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Abstract

We study piecewise affine maps of the interval with an indifferent fixed point causing
the absolutely continuous invariant measure to be infinite. Considering the laws of the first
entrance times of a point — picked at random according to Lebesgue measure — into a
sequence of events shrinking to the strongly repelling fixed point, we prove that (when suitably
normalized) they converge in distribution to the independent product of an exponential law
to some power and a one-sided stable law.

Résumé
Nous étudions une classe d’applications affines par morceaux de l’intervalle avec un point

fixe indifférent dont la mesure invariante absolument continue est infinie. Nous considérons les
lois des premiers temps d’entrée d’un point — choisi au hasard suivant la mesure de Lebesgue
— dans une suite d’événements se concentrant autour du point fixe fortement repulsif. Nous
prouvons que, correctement renormalisés, ces temps convergent en distribution vers le pro-
duit indépendant d’une loi exponentielle élevée à une certaine puissance et d’une loi stable
unilatérale.

1 Introduction

There has been a recent interest in statistics of entrance - or return - times into rare events for
chaotic dynamical systems. Given a sequence of sets in the phase space of some ergodic system
with measures decaying to zero, one can ask about the asymptotic behaviour of the sequence of
entrance times in these sets.

In the case of hyperbolic systems preserving a probability measure, entrance times typically
converge to an exponential distribution when normalized by their expectations. The lack of memory
property of the limit distribution is often interpreted as “unpredictability” of the occurence of rare
events. Results of this type have been proved for different classes of systems and sequences of
shrinking sets, see for example the survey in [5]. One basic family of examples is that of uniformly
expanding maps of the interval. Interval maps with indifferent fixed points, frequently referred to
as intermittent maps, perhaps give the simplest models beyond uniform hyperbolicity. For those
situations where there still exists a finite absolutely continuous invariant measure, precise results
again giving exponential limit laws have been given in [17].

The case of maps with an indifferent fixed point whose SRB measure is a Dirac mass at the
fixed point - and where the only absolutely continuous invariant measure is infinite - is somewhat
different. We refer to [1] for general ergodic properties of infinite measure preserving systems, and
to [19] for specific information on interval maps with indifferent fixed points and further references.
[8] considered a particular piecewise affine, i.e. Markov chain model, and proved convergence to
an exponential distribution for entrance times close to the indifferent fixed point, which however
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are not rare in the sense of the invariant measure respectively the dynamics. The purpose of
the present note is to similarly present a simple family of piecewise affine examples for which the
entrance times to a particular sequence of sets, namely those shrinking to the strongly repelling
fixed point, in general converge to a non exponential law which depends on the fine local behaviour
at the fixed point. We also discuss what we expect to be the behaviour of these entrance times for
more general sequences of cylinders.

The only other results known to us where a limit law different from the exponential distribution
turns up are for systems of (very) low complexity, such as rotations (see [4]) and substitutions (see
[10]). In these cases, the limit distributions are distributions of discrete random variables and the
analysis has a different flavour.

2 Statement of the result

Let (I, λ) be the interval I = [0, 1] endowed with Lebesgue measure λ. Let (cj)j≥0 be a sequence
strictly decreasing to 0 with c0 = 1 satisfying cj+1/cj → 1. These points yield a partition (mod
λ) of I into the intervals Ij := (cj+1, cj), j ≥ 0. We consider the map T on I which is affine and
increasing on each Ij and maps I0 onto I (with slope s := (1 − c1)−1) and Ij onto Ij−1 for all
j ≥ 1, cf. Fig.1.

Figure 1: The map T.

Since T ′(x) → 1 as x → 0, transformations of this type frequently serve as simplified models for
smooth ’intermittent’ maps with an indifferent fixed point. The piecewise affine version T in fact is
just a renewal Markov chain in a sense we shall make precise below. T is conservative ergodic and
has a unique (up to a constant factor) absolutely continuous invariant measure µ (whose density
is constant on each Ij) which is infinite if and only if

∑
j cj = +∞. Throughout we shall assume

that this is the case (i.e. that the chain is null recurent) and we choose µ such that µ(I0) = λ(I0).

Example 1 Specific examples which are frequently studied in the literature are given by cj :=
const · j−α, α ∈ (0, 1], which corresponds to Tx = x + ax1+ 1

α + o(x1+ 1
α ) in the smooth setting.

We are interested in the asymptotic distributional behaviour of the (first) entrance times to
a sequence of asymptotically rare events. More precisely we consider the sequence (dj) of the
preimages of c1 under the rightmost branch of T , i.e. dj := 1− s−j and the sequence of intervals
Bm := (dm+1, 1), m ≥ 0, with λ(Bm) = µ(Bm) = s−m. The variables τm, m ≥ 0 we are interested
in are the numbers of steps needed to enter Bm, that is

τm(x) := min{i ≥ 1, T i(x) ∈ Bm}.

