Proof of Theorem 2. As we already have mentioned, either ς(τ) is positive or
the normal form V of τ contains Σ−n . In the latter case, since V ∈ L̂, it means that
V1 = Σ−n . From Proposition 2, we deduce that i1(τ−1(un)) = i1(V (un)) = n. From
Lemma 6, we deduce that i1(τ(un)) < n. We conclude that ς(τ−1) is positive. �

So our approach gives a new proof of the following so-called Comparison Property
of [4], σ-negative meaning that the generator with highest index appears negatively
only.

Corollary 1. Every nontrivial braid admits an expression by a word that is σ-
positive, or σ-negative.

6. Algorithm

The normal form of a braid is obviously computable looking at the images of the
elementary loops and then applying the delooping procedure. Here we provide an
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algorithm to recover it directly (providing as well a proof of existence). It is based
on a Tetris-like computation of the normal form of σε

iW given W in normal form.
Roughly speaking, we show how σε

i crosses W :

• Firstly, we will show how to cross one letter : the transition rules (6.5)
shows how to write δi,jW1, withW1 ∈ An in the form W̃1δk,l, with W̃1 ∈ Ln

(Lemma 7).
• Then, we will show that if we end up with W1δi,jW2W3 we can use the

transition rules to write it as W1W̃2δk,lW3, with W1W̃2 in normal form
(Lemma 8) ; so that δi,j can cross a whole word W in Ln : δi,jW = W̃ δk,l,
letting W̃ ∈ Ln (Lemma 9).
• Finally, we will analyse the three possible situations between W (k) and
W (k−1) (Lemma 10). We can conclude that the procedure finishes.

Thus, given τ = σε1
i1
· · ·σεK

iK
, we can write σεK

iK
in normal form and we proceed

inductively : given the normal form of τk+1 = σ
εk+1
ik+1
· · ·σεK

iK
, we compute the normal

form of τk = σεk
ik
τk+1, and so on an so forth, until k = 1.

6.1. Transitions

A first lemma shows how to compute δi,jΣε
q. We prove that

Lemma 7. For all i, j, q and ε, we can write δi,jΣε
q = Σδk,l, where Σ ∈ Ln and

either k ∈ [Σ[ (situation 1) or [k, l] ∩ [Σ] = ∅ (situation 2). More specifically,

δi,jΣε
q =


Σε

q δi,j if [i, j] ∩ [q, ∗] = ∅
Σε

q δi−ε,j−ε if [i, j] ⊂]q, ∗]
δi,∗ if j = q

Σε
iΣ

ε
q δ∗−ε,j−ε if q ∈ [i, j[ and j ∈]q, ∗]

Σ−ε
i Σε

q δn+1−∗,j if q ∈ [i, j[ and j 6∈ [q, ∗].

(6.5)

where ∗ = 1 if ε < 0 and ∗ = n if ε > 0.

Proof. There are three main cases.

(1) If [i, j] ∩ [q, ∗] = ∅, then δi,jΣε
q = Σε

qδi,j . We are obviously in situation (2).
(2) If [i, j] ⊂]q, ∗], then δi,jΣε

q = Σε
qδi−ε,j−ε. Here, since j ∈]q, ∗], j − ε ∈ [q, ∗[ and

we are in situation (1).
(3) If q ∈ [i, j], then we distinguish

(a) if j = q, then δi,jΣε
q = δi,∗,

(b) if j ∈]q, ∗] (which implies q ∈ [i, ∗[), then δi,jΣε
q = δi,∗δ∗,jΣε

q = Σε
iΣ

ε
qδ∗−ε,j−ε

(situation (2) because ∗ − ε ∈ [q, ∗[)
(c) if j ∈ [q, ∗]c (which implies q ∈ [i, ∗]c), then δi,jΣε

q = δi,n+1−∗δn+1−∗,jΣε
q =

Σ−ε
i Σε

qδn+1−∗,j (situation (1) because [j, n+ 1− ∗] ∩ [q, ∗] = ∅). �

We notice that δk,l is empty if k = l. This may happen only in case 3.a if i = ∗, in
case 3.b if j = ∗ or in case 3.c if j = n+ 1− ∗.
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6.2. Along a word in normal form

We recall that for W ∈ Ln, [W [ denotes the interval [i, j[ corresponding to its last
letter δi,j .

Lemma 8. Consider W1W2W3 ∈ Ln and δi,j such that, either i ∈ [W1[ or [i, j] ∩
[W1] = ∅. We can write W1δi,jW2W3 under the form,

W1δi,jW2W3 = W1W̃2δk,lW3

with W1W̃2W3 ∈ Ln, 0 ≤ |W̃2| ≤ 2, and, either k ∈ [W1W̃2[, or [k, l]∩ [W1W̃2] = ∅.

