ANOSOV DIFFEOMORPHISMS AND COUPLING.
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ABSTRACT. We prove the existence of an SRB measure and the exponential
decay of correlations for smooth observables for mixing Anosov C1T¢ diffe-
ormorphisms on a d-dimensional (d > 2) Riemannian manifold. The novelty
lies in the very simple method of proof. We construct explicitly a coupling
between two initial densities so that under the action of the diffeomorphism,
both components get closer and closer. The speed of this convergence can be
explicitly estimated and is directly related to the speed of decay of correlations.
The existence of the SRB measure and its properties readily follow.

1. INTRODUCTION

The study of convergence to equilibrium in Dynamical Systems has witness an
exciting revival in the last years.

This is due to the introduction of new approaches that have supplemented the
original one based on Markov partitions [2]. In particular, the approach based
on quasi-compactness of the Perron-Frobenius operator has shed a new light on
expanding maps [1]; the use of projective metrics has provided a general constructive
tool that can be applied to a large variety of situations [12], [21], [13], [20], [17]; a
specialized type of tower construction has introduced a new, more flexible, way of
coding dynamical systems [22]; new insights on the properties and the structure of
the transfer operator for flows have finally allowed to obtain results for a vast class
of Anosov flows [7], [5], [6]; the use of random perturbations has proven an easy
tool to obtain rough estimates on the rate of convergence to equilibrium [15], [14],
[9].

In this paper we explore yet another approach. An approach well known in other
fields but only recently introduced in this context by [23], [3], [4]: coupling.

Coupling is a technique used to compare stochastic processes that has yielded
very important results in probability [11]; statistical mechanics [10] and abstract
ergodic theory [18], just to mention a few.

In this paper we apply it to Anosov diffeomorphisms. The result that we obtain
is exponential decay of correlations for a large (as far as we know larger than usual)
class of functions. Of course, this result is far from new, nevertheless it should be
emphasized that the method yields explicit estimates on the rate of convergence
to equilibrium (unlike other methods)." The main difference with Lai-Sang Young
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approach is that the technique is applied directly to the system without the need
to code it beforehand into an expanding tower.

The aim is twofold. On the one hand we want to introduce the coupling method
as a general tool to study decay of correlations. On the other hand we tried to
simplify as much as possible the method in order to understand exactly the technical
conditions needed to make it work. This is an essential preliminary work needed if
one wants to try to apply coupling techniques to situations with polynomial decay
of correlations which it is certainly the next challenge in the field.

1.1. Coupling. Let X and Y be two random variables valued in M distributed
according to smooth densities with respect to the natural measure on M. The task
is to construct a coupling (X , 17) of these random variables such that, in mean, the
distance between T"X and T™Y decays to 0. Since the dynamic is deterministic,
the only possibility is to couple the initial distributions.

A coupling of two random variables is a joint distribution, that is a distribution
on M x M with the marginals given by the two random variables. The simpler
example is the so-called independent coupling (simply take the product distribu-
tion). If the random variables have the same law, another simple coupling is the
diagonal coupling (X =Y with probability one). Intermediate cases present some
“correlation” between the two random variables.

Let us think of discrete random variables for one moment. A coupling is a way
of filling an array with a constraint on the sums of the lines and of the columns.
Given two distributions (p;)i=1,...n and (v;)i=1,... n, it is an array (p; ;)ij=1,...n
with non negative entries satisfying >, p;; = p; and 37, pi; = v;. Let us see
how to construct a coupling with a strong correlated part. We can fill first the
diagonal of the array in an arbitrary way imposing only that the value of each
entry is less than the constrained values of the associated row and column (this will
be the “correlated part”). For example choose a third distribution (7;)i=1,...» and
an € > 0 small enough so that for all ¢, en; < min{u;,;} and put the values en; on
the diagional. ? The total amount of mass “used” is . The remainder can (among
other possibilities) be coupled ”independently”,

Pij = X{i=j}&ni + (1 — &) (i — eni) (v — eny)-
Such an array is indeed a coupling of p and v. One can realize this coupling as
follows. Drop a Bernoulli coin (g,1 — £). If you get head, then choose the two
random variables according to the distribution 7 (in this case they take the same
value). If you get tail, then choose both random variables independently according
to the “remaining” joint distribution, (1 —&)™2(u; — eni)(v; — en;).

This last point of view easily generalizes to the case of continuous random vari-
ables with densities. Consider two density functions, g and h, bounded away from
0. Let f be a third density function and e > 0 such that e f(z) < min{g(z), h(z)}.
Now, drop a Bernoulli coin (g,1 — ¢). If you get head, then choose the two ran-
dom variables according to the distribution with density f. If you get tail, then
choose both random variables independently according to the “remaining” joint
distribution, whose density on the square is given by F(x,y) = (1 — &)~ 2(g(z) —
=£(2))(h(y) — £f(y))-

2To be optimal, one could choose 7 so that en; = min{p;, v; }. But then, the remainder cannot
be coupled independently.
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Back to our case, the general idea is to try to make points match whenever
possible. Yet, since the map is a diffeomorphism, two points which do not match
will never match. Nonetheless, two points that are on the same stable manifold
will come closer and closer under the action of the diffeomorphism. Thus, it should
suffice to couple points laying in the same stable manifold. A first obstacle stemms
from the highly non-local nature of the stable manifod which makes it hard to
control the speed at which points get closer. To overcome this we will consider only
local stable manifolds and proceed inductively.

Fix some § > 0. Firstly, we decide to couple points that are in the same local
stable manifold of size §. Then, we couple points that will be in the same local
stable manifold after one iteration of the diffeomorphism, and so on. What happens
is that, at each step, we can couple a certain fraction of the mass that was not yet
coupled. Finally, every point is coupled with points that will be in the same local
stable manifold after some time (and hence that were in the same stable manifold
since the beginning). Technically, the procedure consists in a sequence of couplings
()?n, f’n) of T"X and of T™Y, constructed inductively, keeping track of the mass
coupled at each step. In the limit all the mass is coupled. More precisely, for the
coupling at step n the probability that the two components are in different pieces
of stable leaves of size ¢ is bounded by (1 — €)™, decaying exponentially fast with n.

1.2. Plan of the paper. In Section 2 we state precisely the result and introduce
some basic notations.

Section 3 is devoted to the precise definition of the space of densities that will
be used in the following.

