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Abstract

For a class of asymptotically hyperbolic manifolds, we show that the bottom of the con-
tinuous spectrum of the Laplace-Beltrami operator is not an eigenvalue. Our approach only
uses properties of the operator near infinity and, in particular, does not require any global
assumptions on the topology or the curvature, unlike previous papers on the same topic.
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1 Introduction and main result

The main purpose of this paper is to prove that on an asymptotically hyperbolic manifold (M,G)
of dimension n and for perturbations V of the Laplace-Beltrami operator which decay at infinity,
we have the property

(
−∆G + V

)
ψ =

(n− 1)2

4
ψ and ψ ∈ L2 =⇒ ψ = 0. (1.1)

Here V may be a potential but also a second order differential operator, possibly with complex
coefficients. In the case when −∆G + V is selfadjoint, this means that the bottom of the essential
spectrum is not an eigenvalue. That the essential spectrum is absolutely continuous follows for
instance from [6]. Let us recall that, in scattering theory, ruling out the presence of such an
eigenvalue is the first step in the study of the resolvent of the Laplacian at the bottom of the
continuous spectrum, this being in turn important to analyze long time properties of dispersive
equations, such as the local energy decay for the wave equation. This is the main motivation of
this paper.

The property (1.1) has been considered in several papers, with V ≡ 0, under various curvature
conditions but only for (perturbations of) spherically symmetric metrics [10, 5] and simply con-
nected manifolds [3, 4], each time with the additional assumption that the curvature is globally
negative. These are restrictive conditions, in particular for the purpose of scattering theory of
asymptotically hyperbolic manifolds where one wishes to treat general scatterers, ie not to rely
too much on what happens in a compact region. In a different direction from the previous results,
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Vasy and Wunsch [12] have obtained an absence of eigenvalue condition on a very general class of
negatively curved manifolds for which no asymptotic behavior is needed (only a pinching condition
on the curvature is required), but under the stronger assumption that ψ decays super exponen-
tially. Recently, Kumura [8] has obtained fairly sharp conditions on the decay rate of the radial
curvature to −1 leading to the absence or the existence of embedded eigenvalues in the bulk of the
continuous spectrum, however his results do not apply to the bottom of the continuous spectrum
(n− 1)2/4.

Our main result in this paper is that if the left hand side of (1.1) holds, then ψ decays super
exponentially. Using the unique continuation result of Mazzeo [9], this implies automatically that
ψ must vanish identically (if V is a second order operator then, for this unique continuation
purpose, its principal symbol has to be real, but lower order terms can have complex coefficients).
The interest of our approach is that it depends only on data at infinity: the metric and the
topology can be arbitrary in a compact set, no global condition on the curvature is needed and
we don’t use any spherical symmetry nor simple connectedness. Furthermore, our proof of the
super exponential decay of ψ is robust enough to handle non self-adjoint operators (here V may
have complex coefficients even in the second order terms) and does not use crucially the particular
structure of the angular Laplacian. In addition, our decay condition on G to an exact warped
product dr2 + e2rg (see (1.3)) is relatively weak (it is a short range pertubation in the Schrödinger
operators terminology), and in any case much weaker than what happens in the conformally
compact case where one has exponential decay.

Here are our assumptions on (M,G) and on the perturbations V .
We consider an asymptotically hyperbolic Riemannian manifold (M,G) of the following form.

We assume that M is smooth and that, for some smooth compact subset K b M with boundary
∂K = S (with S of dimension n− 1), we have

(M \K,G) is isometric to
(
(R,+∞)× S, dr2 + e2rg(r)

)
, (1.2)

where (g(r))r>R is a family of Riemannian metrics on S depending smoothly on r and which
converges to a fixed metric g as r →∞, in the sense that

||∂jr
(
g(r)− g

)
||C∞(T∗S⊗T∗S) ≤ C〈r〉−τ0−j , (1.3)

for each semi-norm || · ||C∞(T∗S⊗T∗S) of the space of smooth sections of T ∗S ⊗ T ∗S. Here τ0 is a
positive real number that

τ0 > 1.