Notice that the decomposition W̃2δk,l may depend on W3 (case 3.a).

Proof. First, notice that if we are in the case [i, j] ∩ [W1] = ∅, then either [i, j] ∩
[W2] = ∅ or [i, j] ⊂ [W2[ because I(W2) ∈ [W1[. Following the line of Lemma 7, let
us distinguish,

• [i, j] ∩ [W2] = ∅. Then δi,jW2 = W2δi,j and the conclusion holds.
• [i, j] ⊂ ([W2] \ I(W2)). In this case, W̃2 = W2 and k = i− Ξ(W2) ∈ [W̃2[.
• I(W2) ∈ [i, j[. Then W̃2 = δi,∗W2. Since i ∈ [W1[ and I(W2) ∈ [i, ∗[,
W1δi,∗W2W3 ∈ Ln. Moreover, either k ∈ [W2[, either [k, l] ∩ [W2] = ∅ de-
pending on the relative position of [∗, j] with respect to [W2] ([∗, j] ∩ [W2] = ∅
or [∗, j] ⊂ [W2]). Notice that if i = n then, δk,l = ∅

• I(W2) = j. In this case, δi,jW2 = δi,∗ (where ∗ depends on sign of Ξ(W2)). We
know that i ∈ [W1[, so, either I(W3) ∈ [i, ∗[, and then W1δi,∗W3 ∈ Ln, or we
are in situation where [∗, j]∩ [W3] = ∅ but, then, W1W3 ∈ Ln. In the first case,
we can take W̃2 = δi,∗, and δk,l = ∅. In the latter case, W̃2 = ∅ and δk,l = δi,∗.
�

We consider the map

Λ : En ×An → Ln × En
(δi,j ,W ) 7→ (W̃ , δk,l)

defined by

(W̃ , δk,l) =


(W, δi,j) if [i, j] ∩ [W ] = ∅
(W, δi−ε,j−ε) if [i, j] ⊂]W ]
(∅, δi,∗) if j = I(W )

(Σε
iW, δ∗−ε,j−ε) if I(W ) ∈ [i, j] and j ∈]W ]

(Σ−ε
i W, δn+1−∗,i) if I(W ) ∈ [i, j] and j 6∈ [W ].

We are going to extend Λ recursively to a map on En × Ln. Assume it is defined
for words of length K. For a word W ∈ Ln of length K, a letter A ∈ An such
that WA ∈ Ln and an elementary braid δi,j , we denote (W̃ , δr,s) = Λ(δi,j ,W ),
(Ã, δk,l) = Λ(δr,s, A) and we set,

Λ(WA, δi,j) = (W̃ Ã, δk,l).
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Lemma 9. The map Λ is well defined on Ln. For every word W ∈ Ln and every
elementary braid δi,j, the pair (W̃ , δk,l) = Λ(δi,j ,W ) satisfies W̃ ∈ Ln and δi,jW =
W̃ δk,l.

Notice that in general, |W | 6= |W̃ |.

Proof. The proof is a simple induction initiated with Lemma 7 and then using
Lemma 8. The only detail to be careful with is the definition of W̃2 in the case
I(W2) = i. Indeed we can choose W̃2 = ∅, even if W1W3 is not in Ln because in
this case, W1δi,∗W3 is in Ln. �

To conclude we must understand what happens at the transitions between words
of different levels. We need the following technical lemma :

Lemma 10. If n ∈ [W ], then three different cases may occur :

(i) if n 6∈ [k, l] then n ∈ [W̃ ],
(ii) if l = n, then k ∈ [W̃ [ and W̃ δk,l ∈ Ln,
(iii) if k = n, then W̃ = δq

n,1 for some q and δk,l = δn,1δ1,l.

Notice that it could very well be that δk,l is empty, yielding case (i). Notice that if
W is empty, we can have the three cases, replacing [W̃ ] with [1, n].

Proof. Let W ∈ Ln with n ∈ [W ]. If W is not empty then we call A the last letter
of W and write W = V A, with V ∈ Ln. Since n ∈ [W ], A is either δn,1 or δq,n, for
some q.

• If A = δn,1 thenW must be a power of δn,1. Then the analysis is straightforward
since δi,jδ

q
n,1 is periodic of period n in q. Write δi,jδ

q
n,1 = δq′

n,1δk,l, with q′ ∈
{q− 1, q, q+ 1}. If n 6∈ [k, l], then we we are in case (i). If l = n, δk,l = δk,n and
we are in case (ii) since k ∈]1, n[. If k = n, δk,l = δn,l and we are in case (iii).
• If A = δq,n for some q, then, using Lemma 8 (or Lemma 7 if |W | = 1) we write
δi,jW = δi,jV A = Ṽ δr,sA with Ṽ A ∈ Ln (and either r ∈ [Ṽ [ or [r, s]∩ [Ṽ ] = ∅).