In Section 4 we define special averages that will be used to actually construct
the wanted coupling. In addition, some standard and less standard, but essential,
parts of the theory of Anosov diffeomorphism are recalled and stated.

Section 5 investigates the properties of the densities when iterated via the dy-
namics. Such properties based on the results of Section 4, are the reason why the
approach ultimately works.

Section 6 introduces the coupling and details its properties.

In Section 7 we have the proof of the main theorem and its corollary.

Finally, the appendix contains the proof of some technical facts that are used in
the paper and it is added for completeness.

2. STATEMENT OF THE RESULT

Let M be a d-dimensional (d > 2) Riemannian manifold endowed with the
Riemannian volume m. We consider a transitive (and hence mixing) Anosov
C+) (M, M) diffeomorphism 7 on M. We mean that T is a diffeomorphism
of M whose differential D,T at point z € M depends a—Holder continuously
on z and is such that there exists an invariant splitting of the tangent bundle
T.M = E°(z)@ E"(z) into a stable and an unstable directions, that is with
||DT|g:||oo <1 and [|[DT1|gu||oo < 1. We denote by ds and d,, the dimensions of
the stable and unstable subspaces, respectively.

We denote by D the distortion constant,

. o |det(D,T)| .
5.1 pday) < 19t DaD)| _ pa(o,y)
21) ‘ Slam, ) =



4 XAVIER BRESSAUD AND CARLANGELO LIVERANI

where d(-,-) is the Riemannian distance. We set,

|DT|g-
|DT-1

o =AY |IDT gl = 1t
0o — )\+, ||DT_1‘EU,

(2.2) o

Es

2.1. Stable and unstable foliations. For all z € M, we denote by W*(x) and
W*(z) the global stable and unstable manifolds (such manifolds are C1+®) e.g.
[8]). For all x € M and all y € W*(x), we denote by d*(x,y) the distance measured
along the leaves W#*(x) induced by the Riemannian metric on the leaf considered
as a sub-manifold in M. In addition, for each z,y € M define d*(z,y) = oo if
they do not belong to the same stable manifold. The corresponding distance for
the unstable manifolds will be denoted by d“. In the same spirit, m*® will denote
the restriction of the Riemannian volume to the stable manifolds. For all 6 > 0 and
all z € M, we will denote by W7 (x) the ball of radius ¢ centered at  in W*(x),

Ws(x) = {y € M | d*(z,y) < d}.

2.2. Observables. Fix § > 0 and §; € (0,1). For all real functions f : M — R,
we set

_ |f(@) — Fy)l
7l = ds(il,lggga ds(x,y)Ps
and
(2.3) 1 £1ls = [ flloo + | £ls-

We consider the following subset of the Borel measurable functions B(M,R),

Cs = {f € BIM,R) [ |[flls < +oo}.

2.3. Statement. We are interested in the convergence to equilibrium, that is in
the speed with which an initial measure, absolutely continuous with respect to
the Riemannian measure, converges toward the SRB measure. As is well known,
only reasonably smooth initial measures yield fast convergence. To state the result
we must then introduce introduce, for the densities of the initial measure, Holder
norms | - ||, defined in analogy with (2.3) by using the unstable distance instead of
the stable one,

(2:4) ANl = N1Fll + ; sup M

wwyy<s AT y)*
Note the L'-norm instead of the L>—norm to take advantage of the obvious duality.

Theorem 2.1. There exists a 8 < 1, computable, and a constant C such that, for
each Bs € (0,1], for all f € Cs and g,h € C(®) (M, R) with Sy hdm = [, gdm =1,

(2.5) ’/M foT"gdm — /M fo T"hdm‘ < CNflls max{||g|lws [P} onPs
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From this result it is easy to deduce the existence of an SRB measure for the
system as well as the exponential decay of the correlations for this measure. This
is the content of the following corollary

Corollary 2.1. There is a unique T-invariant measure p such that

(2.6) lim L

n—1

JHm Z Orky =, ™M — a.S.,

k=0

where 0, denotes the Dirac mass at point . In addition, there is a 0 < 1 and a
constant C' such that, for all f € Cy and all h € C(®) (M, R),

(2.7) ‘ /M f o T hdpu - /M fdu /M hdu‘ < ClIf Al 0"

In fact, the other standard properties of the SRB measure can also be easily
obtained, we do not insist on them since the present method does not seem to add
any particular insight on such issues.

3. DENSITIES

To prove the above theorems we find necessary to specify more precise regularity
requirements for the smoothness of the densities along the unstable manifold. It
turns out that in two dimensions, or more generally when the foliations are smooth,
this can be done in a rather naive way by defining smoothness with respect to the
metric d* as already done in (2.4).3 Nonetheless, in the more general situation in
which the foliations are only Holder it is not immediately obvious how to proceed.
As we will see later the problem arises because if d“(z,y) < ¢, then the maximal
distance of the associated local stable manifolds W§(z) and W§(y) can be of order
€™ which is not enough for our need. To overcome this we introduce a different
notion of “distance” between point, which in fact is not a distance (it does not
satisfy the triangle inequality and it is degenerate) but is nevertheless well suited
to satisfy our needs.

Let ¢ : RT — [0, 1] be a smooth positive monotone function such that, for some
6 >0,

e(x) =0Vz €[0,] and p(z)=1Vz > 20.

Definition 3.1. Fiz v > 1. Given two points x,y € M we define their separation
s(z,y) by

o0
(3.1) s(a,y) =Y v p(d(T"x, T"y)).
n=0
A direct computation shows that if u_ < v this separation is Lipschitz, while if
pu_ > v, it is Holder of exponent lé‘;gul:. The relation between the separation and

the usual distance, as well as some useful properties of the separation are clarified
by the next lemma.

3To purse this point of view it is also necessary to impose an a priori bound on the measure
of small balls in the stable manifold, this is a natural condition since the invariant measure is
typically singular when restricted to the stable manifold and it is characterized by some Hausdorff
dimension.
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Lemma 3.1. There exists co = co(0,v) € RT such that for each two points x,y €
M, if d(z,y) <6, then

S(T, Ty) = vs(z,y).
If x € W§(y), then,

5 (z, )™+ < s(z,y) < cod(z, y)°-

with a_ = hllnui and oy = hllnu’: . In addition, if y € B%(x),
¢y s(z,y) < sup  s(z,w) < cos(w,y).
z € Wi(z)
4
w e Wi(y)
4

The proof of the Lemma is by direct computation. The idea is that s is essentially
a continuous version of the usual discrete separation. For completeness we provide
the details in the appendix.