We note that metrics of the more general form

G = a(x, θ)dx2 + exbj(x, θ)dxdθj + e2xhij(x, θ, dθi, dθj)

where
(
θ1, . . . , θn−1

)
are coordinates on S and x a coordinate such that x→∞ at infinity on M \K,

can be put under the normal form dr2 + e2rg(r) under natural decay rates of the coefficients a to
1 and bj to 0 (see [2] for more details).

The perturbations V which are allowed in (1.1) are as follows. First we assume that they are
second order differential operators on M with smooth coefficients such that

−∆G + V is elliptic on M. (1.4)

This implies first that if the left hand side of (1.1) holds then ψ is smooth and more importantly
that the operator satisfies the local unique continuation principle provided that its principal symbol
is real (see for instance [7, Theorem 17.2.6]). Near infinity, ie on M \K, we assume that

V = e−2rW (r) + a(r, ω)∂r + b(r, ω), ω ∈ S, (1.5)

2



where W (r) is, for each each r, a second order differential operator on S which reads in local
coordinates

W (r) =
∑
|α|≤2

aα(r, θ)Dα
θ , (1.6)

with

|∂jr∂
β
θ aα(r, θ)| ≤ Cjβ〈r〉−τ0−j , j ≤ 2, β ∈ Nn−1, (1.7)

locally uniformly with respect to θ. We also assume that

||∂jra(r, .)||C∞(S) ≤ C〈r〉−τ0−1−j j = 0, 1, ||b(r, .)||C∞(S) ≤ C〈r〉−τ0−1, (1.8)

for all semi-norms || · ||C∞(S) of C∞(S). For simplicity we also assume that aα, a and b are smooth
but no bound on higher order derivatives in r will be used. Note also that these coefficients can
be complex valued; furthermore, we do not require V to be symmetric with respect to dvolG, the
Riemannian volume density. An operator V satisfying (1.4), (1.5), (1.6), (1.7) and (1.8) will be
called an admissible perturbation.

Theorem 1.1. Let (M,G) be a connected asymptotically hyperbolic manifold of dimension n and
V be an admissible perturbation. If ψ ∈ L2(M,dvolG) satisfies(

−∆G + V
)
ψ =

(n− 1)2

4
ψ, (1.9)

then on M \K we have, for all C > 0,

eCrψ ∈ L2, ∂r
(
eCrψ

)
∈ L2, (−∆G + V )

(
eCrψ

)
∈ L2. (1.10)

In (1.10), L2 stands for L2(M \K, dvolG), since r is only defined on M \K, but this is sufficient
for we are only interested in the behavior near infinity and we know that ψ is smooth. The super
exponential decay (1.10) and the result of Mazzeo [9, Corollary (11)] on Carleman estimates and
unique continuation lead to

Corollary 1.2. Let V be an admissible perturbation, with real principal symbol if V is a second
order operator1. Then (1.1) holds true. In particular, for V ≡ 0, (n− 1)2/4 is not an eigenvalue
of −∆G.

Note that even if we show that (n− 1)2/4 is not an eigenvalue of −∆G, we do not exclude that
there can be eigenvalues smaller than (n− 1)2/4.

2 An abstract result on exponential decay

The purpose of this section is to prove Theorem 2.5 below which roughly asserts that L2 solutions
of Pu = 0, for a certain class of Schrödinger operators P on a half-line (see (2.2) below) with
operator valued coefficients, decay super exponentially at infinity. We will see in Section 3 that
the proof of Theorem 1.1 is a consequence of Theorem 2.5.

Let H be a separable Hilbert space with inner product 〈., .〉H and norm || · ||H. Let Q be a
selfadjoint operator on H such that

Q ≥ 1. (2.1)
1If V is only a first order operator, then no additional condition is required
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In the sequel, we fix a positive number R0 > 0 and denote for simplicity

L2H := L2((R0,∞), dr)⊗H ≈ L2((R0,∞), dr;H).

We refer to [11, Section II.4] for a definition of tensor products of Hilbert spaces and simply
quote here that L2H can be viewed as the completion of C∞0

(
(R0,∞);H

)
equipped with the inner

product

(v, w) =
∫ ∞
R0

〈v(r), w(r)〉Hdr.

