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Abstract. We exhibit a new family of piecewise monotonic expanding inter-

val maps with interesting intermittent-like statistical behaviours. Among these

maps, there are uniformly expanding ones for which a Lebesgue-typical orbit
spends most of the time close to an “indifferent Cantor set” which plays the role

of the usual neutral fixed point. There are also examples with an indifferent
fixed point and an infinite absolutely continuous invariant measure. Like in the

classical case, the Dirac mass at 0 describes the statistical behaviour at usual

time scale while the infinite one tells about the statistical behaviour at larger
scales. But, here, there is another invariant measure describing the statistical

behaviour of the ergodic sums at a third natural (intermediate) time scale.

To try to understand this last phenomenon, we propose a more general construc-
tion that yields an example for which we conjecture there is an infinite number

of natural time scales.

1 Introduction

Before stating the main results we discuss the notion of physical measure for
hyperbolic dynamical systems, which is not universally defined and we roughly
describe the situation in the case of intermittent maps.

1.1 Physical measures

The notion of physical measure is not universally defined. Given a dynamical
system with a reference measure (for example the Lebesgue measure, or a Rie-
mannian volume), one wants to call physical measure an invariant measure that
has special properties with respect to the reference measure.

For expanding maps under the Lebesgue measure, one can look for invari-
ant probability measures that are absolutely continuous with respect to the
Lebesgue measure, a.c.i.p. (See Lasota, Yorke, 1973 ; Walters, 1975). In the
case of uniformly hyperbolic area preserving maps of a d dimensional Rieman-
nian manifold, absolute continuity with respect to the Riemannian volume is
a relevant property of invariant probability measures (See Bowen, 1975). But
when such a map is dissipative, the only property one can expect from a rea-
sonably “natural” measure is absolute continuity with respect to the restriction
of the volume to the unstable manifolds. Another important property of such
a measure (under reasonable assumptions) is that, almost surely with respect
to the reference measure, the orbital measures ( 1

n

∑n−1
k=0 δT kx) converge to this

measure.
For nonuniformly hyperbolic maps, the situation can be slightly more so-

phisticated. In the case of the model of intermittency introduced by Pommeau
and Manneville (1980), as well as in the piecewise affine approximation studied
by Wang (1989) (or more generally for classes of expanding maps with an indif-
ferent fixed point at 0), the situation is clear. For some values of the parameter
(mainly, the order of the tangency at the fixed point), there are two distinct
measures playing a physical role :
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• The Dirac mass δ0 at the fixed point. It is a finite measure. It is the weak
limit of the orbital measures for Lebesgue almost every starting point.

• The unique σ-finite (but infinite) invariant measure µ that is absolutely
continuous with respect to the Lebesgue measure.

Both are relevant in that they describe asymptotic behaviour of the ergodic
sums starting under the Lebesgue measure. The first one is related to the usual
time scale. That is, for Lebesgue almost all points,

1
n

n−1∑
k=0

δT kx → δ0.

The other one describes the spatial repartition of orbits in areas where they
spend only a small fraction of the time. Aaronson’s ergodic Theorem (Aaron-
son, 1997) shows that one cannot expect almost sure results in this direction.
However, a standard result (Zweimüller, 1995) is the existence of a renormaliz-
ing sequence (αn) such that, if f ∈ L1

µ — hence, f(0) = 0 — the ergodic sums
satisfy, under the Lebesgue measure,

1
αn

n−1∑
k=0

f ◦ T k (law)
→ µ(f)MLα,

where MLα denotes a random variable with the Mittag-Leffer law of index α
(see Feller, 1971). The times of passage in sets that are far from the indifferent
fixed point are of zero density. So that, to “see” these passages, one must look
at the system at another “time scale”, given here by (αn). The infinite measure
µ describes the “spatial repartition” at this scale. The random variable MLα

takes into account statistical fluctuations of this repartition. The time scale
depends on the tail of the law of the return time to a subset that is far from the
fixed point.

None of the two invariant measures separately really describe the system in
a satisfactory way. That is why we suggest to call a physical measure any
measure such that there is a scale of time for which it is relevant with respect to
the behaviour of the ergodic sums, under the reference measure. We shall say
that a measure µ is physical for some time scale (αn) as soon as the normalized
ergodic sums 1

αn

∑n−1
k=0 f ◦ T k converge in law under the reference measure to

some random variable proportional to µ(f). More formally,

Definition 1 We say that µ is a physical measure for some time scale (αn) if
there is a random variable H such that, for all smooth enough functions f ∈ L1

µ,

1
αn

n−1∑
k=0

f ◦ T k (law)
→ µ(f)H,

under the reference measure.

According to this definition, an ergodic absolutely continuous invariant proba-
bility measure is a physical measure with time scale (n) and H = δ1. Notice that
the situation could be more complicated than in the example above. A system
given together with a nonsingular reference measure — that is a differentiable
map — could have, a priori, a family of physical measures. Notice also that we
do not specify the regularity we require for the class of test functions.
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This work was motivated by the following two questions :

• When there are two physical measures, can the finite one be more compli-
cated than just a Dirac mass ? For example, can it support a nontrivial
dynamic ?

• Are there systems for which arise naturally more than two physical mea-
sures ? And, hence, more than two time scales ?

1.2 Intermittent maps

The Pomeau-Manneville model for intermittency is a class of maps defined on
[0, 1] with two C2 expanding onto branches. They are uniformly expanding out
of all neighborhoods of 0 and have a neutral (or indifferent) fixed point at 0
(T ′(0) = 1). An important parameter is the order of the tangency at 0.

What we call a Wang map is a piecewise affine version of the smooth
Pommeau-Manneville map (see Section 2.4 for a precise definition). It is con-
structed in such a way that the return map to the right-most interval is made
of affine onto branches. This fact considerably simplifies the analysis since
the return times to the right-most interval then form a sequence of identically
distributed independent (iid) random variables. Hence, statistical results for
occupation times follow directly from classical results about sums of iid random
variables. These systems are equivalent to (simple) renewal Markov chain. We
will make an intensive use of this simplification.

Roughly speaking the same analysis should hold for smooth cases. But to
obtain results, one must have distortion estimates, to control asymptotic inde-
pendence of these return times. Technically, one has to use more sophisticated
tools. Here we shall restrict our analysis to piecewise affine cases.

These examples have been intensively studied. For the values of the param-
eter where they have an acip, the density of this acip has a singularity at the
indifferent fixed point. These systems are interesting in that they are the sim-
plest examples where there is no exponential decay of correlations (even for very
regular observables). For estimations on the speed of this decay, see Liverani,
Saussol, Vaienti (1999), Hu (1999), Fisher, Lopes (1997), Young (1999), Sarig
(2002). For limit theorems, see Fisher, Lopes (1997), Zweimüller (2003). There
is a large deviations result (Pollicott, Sharp, Yuri, 1999) in a weak form. This
last result is not sharp enough for our purposes. So, we prove a large deviation
result for ergodic sums of step functions in this context (Lemma 2.2) which can
be of interest independently of further results (see Section 2.4.3).

In the case when the acim is infinite, the main results come after the work of
Thaler, from Aaronson’s infinite ergodic theory (Aaronson, 1997). The facts we
need are well exposed in Zweimüller (1995). We summarize the important facts
in Section 2.4.4. An important tool is the study of the return times to a set of
finite measure. These return times are naturally related to the occupation rates
of the set and hence to the ergodic sums.

1.3 Statement of the main results

Consider the interval I = [0, 1] endowed with the Lebesgue measure λ. We
are going to define a class of interval maps on I. The study of the asymptotic
behaviour of their ergodic sums will provide examples with properties stated in
the two following theorems.
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Theorem 1.1 Let 0 < α < 1 be a real number. There is a piecewise continuous
uniformly expanding map T , differentiable on I, except on a countable set, topo-
logically equivalent to x 7→ 3x(mod1), with a σ-finite invariant measure µ � λ
and an invariant probability measure µ1 with positive entropy hµ1(T ) > 0, such
that, for all f continuous,

1
n

n−1∑
k=0

f ◦ T k → µ1(f), λ− a.e.,

and, for all f ∈ L1
µ with µ(f) > 0, under λ,

1
nα

n−1∑
k=0

f ◦ T k (law)
→ µ(f)MLα.

It seems that the ideas that yield the construction of this example are very
close to those used in the paper by Gora and Schmitt (1989) where they con-
struct a piecewise C1 uniformly expanding map of the interval which does not
have a finite absolutely continuous invariant measure. Our construction is more
explicit. For example, we are able to describe explicitly the infinite a.c.i.m. as
well as the “attracting” singular probability measure. Moreover, the “intermit-
tent like” behaviour of the maps — while they are expanding — follows from
the construction. Our construction also yields examples satisfying the following
theorem :

Theorem 1.2 Let 0 < α < β < 1 be two real numbers with α+β < 1. There is
a piecewise continuous expanding map, differentiable on I, except at a countable
set, topologically equivalent to x 7→ 3x (mod 1) with a σ-finite measure µ � λ,
such that, for all f continuous,

1
n

n−1∑
k=0

f ◦ T k → f(0), λ− a.e.,

and, for all f ∈ L1
µ with µ(f) > 0, under λ,

1
nα

n−1∑
k=0

f ◦ T k (law)
→ µ(f)MLα.

Moreover, there is a σ-finite measure µ1 and a random variable Hα,β , such
that, for all Lipschitz functions f ∈ L1

µ1
with µ1(f) > 0, under λ,

1
nβ

n−1∑
k=0

f ◦ T k (law)
→ µ1(f)Hα,β .