To define the smoothness of a function along the unstable directions we can then
define

(3.2) flo= sup L@ =IO

d(wy<s  5(2,Y)
The relation with the above mentioned more conventional definitions of smooth-
- /() ~ £)
x)—J\Y
|flug = sup
wr dv(z,y)<é du(xay)ﬁ

(which characterizes Holder continuous functions) is explicitly stated in the follow-
ing immediate consequence of Lemma 3.1.

Corollary 3.1. Letv < u_, then a_, ay € (0, 1] and

|fluas < [fle < | flusay-

We can finally define the class of densities we are interested in

(3.3)  Cula) = {h € C'(M,R)

h(x)
h>0; — <@V vy y:d(z,y) < 5} ,
W) v

where CY(M, R) is the space of continuous functions.

4. MEAN ON THE STABLE LEAVES

4.1. Holonomy map. Given two manifolds U, V transversal to the stable foliation,
with distance less than ¢, we define the (stable) holonomy map ¢ = gy U —V
by ¢(z) = W§(2) N V.* We define the unstable holonomies symmetrically.

Given z € U, let Ey(z) = T,U. Since Ey(z) is transversal to F*(z) we can
define the map Lg, ;) : £%(z) — E®(z) by asking that Lg, v be the unique
vector w € E*(z) such that v+ w € Ey(z). Let vy : U — R be

v (2) = [ Le, ()]l

clearly this quantity measure the “angle” between Ey(z) and E*(z). Similar defi-
nitions can be given for manifolds transversal to the unstable distribution.

40f course, the domain of ¢ is given exactly by
the z € U for which W§(z) NV # 0.
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Proposition 4.1. There exists T € (0,a] such that the stable and unstable distri-
butions are T-Holder continuous.

In addition, the holonomy maps are T-Hélder continuous and absolutely contin-
wous as well.

Finally, calling Jou,v the Jacobian of the holonomy, also

the Jacobian is T-Hélder continuous, more precisely,

Jouv(§) ~
and it is close to the identity, namely
e~ Const {d(z.0(2) "+ (4w ()} < Jg(z) < eCONSE Ad(2:0(2) +w () v (2))

Jouv(2) < e—const d(z,€)" if z,£ € U;

Proof. These are classical results. See for example [8] for the Holder continuity of
the distributions and of the holonomies and [16] for the bounds on the Jacobian. O

4.2. The local product structure. Given zy € M, we want to introduce local
coordinates, adapted to the hyperbolic structure, in a neighborhood of zy. Given
do > 0 small enough, we start by considering the manifolds W§ (zo) and W' (xo)
endowed with the restriction of the Riemannian metric on M. Since they are
C1+) we can introduce two C1+) systems of coordinates P, R — W5 (x0)
and ¥ : R% — W (20).” We can then define the map t,, : R% x R% — By, (x0)
by
Yo (&) = Wi, (43, (€)) N W5, (4, (n))-

Note that in the coordinates 7, ¢ the stable and unstable foliations consist of the
linear parallel subspaces {{ = a} and {n = b} respectively. In addition, remark that,
by Proposition 4.1, 1, is an Holder, and hence continuous, change of coordinates.
We consider the Lebesgue measure mp,(d€, dn) = dédn. Tt is also natural to consider
that the Riemannian volume m induces the measure m = w;ﬁl*m in R%s x R, Tt
turns out that m is absolutely continuous with respect to the Lebesgue measure and
that the Jacobian is a rather nice function as the next proposition more precisely
states.

Proposition 4.2. There exist ¢, M,y > 0 such that, for each xo € M, one can
construct a measurable function py, : RY — RT for which, given any function
f € LY(M,R) supported in Bs,(xq), holds

| twmtay) = [ £ova,(€mpn (€ mdsan
M Rd
The above function has the following properties:

6*C|77*77/‘T < Pzq (fan/) < €c|n7n'|"" vg c Rds,ﬂﬂ?’ c Rd",
Pao (€:1')

1

and

The above result is more or less known to experts in the field, yet we were not
able to locate a clear cut reference to it. Due to this sorry state of affairs we provide
a complete proof in the appendix.

5If the manifold were C2, one could use the standard exponential mappings, identifying, iso-
metrically, E*(zo) with R% and E°(xo) with R%s.
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4.3. Stable averages. We introduce an average on the local stable manifolds
W¢(z), namely As : CO(M,R) — CO(M,R) defined by,

hat@) = 25(@) [ S a)

where
Zs(a)t = /W () = m (03 2)

The following Lemma is the key fact we will use in studying the conditional
expectation we will define shortly.

Lemma 4.1. For all § > 0, sufficiently small, there exists g = €o(d,a) > 0 such
that, for all h € Cy(a),

(4.1) so/ h < Ash < 1 h.
M €0 JM

Proof. If § < g, then we can write Ash in some local coordinates and use regularity
of the observable to compare it to the integral on an open set of positive volume.
In particular, we can choose any c+a) coordinate systems 1/; i R x R — M
such that $(0) = 2, P{(&,0)}) = Wie(@): D({(0,m)}) = Wo(a) and | Dyl +
|[Dy~1||w < M for some M; independent of x.° Let (W§(x)) := A(z) and
Y(W(z)) == B(z), then const™ 6% < fB(x) dn < const 6%, for some constant
independent of x, and

Jwey B = Jay b o va(€,0)|det(Dedh) (€, 0)|d¢

eMl(d+ds)eac05”+

(4.2) < —onst cadu fA(x)xB(x) ho 1/;(& 77)|det(D1/~})(§7 n)|dnd§

< const 5 a(a)xa)) P
< const [, h.

For further reference notice that the same type of reasoning shows that there
exists ¢; > 1, independent of x € M, such that

(4.3) / h(z)m?®(dz) > const / h,
W () Bas(z)
where, as usual, Bs(z) is the ball of radius ¢ centered at z.

The proof of the opposite inequality is slightly more sophisticated.

It is well known that there exists Ny such that, for each € > 0, one can cover M
with balls of radius ¢ in such way that each ball does not overlap with more than
Ny other balls of the cover. From now on we will only consider covers with such a
property.