We note that the latter is still perfectly well defined on L2H ∩ C0((R0,∞);H), ie without any
”almost everywhere” issue. Besides, in this paper, we shall only consider integrals of continuous
functions (possibly H-valued). In the final application we shall take H = L2(S) and Q = 1−∆S ,
with ∆S the Laplace Beltrami operator on S associated to the metric g in (1.3).

We consider an unbounded operator on L2H of the form

P = −∂2
r + V1(r)∂r + V2(r) + e−2rQ(r), (2.2)

where (Q(r))r>R0 , (V1(r))r>R0 and (V2(r))r>R0 are families of operators on H satisfying the fol-
lowing conditions. For each r, Q(r) is an unbounded operator such that, for all half integer
s = − 1

2 , 0,
1
2 , 1, . . .

Q(r) : Dom(Qs+1)→ Dom(Qs) is bounded,

each domain Dom(Qs) being equipped with the norm ||Qsϕ||H. We assume that Q(r) is C2 with
respect to r in the sense that QsQ(r)Q−s−1 is C2 in the strong sense for all s, and that there exists
τ0 > 0 such that

||Qs∂jr
(
Q(r)−Q

)
Q−s−1||H→H . r−τ0−j , j = 0, 1, 2, r > R0. (A0)

Notice that Q(r) is a perturbation of the selfadjoint operator Q, as r goes to infinity, but we do not
assume that Q(r) is selfadjoint. Without loss of generality, by possibly replacing R0 by a larger
value, we may assume that

||
(
Q(r)−Q

)
Q−1||H→H ≤ 1/2, r > R0. (2.3)

which implies that Q(r)Q−1 is invertible as an operator on H.
We assume that V1(r) and V2(r) satisfy, for some τ1, τ2 > 0 and all integer k ≥ 0,

||Qk∂jrV1(r)Q−k||H→H . r−τ1−j , j = 0, 1, r > R0, (A1)

and
||QkV2(r)Q−k||H→H . r−τ2 , r > R0, (A2)

meaning more precisely that, for i = 1, 2, Vi(r) preserves Dom(Qk) for all k, that QkVi(r)Q−k is
bounded on H and is strongly C2−i with the indicated decay rate with respect to r.

In the final application, we shall assume that τ0 > 1 and τ1, τ2 > 2, but this will not be
necessary at all steps.

Definition 2.1. Given v ∈ L2H, we say that ∂2
rv belongs to L2H if there is a constant C such

that ∣∣(v, ∂2
rΦ)L2H

∣∣ ≤ C||Φ||L2H,
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for all Φ ∈ C∞0 ((R0,∞);H). We then call ∂2
rv ∈ L2H the unique f ∈ L2H such that

(v, ∂2
rΦ)L2H = (f,Φ)L2H Φ ∈ C∞0

(
(R0,∞);H

)
and set

H2H = {v ∈ L2H | ∂2
rv ∈ L2H}.

Of course, as in the scalar case (ie H = C), any v ∈ C2
(
(R0,∞);H

)
such that v and ∂2

rv belong
to L2H will satisfy this definition.

For further use and the reader’s convenience, we record without proof the following properties
which are the H-valued analogues of the standard properties of Sobolev spaces of scalar functions
on the half line (R0,∞).

Proposition 2.2. 1. H2H ⊂ C1((R0,∞);H).

2. If v ∈ H2H, then ∂rv ∈ L2H and

||v(r)||H → 0 and ||∂rv(r)||H → 0 as r →∞.

3. If v, w belong to H2H and vanish near R0 then

(∂2
rv, w)L2H = −

∫ ∞
R0

〈∂rv(r), ∂rw(r)〉Hdr.

4. H2H is stable by multiplication by C2 functions of r which are bounded together with their
derivatives.

5. If v ∈ H2H and if there is f ∈ C0
(
(R0,∞);H

)
∩ L2H such that (v, ∂2

rΦ) = (f,Φ) for all
Φ ∈ C∞0

(
(R0,∞);H

)
then

v ∈ C2
(
(R0,∞);H

)
and ∂2

rv = f.

6. Assume that

v ∈ H2H ∩ C0((R0,∞); Dom(Q)) and e−2rQv ∈ L2H

and
f ∈ C0((R0,∞);H) ∩ L2H.