To prove both theorems, we introduce a family of piecewise affine interval
maps indexed by two normalized sequences a = (an) and b = (bn) of positive
real numbers. Among this family, one can find maps satisfying Theorem 1.1
and maps satisfying Theorem 1.2. They have three full branches defined on
three intervals, I0, I1 and I2. They differ only by their slopes. The slopes are
constants on intervals of a countable partition of I. They are designed to give
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prescribed laws of return times to given subsets. The sequences a and b give
the laws of these return times. More precisely, let I = I0 ∪ I1 ∪ I2. If the return
time to I2 is long enough — think of it with a distribution whose tail is given
by the sequence (an) not integrable — then what will appear at usual scales of
times is the dynamic restricted to the subsystem I0 ∪ I1. This is more or less
what we need for Theorem 1.1. Now, if the dynamic restricted to I0∪I1 is itself
intermittent like, with a stochastically smaller return time, then we are in the
situation of Theorem 1.2.

These considerations lead to the idea of having more time scales and phys-
ical measures. Finally (see Section 4), we construct an example for which we
conjecture there is an infinite number of relevant time scales. The way we con-
struct these systems is straightforward and may seem artificial. However, we
think that the understanding of the interaction between these distinct scales
can help understand some dynamical systems for which there are no a priori
natural invariant measures.

1.4 Outline of the paper

Section 2 is devoted to the presentation of preliminary results. In Subsection 2.1,
we give a taste of the way a probabilistic point of view can be used to understand
the statistical behaviour of a dynamical system. In Subsection 2.2 we recall
standard results about asymptotic laws for sums of iid random variables with
heavy tails involving stable laws. In Subsection 2.3 we recall the duality between
occupation rates and return times needed for results on asymptotic laws for
ergodic sums. In Subsection 2.4, we define Wang maps and summarize their
properties. We state a large deviations result (proved in Appendix A) in the
case where the acim is finite and recall the behaviour of the ergodic sums when
the measure is infinite.

Section 3 is devoted to the study of our family of examples. We give an
intuitive description of the construction in Subsection 3.1. The family is defined
in Subsection 3.2. Its first ergodic properties are summarized in Subsection 3.3.
The main results follow from the study of the behaviour of the ergodic sums in
Subsection 3.4. Subsection 3.5 shows how to use the latter to prove Theorem 1.1
and Theorem 1.2.

The last section is devoted to a more general construction and is technically
independent of the first ones. It also contains further comments and questions.

1.5 Acknowledgments

I thank Roland Zweimüller and Grzegorz Swirszsz. Roland Zweimüller intro-
duced me to the world of infinite measure preserving transformations. The pa-
per by Swirszsz (1998) directly inspired this work. I also thank Anthony Quas
and Jean Bertoin for two (independent) and very useful discussions during the
revision of the paper.

2 Preliminary results

All along the paper, we will use N, N∗, Z and R to denote the set of nonnegative
integers, of positive integers, of integers and of real numbers, respectively.
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2.1 Dynamical systems and random processes.

Consider a probability space (Ω,A, P ). A real random variable X on this
probability space is nothing but a measurable map from Ω onto R. Its law or
distribution is the image measure PX on R defined by PX(A) = P (X−1(A))
for all Borel sets A in R. It is characterized by the distribution function FX

defined on R by FX(t) = P (X < t) = P ({ω ∈ Ω, X(ω) < t}). Its expectation
EP [X], or, if not ambiguous, E[X] or P (X), is the integral of this function with
respect to the probability measure, EP [X] =

∫
Ω
X(ω)dP (w) =

∫
R
xdPX(x).

Two random variables, X and Y , even defined on different spaces can have the
same law. We would then write

X
(law)

= Y.

Now, consider a sequence (Xn)n∈N of real random variables on this space.
It is said to converge in law to a random variable X (the definition of X does
not matter, only its law) if PXn

converges weakly to PX , or equivalently, if FXn

converges simply to FX . It is also equivalent to the convergence of the so-called
characteristic functions, E[eitXn ] → E[eitX ]. We write,

Xn

(law)
→ X.

Let (X ,B,m) be a probability space, and consider the dynamical system
(X , T ) on X . Let f be an observable, that is a map from X to R. In the
language of probability, f is a random variable. The sequence (f ◦ Tn)n∈N is a
sequence of real random variables. The sequence of ergodic sums 1

n

∑n−1
k=0 f ◦T k

is also a sequence of real random variables, built as sum of random variables.
The entrance time in a measurable subset A of X , defined by τA(x) = inf{n ≥
0, Tn(x) ∈ A} is an integer-valued random variable.

If the measure m is invariant, then the sequence (f ◦ Tn) is identically dis-
tributed, i.e. all these random variables have the same law. The ergodic theorem
is an almost sure statement on the sequence of ergodic sums. In the ergodic
situation, the sequence of random variables converges almost surely to the ex-
pected value m(f) = Em[f ] of f . The central limit theorem is a convergence in
law of the same sequence, suitably normalized, to the Gaussian law. When it
holds, it is a statement about the repartition of the fluctuations of the ergodic
sums around the expected value. Formally, it writes, for some σ,

m(

{
x ∈ X : a

√
n <

n−1∑
k=0

f ◦ T k(x)− nm(f) < b
√
n

}
) → 1

σ
√

2π

∫ b

a

e−
t2
2σ dt.

The observable f = 1{A} for A ∈ B is of special interest. In the ergodic case,
1
n

∑n−1
k=0 f ◦ T k → m(A). If R is the induced map on A, τi = τA ◦ Ri are the

return times to A. Kac’s lemma states that E[τi] = m(A)−1. We will extensively
use the obvious “duality” between the times of passage in A and the number of
passages in A formalized by

{∑k
i=0 τi ≤ n

}
=
{∑n

i=0 1{A} ◦ T i ≥ k
}
.
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Usually, the random variables (f ◦Tn) are not independent. But mixing prop-
erties of the dynamical system can be understood as “asymptotic independence”
of f and f ◦ Tn when n grows. For smooth uniformly expanding systems, this
idea can be quantified for f Hölder, yielding the so-called exponentially mixing
properties. Usually, the central limit theorem can be derived from such proper-
ties. In the specific case of piecewise affine expanding maps (think for example
of the doubling map on the circle, x 7→ 2x(mod1)) it is possible to observe exact
independence of certain natural observables. For this reason, such maps are
a nice toy model to understand the statistical behaviour of smooth expanding
maps, up to distortion phenomena.

The ideal case is when it is possible to find a set A such that the sequence
of return times to A is a sequence of iid random variables. It is the case if
the induced map on A is made of affine onto branches (see Subsection 2.3 for
definitions and a more precise statement). In this situation, statistical proper-
ties of the system may be deduced from an analysis of successive independent
excursions out of A.

2.2 Sums of iid random variables and stable laws

We denote by N (m, s), Gα and MLα, the normal law with expectation m and
variance s, the one-sided stable law of index α ∈ (0, 2) and the Mittag-Leffer
law of index α, respectively. (For precise definitions, see Feller, 1971). We may
use the same letters to denote a random variable with the corresponding law.
Stable laws appear as laws of sums of random variables, while Mittag-Leffer
laws are laws of inverse of stable laws to some power. The first ones have heavy
tails, while the latter have all exponential moments. They all have densities
with respect to Lebesgue measure on R and are supported on the positive half
line. Although their densities are not explicit in general, they are well known
through Fourier-like transforms.

Let (Ω,F ,P) be a probability space. Let X be a positive real-valued random
variable with law, F (x) = P(X < x). A sum of iid random variables (Xn) with
common law F , satisfies the law of large numbers if the random variables are of
finite expectation, E[X] < +∞,

1
n

n−1∑
k=0

Xk → E[X], a.e..

This result extends to the infinite expectation case, the limit becoming infinite.

If there is α > 0 such that 1−F (x) ∼ cx−(1+α), then F is in the basin of the
one-sided stable law of index α. If α > 2, then the sums satisfy a central limit
theorem,

1√
n

(
n−1∑
k=0

Xk − nE[X1]

)
(law)
→ N (0, E[X2]).

If α ∈ (1, 2) then,
1
nα

(
n−1∑
k=0

Xk − nE[X1]

)
(law)
→ Gα.
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If α ∈ (0, 1) then, E[X1] = +∞, and,

1
n

1
α

n−1∑
k=0

Xk

(law)
→ Gα. (2.1)

For more details and proofs, we refer to Feller (1971). These results are also
stated in Zweimüller (1995), Theorem 4.8, page 42.

Remark 1 For simplicity, we stated results in very particular cases. There
are also results for α = 2, α = 1 and α = 0. More generally, distributional
convergence also holds for sums of iid random variables when the tail of the law
is a regularly varying sequence.

2.3 Occupation times and Mittag-Leffer laws

Let I be an interval. Let T : I → I be a piecewise affine map. For a subinterval
B ⊂ I, let τ denote the entrance time into B, τ(x) = inf{k > 0 : T k(x) ∈ B}
and R = T τ be the return map. Assume there is a subdivision of B into intervals
(Bn)n≥1 such that for all n ≥ 1, τ is constant on Bn and Bn is mapped affinely
onto B by R.

In this situation, the law of the entrance time τ is easy to compute in terms
of the measures of the Bn. Moreover, the sequence τi = τ ◦Ri is a sequence of
iid random variables. If the law of the entrance time τ to B satisfies,

λB(τ > n) ∼ n−α, (2.2)

where α ∈ (0, 1), it is possible to check that there is a unique invariant measure
µ absolutely continuous with respect to Lebesgue (we will do this in the specific
cases we are going to work with). The induced measure µB must be the Lebesgue
measure restricted to B, λB = µB .

In addition, under µB ,
∑n−1

i=0 τi is a sum of iid random variables. It follows
from Statement (2.1) in Section 2.2 that this sum converges in law,

1
n

1
α

n−1∑
i=0

τi
(law)
→ Gα.