Let {B:(z;)} be one of such covers. For each function h > 0 there exists ¢ such

that
1 / 71/
- h> N, h.
m(Be (i) Jim(B. (2:)) © Im

61f in doubt about existence, see footnote 12 in the appendix for the explicit construction of
such a coordinate
systems.



ANOSOV DIFFEOMORPHISMS AND COUPLING. 9

To see it, just suppose the contrary, then

/M "= Z /’m(BE(a:j)) h< Ny Zm(BE(xi)) /.A/l "= /M "

which is a contradiction. Let us fix € such that ¢;e < §p and {B.(z;)} a cover with
the above property.

It is a standard consequence of topological mixing (or transitiveness) and the
Anosov property that there is a L. such that any piece of stable manifold of (inner)
diameter L. is at distance less than e from any point of M. Let us fix n such that
A"6 > 2L.. We write

/ ho = / h o T"|det(DT™| g-)
Wg(x) T-"Wg ()

)\J—rndS / hoT™.
T-"Wg ()

Since h o T™ is positive, we can choose B, (z;) in the cover such that

1 1
(4.4) 7/ hoT"Z—/ hoT™.
m(Be(2:)) JB. () No Jm

For the inner diameter of T- "W} (x) is larger than 2L., there exists a piece
W¢E o (2) C T7"W;g(x) of inner diameter c;e, centered on a point z € W*(z;). Re-

member that our choice of ¢; is such that 7 (B (2)) C Cee(2) 1= 7 H(WE (2)) %
P71 (WE (2)). Accordingly, remembering (4.3) and (4.4),

C1€
/ th;"ds/ hoT”zA;"ds/ hoT™"
W§(x) W _(z) B (2)

cre

> const / hoT™
Ba(rt)

Zconst/ h.
M

Both estimates hold in particular for h = 1 and hence for Zs. So the ratios
defining Ash are uniformly bounded.

Y

O

Remark 4.1. Note that the only dynamical property used in Lemma 4.1 (apart
from the existence and regularity of the stable and unstable manifolds) is the tran-
sitiveness.

For the purposes of the next section it is necessary to define an

averaging operator that preserves regularity along the unstable manifold. This is
the case for the operator Ay only if the difference between A_ and A, is sufficiently
small.” To deal with the general case it is necessary to define a different (more
local) average. The definition of such an operator and its properties are the focus
of the rest of the section.

"There are two sources of trouble. On the one hand, if the foliation is only Holder, then the
image, under the holonomy, of a ball, in the unstable manifold, it is not a ball anymore. We know
how to handle this mismatch only if the difference between A1 and A_ is small enough. On the
other hand, if y € W§(z), then the stable distance, measured along the holonomy, between W' (z)
and W' (y) can be of order d(z,y)?, where 8 depends also on )\_)\_T_l and can be < 1.
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Pick any £ € M and consider

2EWH(Z

Where const 1§ < §(z) < const §, for some constant independent of Z, and
— 5ds
Jorrowg o =19

By construction R is foliated by stable manifolds and, provided ¢ is small enough,
there exists ¢, € (0,1) such that

Be.5(Z) C R C B,-15(%) C B, ().

Next, consider the o-algebra F associated to the partition {{Wy_,(2)}.ewp ), R°}-
Finally, choose a smooth function ® such that

® > 0; /M ® =1; supp ® C B, s(T).
Define
(4.6) Ag f(z) = @(2)E(R f| F)(z),

where E( - | F) denotes the conditional expectation given F, with respect to the
probability measure m. Notice that, using the local coordinates around & intro-
duced in section 4.2, we can write a nice version of this conditional expectation:

pz(§',n) &
pz(&m)dds

In the following, we shall omit the ¢z if no confusion arises. Clearly, if f has
support disjoint from R, then Agf = 0. Other instrumental properties of Ag are
summarized by the

following Lemma

(A7) AofWelem) = oslem) [ @f)ovs(e'm)

Lemma 4.2. Assumev < u”, so that 7 > «a, then, the following statements hold:

o E(gAef) =E(fAag);
o there exists €1 = e1(a,d) € R such that, for all f,g € Cy(a),

JAe flloo < &7 / f and / gAx@f>el/ f/

e there exists k1 = k1(a,d) > 0 such that, for

all ’ c Cu((];),
o S ;

Proof. The first statement follows directly by the properties of the conditional
expectation. The second assertion follows from Lemma 4.1.

In fact, formula (4.7) shows that Ag is constructed via stable averages; thus the
same arguments as in Lemma 4.1 can be used to obtain upper and lower bounds
for such averages (formulae (4.2) and (4.3)).

For the last part of the lemma we must compute

O(2)E(Qf|F)(z) — D(y)E(Rf|F)(y)-
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This is most easily done by using in R the coordinates introduced just before
Proposition 4.2. Let (£1,711) be the coordinates of  and (€2, 72) the coordinates of
y. Thus we have

| D(2)E(Df|F)(x) — (y)E(Df|F)(y)| < const s(z,y)P(y)E(Df[F)(y)
+@(z) f{l\fl\éts} |D(&,m) f(§m)pz(§m) — (&, m2) fF(§m2)pz(€,m2)|dS.
But, if z = ¢(&,n1) and w = (€, 12),
[@fpz(z) = @fpz(w)] < ||®[|occomnst (as(z,w) + cd(z,w)") fpz(2)
+/pz(w)|®[5s(z, w)
const (fpa(2) + fpa(w))s(z,w).
We can now conclude since, by the third statement of Lemma 3.1, we can control

the distance of the two stable manifolds. The integral [ [ appears by Lemma 4.1.
O

IN

Remark 4.2. Concerning possible attempts to generalize the present scheme: note
that the last two points of Lemma 4.2 are the only points in our construction where
the properties of the holonomies (and their Jacobians) play a role.

5. REGULARITY PROPERTIES OF THE DENSITIES

5.1. Losing regularity. The following lemma gives an estimate on the regularity
of g(1 — eAgh) given that g and h are in C,(a) and € is small enough.

Lemma 5.1. Choose a real number ag. For all g and h in Cy(a), with fM h=1,
(5.1) g9(1 —eAgh) € Cyla+ ag)

provided € < min{ey, apr] (1 — e t)}.