These entrance times obviously go to infinity almost surely and have infinite expectation with
respect to λ. Still it is possible to understand their asymptotic behaviour.

To state the result, we let E denote the exponential law of parameter 1, and also use the same
symbol for a generic random variable with this distribution, independent of all other variables that
may appear. Similarly, Gα denotes the (essentially unique) one-sided stable law of index α ∈ (0, 1),
i.e. the distribution on R+ = (0,∞) with Laplace transform Ĝα(t) = e−tα

, see [12], pp.448, as
well as the generic random variable with this distribution. For example, G 1

2
(which naturally arises

in return time problems for the simple coin-tossing random walk, cf. [11], p.90) is the law of 1
N 2 ,

where N has a standard normal distribution. We shall say more about how these laws arise after
the statement of the theorem, and it will become clear that it is natural to write G1 for the law
with unit mass at 1.

The theorem below applies to the maps of Example 1, but we prefer to state the result in
full generality since this causes no additional difficulties in the proof, and might turn the reader’s
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attention to a classical probabilistic theory which is not particularly well known in the dynamics
community.

When talking about asymptotic properties we shall identify a sequence (cj) with its piecewise
constant extension c(x) := c[x], x ∈ R+. Recall that a function c : R+ → R+ is called regularly
varying (at infinity) with index α ∈ R if it is of the form c(x) = xαl(x) where l is slowly varying in
that it satisfies limx→+∞

l(σx)
l(x) = 1 for all σ > 0 (e.g. if l is constant or l(x) = log x). A function

b is asymptotically inverse to c if b(c(x)) ∼ c(b(x)) ∼ x as x → ∞. Such functions exist and are
unique up to asymptotic equivalence if α > 0, see [2], pp.28.

Theorem 1 (Distributional convergence of the entrance times) If the sequence (cj) is
regularly varying of index −α for some α ∈ (0, 1), or if (

∑n
j=0 cj)n≥1 is slowly varying and α := 1,

then
1

b(sm)
· τm

d=⇒ E 1
α · Gα

as m → ∞, where the τm are considered as random variables distributed according to Lebesgue
measure λ on I, and b is a function asymptotically inverse to x 7→ (c1Γ(1 − α)c(x))−1 in the
first case, and asymptotically inverse to x 7→ x/(c1

∫ x

0
c(y)dy) in the second. (Hence b is regularly

varying with index 1
α and satisfies x = o(b(x)) as x →∞).

Example 2 In the case α = 1, which lies at the threshold between the finite and the infinite
measure regime, we still have an exponential distribution in the limit, although the normalizing
sequence can no longer be given by the expectations of the τm which are already infinite. For the
particular α = 1 map from the family of example 1, we have (with κ a suitable constant)

κ ·m−1 · s−m · τm
d=⇒ E .

Example 3 In the α ∈ (0, 1) cases of example 1, we have b(sm) = κ ·sm
α . If, in particular, α = 1

2 ,
we obtain

κ · s−2m · τm
d=⇒

(
E
N

)2

.

Remark 1 The distribution Hα := E 1
α · Gα of the independent product of the 1

α -power of an
exponential law of parameter 1 and the one-sided stable law of index α can more explicitely be
described by its Laplace transform which is easily seen to be

Ĥα(t) =
1

1 + tα
.

Remark 2 A minor modification of our argument also gives the asymptotic distributional be-
haviour of the first return times ϕm(x) := min{i ≥ 1, T i(x) ∈ Bm}, x ∈ Bm, regarded as random
variables on the respective sets Bm with normalized Lebesgue measure λm := λ(Bm)−1 · λ. We
have

1
b(sm)

· ϕm
d=⇒ s−1δ0 + (1− s−1) E 1

α · Gα,

where δ0 denotes unit point mass in zero. This is because {ϕm = 1} = Bm+1 ⊆ Bm always has
λm−measure s−1 while under the condition that it should be larger than 1, ϕm behaves as τm above.

To get an intuitive understanding of the result we take a closer look at a Markov chain equivalent
to T . It is a simple renewal chain (Xn) with states Ij , the renewal state being I0, see Fig.2.

Figure 2: The Markov chain model.