– If δr,s is empty then we are obviously in case (i).
– If s = q, we are in case 3.a. : δr,sA = δk,l = δr,n. Since Ṽ A ∈ Ln, we have
q ∈ [Ṽ [ so [q, r] ∩ [Ṽ ] 6= ∅. But [r, s] ∩ [Ṽ ] 6= ∅ implies r = k ∈ [Ṽ [. If k 6= n,
then k ∈ [Ṽ [= [W̃ [ so we are in case (ii). If k = n, δk,n is empty but n ∈ [W̃ ]
and we are in case (i).

– If s 6= q, then, we write δr,sA = Ãδk,l with Ṽ Ã ∈ Ln and [Ã] = [A]. In this
case, n 6∈ [k, l] so we are in case (i). Indeed, we check, using Lemma 8 :

∗ in case 1., [r, s] ∩ [q, n] = ∅ so n 6∈ [k, l] = [r, s],
∗ in case 2., k and l are smaller than n− ε = n− 1,
∗ in case 3.b., k and l are smaller than n− ε = n− 1,
∗ In case 3.c., l = s < q < n and k = n+ 1− ∗ = 1. �
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Let W ∈ L≤n, W = W (n)W (n−1) · · ·W (2). Assume the splitting is nice, i.e. p ∈
[W (p)] for all p with W (p) 6= ∅. Let δi,j ∈ Bn. To put δi,jW in normal form, we
propose the following inductive procedure. We explain how to complete one step.
We set (W̃ (n), δk,l) = Λ(δi,j ,W (n)). Using Lemma 9, we write

δi,jW
(n)W (n−1) · · ·W (2) = W̃ (n)δk,lW

(n−1) · · ·W (2).

IfW (n) is empty then either n ∈ [i, j] and δi,jW is in normal form, either δi,j ∈ Bn−1

and we can proceed to step n− 1. Otherwise we distinguish according to the three
situations of Lemma 10.

• In case (i) we put Y (n) = W̃ (n) and we proceed with δk,l ∈ Bn−1.
• In case (ii), we put Y (n) = W̃ (n)δk,l and we proceed with ∅ (i.e. we stop).
• In case (iii), we write δk,l = δn,1δ1,l. We put Y (n) = W̃ (n)δn,1 and we proceed

with δ1,l ∈ Bn−1.

It follows from Lemma 10 that δi,jW (n) = Y (n)δ, with Y (n) ∈ Ln, n ∈ [Y (n)] and
δ ∈ Bn−1. To conclude, we stress that the case n = 2 is simpler since δi,jW (2) must
be a power of δ1,2 or δ2,1. Hence the procedure finishes.

6.3. Examples

This scheme obviously provides an algorithm to put any σ-word in normal form.
It is as well interesting to understand the action of the group on infinite words in
normal form (see further).

Normal form. Let us consider a simple example. Let τ be the braid in B4

τ = σ−1
1 σ2σ

−1
3 = δ2,1δ2,3δ4,3.

We are going to compute its normal form. Firstly, we write σ−1
3 in normal form,

σ−1
3 = δ4,3 = (δ4,1)(δ1,3).

Then, we reduce

σ2σ
−1
3 = δ2,3δ4,3 = δ2,3δ4,1δ1,3 = (δ4,1δ3,4)(δ1,3).

We obtain,

τ = δ2,1(δ4,1δ3,4)(δ1,3)

= (δ4,1δ3,2δ3,4)(δ1,3)

= (δ4,1δ3,1δ1,2δ3,4)(δ1,3)

= (δ4,1δ3,1δ3,4)δ1,2(δ1,3)

= (δ4,1δ3,1δ3,4)(δ1,3δ3,2δ1,3)

= (δ4,1δ3,1δ3,4)(δ1,3δ1,3)(δ2,1).
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So finally,

τ = (δ4,1δ3,1δ3,4) (δ1,3δ1,3) (δ2,1).

Fig. 12. Computation of the normal form of τ = σ−1
1 σ2σ−1

3 .

Fig. 13. Tetris-like presentation of Figure 12.

We represent the computation graphically on Figure 12 ; all braids are equal. We
give another representation in condensed way (Tetris-like) on Figure 13 : an arrow
from strand i to strand j stands for the elementary braid δi,j .