Proof. 1t follows directly by Lemma 4.2. We have

Agh(z) — Agh(y)

9W)(1 —ehah(y)) < g(z)e™ (1 - choh(2)(1+e—— hah(s)
< g(z)(1 - EA@h(a:))eas(m’y)(l + eMs(x, y))
1— e|[Aghllw
< (@)1 - ehah(2))e™ V(1 + e s(x,y))
1—eg;
< gla)(1 = ehgh(z))e T Y,

O

5.2. Recovering regularity. The diffeomorphism T has regular derivatives. Re-
call that D is the distortion constant (crf. (2.1)).
The Perron-Frobenius operator is given by®
Lo(x) = |det(D,T")|go T (x).
It satisfies,
8Remember that if the measure ©on M is absolutely continuous with respect to the Riemann-

ian volume m with density g, then the evolved measure T, defined as usual by Ty u(f) = p(foT),
is absolutely continuous with respect to m as well and its density is given by Lg.
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Lemma 5.2. Assume v < u®, so that a > ay, then
(5.2) L(Cy(a)) C Cu(u_la + ¢oD)

Proof. Clearly, for all g € Cy(a), Lg > 0. For x € M and y € W¥(x), d(z,y) < 9,
by Lemma 3.1,

Lg(x) = |det(D, T )|g(T  x)
< |det(D,T~")[ePH0)" g(THy)ees T e T w)
< Eg(y)e(aV71+coD)s(m7y).

6. COUPLING

We fix a § > 0 small enough and v < u” , where T is given by Proposition 4.1. We
choose ag and set @ = “-%9+9D et g and h be in Cy(a) with ||g|]1 = ||h]]1 = 1.

1—v—1
We consider two independent random variables X and Y, on some probability space

(Q,F,P), valued in M and distributed according to, respectively, gdm and hdm.

That is, P(X € A) = [, g(z) ) and P(Y € A) fA
We set > max{\~"',1—¢3,1— %}.9 Our key estimate consists in the

following statement.

Proposition 6.1. There exists a constant C' such that, for all n > 0, one can
construct a coupling (X,,Y,) of T"X and T™Y such that

E [d;(%,, V)] < o,
where d3(z,y) = min {d*(z,y),d}.

Proof. Given two density functions h, g € C,(a) the basic idea to construct a cou-
pling between the corresponding two random variables (measures) is to introduce
the auxiliary random variable 7 on Q with values in {0, 1}, independent of X and
Y, having the distribution!®

P(r=0) =¢,
where ¢ = 1 — 0. We set,
Ji xa9As(hxB)
1 ) Ax B M
(6 ) q)hg( X ) fM gAq:.h

9Since the choice of ag is arbitrary, the last term it is not harmful. It should also be remarked
that the second term can be improved. To do so consider n disjoint set R; in which to couple (rather
than just one set R). Each set will have associated its operator Ag,. Define then Ag =", Ag,.
Clearly [ Aghg > ne1 [ g while Agh < e7' [ h. Following the proof of Proposition 6.1 yields that
1- 5%, can be substituted with 1 — ns%. We did not pursue this possibility because, most likely,
the estimate we are obtaining are anyhow not optimal and if one wants to improve the bounds
realistically, then more work is certainly needed.

10mntuitively if 7(w) is zero then the two points X (w) and Y (w) will be coupled and if it is one
then they are left independent. For example one can imagine that a coin (loaded accordingly to
the distribution {e,1 — ¢}) is tossed in order to decide if to couple the points or not.
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We can then define the coupling (X, Y) by
P(X€A; YEB|7=0)= 0pny(AxB)
P(XeA YeB|r=1)= (1-e)P(XecA)—cP(X cA|r=0)
x[P(Y € B) —eP(Y € B| 7 =0)].

Note that the distribution of (X, Y), conditioned to the absence of coupling
(that is to {7 = 1}), is a product measure absolutely continuous with respect to
the Riemannian volume. A direct computation shows that the above is indeed a
coupling (i.e. P(X € A) = P(X € A) and P(Y € B) = P(Y € B)). It is now
natural to define

Xo=X;:Yo=Y X;=TX; Y, =TY.

An obvious computation shows that,

P(X; € A; ?1eB|T:1):/gdm/ﬁdm,
A B

where,
~—(1_5)—1c< 1-—" A h))
g g fMgAd)h Lo} 3
and,
h— 1—5‘1L‘,(h1—€A )
(=72 (41~ e

This is consistent, since, according to Lemma 4.2,

/hAég:/ gAoh > €1,
M M

and,

Agh
1 20 > SAgh>1-— et >0
€1

e
fM gA<1>h - €1

Lemma 5.1 and 5.2 together with our choice of @ and € guarantee that g, he Cu(a).
Obviously, [|g] = Al = 1. o

The result of what we just said is that (X3, Y1) is a coupling of (TX, TY). In
addition, E(X; | 7 = 1) and E(Y; | 7 = 1) are independent random variables with
absolutely continuous distributions in C,(a). This is exactly the original situation
for the variables (X,Y"). It is then clear the possibility to perform the same cou-
pling again. This leads to the following inductive procedure. We start with the
independent coupling of the original random variables. Then, given a coupling
(X'n,?n) of T"X and T™Y, we construct a new coupling (Xn7)7n) If 7,,_1 was
equal to 0, meaning that points were coupled, we keep them coupled, while if 7,,_1
was equal to 1, we use a random variable 7,, defined independently of what has
been constructed up to this stage, to define the law of (Xn,ffn), then we obtain
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(Xn+1,Yn41) by applying T

P(X, € A, Y, € B| Tho1 = 1) = [, hu(z)m(dz) [4 gn(z)m(dz)
P(r,=0|7-1=0)=1

~

Tn=0|T_1=1)=¢

g =

XnEA;)AanB|7'n:0;Tn,1:1):§q>,h (A x B)
Xp€A YV, eB|m=1)=1-e)2P(X,€A|71=1)
—eP(X, €A |7y =0; Ty =1)]

n:9n

~

(
(
(Xn€A Y €B|T1=0=P(X, € A; Y, €B|7h_1=0)
(
(

X[]P’(f/n EB|Tp_1=1)— SIED(Yn EB|1=0; T1p—1 =1)]
)’ZnJrl = TXna ?nJrl = T}Afn

The event {7, = 1} corresponds to the points that have not yet been coupled at
time n; their measure is easily computed

P(r, =1) = (1—&)".

To compute the expectation it is useful to introduce the time of coupling 7 =
> oo o Tn. Clearly the above computation shows that 7 is almost everywhere finite.