The transition probabilities are given by P(Xn+1 = Ij |Xn = I0) = λ(Ij)/λ(I \ I0). The precise
relation to the interval map is as follows: if Y0 ∈ I is randomly chosen according to some probabil-
ity density

∑
j πj1Ij

constant on each Ij , and Yn := Tn(Y0), n ≥ 1, the resulting random sequence
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(Xn) with Xn := Ij if Yn ∈ Ij is the renewal chain with initial distribution (πj).

Any sample path of the renewal chain consists of a sequence of excursions to the left part. If we
let Lk denote the time between the k− 1st and kth visit in I0, then (Lk) clearly is an iid sequence,
and, when starting in I0, the number of steps until we return to I0 for the nth time is

∑n
k=1 Lk.

This is where the stable laws enter:
By classical results, arithmetical averages of nonnegative iid variables Lk without expectation

converge to some nondegenerate limit distribution iff the sequence of tail weights tj := P(Lk ≥ j)
is regularly varying of index −α for some α ∈ (0, 1), in which case we have

1
b(n)

n∑
k=1

Lk
d=⇒ Gα, (1)

where b is asymptotically inverse to x 7→ (Γ(1 − α)t(x))−1, cf. [12], pp.448 or [2], pp.343. The
same conclusion holds with α := 1 provided (

∑n
j=0 tj)n≥1 is slowly varying and b is asymptotically

inverse to x 7→ x/
∫ x

0
t(y)dy, cf. [2],pp.372 or [12], pp.234. Observe that in the case α = 1, which

is closest to the situation of finite expectation (where the strong law of large numbers would give
a.s. convergence of the averages (E(L1) · n)−1

∑n
k=1 Lk → 1), (1) with G1 = 1 still gives a weak

law of large numbers, while for α < 1 stronger fluctuations cause the limit to become continuously
distributed. In our particular situation we have tj = cj showing that the conditions on (cj) are
most natural from a probabilist’s point of view.

In fact (1) is essential for understanding how the limit law in the theorem arises. We give
a rough heuristical sketch of the argument: Recall (cf. [12], pp.169) that α-stability of the law
by definition means that the sum of n independent random variables G1, · · · , Gn sharing this
distribution has the same law as n

1
α G1. The target event Bm is to stay at I0 for at least m steps.

This can happen only at the end of an excursion when we are back at I0, where we have a certain
probability pm (with pm → 0) for Bm to occur. If it does not, we are given another chance at our
next return to I0. The number θm of trials (and hence excursions) we need therefore will roughly
have a geometric distribution and should thus converge to an exponential law as m → ∞. On
the other hand, the total number of steps done during that time will be given by the random sum
L1 + · · ·+ Lθm

. Assume for the moment that the Lk were distributed according to Gα (which they
are not, but they share the same tail behaviour) and that they were independent of θm (in fact
we shall see below that in a sensethe major part of them is). Then, by the defining property of an
α-stable law, this sum is distributed like θm

1
α · L1, so that

τm ' L1 + · · ·+ Lθm
' θm

1
α · Gα,

where θm (when normalized by its expectation) is close to an exponential distribution.

3 Proof of the theorem

The adequate framework for proving a probabilistic result about a dynamical system metrically
isomorphic to a Markov chain should be that of the latter. Instead of working with the simple
renewal chain mentioned before, we shall find it more convenient to use a slightly refined Markov
chain model in which the target events Bm appear explicitely. We let Jj := (dj , dj+1), j ≥ 0,
and consider the Markov chain (Xi)i≥0 whose states are the Ij , j ≥ 1 and Jj , j ≥ 1, with the
obvious transition probabilities P(Xn+1 ∈ Ij |Xn = J1) = λ(Ij)/λ(J0) = (cj − cj+1)/c1, and
P(Xn+1 ∈ Jj |Xn = I1) = λ(Jj)/λ(I0) = s−j(s− 1), cf. Fig.3.

Figure 3: The refined Markov chain.

The relation between the chain and the map T is analogous to what we said before, the target
event Bm is

⋃
j>m Jj .
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For convenience we shall first consider the chain starting with an initial distribution that in the
interval map setting corresponds to normalized Lebesgue measure on I0, that is, P(X0 = Jj) =
λ(Jj)/λ(I0) = (1− s−1)s−j+1, j ≥ 1. Again we consider

τm := min{i ≥ 1, Xi ∈ Bm}.

To get an easy understanding of paths that enter Bm for the first time at a certain step we
shall focus on the states J1 and I1 to separate excursions to the left and to the right. We let Θm

denote the number of passages through J1 (and hence through I1) before time τm:

Θm :=
τm−1∑
i=0

1J1(Xi).