Then
e−2rQ(r) ∈ L2H.

Furthermore, we have equivalence between the fact that

(v, ∂2
rΦ)L2H = (V1(r)∂rv + V2(r)v + e−2rQ(r)v,Φ)L2H + (f,Φ)L2H, (2.4)

for all Φ ∈ C∞0
(
(R0,∞);H

)
and the fact that v ∈ C2((R0,∞);H) with

∂2
rv = V1(r)∂rv + V2(r)v + e−2rQ(r)v + f (2.5)

holding in the usual sense.
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In item 6, that e−2rQ(r)v belongs to L2H is an easy consequence of (2.3). The second part of
item 6 means of course that if Pv = f in the distributions sense with a smooth enough f , then it
holds in the strong sense.

Definition 2.3. The two equivalent properties in item 6 will be denoted by

Pv = f.

To state our result, we introduce the following convenient notation. Given v ∈ C0((R0,∞);H),

v ∈ L∞expH
def⇐⇒ for all N ≥ 0, sup

r≥R0+1
eNr||v(r)||H <∞,

and, for 1 ≤ p <∞ real,

v ∈ LpexpH
def⇐⇒ for all N ≥ 0,

∫ ∞
R0+1

eNr||v(r)||pHdr <∞.

In both cases, the threshold R0+1 is completely irrevelant. We only mean that these are conditions
at infinity. It is also convenient to introduce the following space of families of operators on H,

B =
{
B = (B(r))r≥R0+1 | for all j ≥ 0, ||QjB(r)Q−j ||H→H ≤ Cj , r ≥ R0 + 1

}
, (2.6)

where, as before, we mean more precisely that B(r) preserves the domain of Qj for all j and
r 7→ QjB(r)Q−j is strongly continuous. These spaces have the following straightforward properties.

Proposition 2.4. For all p ≥ 1,

1. L∞expH ⊂ LpexpH ⊂ L1
expH.

2. If v ∈ L1
expH, then r 7→

∫∞
r
v(t)dt belongs to L∞expH.

3. If v ∈ LpexpH and B ∈ B, then r 7→ B(r)v(r) belongs to LpexpH.

Our main result is the following one.

Theorem 2.5. Assume in (A0), (A1) and (A2) that

τ0 > 1, τ1 > 2, τ2 > 2. (2.7)

If

u ∈
⋂
k∈N

C1
(
(R0,∞); Dom(Qk)

)
, (2.8)

satisfies

u ∈ H2H and e−2rQu ∈ L2H, (2.9)

and

Pu = 0. (2.10)

Then

u ∈ L∞expH, ∂ru ∈ L∞expH, Qu ∈ L2
expH. (2.11)
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The condition (2.8) is only a regularity condition which, in concrete examples, will typically
follow from elliptic regularity, but which gives no information on the (square) integrability of
||Qku(r)||H. The only L2 information of this form at our disposal is given by (2.9). Note also that
the assumption (2.8) does not follow from the fact that u belongs to H2H for this only implies
that u ∈ C1

(
(R0,∞); Dom(Qk)

)
with k = 0. On the other hand, the equation (2.10), together

with the continuity of r 7→ e−2rQ(r)u(r) imply that u belongs to C2
(
(R0,∞);H

)
. We shall see

later that u actually belongs to C2
(
(R0,∞); Dom(Qk)

)
for all k.

In the sequel we shall use the notation

||v||2E := ||∂rv||2L2H + ||e−rQ1/2v||2L2H.

Let us introduce % ∈ C∞(R; R) such that supp(%) ⊂ [1,∞) and % ≡ 1 near infinity, and set

%R(r) := %(r/R).

The following elementary lemma is a property of the operator P at infinity.