Thus

Eld3(Xn, Vo)l = Yro Eld3(Xn, Ya) | 7 = k|P(741 = 05 73 = 1)
= YhooEld3 (T * Xy, T Y) | 7 = k|P(7i41 = 0; 7 = 1)
+ 30 Bl (X, Vo) | 7= kJP(741 = 0; 7 = 1)
Shoo AR (Xk, Vi) | 7 =KI(1— o)k + 300, 0(1— o)

< const "

IN

O

Remark 6.1. In alternative, it is possible to construct a coupling ()Z' , }7) of X and
Y such that for all n > 0,

E [dg(T”)Z',T"}N/)] < const 6".

The idea is to introduce a random variable 7 with geometrical law of parameter
1 — ¢ and set,

P(X€A; Y €e€B|T=n)=0pn,, (T"AxT"B).



ANOSOV DIFFEOMORPHISMS AND COUPLING. 15

It is a coupling since,

P(X€d) = Y P(X€A|7=n)P(F=n)
n>0
= Z 00,k g0 (T"A X M)e(1 —e)"
n>0
= Z(l - 6)"; gnBahy
>0 fM InBohy J7na
= Y- ([ m-tea [ o)
>0 nA Tn+14
o / go =P(X € A),
A

and its properties follow from previous results.

7. PROOFS OF THE MAIN STATEMENTS

7.1. Proof of Theorem 2.1.

Proof. Let g and h be in Cy(a) such that [, gdm =1, [, hdm = 1. We consider
two random variables X and Y valued in M distributed according to, respectively,
gdm and hdm. Clearly,

(7.1) E[f(T"X)] = / foT " gdm.
M
Hence
(7.2) /M foT"gdm — /M foT"hdm =E[f(T"X)] — E[f(T"Y)].

For all coupling ()Zn, )N/n) of T" X and T™Y,
we have,
(7.3) / foT gdm — / foT"hdm = E[f(X,) — f(Yy,)]-
M M
If f € Cs, we have,
| [ foT gdm — [\ foT hdm| < ||f[E[d3(Xn,YV,)%]

(7.4) KoY,
< I FIIE[d3 (X, Y )]P.

This together with Proposition 6.1 concludes the proof of Theorem 2.1 in the special
case g,h € Cy(a). The general case is obtained by noticing that each function g
with ||g|l, < oo can be seen as the difference of two positive such functions. Then
we can restrict to the case g > 0 and, for each b > 0, we have

9(x) +b _ g(y) + Ho(g)s(z,y) +b _ |glos(z,y)
gly) +b ~ g(y) +b B b

that is g + b € Cy(a) provided we choose

lglos(z,y)
b

+1<e

b=a""gls
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In conclusion, if b = a~! max{|g|,, |h|,} and |g||1 = ||h]|1 holds

| J foTrg— [ foTrhl = [y foT ity — [ fo T phsl(llglh +b)
< const || £l max{[[hflu llgll.}6" .
([

Remark 7.1. The d-distance (associated to a distance d) between two random
variables X and o o

Y is the infimum over all couplings (X, Y") of these random variables of E[d(X,Y)].
It is a general fact that the speed of decay of correlations can be expressed in terms
of the d-distance (associated to the distance d§):

@s) | [ roradu [ gan [ g < s v
M M M
7.2. Proof of Corollary 2.1.

Proof. For simplicity, we write the proof for the case 8; = 1. We start by proving
a weak convergence result to identify pu.

Let h € Cy(a), ||h]1 = 1 and set dug = hdm and p, = T 9. We want to show
that the sequence {u,} is weakly convergent.

Let f € Cs then, by Theorem 2.1, for each n,m > ny,

[ (f) = pm (F)| = '/ LrmOhf o Tre —/ LTS o T < constd™ " | f|s,
M M

since L*h € C,(a). Noticing that C; N C® (M, R) is dense in C()(M,R), by the
usual 3—¢ argument it follows that {u,} is a weakly Cauchy sequence from which
the claim follows.

In addition, an obvious modification of the above argument shows that the limit
measure g does not depend on the function h. Clearly p is an invariant measure.
The next step is to prove that p satisfies (2.7).

Given h € C(*)(M, R), let us apply Theorem 2.1 to the two functions h; = hL*1
and hy = £*1 Iy hLF1dm, then for each f € C, holds

(7.6) ‘/MhlfoT"—/MthoT"

but ||he|l, < const and ||k, < const (||h]|, + 1). We can then take the limit for
k — oo in (7.6) and the result follows.

By a standard approximation argument (2.7) implies that x4 is mixing, and hence
ergodic.

Before we turn to the conclusion of the proof, it is very relevant to notice the
following stronger convergence result.

Lemma 7.1. If h € C( (M, R) and duy = hdm, p,, = T™ g, then
Jim pin(9) = plg) Vg € Cs.

< const || f||s max{[[h1lu, [[h2]l}0"

Proof. We know already that the lim,,_, o 1, (g) exists, what is not obvious is that
it equals u(g), since g may very well not be a continuous function. To prove this
the idea is to approximate g by continuous functions in some not too weak sense,
the problem is that we need some control on the || - || of the approximation. This
can be achieved by using the average operator As, let us see how.
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For each 0 > 0, vs5(f) = w(Asf) defines a Borel measure, moreover, if f €
CO(M, R) then Asf € CO(M, R). By Lusin’s theorem, for each g € C; and & > 0
there exists g. € C(Y(M, R) and a closed set K5 C M such that g|x, = g:|x;,
[9lloc = llgelloc and (m + v5)(K§) <e.

Let g5, = Aégea then ”gé,s”s < (57'65 + 1)”9”00 and

lgse 0T —goT"li < [[(Asge — Asg) o T")|l1 + [[Asg o T" — g o T" ||
< A[[As(ge = 9)ll + llglls6”
< const (A"e + §5¢),
where A = |det(DT~1)|o. Accordingly,
1(9) = pn(9)l < [1(Asg) — 1alg)] + 8% gl
< |1(gs,) = pn(9)| + (e + %) gl
< |in(gs.c) = kn(9)] + O((6770" + ¢ +6%)
< O(A"e + 6P + 57 P-0m).
Thus, by choosing first ¢ small, then n sufficiently large and finally ¢ sufficiently
small, the result follows. ([

191l+)

We are now in position to conclude the argument. Let

n—1
.1
3 S =}

Then, clearly T-'A = A and A is not empty. In fact, for f € C(¥)(M, R), the set
Ay for which

A{xGM

n—1 n—1

1 1 .
Jim ; Orix(f) = Jim_~ ; F(T'z) = pu(f)

is measurable and p(Ay) = 1 by Birkhoff Theorem. This, plus the separability of
CO(M, R), implies A measurable and p(A) = 1.'!' Finally, notice that if z € A
then W*(z) C A. Accordingly, x4 € Cs hence, by Lemma 7.1,

m(A) =m(xaoT") = lim m(xaoT") = pu(4) = 1.