Whether or not we hit Bm between two passages through J1 depends on the edge we choose from
I1. Now, pm := P(Xi+1 ∈ Bm|Xi = I1) = s−m → 0 as m → +∞, and P(Θm = 0) = P(X0 ∈
Bm+1) = pm+1, while P(Θm = r) = (1 − pm+1)pm(1 − pm)r−1 for r ≥ 1. Consequently, the Θm

normalized by their expectations E[Θm] = (1−pm+1)(1−pm)
pm

∼ sm, converge to an exponential law
of parameter 1:

1
E[Θm]

·Θm
d=⇒ E . (2)

Turning back to τm we are going to decompose it into the successive excursion times spent on
either side. To formalize this, we set S0 := 0, and for k ≥ 1 let

Tk := min{i ≥ Sk−1 : Xi = J1}, and Sk := min{i ≥ Tk : Xi = I1}.

The lengths of the kth excursion to the left and to the right are then respectively given by

Lk := Sk − Tk, k ≥ 1 and Rk := Tk+1 − Sk, k ≥ 0.

(These Lk correspond morally - though not precisely - to those from the sketch above.) We can
then represent the entrance time τm as

τm =
Θm∑
k=1

Lk +
Θm−1∑
k=0

Rk + 1. (3)

This decomposition is useful because the sequences (Lk) and (Rk) are iid, and - most important
for our purposes - the sequence (Lk) is independent of each Θm: the number of excursions to the
left is independent of their lengths. Moreover we shall see later that the contribution of the Rk

vanishes asymptotically, and we therefore concentrate on the first of the sums in (3).

As the the tail weights tj = P(Lk > j) are now given by cj

c1
, our assumptions on (cj) ensure that

(1) holds with b as in the theorem. Therefore the correct order of magnitude of
∑Θm

k=1 Lk is that
of the random sequence (b(Θm)) which in view of (2) we might hope to be given by (b(E[Θm])).
We therefore write

1
b(sm)

·
Θm∑
k=1

Lk =
b(E[Θm])

b(sm)
· b(Θm)
b(E[Θm])

· 1
b(Θm)

Θm∑
k=1

Lk. (4)

The scalar factor in front converges to 1 because of the regular variation of b. The second factor
exhibits good limiting behaviour, too: we have

b(Θm)
b(E[Θm])

d=⇒ E 1
α , (5)

which is immediate from the following lemma.

Lemma 1 Assume that E and Em, m ≥ 0, are random variables taking values in R+ = (0,∞),

such that 1
γm

Em
d=⇒ E, for suitable normalizing constants γm →∞. If b : R+ → R+ is regularly

varying at infinity with index β 6= 0, then

b(Em)
b(γm)

d=⇒ Eβ.
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Proof. Writing

b(Em)
b(γm)

=
(

Em

γm

)β

·
l
(

Em

γm
γm

)
l(γm)

,

l being the slowly varying part of b, this is an easy application of the uniform convergence theorem
for slowly varying functions which ensures that l(σx)

l(x) → 1, as x → +∞, uniformly in σ ∈ [Σ−1,Σ],
for any Σ > 1. See [2], p.6. �

Let us return to (4). Since we know that Θm → ∞ in probability and each is independent
of (Lk) it is easy to see that the rightmost term will converge in law to a stable distribution Gα.
However, as both random terms contain the Θm, they are not independent and we have to be
careful about the distribution of their product. The reason why we will still have convergence to
the independent product E 1

α · Gα is that the only thing that matters for the last term is that Θm

is large. The precise distribution of Θm has hardly any effect on the distribution of the sum. This
is made precise in the following lemma, the easy proof of which we omit.

Lemma 2 Assume that Qn, Q,Hm,H, and Tm are random variables such that

1. Qn take values in R+ and Qn
d=⇒ Q,

2. Tm take values in N and Tm →∞ in probability,

3. Hm
d=⇒ H,

4. Each of Tm,Hm, and H is independent of the sequence (Qn) and of Q.

Then
Hm ·QTm

d=⇒ H ·Q.

Of course, the important point here is that Hm and Tm need not be independent. Taking
Hm := b(Θm)

b(E[Θm]) , Tm := Θm and Qn := 1
b(n)

∑n
k=1 Lk we obtain

1
b(sm)

Θm∑
k=1

Lk
d=⇒ E 1

α · Gα. (6)

To get the asymptotics of τm we still have to take care of the Rk, cf. (3). Recall that (Rk) is
an iid sequence and that the Rk have finite expectation. Therefore n−1

∑n−1
k=0 Rk → E[R1] ∈ R+

almost surely. Since also Θm →∞ a.s., we have Θ−1
m

∑Θm−1
k=0 Rk → E[R1] a.s. as m →∞. In view

of x/b(x) → 0 (which is clear from (1) as E[Lk] = ∞) and (2), this implies

1
b(sm)

Θm−1∑
k=1

Rk → 0 in probability. (7)

We therefore end up with

1
b(sm)

· τm
d=⇒ E 1

α · Gα, (8)

which shows that the distribution of the first entrance time in the small events Bm have the as-
serted limiting behaviour if we start our chain on the righthand half with the measure specified in
the beginning.