For all functions f defined on I, we consider the ergodic sums,
∑n−1

k=0 f ◦ T k.
Since the measure µ is not finite, there is no hope that these sums have an
almost sure limit, even correctly renormalized, according to Aaronson’s ergodic
theorem (see Aaronson, 1997). But, a direct application of Theorem 11.10, page
135, stated in Zweimüller (1995), (see also Aaronson, 1997), yields

Fact 1 In this case, for all positive f ∈ L1
µ (with µ(f) 6= 0), and for any initial

distribution P � µ,

1
nα

n−1∑
k=0

f ◦ T k (law)
→ µ(f)

µ(B)
MLα,

because MLα is the law of the inverse of a random variable with stable law of
index α to the power α, and nα is asymptotically inverse to n

1
α .
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2.4 Wang map

In this section, we present the classical example introduced by Gaspard and
Wang (1988) to simplify the Pommeau and Manneville (1980) model of in-
termittency. This model will be our basis for further models. We apply the
previous results to describe the asymptotic behaviour of the ergodic sums under
the Lebesgue measure and we prove a large deviations result which is not in the
literature.

2.4.1 Definition

Let I = [0; 1] and λ be the Lebesgue measure on I. Let (bn) be a decreasing
sequence with

∑
bn = 1. Set cn =

∑+∞
k=n bk and Jn = [cn+1, cn). We define the

Wang map of sequence (bn) on I by, T (0) = 0, and,

T (x) =

{
cn + bn−1

bn
(x− cn+1) if n > 0 and cn+1 ≤ x < cn,

1
b0

(x− c1) if c1 < x < c0 = 1.

2.4.2 First properties

On the one hand, T (cn+1) = cn and T (cn) = cn−1 so that T (Jn+1) = Jn and,
hence, [0, c1] is mapped bijectlively and continuously onto [0, 1]. On the other
hand, T (c1) = 0 and T (1) = 1 so that [c1, 1] is affinely mapped onto [0, 1].
So T is topologically conjugated to the doubling map. We notice that 0 is an
indifferent fixed point as soon as bn−1

bn
→ 1.

This conjugacy yields a natural coding sending almost all points in I to a
one-sided sequence in {0, 1}N. Let us denote I0 = [0, c1) and I1 = [c1, 1].
The coding map is defined by ω(x) = (ω0, . . . , ωn, . . .) ∈ {0, 1}N if and only
if, for all n ≥ 0, T

n
x ∈ Iωn

. Using this coding, we can denote by Iω, for
ω ∈ {0, 1}n the interval Iω = {x ∈ I : T

m−1
x ∈ Iωm

, 1 ≤ m ≤ n}. We call
dynamical partition, the partition {Iω, ω ∈ {0, 1}N}, for some integer N . We
set bω = λ(Iω). We denote by σ the shift on {0, 1}N. For n > 1 and any finite
word ω = ω1 · · ·ωn ∈ {0, 1}n, we set σ(ω) = ω2 · · ·ωn, so that T (Iω) = Iσ(ω) .

The study of such a simple map can be done using the return times to the
interval I1. Let τ denote the first entrance time in I1, R = T

τ
, the induced

map and τ i = τ ◦ Ri
, the return times to I1. Clearly, the Lebesgue measure

restricted to I1 is R-invariant because R has full affine branches. Morever, the
sequence (τ i) is a sequence of iid random variables. The law of these return
times with respect to the Lebesgue measure is easy to compute. The entrance
time is exactly n if cn+1 ≤ x < cn (for n > 0) because T (Jn+1) = Jn, so that
T

n
(Jn+1) = J0 = I1. For n = 0, it depends on the Jn in which falls T (x). A

simple computation yields,

λ(τ = n) = bn + b0bn−1, and, for i > 0, λ(τ i = n) = bn−1. (2.3)

Proposition 2.1 There is a (unique) T -invariant measure µ � λ. If the se-
quence ( bn−1

bn
)n≥0 as a limit b∗, then, T is differentiable at 0 and T

′
(0) = b∗.
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(i) If b∗ > 1, then T is uniformly expanding. The measure µ is finite and
hµ(T ) > 0.

(ii) If b∗ = 1 and
∑

n nbn < +∞, then, the map has an indifferent fixed
point, but µ is finite.

(iii) If b∗ = 1 and
∑

n nbn = +∞, then, µ is σ-finite but it is infinite.

If µ is finite, we normalize it, so it is a probability measure. If it is not, we
normalize it so that µ(I1) = 1.

Proof For all n ≥ 0 and all x ∈ Jn, we set,

ρ(x) =
1
bn

∑
k≥n

bk,

and µ = ρλ, so that µ(Jn) =
∑

k≥n bk. This measure is absolutely continuous
with respect to λ. It is T -invariant because the density ρ is a fixed point of the
Perron Frobenius operator. It is finite on all compact subsets of I not containing
the fixed point. It is finite if and only if the return time has finite expectation,
since the conditions

∑
n nbn < +∞ and

∑
n

∑
k≥n bk < +∞ are equivalent. We

refer to Wang (1989) for more details. �

2.4.3 Case of a finite measure : a large deviations result

When the measure µ is finite, we will need a result about large deviations, that
is a bound on the λ

(
| 1n
∑n−1

k=0 f ◦ T k − µ(f)| > ε
)
, as n → +∞. When b∗ > 1

these quantities are known to decay exponentially fast from classical results on
uniformly expanding maps (See for example, Waddington, 1996). In the case
when (bn) decays polynomially, since we did not find any result in the literature,
we prove,

Lemma 2.2 Let T be a Wang map with sequence bn ≤ cn−(1+β) where β > 1.
For all functions f measurable with respect to the dynamical partition (for some
integer N , and hence integrable with respect to µ), and, all ε > 0, there is a
constant C = Cε(f), such that,

λ

(∣∣∣∣∣ 1n
n−1∑
k=0

f ◦ T k − µ(f)

∣∣∣∣∣ > ε

)
≤ C

nβ−1
.

The main idea is to prove the result for the indicator of an element B of the
dynamical partition. For such a function the ergodic sums are rates of occupa-
tion. Hence by duality we can relate them to the sequence of return times to B
which is a sequence of iid random variables. Then, we use a result by Nagaev
(1981) about large deviations for sums of iid random variables. A detailed proof
is given in Appendix A.

2.4.4 Case of an infinite measure : asymptotic behaviour of ergodic
sums

In the case when the invariant measure is not finite, we have,
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Proposition 2.3 If bn ∼ cn−(1+β), with 0 < β < 1, then, for all f such that
0 < µ(f) < +∞, under λ,

1
nβ

n−1∑
k=0

f ◦ T k (law)
→ µ(f)MLβ .

Proof It is a direct application of the analysis in Section 2.3. The choice of
(bn) and (2.3) shows that (2.2) is fulfilled for α = β. �

3 A family of interval maps

We will now introduce a family of interval maps indexed by two positive normal-
ized sequences a and b. Firstly, we explain the ideas underlying the construc-
tion. Then, we summarize its obvious combinatorial and regularity properties
in Proposition 3.1. In Section 3.3, we exhibit two natural invariant measures
and estimate the tails of the laws of the return times to different parts of the
interval. Then, in Section 3.4, we study the asymptotic behaviour of the er-
godic sums with respect to the parameters. Finally, in Section 3.5 we show that
we can find, among this family, both, maps satisfying Theorem 1.1 and maps
satisfying Theorem 1.2.

3.1 Sketch of the construction

Our idea is to construct a map which is the embedding of two Wang maps one
in the other. So we first choose two Wang maps, Ta and Tb, with two different
“time scales”. They are characterized by their sequences a = (an) and b = (bn).

We start with the piecewise affine map x 7→ 3x mod 1 on I = [0, 1] endowed
with the Lebesgue measure. We split I into three intervals of monotonicity I0, I1
and I2. We want to keep the topological dynamic of this map but to rescale
the Lebesgue measure (locally) in order to change the statistical behaviour of
typical points. Roughly speaking we want to do it so that, if collapsing I0 and
I1, one would see only the map Ta (rare occurrences of I2), and, between two
occurrences of I2, the dynamics on I0 ∪ I1 is the same as of Tb. We are going to
do that keeping the map locally affine.

Call J0 the rightmost interval, J0 = I2. The remainder can be split according
to the number of iterations needed before they meet J0. Call Jn the subset of
I0∪ I1 on which this number is exactly n. The subset Jn is made of 2n intervals
(of length 3−n−1) corresponding to different pieces of orbit before reaching I2.
Now, rescale every interval of Jn by an3n+12−n, so that the total length of
Jn is an. Since

∑
n≥0 an = 1, this fits in an interval of length 1. After this

manipulation, the map is affine on all the pieces, the slope being given by the
ratio 2an−1

an
in Jn, n ≥ 1. The law of the entrance time in I2 is given by the

sequence an.
Now, we want to take care of the dynamics on I0 ∪ I1. Given n, we have a

collection of 2n intervals corresponding to the 2n possible n-orbits. After the
first rescaling, they all have the same length, that is an2−n. To achieve the
desired behaviour we shall rescale them so that these n-orbits are distributed
as if they were produced by a Wang map Tb. For ω ∈ {0, 1}n, denote Jn,ω

the interval of points whose orbit follows Iω1 , . . . , Iωn
, I2. We want this interval

to have (relative) weight λ(Iω) (these quantities were defined in Section 2.4).
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Since, obviously,
∑

ω∈{0,1}n λ(Iω) = 1, we can rescale each Jn,ω by λ(Iω)2n and
keep the total length of Jn the same (= an).

The main difficulty to write this analytically is that the positions of the
intervals that compose Jn depend on partial sums of the ak and bω = λ(Iω).
But there is no deep difficulty.