8. APPENDIX
Proof of Lemma 3.1. The first statement is obvious:
s(Txz, Ty) = Z v (T o, T y) = vs(x, ).
n=1
To prove the next statement, let us consider x € W§*(y), then
(8.1) plrd(z,y) > d(T"x, T"y) > p”d(z, y).
Next, let ns € N be defined as
ns = inf{n e N | d(T"z,T"y) > ¢}

Hindeed, if {fn} € C© (M, R) is dense, then A = Ag .
neN
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and set n_ = ns and ny = nys. Accordingly,
0 3 y -
(3:2) swy)< Y vt =
n=n_
and
(8.3) s(z,y) > v "p(d(T"z, T y)) =v "+,

On the other hand, from (8.1) follows, if § is
small enough,

In %~ In 20~
n_ > d=.y) ond ny < d(z,y)
In gy Inp_
from which the result follows with a_ = lif”’ and ay = lhi
Ht np_

To prove the third statement of the Lemma, first notice that the triangle in-
equality yields,

6 §
d(T"x, T"y) — 2)\:”1 <d(T"z, T"w) < d(T"z, T"y) + 2)\:”1.
Then notice that if n, = ns, then n, — n, is bounded. So that, since 2)\:”2 < g,

s(z,w) < Z v "p (d(T"m, T"y) + 2)\_"6)

4
n>0

)
< n§* v " (d(T"m,T”y) + 2/\”4>
<Y eI ) 4 A
n>n. 2
< s(z,y) + const p"+ Ty T
< cos(z,y),
where we have used (8.3) to conclude. O

Proof of Proposition 4.2. To prove Proposition 4.2, we start by noticing that 3
and ¢y can be extended to a C(1+) system of local coordinates on the manifold:
{/JVIO : R% xR¥ — Bj(xg) that maps W§ (zo) and W (z) onto straight subspaces of
R? (but does not, a priori send the foliation into a foliation in parallel subspaces).!?
The image of the Riemannian volume through this map is absolutely continuous
with respect to the Lebesgue measure on R? and its Jacobian is a—Holder. To sim-
plify, we shall write again m for this measure as if it was exactly the Riemannian

12Consider any chart ¢ : R* — Bs(z) C M not too far from an isometry (for example the
chart provided by the exponential map). Clearly, provided that § is chosen small enough (6 < g
independent on ), there exists My € RT, independent on xq, such that ||Dpl/co + [[De ™! eo <
M. Then we can define

Vo (6,m) 1= @0~ oyl (&) + o~ oyl (m).
Since Dovgz, and Doy are transversal by the Anosov property and 7 , 3 are c+a) it
follows that D¢vpg , Dpyg are uniformly transversal, provided § < o for some dg independent
on zg. Thus 1[1330, is a change of coordinates and there exists M1 € RT, independent on xg,
such that || Dtgq [|leo + Hzﬁ;ol lloo < M1 (we have used the fact that DgpZ , Dptby, are uniformly
bounded, e.g. [8]).
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volume (that is we confuse m with its image ¢~ "*m in the coordinates) and use
m?® and m* to denote the restrictions of m to subspaces of dimension ds and d,,.
Consequently, we just need to prove absolute continuity and regularity of the Jaco-
bian for the map ¥ = @[;;01 01y, : RY — R?. It means that we (locally) identify the
manifold M with R?, the stable and unstable manifold around z being straight
subspaces. Remark that ¥(£,0) = (£,0) and ¥(0,n) = (0,n) by construction (see
Figure 1 for a pictorical representation of the action of the map V).

\Il Wu (.’L‘())
)

FIGURE 1. The action of ¥ (all curves on the right are stable and
unstable manifolds)

% (.TO

Our task is then to investigate the regularity of ¥. That is we want to show
that ¥~"m is absolutely continuous with respect to the Lebesgue measure and we
—1x%
must compute %.
L
Let us introduce two families of sets.

Sr(z) ={Wi(y) N W§(z) |y € Wi(z); z € Wi(x); |z —yl| <75l —z|| <7},
P.(z)={z+v+w]|ve E(x); we E“x); ||v]] <r; ||w]| <r},

where the tangent space 7,M is isometrically identified with R?. We shall see that
it is possible to compare the measure of these sets with the measure of their images
U(S,(z)). The S, we will refer to as pseudo-rectangles, are constructed on pieces
of stable and unstable manifolds which are close to balls (they are intersections of
balls in the ambient space and the manifolds)

while the P,, parallelograms, are bounded by affine “approximations” of these
pieces of manifolds which are real balls of radius  in R% and R%:. Let us denote
Pi(z) ={z+v | v e Ex); ||v]| <r} ={r+ E*(z)} N B.(x) and P¥(z) =
{4+ w|we E"(x); ||w|]| <7}

A first Lemma shows that the measure of the S, is well approximated by the
measure of the parallelograms P,., which we know how to compute in terms of the
measure of their faces and the angle between them.