To finally obtain the result for the case of the initial distribution which corresponds to Lebesgue
measure for the interval map is almost trivial now: It is enough to notice that the shifted chain
(X̄i)i≥0 defined by X̄i := Xi+1 has this initial distribution, thus giving a realization of the process
we are interested in, and to observe that for τ̄m := min{i ≥ 0, X̄i ∈ Bm} we have τ̄m−(τm−1) → 0
almost surely, so that (8) holds just as well with τm replaced by τ̄m. �
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4 A more general pattern

The following heuristic considerations suggest that the same limit laws should arise for a larger class
of asymptotically rare events defined by prescribing the durations k1, k2, . . . ∈ N of m consecutive
excursions from I0 and letting m → ∞. (That is, we consider the nested sequence of cylinders
around some point x ∈ (0, 1).) The situation is more intricate than before, since the excursions
required to continue a successful attempt may change from step to step, and if we fail, we still need
not necessarily start from scratch, as the last few excursions may well fit a shorter initial segment
of (ki).

We start from the Markov chain (Xn)n≥0 with states Ij , j ≥ 0, cf. Fig.2, and P(X0 = I0) = 1.
Li, i ≥ 1, will denote the duration of the ith excursion from I0, and we let Sn :=

∑n−1
k=0 1I0(Xk).

To keep track of how many consecutive excursions of the prescribed lenghts we have done up to
step n, we set D0 := 0 and define Dn := max({0} ∪ {r ≥ 1 : LSn−r+1 = k1, . . . , LSn

= kr}), n ≥ 1.
Observe then that Zn := (Xn, Dn), n ≥ 0, again is a Markov chain. At step n we complete a series
of m excursions of lengths k1, . . . , km iff Zn = (I0,m). The waiting time for this event is given by
τm := inf{n ≥ 1 : Zn = (I0,m)}. We decompose paths according to the visits of (Zn) to (I0, 0).
Let L∗k, k ≥ 1, denote the time between the k − 1st and kth visit, and Θm :=

∑τm

k=0 1(I0,0)(Zk).
Then τm is essentially given by

∑Θm

k=1 L∗k.
Θm is the waiting time until the first success (meaning that - with probability pm → 0 - we

reach (I0,m) before returning to (I0, 0)) in a sequence of Bernoulli trials performed at each visit
to (I0, 0). Hence pm Θm

d=⇒ E as m →∞. Notice now that
∑Θm

k=1 L∗k has the same distribution as∑Θm

k=1 E
(m)
k , where (E(m)

k )k≥1 is an iid sequence independent of Θm, E
(m)
k having the first return

distribution F (m) of (Zn) to (I0, 0) under the condition that we do not pass through (I0,m). If the
F (m) are uniformly in the domain of attraction of Gα in the sense that both the L∞-convergence
of the distribution functions of b(m)(n)−1

∑n
k=1 E

(m)
k to Gα, and the regular variation of the b(m)

are uniform in m, then easy generalizations of the Lemmas above show that

1
b(m)(p−1

m )

Θm∑
k=1

E
(m)
k

d=⇒ E 1
α · Gα, as m →∞.

We are however not going to rigorously discuss this question here.

Finally we notice that this pattern does not include the interesting case of cylinders shrinking
to the indifferent fixed point x = 0. As remarked earlier, they do not constitute events which are
asymptotically rare w.r.t. the invariant measure. A rough analysis suggests that the entrance times
should behave rather differently. In effects, these entrance times can be written τm =

∑Θm−1
i=1 Li

where (Li) is the sequence of iid random variables describing the durations of the excursions from
I0 and Θm is the first index i for which Li is larger than m. For each m, we can consider an
iid sequence (E(m)

i )i≥1, independent of Θm, having the distribution of Li given {Li < m}. The
random variable τm has the distribution of

∑Θm−1
i=1 E

(m)
i . Our point is that, at least in the sim-

plest cases, one can use the theorem in Section IX.7 of [12] to identify the limit distribution of
the triangular array b(m)−1

∑E[Θm]−1
i=1 E

(m)
i for suitable normalizing sequences b. It has finite ex-

pectation but is not trivial. So we believe that another class of limit laws may arise in this situation.
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