Along a word in normal form. On Figure 14, we show graphically an example
of computation of the normal form of δi,jW when W is given in normal form. The
example was chosen so that most of the transitions types appear. Here, δi,j = δ2,1

and

W = δ4,1δ3,1δ2,1δ2,4δ2,4δ2,1δ2,4δ3,1δ2,1 ∈ Ln.
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Fig. 14. Tetris-like computation of fW .

7. Complexity

We investigate the first properties of the normal form in terms of complexity. Let
us consider a very simple example in B4. We compare the braid (δ2,4δ3,1)n written
in normal form and the normal form of δ2,3(δ2,4δ3,1)n. Notice that

δ2,3δ2,4δ3,1 = δ2,4δ2,4δ3,2δ3,1 = δ2,4δ2,4δ3,2δ3,2δ2,3.

Hence, for every n, the word w = (δ2,4δ3,1)n is in normal form while the normal
form of σ2w is :

δ2,3(δ2,4δ3,1)n = (δ22,4δ
2
3,1)

nδ2,3,

showing that adding only one σ-generator may change drastically the length of the
normal form.

7.1. Automatic structure

We stress that the language Ln is of finite type while the language L≤n is regular
as shown by Remark 4 ; it is recognized by an automaton An. It is hence natural
to ask if (An,L≤n) is an automatic structure for Bn (in the sense of [3]). It is
not the case as shown by Lemma 2.3.9 (bounded length difference) in [3] and the
example above : the length of the normal form of σ2w is not bounded by the length
of the normal form of w plus a constant while all elements in the group have a finite
number (one) of representatives in L≤n.

7.2. Length

The normal form is obviously not geodesic. It is crucial to decide if it is possible
to bound the length of a representative in terms of its minimal σ-length. An ex-
ponential bound is obvious (it follows from the same arguments as in [6], i.e. the
arguments of Lemma 4). My guess is that there is in fact a linear bound. The ex-
ample above shows that such a bound can not be obtained by a naive recursion on
the σ-length. Roughly speaking, my argument for the linear growth relies on the
fact that the delooping strategy used to deloop one loop is not optimal but still effi-
cient : the geometric point of view seems to show it would not be possible to deloop
significantly faster using any other strategy. Notice that numerical experiments go
in the same direction.
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7.3. Algorithmic complexity

For the same kind of reasons, a naive computation only provides an exponential
bound on the time needed to compute the normal form of the braid associated to
a σ-word of length n. Indeed, each time we add a σ-generator, the length of the
normal form may double so the bound is in

∑n−1
k=1 2k ∼ 2n. A linear bound on the

length would immediately yield a quadratic bound for the speed of the algorithm.
For the algorithm in its present form, it is certainly the best one can hope. Still, I
conjecture that a statistical analysis of the algorithm would yield a linear expected
speed (for reasonably randomly chosen σ-words).

8. Other perspectives

We raise a few points in link with our initial motivations.

8.1. Poisson boundary

Let µ be a probability measure on G∪G−1 with full support. We consider a random
iid sequence (gn)n≥1 on (Ω, P ) = ((G∪G−1)N, µ⊗N). We consider the random walk
(Xn)n≥0 defined by {

X0 = e

Xn = gnXn−1, n ≥ 1

Description of the possible asymptotic behaviors of such a random walk is the study
of the so-called Poisson boundary of the group for µ. This boundary was identified
by Kaimanovich and Masur ([5]) as the space of projective measured foliations of
the punctured disk Dn endowed with a measure supported on uniquely ergodic
foliations.

A combinatorial description of the boundary is missing. We hope that this work
will give hints toward such a description. The language Ln generates a subshift
of finite type in which infinite words may be interpreted as infinite braids. There
is some hope to understand the Poisson boundary in terms of this subshift. This
strategy works for B3, but that is not a great deal since in this particular case, a
combinatorial picture can be given by other means (see for instance [7]).

8.2. Symbolic dynamics, induction and continued fractions

Consider an infinite simple curve in the punctured disk starting on the boundary.
Under reasonable conditions, this curve may define a separatrix of a minimal foli-
ation. Our delooping scheme may be applied to such a curve, since the delooping
strategy is guided by the beginning of the curve. This algorithm may be understood
as a continued fraction algorithm describing approximations of the infinite curve.

The underlying dynamic may be seen as an interval exchange. Taking a section
of the foliation and up to an orientation cover we can analyse the foliation as an
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interval exchange. The coding of the separatrix would correspond to the coding of
a particular orbit. Our scheme is indeed an induction scheme for this dynamical
system, which seems to be distinct from the so called Rauzy induction, to be able
to provide combinatorial information on the symbolic dynamics and to have nice
duality properties.