3.2 Definition and first properties

We fix two decreasing sequences (an) and (bn) of positive real numbers with∑
an = 1 and

∑
bn = 1. We consider the interval I = [0, 1] endowed with the

Lebesgue measure λ. We are going to define a collection of disjoint intervals
Pa,b = (Jn,ω)n∈N,ω∈{0,1}n such that λ(J0) = a0, and, for all n ≥ 1, Jn =
∪ω∈{0,1}nJn,ω is made of 2n intervals of respective length λ(Jn,ω) = bωan where
bω = λ(Iω) in the Wang map of sequence (bn) (see Section 2.4). We notice that
λ(Jn) =

∑
ω∈{0,1}n Jn,ω = an, and, hence,

∑
J∈Pa,b

λ(J) = 1.

Given ω ∈ {0, 1, 2}n and ω′ ∈ {0, 1, 2}m, we denote ωω′ ∈ {0, 1, 2}n+m their
concatenation. We say that ω ≤ ω′ in the lexicographical order on finite words
of the alphabet {0, 1, 2} if there is a word ω′′ such that ω′ = ωω′′ or if for k
the first index with ωk 6= ω′k, we have ωk < ω′k. Note that the empty word is
minimal for this order.

Now, for ω ∈ {0, 1}n and ω′ ∈ {0, 1}m, We say that ω � ω′ if ω2 ≤ ω′2 in
the lexicographical order on finite words of the alphabet {0, 1, 2} (it is coherent
to assume that according to this order, the empty word is maximal, so we put
bω = 1 if ω is empty).

This corresponds to the order in which we want to put the Jn,ω on the
interval. Indeed, think again of the map T : x 7→ 3x mod 1 and define, for
n > 0 and ω ∈ {0, 1, 2}n, the interval Iω = {x ∈ I : Tm−1x ∈ Iωm , 1 ≤ m ≤ n}.
For n > 0 and ω ∈ {0, 1}n, Jn,ω would be exactly Iω2. These intervals are
disjoint and form a partition (mod 0) of I. They are ordered on I according
to the order �. Our purpose is now to put abstract intervals in I in the same
order, but rescaling their respective length. The position of an interval Jn,ω is
determined by the sum of the length of the intervals which must be at its left,
that are the intervals Jm,ω′ with ω′ � ω.

For all n ∈ N and ω ∈ {0, 1}n, we set

cn,ω =
∑
m≥0

∑
ω′ ∈ {0, 1}m

ω′ � ω

ambω′ ,

and,
Jn,ω = [cn,ω , cn,ω + anbω) .

Almost all points in I are in an element of Pa,b. For ω ∈ {0, 1}N, we denote
ωn

1 ∈ {0, 1}n the word made of the first n letters of ω. We set,

zω = lim
n→∞

cn,ωn
1
.

The limit zω always exists since the sequence is decreasing. The set Z =
∪ω∈{0,1}N{zω} is a Cantor set. We have I = Z ∪

(
∪J∈Pa,b

J
)
.
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Now we can define our map T = Ta,b on I.

T (x) =


a0x− (1− a0) if x ∈ J0

cn−1,σ(ω) + an−1bσ(ω)

anbω
(x− cn,ω), if n > 0, ω ∈ {0, 1}n, and, x ∈ Jn,ω

zσ(ω) if ω ∈ {0, 1}N and x = zω

We set I0 = [0, z10), I1 = [z10, c1) and I2 = [c1, c0] = J0, where 10 = 10 · · · 0 · · · ∈
{0, 1}N. For ω ∈ {0, 1, 2}n, we shall denote the elements of the dynamical par-
tition,

Iω = {x ∈ I : T i(x) ∈ Iωi
, 1 ≤ i ≤ n}.

Let us now summarize the properties of the map Ta,b,

Proposition 3.1 T is continuous on I0, I1 and I2. On each of these inter-
vals, it is strictly increasing. They are mapped onto I. T is topologically
equivalent to x → 3x(mod1). It is differentiable on I \ ∪n≥0,ω∈{0,1}n{cn,ω}.
If the sequences

(
an−1
an

)
and

(
bn−1
bn

)
have limits a∗ and b∗, then T is right

differentiable everywhere and the set where it is not differentiable reduces to
{cn,ω, n ≥ 0, ω ∈ {0, 1}n} ∪ {zω0, n ≥ 0, ω ∈ {0, 1}n} which is countable. If
b∗ > 1, then the map T is uniformly expanding.

Proof It is clear that T (Jn,ω) = Jn−1,σ(ω) so that the possible discontinuity
points are the cn,ω’s and the zω’s. But the map is constructed in such way that
points with the same symbolic description are close in the interval.

The map T is differentiable Lebesgue almost everywhere, since, for all n ≥ 0,
all ω ∈ {0, 1}n and all x ∈ Jn,ω, the derivative is given by the ratios

T ′(x) =
λ(Jn−1,σ(ω))
λ(Jn,ω)

=
an−1bσ(ω)

anbω
.

Again, the only difficulties are at the cn,ω’s and at the zω’s. Delicate, but
straightforward computations show that when a∗ and b∗ exist, T is indeed dif-
ferentiable on Z except on a part of its boundary. Finally, notice that if b∗ > 1
the left and right derivatives remain uniformly away from 1. �

3.3 Return times, induced maps and invariant measures

3.3.1 Absolutely continuous invariant measure

We define the entrance time τ in I2, τ(x) = inf{n > 0 : Tn(x) ∈ I2}. We also
define the induced map R = T τ on I2. It extends to the whole interval. We set
τi = τ ◦Ri.

There is a (canonical, mod 0) partition of I2 such that each interval of
this partition is affinely mapped by R onto I2. This partition is made of the
T−1
|I2

(Jn,ω). On these sets the map is clearly affine. Hence, the Lebesgue measure
restricted to I2, λI2 , is invariant for the induced map R.

13



On Ic
2 , the entrance time depends on the Jn to which x belongs. Hence,

λ(Ic
2∩{τ = n}) = λ(Jn) = an. The interval I2 is affinely mapped onto [0, 1]. The

return time depends only on the Jn in which x is sent. Hence λ(I2∩{τ = n}) =
a0λ(Jn−1) = a0an−1. Finally, for all n ≥ 1, we have,

λ(τ = n) = an + a0an−1. (3.4)

Under the Lebesgue measure, the sequence (τi) is a sequence of iid random
variables. We have, for all i > 0, λ(τi = n) = λI2(τ = n). Hence, for all i > 0,

λ(τi = n) = an−1. (3.5)

Let us set,
ρn,ω =

a0

anbω

∑
m≥0

∑
ω′∈{0,1}m

an+mbω′ω,

and, for x ∈ Jn,ω, ρ(x) = ρn,ω.

Proposition 3.2 The measure µ = ρλ is absolutely continuous with respect to
the Lebesgue measure λ. It is T -invariant. It is finite if and only if λ(τ) < +∞.

If µ is finite, we normalize it, so it is a probability measure. If it is not, we
normalize it so that µ(I2) = 1.

Proof The fact that the density ρ preserves the Perron Frobenius opera-
tor follows from a heavy but straightforward computation. Since µ(Jn) =
a0

∑
m≥0 an+m, µ is finite if and only if

∑
n nan < +∞. If µ is not finite,

then, we can check that it is finite on all compact sets included in I \ Z. �

3.3.2 An invariant measure supported on Z

Given a set A ⊂ I in the dynamical partition, we define its projection A ⊂ I.
Write A = Iω, where ω ∈ {0, 1, 2}n. If there is i ≤ n such that ωi = 2, then
we set A = ∅, else, we set A = Iω. This allows us to define a measure on I by
setting, for all A ⊂ I,

λ1(A) = λ(A).

We also define the projection f of any continuous function f on I by f(x) =
f(zω(x)). We have λ1(f) = λ(f). Notice that λ1(A) = λ1(1{A}) = λ({x ∈
I : zw(x) ∈ A}). It is clear that the measure µ1(A) = µ(A) is T -invariant
and absolutely continuous with respect to λ1. It is finite or infinite according
to whether

∑
nbn is finite of infinite. It is singular with respect to λ and is

supported on the Cantor set Z.

Remark 2 In fact, we simply identified the Cantor set Z ⊂ I with the interval
I (of Section 2.4) through the dynamical coding. The measure λ on I maps to a
measure on {0, 1}N (through the coding of the Wang map with sequence (bn)).
This measure is also a measure on {0, 1, 2}N. We sent it onto the Cantor set
Z through the new coding.

The following lemma shows that these measures arise naturally.

Lemma 3.3 For all f depending on a finite number m of coordinates, and all
n > m,

λI2(f ◦ T |τ = n) = λ(f). (3.6)
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Proof It is enough to prove the result for f = 1{Iω} for all ω ∈ {0, 1}m. So,
we have to estimate λI2(1{Iω} ◦T |τ = n). To do so, notice that if ω contains a 2,
then, T−1(Iω)∩{τ = n} is empty, while, otherwise, it is exactly T−1

|I2
(Iω∩Jn−1).

To conclude, we relate λ and λ through, λ (Iω ∩ Jn−1) = anλ(Iω). �

Remark 3 The idea is that, given τ > k, the system acts exactly as a Wang
map Tb. This measure is related to conditionally invariant measures since it is
the measure given we did not see the word I2.

3.3.3 Return time far from the indifferent fixed point

We define the entrance time in I1 ∪ I2, τ̃(x) = inf{n > 0 : Tn(x) ∈ I1 ∪ I2},
the return map R̃ = T τ̃ and the successive return times τ̃i = τ̃ ◦ R̃i. Notice
that the successive return times are not iid random variables in this case, since
the Lebesgue measure restricted to I1 ∪ I2 is not invariant for the return map
R̃. But, the following lemma shows that

∑
i τ̃i is “stochastically” larger than a

sum of iid random variables. Recall that τ and τ denote the entrance times in
I1 for T and in I2 for T , respectively.

Lemma 3.4 Assume b∗ = 1. Let (τ̃∗i ) be a sequence of iid random vari-
ables defined on a probability space (Ω,F ,P) of common law P(τ̃∗i = k) =
λ⊗ λI2(min (τ ; τ) = k). Then, for all p ≥ 0,

λI2

(
p∑

i=0

τ̃i > n

)
≥ P

(
p∑

i=0

τ̃∗i > n

)
.