Lemma 2.6. Assume that

τ0 > 0, τ1 > 1, τ2 > 2. (2.12)

For all R� 1 and all v ∈ H2H such that

v ∈ C0
(
(R0,∞); Dom(Q)

)
and e−2rQv ∈ L2H, (2.13)

we have

Re
(
P (%Rv), %Rv

)
L2H ≥

1
2
||%Rv||2E . (2.14)

Proof. Without loss of generality, (2.12) allows to assume that, for some ε > 0 and all i = 0, 1, 2
τi = i+ ε. By (A2), we have∣∣(V2(r)%Rv, %Rv

)
L2H

∣∣ ≤ CR−ε||r−1%Rv||2L2H, (2.15)

and, by (A1), ∣∣(V1(r)∂r(%Rv), %Rv
)
L2H

∣∣ ≤ CR−ε||∂r(%Rv)||L2H||r−1%Rv||2L2H. (2.16)

By (A0) with s = −1/2, we also have

|〈Q(r)v(r), v(r)〉H − 〈Qv(r), v(r)〉H| ≤ Cr−ε||Q1/2v(r)||2H. (2.17)

Then, using the following Hardy inequality,

||r−1%Rv||L2H ≤ 2||∂r
(
%Rv

)
||L2H, (2.18)

(2.15) and (2.16) imply that∣∣(V1(r)∂r(%Rv), %Rv
)
L2H

∣∣+
∣∣(V2(r)%Rv, %Rv

)
L2H

∣∣ ≤ CR−ε||∂r(%Rv)||2L2H

≤ CR−ε||%Rv||2E .
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On the other hand, multiplying (2.17) by e−2r%R(r)2 and integrating in r yields∣∣∣∣∫ 〈e−2rQ(r)%R(r)v(r), %R(r)v(r)〉Hdr − ||e−rQ1/2%Rv||2L2H

∣∣∣∣ ≤ CR−ε||e−rQ1/2%Rv||2L2H

≤ CR−ε||%Rv||2E .

Using item 3 in Proposition 2.2, we have (−∂2
r%Rv, %Rv)L2H = ||∂r(%Rv)||2L2H so we obtain∣∣∣(P (%Rv), %R(r)v

)
L2H − ||∂r(%Rv)||2L2H − ||e−rQ1/2(%Rv)||2L2H

∣∣∣ ≤ CR−ε||%Rv||2E ,
from which the result follows. �

Proposition 2.7. Let u satisfy (2.8), (2.9) and (2.10) and assume that

τ0 > 0, τ1 > 1, τ2 > 2. (2.19)

Then for R� 1 and all integer k ≥ 0, we have

||%RQku||E <∞.

Proof. By (2.19), we assume as in the previous lemma that τi = i + ε for some ε > 0. Fix k ≥ 0
and define

Wh = (1 + hQ)−kQk, h ∈ (0, 1],

which is a family of bounded operators on H preserving the domains of all powers of Q and
converging in the strong sense to Qk on Dom(Qk) as h→ 0. For simplicity we denote

uR,h := %RWhu. (2.20)

We shall prove that, for all R large enough,

sup
h∈(0,1]

||uR,h||E <∞. (2.21)

For future reference, we already record that uR,h satisfies

uR,h ∈ C0((R0,∞); Dom(Q)), e−2rQuR,h ∈ L2H (2.22)

since Wh is bounded and preserves Dom(Q), and e−2rQuR,h = %R(r)Whe
−2rQu belongs to L2H

by (2.9). We observe next that, uniformly with respect to h,

||Q−1/2Wh

(
Q(r)−Q

)
W−1
h Q−1/2||H→H ≤ Cr−ε. (2.23)

The latter follows from (A0), with s half integer, and the easily verified fact that

Wh

(
Q(r)−Q

)
W−1
h =

k∑
m=0

Cmk
hmQm

(1 + hQ)k
Qk−m (Q(r)−Q)Qm−k,

where (hQ)m/(1 + hQ)k is bounded, uniformly in h. Similarly, using (A2) we also have

||WhV2(r)W−1
h ||H→H ≤ Cr

−2−ε, (2.24)
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and using (A1)

||WhV1(r)W−1
h ||H→H ≤ Cr

−1−ε. (2.25)

Since Q and Wh commute, we see that

WhQ(r)W−1
h = Q(r) + (Q−Q(r)) +Wh(Q(r)−Q)W−1

h

=: Q(r) + Ψh(r), (2.26)

where, by (A0) and (2.23),

||Q−1/2Ψh(r)Q−1/2||H→H ≤ Cr−ε. (2.27)