Appendix A. The picture

The braid group Bn is the mapping class group of the punctured disk Dn = D\P
with P = {a1, . . . , an} a set of n points in its interior. It naturally acts on homotopy
classes of loops, hence on the fundamental group Fn = 〈u1, . . . , un〉 of Dn. Our
normal form is deeply related to this action of the free group and most of the
results we stated in combinatorial form have a nice geometric counterpart. Indeed,
the proof of the existence of the normal form is based on an algorithm to deloop
all elements in the orbit On of simple loops under the action of Bn.

Our goal here is to give a more formal description of the correspondence between
the combinatorial and the geometrical points of view. It will allow us to give a
rigorous basis to our statements on the combinatorial properties of elements of On.
Using the same language, we will give a complete description of the words coding
loops in On, not directly useful for the proofs of existence and uniqueness of the
normal form, but which may have some interest in itself. Finally, we will show how
to relate this description to the normal form.

Orbit of On. It follows from a simple geometrical argument that representatives
of loops in On delimit a disk containing exactly one point in P called the terminal
point. Hence, the coding of a loop in On is always of the form hah−1. The letter
a corresponds to the terminal point. A loop is described by its code, (h, a), where
h ∈ Fn is written in normal form and a ∈ S. We will exhibit some basic properties
of these words, used in the proof of the existence of the normal form. But, there is
still too much information in the word h. To go further, we propose a strategy to
get rid of the redundancies.

Efficient coding. Let us show how to build “recursively” all the elements of
On. Consider a separatrix with code h and terminal point a. Choose a terminal
point x ∈ P \ {a}. We claim that there is a word u and ε = ± such that the
loop with code (haεu, x) is in On. We consider the shorter such u and we denote
Sx(h, a) = (haεu, x). Following this recursive step, we associate to every (finite)
sequence of “terminal” points (without repetition) an element of On. That is to
x1 · · ·xK we associate SxK

◦ · · · ◦ Sx2(∅, x1). This construction has a nice converse.
Given an element w of On, it is easy to recover the sequence of terminal points.
They correspond (up to exponents) to subwords of w characterized geometrically
(closest intersections) or algebraically (admissible prefixes). Finally we have a bi-
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jection between On and words in a subshift of finite type we call the efficient coding.
This coding may be seen as a generalized continued fractions algorithm.

Delooping braid. The delooping braid of a loop can be understood directly on
its efficient coding (A1, . . . , AK). Basically we show that the element Σ of {Σ±i } we
use to deloop is Σ

ε

A1
with ε = sign(A2−A1), and that it acts, up to permutation of

the names of the points, as a shift on the efficient coding ; it erases the first letter
and permutes the names of the terminal points :

Σ(A1, . . . , AK) = (sΣ(A2), . . . , sΣ(AK)).

A.1. Mapping class group

A geometric interpretation of the braid group Bn is to consider it as the group of
homeomorphisms of the punched disk with n holes up to homotopy.

Let D be a disk. Fix n points P = {a1, . . . , an} in its interior (for instance think
of them as regularly spaced on a diameter). Let Dn = D \ P be the punched disk,
H+(Dn) be the group of orientation preserving homeomorphisms of Dn fixing the
boundary ∂Dn, H+

0 (Dn) the subgroup of homeomorphisms of Dn homotopic to the
identity, and set Γn = H+(Dn)/H+

0 (Dn). It is well known that Γn and Bn are
isomorphic (see [4]).

This point of view yields a nice interpretation of the action of Bn on Fn which
indeed corresponds to the action of Γn on the fundamental group of Dn.

A.2. Loops and curves

The fundamental group of Dn is the set of oriented loops up to homotopy. This
group is the free group Fn with n generators.

For a representation, we fix a base point b0 on the boundary ∂D of D. A curve
in Dn is a continuous map γ : [0, 1]→ D with γ(0) = b0 and γ(]0, 1[) ⊂ Dn. A curve
is a loop if γ(0) = γ(1) = b0. We will say it is a separatrix if γ(0) = b0 and γ(1) ∈ P .
We say that two curves γ1 and γ2 are homotopic if there is an homeomorphism f

of Dn fixing the boundary such that γ1 = f ◦ γ2. To draw pictures, we may take
different base points on the boundary but this should not be misleading. We denote
[γ] the homotopy class of the curve γ. We do not want to enter more into technical
details. We will use standard tools in this context.