Proof Firstly, we notice that according to Lemma 3.3, on I2, under λI2 ,

τ̃ = τ̃1{τ≥τ̃} + τ1{τ<τ̃}
(law)

= min (τ ; τ) , (3.7)

under λ⊗λI2 . We denote λ′ the probability measure λ given the event I2∩{τ >∑i
j=0 τj}. Under λ′,

τ̃i+1

(law)
= min

τ i+1 ; τ −
i∑

j=0

τ j

 ,

under λ ⊗ λ′. Since b∗ = 1, for all k ≥ 0, we have λI2(τ > k + n|τ > k) ≥
λI2(τ > n). Hence,

λ⊗ λ′(τ > n+
i∑

j=0

τ j) = λ⊗ λI2(τ > n+
i∑

j=0

τ j | τ >
i∑

j=0

τ j) ≥ λ(τ > n).

We conclude noticing that the τ̃i renew when τ =
∑i

j=0 τ j , since λI2 is R-
invariant. �

Remark 4 Assume an ∼ n−(α+1) and bn ∼ n−(β+1). It follows from (3.7)
or from a direct computation that the tail of the law of τ̃ under the Lebesgue
measure satisfies,

λ(τ̃ = k) ∼ (a0 + b0)n−(α+β+1).

15



3.4 Asymptotic behaviour of ergodic sums

In this section, we study the asymptotic behaviour of ergodic sums in different
situations.

3.4.1 Convergence (in law) to the absolutely continuous invariant
(infinite) measure

Proposition 3.5 If an ∼ n−(1+α) with α < 1, then for all f ∈ L1
µ, with µ(f) >

0,
1
nα

n∑
k=0

f ◦ T k (law)
→ µ(f)MLα,

under the Lebesgue measure λ.

In this case, the return time τ to I2 is not integrable, so that the a.c.i.m. is
infinite. We see what happens on the interval I2 only at large scales of time.

Proof This result is a direct consequence of Fact 1 stated in Section 2.3. The
time scale is given by the tail of the return time to a set of finite measure, here
the set I2. �

3.4.2 Convergence to the measure on the subsystem

Proposition 3.6 If an ∼ n−(1+α) and bn ≤ n−(1+β), with α < 1 and β > 3,
then, for all f continuous,

1
n

n−1∑
k=0

f ◦ T k → µ1(f), λ− a.e..

In this case, the return time τ to I2 is not integrable, while, the Wang map of
sequence (bn) has an a.c.i.p. and, hence, the measure µ1 is finite. A typical orbit
spends most of the time in the interval I0 ∪ I1. During this time, its dynamic is
driven by the Wang map of sequence (bn), so that what is seen at the standard
time scale is the physical invariant measure supported on this subsystem.

Technically, the ergodic sums decompose in independent trials (
∑τ

k=0 f ◦
T k) ◦Ri which are close to µ1(f) each time τ is large enough (and in general, τ
is large). To control the fluctuations about µ1(f), we use our large deviations
result (Lemma 2.2).

Proof Let f be a continuous function such that µ1(f) = 0. In a first stage,
we assume that f depends only on the first coordinate (of the coding). Let

qn =
n−1∑
i=0

1{I2} ◦ T
i, denote the number of passages in I2, and, Mn =

qn∑
i=0

τ ◦Ri

denote the time of the last passage in I2 before n.

We decompose,

n−1∑
k=0

f ◦ T k =
τ−1∑
k=0

f ◦ T k +
Mn−1∑
k=τ

f ◦ T k +
n−1∑

k=Mn

f ◦ T k. (3.8)
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The first term is apart because at time 0, we may not be in I2. It is easily
bounded by,

τ−1∑
k=0

f ◦ T k ≤ τ ||f ||∞. (3.9)

The second term is the most important contribution. We will rewrite it in order
to see it as a sum of independent pieces of trajectories remaining in I0 ∪ I1.∣∣∣∣∣

Mn−1∑
k=τ

f ◦ T k

∣∣∣∣∣ =

∣∣∣∣∣
qn∑
i=1

(
τ−1∑
k=0

f ◦ T k

)
◦Ri

∣∣∣∣∣
=

∣∣∣∣∣
qn∑
i=1

(
τ−1∑
k=1

f ◦ T k

)
◦Ri +

qn∑
i=1

f ◦Ri

∣∣∣∣∣
≤

∣∣∣∣∣
qn∑
i=1

(
τ−1∑
k=1

f ◦ T k

)
◦Ri

∣∣∣∣∣+ qn||f ||∞. (3.10)

The last term corresponds to the last “excursion” out of I2. It is a priori smaller
than a whole excursion, but to obtain an almost sure control is technical because
the length of this last excursion could be of the same order as the concatenation
of all the previous ones (property of long tail distributions). We write it,

n−1∑
k=Mn

f ◦ T k ≤ ||f ||∞ + ε(n−Mn)||f ||∞ +

(
n−1∑

k=Mn+1

f ◦ T k − ε(n−Mn)||f ||∞

)
≤ ||f ||∞ + εn||f ||∞ +Hqn , (3.11)

where, for all q ≥ 0,

Hq = sup
1≤t≤τq

((
t∑

k=1

f ◦ T k − ε||f ||∞t

)
◦Rq

)
.

Finally,∣∣∣∣∣ 1n
n−1∑
k=0

f ◦ T k

∣∣∣∣∣ ≤ ε||f ||∞+
1
n

(τ+1)||f ||∞+
1
n
qn||f ||∞+

∣∣∣∣∣
qn∑
i=1

(
τ−1∑
k=1

f ◦ T k

)
◦Ri

∣∣∣∣∣+ 1
n
Hqn .

(3.12)
To prove the result, we just have to prove that, almost surely, the limsup is
smaller than ε for all ε. So we fix ε > 0. It is obvious that 1

n (τ + 1)||f ||∞ tends
to 0 almost surely. We are going to prove separately that all the other terms in
the upper bound converge to 0 almost surely.

Firstly, we claim that

lim
n→+∞

1
n
qn = 0, λ− almost surely. (3.13)

Notice that qn = inf {k ≥ 0 :
∑k

i=0 τ ◦Ri > n}. Here, the sequence of return
times (τi)i≥1 is a sequence of iid random variables. Hence, by the law of large
numbers for a sum of iid random variables with infinite expectation, we see that,

1
q

q∑
i=1

τ ◦Ri →∞, λ− almost surely.
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We notice that when n→∞, qn →∞ λ-almost surely. Hence,

n

qn
≥ 1
qn

qn∑
i=1

τ ◦Ri →∞, λ− almost surely, (3.14)

which proves Claim (3.13).

To prove the other two convergences, we must understand better what hap-
pens to the ergodic sums between two occurrences of I2. This is easier in the
case when f depends only of one coordinate and that is why we first did this as-
sumption. We recall that the return map R = T τ leaves the Lebesgue measure
on I2 invariant. So that, if f depends only on the first coordinate, the sequence((

τ−1∑
k=1

f ◦ T k

)
◦Ri

)
i≥1

is a sequence of iid random variables if x is chosen according to the Lebesgue
measure. Hence, under the Lebesgue measure, the process(

qn∑
i=1

(
τ−1∑
k=1

f ◦ T k

)
◦Ri

)
n≥1

is a sum of iid random variables.

Let then f be the “projection” of f on I (for definition, see Section 3.3.2).
We notice that µ(f) = µ1(f) = 0. We consider the process defined on the
probability space (Ω,F ,P) = (I × I

N
,B × BN

, λ⊗ λ
⊗N

) by

Σn(x, (yj)j∈N) =
qn(x)∑
i=1

τ◦Ri(x)−1∑
k=1

f ◦ T k
(yi).

To simplify the notations, let us define a random sequence on (I, λ), To simplify
the notations, let us write

Σn =
qn∑
i=1

Vi(τi).

where Vi(m)(x, (yj)j∈N) = V (m)(yi) and V (m)(y) =
∑m−1

k=1 f ◦ T k
(y). We can

think of the Vi as a countable number of independent copies of V . We claim
that, (

qn∑
i=1

(
τ−1∑
k=1

f ◦ T k

)
◦Ri

)
n≥1

(law)
=

(
qn∑
i=1

Vi(τi)

)
n≥1

, (3.15)

where the left hand side is distributed according to λ and the right-hand side
according to P. Both processes are sums of iid random variables. So we just
have to check that these random variables have the same law. If f depends on
one coordinate, then F =

∑m−1
k=1 f ◦T k depends on m−1 coordinates (again, in

the sense of the coding) and F =
∑m−1

k=1 f ◦T k
. But, according to Lemma 3.3, if
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F depends on m−1 coordinates, and F is its projection on I, then, λ
(
F ∈ A

)
=

λI2 (F ∈ A|τ = m) . Hence, for all i > 0,

P(V (τi) ∈ A) =
∑
m≥1

P(V (m) ∈ A)P(τi = m)

=
∑
m≥1

λ

(
m−1∑
k=1

f ◦ T k ∈ A

)
λI2(τ = m)

=
∑
m≥1

λI2

(
m−1∑
k=1

f ◦ T k ∈ A|τ = m

)
λI2(τ = m)

= λI2

(
τ−1∑
k=1

f ◦ T k ∈ A

)
.

Hence, Claim (3.15) is proved.

Remark 5 The claim is that if we look at our dynamical system T under the
Lebesgue measure, it is the same as to look at independent trials of the dynamical
system T each of them under the Lebesgue measure, during the right amount of
time.