Lemma 8.1. There exists c € RT such that the following properties hold:

(1) Pr(l—chz)(x) - ST(LL‘) - Pr(1+w72)(x) .
(2) There exists a T-Héolder function 6 : M — RT such that

m(S,(x)) = (1+ O ™))8(x)m* (P} (x))m" (P (x)),

T
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Proof. To investigate the shape of the sets S,.(z) it is convenient to introduce normal
coordinates with respect to the the base point z € R% A stable manifold, in
the neighborhood of z, can be represented by {z + £ + A(£),£ € E*(x)} where
A: E*(x) — E"(z) is a smooth map. The map A associated to W*(z) has clearly
the property A(0) = 0 and Dy A = 0. More generally, for z € z+E*(x), the manifold
W*#(z) is uniquely represented by the map A, as {z + &+ A.(£),€ € E*(x)}. By
construction A,(0) = 0 while Proposition 4.1 (the Holder continuity of the stable
distribution) implies

[De Azl < comst ||z + &+ A-(O,

where the constant is independent on x. Proposition 4.1 also shows that, to repre-
sent points in S, (z) we need only to consider |z| < r and ||£]| < r".
For v € E*(x), ||v|]| = 1 we define

h(t) = [| A= (vt)]].
‘We have

< ||Dgp AL || < const ||z + vt + A, (tv)]|”

dh‘ B ‘(Az(tv),Dwsz)
dt [A=(t0)

so that, if |z| < r, h must satisfy the following differential inequality in the domain
[t] < r7,

|42 | < const (r™ + h(t))"
h(0) =0
Solving the above differential inequality yields

h(t) < const 4 O(t2r*7+272)

We conclude that if |z| < r and ||v]] < 77, we have

(8.4) |A.(v)| < const [|v]jr™

The same estimate clearly holds for unstable manifolds. The two estimates together
immediately imply that (see Figure 2)

r(l erm?) CS-CP r(l4crm?)

Hence m(Pr(lfchz)) <m(S;) < m(Pr(1+cr72))'

But the measure of P, can be
expressed as

m(P,(z)) = const 0(z)r?
where, the constant depends only on the dimensions, ds and d,,, and where, Propo-
sition 4.1 shows that, if {v;} is an orthonormal base for E,(z) and {w;} for E,(z),

then

9(33) = |det(v1 R O TV wdu)

is 7-Holder. Finally,
m(S,(z)) = m(Pr(2))(1+ OF)).
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E*(x)

B ()

T r f \
r(1+0(r7))

ra+orT?))

FIGURE 2. Foliation and its linear approximations (z = (r,0), y = (0,7))

The next lemma shows that the Lebesgue measure of the sets
Cr(x) = U7H(S,(¥(x)))
can be compared to the measure of the corresponding parallelogram P,.(¥(z)) and

hence to the measure of S,.(¥(z)) = ¥(Cy(x)).

Lemma 8.2. There exists a T-Hélder function py, such that
m (G (@) _

m(Sy(x)) ”

Proof. Let x = ¥(&,n). The sets C.(£,n) are product sets.

CT(E? 77) = Cﬁ(ga 77) X Cﬂ(f, 77);

where C2(&,m) = {¢' € R% | U(¢,n) € S.(z)} (that is U1 (W*(z) N S,(z)) seen
as a subset of R%) and C¥(x) is similarly defined. Since W is the identity when
restricted to the coordinate axis, their measure is exactly

mr(Cy) =mr(C;) mp(Cy)
=m*(¥(C7 x {0})) m"(P({0} x CY)).
To compare this measure to the measure of S,., we shall compare it to the measure
of the parallelogram P,. The images by W of the projection of the faces of C). on the
coordinate axes are approximately images of the faces of P, through the holonomy

map ¢ : {x + E*(z)} — W?*(¥(0,7n)). More precisely, the estimate (8.4) shows
that, if r is small enough,

qu(Pi(l_crﬂ)) - {\11(0777/)777/ € C;?} C ¢u(Pf(1+CTT2))~

(2)(1+O0(™)).
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The holonomy map has a Jacobian J. This Jacobian is not exactly the one defined
in Proposition 4.1 because of the change of coordinate 1,,, but together with the

regularity of zzmo, Proposition 4.1 proves that it is 7-Holder. We can thus compute
the measures by doing a change of variable:

mr(Cy) = m ({¥(0,7),n € C7})
/. a

du ({T(0,m),n €Cs})
T4 (@)m* (6, ({W(0,7),1" € C;1)(1+O(7))
= J4x)m* (P(x))(1+0(™)).

Of course, the same estimate holds for the unstable part. Hence, denoting Je
the corresponding Jacobian,
my(Cr (W) _ J"(2)J* ()

(8.5) A I T G L)}

O

We shall now use these estimates to compare the measure m = ¥*m with the
Lebesgue measure.

Lemma 8.3. The measures m and my, are equivalent.

Proof. Let us start by proving that m is absolutely continuous with respect to my,.
This is equivalent to saying that if, for some measurable set A, m(A4) = 0 then
mp(A) = 0. Since, by definition, m(A) = m(¥(A)) this means that, for each ¢ > 0,
it is possible to cover the set ¥(A) with a collections of pseudo-rectangles \S,, such

that
Z m(Sy) <e.
But, by Lemma 8.2, m(S,,) > ¢ 'mr(C,), where S, = ¥(C,,). Hence,
mp(A) <Y mp(Cy) <Y m(Sy) < ce

which shows that my(A4) = 0.

Next, let us prove that my, is absolutely continuous with respect to m. To prove
this we will show that if for a measurable set A, m(A) > 0, then my(A4) > 0. We
will argue by contradiction.

Suppose that there exists a measurable set A such that m(A) > 0 and mp(A) =
0. Since both m and my, are Borel measures they are regular. Accordingly, for each
€ > 0 there exists an open set U D A such that

mL(U) S g,

and there exists a compact set K C A such that
1
m(K) > 5fn(A).

Since W is continuous together with its inverse, U(K) is compact and ¥(U) is open.
It is then easy to construct a finite disjoint collection of cubes I',, such that I, C U
and

m(UpT NU(K)) > =i (K).
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By Lemma 8.1 it is clear that in each such cube we can fit a pseudo-rectangle S,
such that m(S,) > c,m(T',). Collecting the above considerations and remembering
m(S) < emp(C) from Lemma 8.2 yields

mrp(U) > mp(U, ¥ (S,)) >t Yo m(Sy) > c e, >oam(Iy)
> i (K) > 22m(A)

2c 4c
which leads to the announced contradiction provided e has been chosen small
enough. O

We are now in position to conclude the proof of Proposition 4.2. In effects,
the family {S,(z)} is a family of nicely shrinking sets (in the sense of Rudin [19],
p. 163). So we can use the Lebesgue differentiation Theorem (see, for example,

Rudin [19], p. 166) to conclude that the Radon-Nikodym derivative of m with

respect to Lebesgue can be computed as inverse of limit of ratios % as

r — 0. Its value, at all points, is given by Lemma 8.2.

The result is obtained by pulling back the Jacobian to the manifold M through
the C1+®) change of coordinates szo to finally obtain p,,. This function inherits
the regularity properties of 1;10, J 5 Jv and Po- a
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