A curve or a loop is simple if it has no self intersection, i.e. it is injective. A
simple loop is the boundary of a topological disk immersed in D. It has an interior
and an exterior. Given two curves, or two loops, we may define their intersection. If
this set is finite, then we can define their number of intersections. Given two curves
γ1 and γ2, we define their intersection numberi(γ1, γ2) as the minimal number of
intersections of two curves γ′1 ∈ [γ1] and γ′2 ∈ [γ2].
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A.3. Coding

We will call d1, . . . , dn a family of (non intersecting) separatrices, say vertical seg-
ments, from bi in the boundary ∂Dn to ai (Figure 6). We assume they are oriented.
We call C their union. We notice that Dn \ C is a topological disk, i.e. it is simply
connected.

As a set of generators for the fundamental group of Dn, we can choose a family
of non intersecting simple loops around each punched points (Figure 6). To be more
specific, we will denote ui the simple loop containing ai having no intersection with
∪j 6=idj . It is uniquely defined up to homotopy.

Using this basis, we are going to code a loop by the sequence of algebraic inter-
sections of the loop with curves in C. If this number of intersections is finite, the
homotopy class of the loop will determine an element of Fn. It will always be pos-
sible to work with smooth loops whose coding correspond to the reduced writing of
the element of the free group they represent. At least it is possible to guarantee that
in the homotopy class, there is a representative with countably many intersections
with C. We say that a representative is nice if its number of intersections with C is
minimal, in which case its coding is a reduced word.

More formally, let (tk)k≥1 be the sequence of times of intersections γ(tk) ∈ C.
Call ik the index i such that γ(tk) ∈ di. The intersection is algebraic : call εk the
sequence of orientations. We can set

ϕ : γ 7→ (uεk
ik

)k≥1

The image can be interpreted as an element of the free group Fn (ϕ(γ) = [γ])
or as a word (in reduced form if γ is nice). If γ is a loop, this is a way to see the
isomorphism between the fundamental group and the free group. If γ is a separatrix,
then we need information on the terminal point : the pair (ϕ(γ), γ(1)) characterizes
the homotopy class of a separatrix.

We notice that the action of Γn on the fundamental group corresponds to the
action of the braid group on the free group. The point is that the image of a loop
γ by an homeomorphism f is the loop f ◦ γ. It is straightforward to see that the
homotopy class of f ◦γ is not changed if f is replaced by f ′ with f ′ ◦f−1 homotopic
to identity. Nor if we change γ with any γ′ = g◦γ homotopic to γ. Hence Γn acts on
homotopy classes. It is straightforward to check that this action corresponds to the
action defined in Section 3. Figure 8 shows the relationships between the algebraic
point of view and this picture.

A.4. Simple loops

There is a one-to-one correspondence between On and homotopy classes of simple
separatrices. This is exactly the conjugacy : h.a = hah−1. This correspondence
justifies the use of the same letter to denote the terminal point a and the loop
around a itself.
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Lemma 11. Let w ∈ On. There is h ∈ Fn and a ∈ S+ such that w = hah−1 and
(h, a) codes a simple separatrix. Conversely, for every γ simple separatrix, there is
w ∈ On with w = hah−1, ϕ(γ) = h and γ(1) = a.

This point is illustrated by Figure 15.

Proof. There is a braid τ such that τ(u) = w. Let γ ∈ [u] and f ∈ [τ ]. Then f(γ) ∈
[w] and it is a simple loop. Moreover, the interior of γ contains only one punched
point, say ai ∈ P . So does f(γ). Consider a simple curve C in the interior (which
is a disk minus one point) delimited by f(γ), with C(0) = b0 and C(1) = f(ai). C
is a separatrix. Its homotopy class is determined by w.

To prove the converse statement, the main point is to notice that the image by a
homeomorphism f of Dn of a simple separatrix γ is a simple separatrix γ′ = f ◦ γ.
Indeed, ∂Dn is fixed and the endpoint, say ak is mapped onto some ak′ = f(ak) ∈ P ,
while f ◦ γ is injective (no multiple point can appear).

Now, let γ be a simple separatrix, γ(0) = b0, γ(1) = ai. There is a homeo-
morphism f of the disk D (not punctured) fixing the boundary and mapping an
elementary separatrix (γ′(0) = b0, γ

′(1) = a1) on γ. We compose it with another
homeomorphism g fixing γ ∪ ∂D and mapping the f(ak), k 6= i onto the ak, k 6= i.
We can consider g ◦ f as a homeomorphism of the punctured disk Dn. The class of
g ◦ f is a braid τ satisfying τ(u1) = hukh

−1 with (h, uk) = [γ]. �

Fig. 15. Loop associated to a separatrix.

We summarize a few obvious properties of simple loops, in particular in relation
with Lemma 3 and Decomposition (3.2).