We claim that,

lim
n→+∞

1
n

qn∑
i=1

Vi(τi) = 0, P− a. s.. (3.16)

Splitting the sum according to whether {Vi(τi) ≤ ετi} or not, we obtain, for all
ε > 0, ∣∣∣∣∣

qn∑
i=1

Vi(τi)

∣∣∣∣∣ ≤ ε

qn∑
i=1

τi + ||f ||∞
qn∑
i=1

1{Vi(τi)>ετi}τi.

The first term is smaller than εn. Using Lemma 2.2 to see that P(V (k) > εk) ≤
cεk

−β+1 and the assumption P(τ = k) ∼ k−α−1, we deduce that, as soon as
α + β > 2, the ratio 1

q

∑q
i=1 1{Vi(τi)>ετi}τi is essentially bounded, uniformly in

q. According to (3.13), qn → +∞ and qn

n → 0 a.s. when n→ +∞. This proves
Claim (3.16).

Now we claim that,

lim
n→+∞

1
n
Hqn

= 0, λ− a.s.. (3.17)

The sequence Hq is a sequence of iid random variables. Using (3.15), we see
that

Hq

(law)
= sup

1≤t≤τq

(V (t)− ε||f ||∞t) ,

It follows from Lemma 2.2 that,

P(V (t) ≥ ε||f ||∞t) ≤
c

tβ−1
.

19



Hence,
P(∃t > k : V (t) ≥ ε||f ||∞t) ≤

∑
t≥k

c

tβ−1
≤ c

kβ−2
.

But, on the event {∀t > k, V (t) ≤ ε||f ||∞t}, we have, supt≥0(V (t)− ε||f ||∞t) ≤
k||f ||∞, so that,

P
(

sup
t≥0

(V (t)− ε||f ||∞t) ≥ k||f ||∞
)
≤ c

kβ−2
.

Since 1
nHqn ≤

Hqn∑qn
i=1 τi

, we apply the Borel Cantelli Lemma to see that, if β > 3,
for all ε > 0, the number of indices q such that Hq > ε

∑q
i=1 τi is λ-a.s. finite.

This proves Claim (3.17).

Remark 6 Of course it is possible to say something when β < 3 and even when
α+ β < 2. But one has to enter more into details. That is not our goal here.

Inequality (3.12) together with (3.13), (3.16) and (3.17) concludes the proof if
f depends only on the first coordinate.

If f depends on a finite number of coordinates of the coding, then we must
get rid of the cases when τ is smaller than this dependence and of the first terms
of the sum. But all this is almost surely small compared to n. So the problem
reduces to the previous case. Formally, if f depends on m coordinates,∣∣∣∣∣

Mn−1∑
k=τ

f ◦ T k

∣∣∣∣∣ ≤

∣∣∣∣∣
qn∑
i=1

(
1{τ>m}

τ−m∑
k=1

f ◦ T k

)
◦Ri

∣∣∣∣∣+ 2qnm||f ||∞.

Using the same notations as for one coordinate, we can construct the random
sequences associated with the “projection” f of f . We see that the only thing
to prove is that 1

n

∑qn

i=1 1{τi>m}Vi(τi) tends to 0 almost surely. Since,∣∣∣∣∣
qn∑
i=1

1{τi>m}Vi(τi)

∣∣∣∣∣ ≤
∣∣∣∣∣

qn∑
i=1

Vi(τi)

∣∣∣∣∣ ,
we conclude by the same arguments as before. The large deviation argument
still holds since f depends on finitely many coordinates.

Finally, if f is continuous, we approximate f uniformly by a sequence (fm)m≥0

of step functions — i.e. depending on a finite number m of coordinates. We
write

1
n
|
n−1∑
k=0

f ◦ T k − µ1(f)| ≤ 1
n
|
n−1∑
k=0

fm ◦ T k − µ1(fm)|+ 2||f − fm||∞,

and we apply the previous argument to fm, to see that almost surely the limsup
is smaller than ||f − fm||∞ which is arbitrarily small. �
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3.4.3 Convergence to the Dirac mass at the indifferent fixed point

Proposition 3.7 If an ∼ n−(1+α) and bn ∼ n−(1+β), with α + β < 1 and
α < β, then, for all f continuous,

1
n

n−1∑
k=0

f ◦ T k → f(0), λ− a.e..

In this case, the return time τ̃ to I1∪ I2 is not integrable, so that a typical orbit
spends most of the time close to the fixed point 0. The proof is almost the same
as it would be for a Wang map with a nonintegrable return time. The main
difference is that the sequence of return times we consider is not a sequence of
iid random variables.

Remark 7 Notice that this result does not follow directly from the fact that the
measure is infinite. Indeed, the measure becomes infinite close to the Cantor set
Z whereas, for these values of the parameters, only the fixed point 0 is attracting
the statistical behaviour of the system.

Proof Let q̃n =
∑n−1

i=0 1{I1∪I2} ◦ T i, denote the number of passages in I1 ∪ I2.
The τ̃i’s are not a sequence of iid random variables, but according to Lemma 3.4,
the sum stochastically dominates a sum of iid random variables τ̃∗i . Since α+β <
1, Remark 4 shows that the τ̃∗i have infinite expectations. Hence, by the law of
large numbers for a sum of iid random variables with infinite expectation, we
see that

1
q

q∑
i=1

τ̃ ◦ R̃i →∞, λ− almost surely.

We notice that when n→∞, q̃n →∞ λ-almost surely. Hence,

n

q̃n
≥ 1
q̃n

q̃n∑
i=1

τ̃ ◦ R̃i →∞, λ− almost surely. (3.18)

Let

M̃n =
q̃n∑
i=0

τ̃ ◦ R̃i

denote the time of the last passage before n.

Let f be a continuous function. We assume without loss of generality that,
f(0) = 0. For all ε > 0, there is an integer k0 such that, for all k > k0,
supx∈I0k

|f(x)| < ε. Hence, for all x ∈ I1 ∪ I2,

τ̃−1∑
k=0

|f ◦ T k| ≤
τ̃−1∑
k=0

sup
y∈I0k

|f(y)| ≤ k0||f ||∞ + ε τ̃ .

We decompose,

n−1∑
k=0

f ◦ T k =
τ̃−1∑
k=0

f ◦ T k +
M̃n−1∑
k=τ̃

f ◦ T k +
n−1∑

k=M̃n

f ◦ T k.

21



We have,∣∣∣∣∣∣
M̃n−1∑
k=τ̃

f ◦ T k

∣∣∣∣∣∣ =
∣∣∣∣∣∣

q̃n∑
i=1

τ̃◦Ri−1∑
k=0

f ◦ R̃i ◦ T k

∣∣∣∣∣∣ ≤ q̃nk0||f ||∞ + εM̃n,

∣∣∣∣∣∣
n−1∑

k=M̃n

f ◦ T k

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
n−M̃n−1∑

k=0

f ◦ R̃q̃n ◦ T k

∣∣∣∣∣∣ ≤ k0||f ||∞ + εn,

and, ∣∣∣∣∣
τ̃−1∑
k=0

f ◦ T k

∣∣∣∣∣ ≤ ||f ||∞τ̃ .

Hence,∣∣∣∣∣ 1n
n−1∑
k=0

f ◦ T k

∣∣∣∣∣ ≤ ||f ||∞
τ̃

n
+ k0||f ||∞

q̃n
n

+
ε

n

q̃n∑
i=0

τ̃ ◦ R̃i +
k0||f ||∞

n
+ ε

n

n

≤ M
τ̃

n
+K

q̃n
n

+ ε.

Using (3.18), we conclude that for λ-almost all x, the limsup is smaller than
any ε. �

3.4.4 An intermediate time scale

Proposition 3.8 If an ∼ n−(1+α) and bn ∼ n−(1+β), with α < β < 1, then,
there is a random variable Hα,β, such that, for all Lipschitz functions f in L1

µ1

with µ1(f) > 0, under λ,

1
nβ

n−1∑
k=0

f ◦ T k (law)
→ µ1(f) Hα,β .

Proof Firstly, we assume that f depends only on the first coordinate. The
decomposition (3.8) used above is still relevant. The first and the last term go to
zero in probability, essentially because n−Mn is smaller than τ in probability.
For the same reason, 1

n

∑qn

i=1 τi converges to 1 in probability, since n =
∑qn

i=1 τi+
(n−Mn). So the problem is reduced to the study of the asymptotic behaviour
of ∑qn

i=1(
∑τ−1

k=1 f ◦ T k) ◦Ri

(
∑qn

i=1 τi)β
.

Again, following (3.15), we notice that the sequence of random variables (
∑τ−1

k=1 f◦
T k)◦Ri under λ have the same law as

∑τi

k=1 f ◦T
k
(yi) under P. Since qn →∞

a.s. with n, we have to describe the asymptotic behaviour as q → +∞ of∑q
i=1 Vi(τi)

(
∑q

i=1 τi)β
.

According to Proposition 2.3, and noticing that µ1(f) = µ(f), we see that
1
kVi(k) converges in law to µ1(f)MLβ as k → +∞ (independently of i). Hence,
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the law of τ−β
i Vi(τi) given {τi > k} converges, as k → +∞, to a copy of a

µ1(f)MLβ independent of the other involved random variables. The contribu-
tion of small τi goes to 0 a.s. since

∑q
i=1 Vi(τi)1{τi≤k} ≤ qk||f ||∞ and qn

n → 0
a.s.. Let us denote Mi a sequence of iid random variables with common law
MLβ . We have

∑q
i=1 τ

β
i Mi1{τi≤k} ≤ kβ

∑q
i=1 Mi. The Mi having all mo-

ments, the contribution of this sum goes to 0 a.s.. Finally, we can claim that∑q
i=1 Vi(τi) and µ1(f)

∑q
i=1 τ

β
i Mi. have the same limiting law once suitably

renormalized.