Since ∂r and Wh commute, we also see that

Wh

(
−∂2

r + V1(r)∂r + V2(r)
)
W−1
h = −∂2

r + V1(r)∂r + V2(r) + V1,h(r)∂r + V2,h(r), (2.28)

with
Vi,h(r) := WhVi(r)W−1

h − Vi(r), i = 1, 2,

satisfying uniformly with respect to h

||Vi,h(r)||H→H ≤ Cr−i−ε, (2.29)

by (A1), (A2), (2.24) and (2.25). Therefore, using (2.26) and (2.28), we can write

P = WhPW
−1
h + e−2rΨh(r) + V1,h(r)∂r + V2,h(r),

so using (2.27) and the Hardy inequality (2.18) together with (2.29), we have∣∣(PuR,h, uR,h)L2H −
(
WhPW

−1
h uR,h, uR,h

)
L2H

∣∣ ≤ CR−ε||uR,h||2E ,

≤ 1
4
||uR,h||2E , (2.30)

by choosing R large enough independently of h. On the other hand, the equation (2.10) and (2.20)
imply that

WhPW
−1
h uR,h = WhP

(
%Ru

)
= Wh (−2%′R∂ru− %′′Ru+ %′RV1(r)u)
= −2%′R∂rWhu− %′′RWhu+

(
WhV1(r)W−1

h

)
%′RWhu. (2.31)

Using the uniform bound (2.25), (2.31) implies that we can find a constant C independent of h
such that∣∣(WhPW

−1
h uR,h, uR,h

)
L2H

∣∣ ≤ C ∫
supp %′R

||∂rQku(r)||2H + ||Qku(r)||2Hdr h ∈ (0, 1]. (2.32)

Using (2.8) and the compact support of %′R, the right hand side of (2.32) is finite, hence (2.30)
implies that for some constant CR independent of h,∣∣ (PuR,h, uR,h)L2H

∣∣ ≤ 1
4
||uR,h||2E + CR, h ∈ (0, 1]. (2.33)

If we assume additionally that R is large enough so that (2.14) holds true, then (2.14) applied to
uR,h (recall that uR,h satisfies the conditions (2.13) by (2.22)) and (2.33) imply that ||uR,h||2E ≤ 4CR
hence (2.21). The result is then a straightforward consequence of the Fatou Lemma. �

A first very useful consequence of Proposition 2.7 is the following.
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Proposition 2.8. Let τ0, τ1, τ2 and u be as in Proposition 2.7.

• For all k ≥ 0 and all r > R0, ∫ ∞
r

||e−2tQku(t)||Hdt <∞, (2.34)∫ ∞
r

||e−2tQk∂tu(t)||Hdt <∞, (2.35)

• For all f ∈ C0(R) ∩ L∞(R), all B ∈ B, and for all integers k ≥ 0 and l = 0, 1, we have

f = 0 near 0 =⇒ f(e−2rQ)B(r)Qk∂lru ∈ L2
expH. (2.36)

The property (2.36) means that, up to exponentially decaying terms, the solution to Pu = 0 is
spectrally localized where e−2rQ is small.

Proof. Let us consider (2.34). By (2.8), it suffices to show that (2.34) holds for all r large
enough or, equivalently, to check that the estimate holds with %Ru instead of u. By (2.1) we have
||Q−1/2||H→H ≤ 1 hence

||e−2t%R(t)Qku(t)||H ≤ e−t||e−t%R(t)Qk+1/2u(t)||H,

so the conclusion follows from Proposition 2.7 and the Cauchy-Schwarz inequality (with respect to
t). The proof of (2.35) is analogous.

Let us now prove (2.36). This is again a condition at infinity, so we may replace u by %Ru in
the estimate. Note also that r 7→ f(e−2rQ) is strongly continuous, so r 7→ f(e−2rQ)B(r)Qk∂lru(r)
is continuous by (2.8). Assume first that l = 0. Write, for any arbitrary N ≥ 0,

f(e−2rQ) = fN (e−2rQ)e−2NrQN , with fN (r, µ) =
f(e−2rµ)
(e−2rµ)N

,

and observe that ||fN (r, µ)|| ≤ CN for all r > R0 and all µ ≥ 1. Then (2.36) follows by writing