Lemma 12. Let w ∈ On and write w = uε1
i1
uε2

i2
· · · in reduced form. If ε1 = 1, then

i2 > i1. Consider decomposition (3.2). There is always a u±i1 between two blocks of
different types (ηp 6= 0). Blocks are not empty (no occurrence of ui1ui1). If Vp−1 is
of type L (resp. R) and Vp of type R (resp. L) , then ηp = 1 (resp. ηp = −1). If
ε1 = 1 (resp ε1 = −1) then there are no successive blocks of type L (resp. type R).
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Proof. The basic remark is the following. Consider a nice representative γ of w.
Notice that γ(t1) ∈ di1 . Hence [γ(t1), bi1 ] ⊂ di1 . Consider the curve :

C = γ([0, t1]) ∪ [γ(t1), bi1 ].

It cuts the disk Dn into two pieces (see Figure 16), one of them containing ai1 . The
∪i<i1di is in the left component, while ∪i>i1di is in the right one. Depending on
the sign of ε1, the connected component containing ai1 is to the left or to the right.
Everything follows from basic geometrical considerations. �

Fig. 16. Visualisation of the decomposition of Lemma 12. The disk is cut into two pieces. Here,
i1 = 4 and ε1 = −1 so that a4 is in the left connected component. The code of the separatrix is :
(u4

−1u−1
3 u−1

2 u3u4u1u2u3u4u−1
7 u−1

6 u−1
5 u4

−1u−1
3 u−1

2 u−1
1 u4

−1u−1
3 , a2)

A.5. Efficient coding

We consider w ∈ On. Let h and a be such that w = hah−1 and consider the separa-
trix (h, a). Such curves can be coded keeping track only of “minimal” information.
The idea is that we are going to pick only the closest intersections with the segments
of C and show that this information is enough to recover the separatrix.

We consider a nice representative of a simple separatrix (h, a), denoted γ. To this
separatrix we are going to associate a word A = (Ai)1≤i≤K on the alphabet S+. We
call C0 = ∪n

i=1di. Set A1 = ui1 and C1 = C0 \ [γ(t1), bi1 ]. It means that we keep only
the segment [ai1 , γ(t1)], so that the next time we intersect C1 we will be “closer” to
the point ui1 . Assume Ai and Ci defined for 1 ≤ i ≤ m for some m. Consider the
first time tm+1 of intersection of γ([tm, 1]) with Cm. Let k be the unique index such
that γ(tm+1) ∈ dk and set Am+1 = uk. Put Cm+1 = Cm \ [γ(tm+1), bk]. Recursively,
we define a word A(γ). It is a finite word if the separatrix is finite. We end it with
the name of the terminal point.

The word A is in fact a function of (h, a) and hence of w = hah−1. Indeed nice
representatives of (h, a) intersect the segments dj in the same order. We denote it
χ(w). Figure 19 illustrates this construction.
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Denote Xn the set of (non empty) words on S+ = {u1, . . . , un} with no repetitions,
that is,

Xn = {x ∈ S∗+ : xi 6= xi+1,∀1 ≤ i < |x|}.

We show that the map χ is a bijection from On to Xn.

Fig. 17. How to continue a simple separatrix.

Fig. 18. Proof of Lemma 13.

Lemma 13. For all w ∈ On, χ(w) ∈ Xn. Conversely, let A ∈ Xn. There is a
unique w ∈ On such that A = χ(w).

Proof. The first statement follows from the fact that repetition of a letter would
correspond to a path from di to itself which is not possible if we choose a nice
representative γ of w.

To prove the second statement, we proceed by induction on the length of the
word A ∈ Xn. If it is of length 1 then w is an elementary loop. Assume that for
every word U = U1 · · ·UK ∈ Xn of length K, there is a unique w ∈ On such that
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U = χ(w). Write w = hUKh
−1. Choose a nice representative separatrix C of the

homotopy class of (h, UK). Call UK = ui the terminal point. For all j, denote d̂j

the connected component of dj \C containing aj (i.e. the segment between aj and
the closest intersection of C with dj , or dj itself if C ∩ dj = ∅). The interior of the
surface D̂n = Dn \ (C ∪

⋃
j 6=i d̂j) is homeomorphic to a disk (see Figure 18).

Now choose 1 ≤ k ≤ n, k 6= i and set UK+1 = uk. Since ai and d̂k are on the
boundary of the disk D̂n , all curves in this disk with γ(0) = ai and γ(1) = ak are
homotopic. Choose a nice representative C1 and denote g a reduced coding of this
curve (as seen in the disk Dn).