Finally, the point is to understand the asymptotic behaviour (as q →∞) of∑q
i=1 τ

β
i Mi

(
∑q

i=1 τi)β

We are now very close to the situation studied by Logan, Mallows, Rice and
Sheep (1973). They prove that

Fact 2 (LMRS) There is a random variable, Zα,β such that,∑q
i=1 τ

β
i

(
∑q

i=1 τi)
β

(law)
→ Zα,β .

Following their lines, we notice that the asymptotic law of our ratio would be
the same as if τi had stable laws of index α, instead being only in the basin
of such stable law. Assuming this, we follow their approach to compute the
characteristic function of the joint law,

ξq(s, t) = E[exp(is
1

q
β
α

q∑
i=1

τβ
i Mi + it

1
q

1
α

q∑
i=1

τi)]

= E[exp(i
s

q
β
α

τβM+ i
t

q
1
α

τ)]q

=
(

1 + E

[∫ +∞

0

(
exp(isMθβ + itθ)− 1

)
q

1
α gα(q

1
α θ)dθ

])q

= (1 + E[ψq(t, sM)])q
,

where gα denotes the density of the stable law of index α. In the proof in LMRS
(1973), they show that qψq(t, s) → ψ(t, s). So, if mβ denotes the density of the
Mittag-Leffer law of index β,

ξq(s, t) ∼
(

1 +
1
q

∫ +∞

0

ψ(t, sx)mβ(x)dx
)q

→ exp
∫ +∞

0

ψ(t, sx))mβ(x)dx.

Hence it converges to the characteristic function of the joint distribution of
normalized Aq = 1

q
β
α

∑q
i=1 τ

β
i Mi and Bq = 1

q
1
α

∑q
i=1 τi. We conclude that the

ratio Aq

Bβ
q

converges in distribution.
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If f depends on a finite number of coordinates, the same argument as below
can be used to adapt the proof. It is also simple to check that the proof does not
change if f is measurable with respect to the partition Pa,b because in this case
we can still replace f with f between passages in I2. For smooth f the situation
is slightly more complicated. It is not possible to use a uniform approximation
because it would yield a constant error term n times while we normalize with nβ .
We take advantage of the Lipschitz property noticing that we can approximate
f with a function f̂ , Pa,b-measurable, satisfying µ1(f) = µ1(f̂), and such that
on all intervals of Jn, |f(x) − f̂(x)| ≤ const. an. This is enough to guarantee
the uniform summability of the approximation error along a piece of orbit which
does not enter I2. For all n and all x such that {T i(x), i = 1, . . . , n} ∩ I2 = ∅,

n∑
k=1

|f ◦ T k(x)− f̂ ◦ T k(x)| ≤ const.
n∑

k=1

ak < const..

Hence, the difference between the ergodic sums of f and of f̂ is bounded (up to
const.) by the number qn of such pieces of orbit before time n. We conclude by
noting that qn

nβ → 0 in probability. �

Remark 8 At this stage, we could identify the limiting distribution through
properties of its characteristic function. It also seems possible to be more explicit
using ideas developed in Pitman and Yor (1991). We conjecture the limiting
law can be represented as the law of weighted sum of the jumps of a stable
subordinator. Let (Ts) be a stable subordinator of index α. Let (∆i) be the
infinite sequence of its jumps before it reaches 1 (the sequence of lengths of
the maximal open subintervals of range(Ts)∩(0, 1)) and (Mi) a sequence of iid
Mittag-Leffer random variables of index β independent of T . The conjecture can
be written

Hα,β

(law)
=

∑
i≥1

Mi∆
β
i .

3.5 Proofs of Theorem 1.1 and 1.2

It is now straightforward to prove both Theorem 1.1 and 1.2. Firstly, let
an = n−(1+α) and bn = (1− β)−1β1+n, with α < 1 and β < 1. Since an−1

an
→ 1

and bn−1
bn

→ 1
β > 1, Proposition 3.1 shows that the map Ta,b is continuous,

topologically equivalent to x 7→ 3x(mod1), differentiable except on a countable
set of points, and, uniformly expanding.

Remark 9 In this particular case, we can compute the cn,ω,

cn,ω =
n∑

i=1

ωiβ
i −

n−1∑
m=0

am

n∑
i=m+1

ωiβ
i.

Since
∑

n nan = +∞, Proposition 3.2 shows that there is an a.c.i.m. µ which
is not finite. The measure µ1 is well defined and is finite since

∑
n nbn < +∞.

We conclude applying Proposition 3.6 and Proposition 3.5. �
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Then, to prove Theorem 1.2, we let an = n−(1+α) and bn = n−(1+β), with
α + β < 1, and, α < β < 1. Since an−1

an
→ 1 and bn−1

bn
→ 1, Proposition 3.1

shows that, in this case, the map Ta,b is continuous, topologically equivalent to
x → 3x(mod1), and differentiable except on a countable set of points. It has
an indifferent fixed point at 0, and T ′ > 1 elsewhere (if it is defined). Since∑

n nan = +∞, Proposition 3.2 shows that there is an a.c.i.m. µ which is not
finite. The measure µ1 is well defined. It is infinite since

∑
n nbn = +∞. We

conclude applying Proposition 3.7 , Proposition 3.5 and Proposition 3.8. �

4 A more general construction

In this section we try to take advantage of the ideas involved for the construction
of interval maps. We construct an explicit example for which we conjecture there
is an infinite number of mutually singular physical measures. To simplify, we
will not construct an interval map, but a measure on {0, 1}N as a limit. The
difficulty is to prove that it is nonsingular with respect to the shift. So that it
is possible to think of it as the Lebesgue measure for a piecewise affine interval
map, following the spirit of the latter section. Then we give some comments
and ask further questions.

4.1 An example

Let us specify some notations. A word ω in {0, 1}n will be considered as a subset
{0, 1}N and sometimes called a cylinder. The word ωω′ is the concatenation of
the two words ω and ω′. The length of the word ω is denoted by |ω|. The word
1k is the word made of k consecutive 1. For a finite word ω, we denote |ω|n the
number of occurrences of 1n in ω.

We choose a sequence of sequences (a(n))n≥1, a(n) = (a(n)
k )k≥0 such that, for

all n ≥ 1,
∑

k≥0 a
(n)
k = 1. We denote X = {0, 1}N and for all n ≥ 0,

Xn = {ω ∈ X : ∀k ≥ 0, ωk · · ·ωk+n 6= 1 · · · 1}.

We are going to construct measures λn on X, supported on the subshifts of
finite type Xn.

First of all, we set, for all k ≥ 0,

λ1(0k1) = a
(1)
k .

We set λn+1(ω) = 0 if ω contains the word 1n+2, that is if ω 6⊂ Xn+1. Let ω be
a word in Xn+1. If ω writes ω = ω11n+1ω2, where, ω1 ⊂ Xn and ω2 ⊂ Xn+1,
then, we set,

λn+1(ω) = λn(ω11n)a(n+1)
|ω1|n λn+1(ω2). (4.19)

We notice that all finite words in Xn+1 contain a finite number of occurrences
of 1n+1 and that all words in Xn+1 with no occurrence of 1n+1 can be written
as a countable union of words with only one occurrence of 1n+1 at the end. So
that this recurrence rule should be enough to define λn for all n ≥ 0.

Proposition 4.1 The sequence (λn) is a sequence of probability measures on
{0, 1}N supported on Xn. It has a weak limit λ∞, which is a probability measure
and is nonsingular with respect to the shift.
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Proof Firstly, we check that λ1 is a well defined probability measure. The
only point to check is that the measure of words containing only 0 is defined.
We have

λ1(0m) = λ1(∪k≥m0m1) =
∑
k≥m

λ1(0m1) =
∑
k≥m

a(1)
m .

Let ω ⊂ Xn and set

Ωn(ω) = {ω′ : ωω′ ∈ Xn,∃ω∗, ωω′ = ω∗1n}.

As a word in Xn+1, ω can be written

ω =
⋃

ω′∈Ωn(ω)

ωω′1.

So that we can write λn+1(ω) for all ω ⊂ Xn,

λn+1(ω) =
∑

ω′∈Ωn(ω)

λn+1(ωω′1) =
∑

ω′∈Ωn(ω)

λn(ωω′)a(n+1)
|ωω′|n−1

=
∑
k≥1

a
(n+1)
k−1

∑
ω′∈Ωn(ω):|ωω′|n=k

λn(ωω′).

But, ω ⊂ Xn writes, for all k ≥ 0, ω =
⋃

ω′∈Ωn(ω):|ωω′|n=k ωω
′, and, hence,∑

ω′∈Ωn(ω):|ωω′|n=k

λn(ωω′) = λn(ω).

Finally,
λn+1(ω) = λn(ω). (4.20)

Now, to go to the limit, we notice that the length of the longest sequence of
1 in ω is smaller than the length of ω. Hence, in virtue of (4.20),

λ∞(ω) = λ|ω|(ω)

This last term is computable recursively. So the limit is defined for all ω. The
weak limit exists.

The limit is a probability measure. It is nonsingular with respects to the shift.
In effects, it is easy to see that the set of ω ∈ X that can be written in the form,
ω = 1n0ω′01n+1ω

′′, where n ≥ 0 is the length of the first sequence of 1’s and
ω′ ⊂ Xn is of full λ∞ measure. Now, for l ≥ |ω′|+2n+3, the (unique) cylinder
ωl of length l that contains ω can be written ωl = 1n0ω′01n+1ω

′′′. Hence,

λ∞(σ(ωl))
λ∞(ωl)

=
λ∞(1n−10ω′01n+1ω

′′′)
λ∞(1n0ω′01n+1ω′′′)

=
λn+1(1n−10ω′01n+1)
λn+1(1n0ω′01n+1)

,

is independent of l, if l is large enough. The point is that the number of oc-
currences of 1k for k ≥ n + 1 is the same in ωl and σ(ωl). So the derivative is
locally constant. �
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We conjecture that this is a simple example of a case where there would be
infinitely many invariant measures associated with infinitely many time scales.
The idea is that the choice of the sequences a(n) can be made such that the
return times to the cylinders 1n are longer and longer. More precisely, let τ (n)

denote the return time to the word 1n, S(n) = T τ(n)
and Tn be the first entrance

time of S(n) to the word 1n+1. These random variables are related by,

τ (n+1) =
Tn∑

k=1

τ (n) ◦ S(n),

and the law of Tn is given by

λ∞(Tn = k) = a
(n)
k−1.

4.2 Comments and questions

• Our family of maps contains maps having an acip. It is the case when
β > α > 1. What is the speed of mixing in this case ? What kind of large
deviations results could be derived for these systems ?

• It would be interesting to produce a C1 version of this example. It sounds
possible but, as we already mentioned, the proofs would be much more
complicated.

• The situation described in Theorem 1.1 appears naturally for product
maps (product of an intermittent map with any smooth uniformly ex-
panding map). It was more difficult to see how it can arise for an interval
map.

• The situation with two physical measures also appears in other contexts.
For example some uniformly piecewise expanding interval maps with an
infinite number of pieces may have a finite “statistically attracting” mea-
sure and an infinite absolutely continuous invariant measure.

• Using the ideas introduced here, it seems possible to construct an interval
map for which the finite statistically attracting measure is a sturmian
measure, the dynamics on its support being semi conjugated to a rotation.

• In the spirit of what is done here, one could try to generalize systems with
two or more indifferent fixed points. Is there a general way to classify
these systems ?

• One could also imagine systems with “nonstationary” changes in the global
behaviour. For example, a typical orbit could oscillate between typical
behaviour of two distinct finite measures during nonintegrable periods of
time. We hope that this work can give ideas to tackle this kind of problems.

• A more statistical point of view can be interesting. Given a source of
symbols, one can try to estimate by which Gibbs measure it was produced.
Is it possible to guess if the underlying system is in fact a system with a
nonsingular measure and no invariant measure ?
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• Our systems can be defined symbolically in the thermodynamic formalism.
It would be interesting to understand the corresponding systems in terms
of statistical mechanics. It seems that ideas involved here are related to
Fisher’s model (Fisher, 1972).

• It is possible to specify the regularity of the examples with respect to
the symbolic metric induced by the (natural) coding. In the situation of
Theorem 1.1, we can check that varn+1(− log |T ′|) ≤ 1+α

n , where

varn(f) = sup
ω∈{0,1,2}n

sup
x,y∈Iω

|f(x)− f(y)|.

A Proof of the large deviations estimate for Wang
maps.

We will give a proof of Lemma 2.2. Firstly, we state a large deviations result.
We found it in Nagaev (1981). Its form is slightly stronger than what we will
need.

Fact 3 (Nagaev) Suppose that E[X] = 0 and

1− F (x) ≤ x−αL(x),

as x → +∞, where α > 1 and L is slowly varying. Then, for all c > 0 and
x ≥ cn,

P(
n−1∑
k=0

Xk ≥ x) ≤ n(1− F (x))(1 + εn),

as n→ +∞, where εn → 0.

Proof of Lemma 1 For all f , we denote Sn(f) =
∑n−1

k=0 f ◦ T k. Let first
f = 1{B} be the characteristic function of the interval B = I1. Let [x] denote
the integer part of the real number x, and set pn = 1 + [n(µ(f) − ε)] and
qn = [n(µ(f) + ε)]. Then,

λ

(
| 1
n
Sn(f)− µ(f)| > ε

)
≤ λ (Sn(f) ≥ pn) + λ (Sn(f) ≤ qn) .

Recall that τ is the first entrance time in I1 and τ i is the ith return time to
I1. Since the map R is piecewise affine with onto branches, the sequence (τ i)i≥1

is a sequence of iid random variables of common law,

λ(τ i = k) = λB(τ = k),

and of common mean θ = λ(τ i) = λB(τ) = µB(τ) = 1
µ(B) = 1

µ(f) by Kac’s
Lemma. We set

Tn =
n∑

i=1

τ i − nθ.
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The sum
∑q

i=1 τ i counts the time between the first (after 0) occurrence of B
and the (q+1)th. But Sn(f) ≥ q means that there are more than q occurrences
of B between time 0 and time n− 1. Hence, Sn(f) ≥ q ⇒

∑q−2
i=1 τ i ≤ n− 1 ⇒

Tq−2 ≤ n − 1 − (q − 2)θ. Since θµ(f) = 1, there is a constant c0 such that
n− 1− θ(qn − 2) ≥ c0 − θεn. We deduce,

λ(Sn(f) ≥ qn) ≤ λ(Tqn ≤ c0 − θεn).

Since λ(τ i − θ < −t) = 0 as soon as t is large enough, we can apply a standard
large deviations result to see that λ(Tqn ≤ c0 − θεn) decays exponentially fast.
Hence, there are constants c1 and c2 such that,

λ(Sn(f) ≤ qn) ≤ c1e
−c2n. (A.21)

The same analysis shows that Sn(1{B}) ≤ p⇒ τ + Tp ≥ n. Since θµ(f) = 1,
there is a constant c3 such that n− pnθ ≤ c3 + θεn. We deduce,

λ(Sn(1{B}) ≥ p) ≤ λ(τ + Tpn ≥ c3 + θεn).

For a sum of two positive terms to be larger than n, one of the terms must be
larger than n

2 . Hence,

λ(τ + Tqn
≥ c3 + θεn) ≤ λ(τ ≥ 1

2
(c3 + θεn)) + λ(Tqn

≥ 1
2
(c3 + θεn)).

For the first term, we use directly the assumption, λ(τ > t) ≤ ct−β , so,

λ(τ ≥ 1
2
(c3 + θεn)) ≤ c4n

−β . (A.22)

For the second term, we can apply Nagaev’s result to the sequence of iid random
variables (τ i − θ)i≥1. We have λ(τ i − θ) = 0 and λ(τ i − θ > t) ≤ λ(τ i > t) =
λI1(τ ≥ t) ≤ ct−β . Hence,

λ

(
Tpn ≥

1
2
(c3 + θεn)

)
≤ c5pn λI1

(
τ ≥ 1

2
(c3 + θεn)

)
≤ c5 (1 + [n(µ(B)− ε)])

(
1
2
(c3 + θεn)

)−β

≤ c6n
1−β

≤ c6
nβ−1

. (A.23)

Combining (A.21), (A.22) and (A.23), we get the result for f = 1{I1}.

Let now f = 1{B} be the characteristic function of an element B of the
dynamical partition that does not contain the fixed point 0. Let τB = inf{n >
0 : T

n
(x) ∈ B} be the first entrance time in B and τB

i be the ith return time to
B. Since B does not contain the fixed point 0, the map RB = T τB

is piecewise
affine with onto branches and hence, the sequence (τB

i )i≥1 is a sequence of iid
random variables of common law,

λ(τB
i = k) = λB(τB = k).
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and of common mean θ = λ(τB
i ) = µ(τB

i ) = 1
µ(B) by Kac’s Lemma. We must

estimate the tails of the laws of τB and τB
i . Firstly, we notice that for all sets

A with λ(A) > 0, λA(τB > t) ≤ cAλ(τB > t), where cA = λ(A)−1. So that it
is enough to control the tail of τB under λ. Then we notice that, if B ⊂ [0, c1],
then, it has a preimage B′ in [c1, 1], so that τB ≤ τB′

+1. Hence, we can assume
without loss of generality that B ⊂ [c1, 1]. In this case, the function τB itself
can be seen as a sum,

τB =
K∑

i=0

τ i,

where K(x) = inf{i > 0 : R
i
(x) ∈ B} is a random variable. Clearly, K has a

geometrical law (depending on B). We know λ(τ > t) ≤ ct−β . We deduce that
λ(τ i > t|K > i) = λI2∩Bc(τ i > t) ≤ c′Bt

−β . Using the fact that for a sum of k
terms to be larger than t, at least one of the terms must be larger than t

k , it is
straightforward to conclude that there is a constant CB such that,

λ(τB > t) ≤ CBt
−β . (A.24)

Hence we can apply exactly the same arguments to conclude.

Now, let f be a function depending on a finite number of coordinates and
equal to 0 in a neighborhood of 0. We write f as finite sum of indicators,
f =

∑K
k=1 ak1{Bk}, where the Bk’s are elements of the dynamical partition,

none of them containing 0. We write,

λ(|Sn(f)− nµ(f)| > nε) = λ(|
K∑

k=1

ak(Sn(1{Bk})− µ(Bk)| > nε)

≤ λ(
K∑

k=1

ak|Sn(1{Bk})− µ(Bk)| > nε)

≤
K∑

k=1

λ(ak|Sn(1{Bk})− µ(Bk)| > n
ε

K
)

≤ K max
1≤k≤K

λ(|Sn(1{Bk})− µ(Bk)| > n
ε

Kak
).

Then we apply the previous argument to each of this finite number of terms.

To treat the case f = 1{B} where B is an element of the dynamical partition
containing 0, we write g = 1 − f and notice that we have already proved the
result for such a g. It is straightforward to conclude for any function depending
on a finite number of coordinates. �

Remark 10 It is simple to extend this result to a large deviation result under
the invariant measure. We can prove that, for all functions f measurable with
respects to the dynamical partition, and, all ε > 0, there is a constant C = Cε(f),
such that,

µ

(
| 1
n
Sn(f)− µ(f)| > ε

)
≤ C

nβ−1
.
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To adapt the proof given below, one must notice that

µ(τ = k) ≤ C
∑
n≥k

bn ≤ C
1
kβ
.

So that we loose 1 in the exponent of the tail of the law of τ , as well as of this
of τB. But nothing is lost in the tail of the τ i, since µ(τ i = k) = λ(τ i = k) =
λB(τ = k),. So that Nagaev’s result applies in the same conditions.
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