The segment d̂i cuts the disk D̂n into two connected components. The point ak

may be in one or the other component. We choose a small enough neighborhood
of ai. It should now be clear that we can modify locally the curve C ∪ C1 in this
neighborhood so that, for ε = ± chosen according to the component, this new curve
is a separatrix with coding (huε

ig, ak). Denote ŵ = huε
iguk(huε

ig)
−1.

It follows from the construction that χ(ŵ) = U1 · · ·UK+1. It is unique because
g is uniquely determined. �

Remark 9. We notice that the word χ(w) is a subword of w up to exponents. We
could keep exponents but it is not useful since they are determined.

A.6. Algebraic coding

We give an alternative — more algebraic — presentation of this coding. Let w ∈
On, w = uε1

i1
· · ·uεN

iN
. Let k ≤ m/2. The prefix v = uε1

i1
· · ·uεk

ik
of w is admissible if

v uik+1 v
−1 ∈ On.

Notice that ∅ is always admissible. Let K = K(w) be the number of admissible
prefixes of w and let k1, . . . , kK be the sequence of their lengths, in increasing
order. We call κ(w) the sequence of terminal points of the admissible prefixes. For
all 1 ≤ m < K, let Um = uikm+1 , and set

κ(w) := (Um)1≤m≤K .

See Figure 19 and Figure 20 for an illustration.

Lemma 14. χ(w) = κ(w).

Proof. Let w ∈ On, A = χ(w), and γ a nice representative separatrix. For every
m, we consider the curve γ([0, tm]) and we notice that γ([0, tm]) ∪ d̂Am

is a simple
curve since d̂Am

intersects γ([0, tm]) only in γ(tm). Hence it is possible to construct
a simple loop γ′ (boundary of a neighborhood of γ([0, tm])∪ d̂Am

, which is a disk) ,
containing γ([0, tm])∪d̂Am in its interior (see Figure 21, right) as close to γ([0, tm])∪
d̂Am

as needed. This simple loop contains only aAm
in its interior. So the prefix

w1 · · ·wm−1 corresponding to ϕ([γ([0, tm])] ∪ d̂Am) is admissible.
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Fig. 19. Coding of a separatrix

Fig. 20. Admissible prefixes

Fig. 21. Admissible prefix and closest intersection

Conversely, if a prefix v = v1 · · · vk is admissible, any nice representative γ of
the corresponding loop vwk+1v

−1 contains the “end point” ai (i = ik+1(w)) in its
interior and also a piece of the segment di (see Figure 21, left). Let t be the time
of the k + 1st intersection of γ with C. Necessarily, γ(t) ∈ di. Consider the curve
γ([0, t]). Since the loop is simple, this curve does not intersect the segment [ai, γ(t)]
which is in the interior of the loop. So the last intersection is the closest. The curve
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γ([0, t]) is the beginning of a nice representative separatrix of w for which γ(t) is a
closest intersection with di. �

As a consequence we deduce that the map

κ : On → Xn

w 7→ (Ui)1≤i≤K

is bijective.

A.7. Delooping and efficient coding

We investigate the relationship between efficient coding and the so-called delooping
braid of a loop. It will appear that they contain essentially the same information.
For short, we will denote A1 · · ·AK the loop χ−1(A1 · · ·AK), using capital letters
to avoid confusion.

Lemma 15. Let A ∈ Xn, |A| > 1, A = A1 · · ·AK . Set ε = sgn(A2−A1), Σ = Σ
ε

A1

and s = sΣ.

Σ(A1 · · ·AK) = s(A2) · · · s(AK).

Proof. The result follows directly from the computation of the image of a loop in
Section 3.4. Indeed, we saw that Σ acts as s on the loop, unless on the ui1 separating
blocks of type L and R (as well as on the first one) which may disappear. The first
one disappears. The other ones (may disappear) but are not involved in the efficient
coding. Indeed, those that disappear are those marking a change of type of block
corresponding to an intersection with di1 between bi1 and the first intersection, i.e.,
not corresponding to a closest intersection (see Remark 8, Figure 16 and proof of
Lemma 12). �

Let A ∈ Xn, A = A1 · · ·AK . Set ε1 = sgn(A2 − A1), Σ1 = Σ
ε1
A1

and s1 = sΣ1 .
Recursively 

εk+1 = sgn(sk(Ak+1)− sk(Ak)),
Σk+1 = Σ

εk+1

sk(Ak+1)
,

sk+1 = sΣk+1 ◦ sk.

We put sA = sK and

ΣA = ΣK−1 · · ·Σ1.

We claim that ΣA is indeed the delooping braid of the loop A1 · · ·AK . More
precisely

Lemma 16.

ΣA(A1 · · ·AK) = sA(AK).
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Proof. This is an obvious induction based on Lemma 15. �
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