e(2N−1)rf(e−2rQ)Qk%R(r)u(r) = fN (r,Q)BN (r)
(
e−rQN+k+ 1

2 %R(r)u(r)
)
, (2.37)

with
BN (r) = QNB(r)Q−N−

1
2

and by using that the bracket in right hand side of (2.37) belongs to L2H by Proposition 2.7. If
l = 1, we proceed similarly by writing

e2Nrf(e−2rQ)B(r)Qk∂r (%R(r)u(r)) = fN (r,Q)B̃N (r)Qk+N∂r (%R(r)u(r)) ,

with B̃N (r) = QNB(r)Q−N . This completes the proof. �

The following proposition will be very useful in the sequel. To state it, we introduce the notation

v
L2

expH≡ w ⇐⇒ v − w ∈ L2
expH.

We also recall that B is defined in (2.6).
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Proposition 2.9. Let τ0, τ1, τ2 and u be as Proposition 2.7. Fix

B1, B2 ∈ B and χ ∈ C∞0 , χ = 1 near 0.

Then, for all k ≥ 1 and j ≥ 0, we have

B1(r)
∫ ∞
r

B2(t)e−2ktQku(t)dt ∈ Dom(Qj), (2.38)

and

QjB1(r)
∫ ∞
r

B2(t)e−2ktQku(t)dt
L2

expH≡ QjB1(r)
∫ ∞
r

χ(e−2tQ)B2(t)e−2ktQku(t)dt, (2.39)

L2
expH≡ χ(e−2rQ)QjB1(r)

∫ ∞
r

B2(t)e−2ktQku(t)dt, (2.40)

L2
expH≡ χ(e−2rQ)QjB1(r)

∫ ∞
r

χ(e−2tQ)B2(t)e−2ktQku(t)dt.

This proposition means that, up to super exponentially decaying terms, integrals as in (2.38)
can be spectrally localized where e−2rQ (and/or e−2tQ) is small.

Proof. Let us show (2.38). It suffices to observe that, for any ϕ ∈ Dom(Qj),∣∣∣∣〈B1(r)
∫ ∞
r

B2(t)e−2ktQku(t)dt,Qjϕ
〉
H

∣∣∣∣ =
∣∣∣∣∫ ∞
r

e−2kt
〈
B1(r)B2(t)Qku(t)dt,Qjϕ

〉
H dt

∣∣∣∣ ,
=

∣∣∣∣∫ ∞
r

e−2kt
〈
Bj(r, t)Qk+ju(t)dt, ϕ

〉
H dt

∣∣∣∣ ,
≤ C||ϕ||H

with
Bj(r, t) = QjB1(r)B2(t)Q−j ,

using the Cauchy-Schwarz inequality, (2.34) and the fact that ||Bj(r, t)||H→H is bounded with
respect to r and t, which follows from definition of B (see (2.6)). We next prove only (2.39) and
(2.40) since they imply easily the last identity. The difference between the two sides of (2.39) reads

Ik,j(r) := B1,j(r)
∫ ∞
r

(1− χ(e−2tQ))B2,j(t)e−2ktQk+ju(t)dt.

with
B1,j(r) = QjB1(r)Q−j , B2,j(t) = QjB2(t)Q−j ,

which both belong to B. By the Cauchy Schwartz inequality, we obtain for all N > 0,

||Ik,j(r)||H ≤ Cj,N
(∫ ∞

r

e−2Nt−2ktdt

)1/2(∫ ∞
r

e2Nt||(1− χ(e−2tQ))B2,j(t)Qk+ju(t)||2Hdt
)1/2

.

By (2.36) the second integral in the right hand side is bounded with respect to r, so we obtain the
bound ||Ij,k(r)||H . e−Nr, which shows that Ik,j belongs to L∞expH hence to L2

expH. By setting,

f(λ) =
1− χ(λ)
λN

,
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which is bounded, the difference between the two sides of (2.40) can be written for all N ≥ 0,

IIj,k(r) := (e−2rQ)Nf(e−2rQ)QjB1(r)
∫ ∞
r

B2(t)e−2ktQku(t)dt,

= e−2Nrf(e−2rQ)B1,j+N (r)
∫ ∞
r

B2,j+N (t)e−2ktQN+j+ku(t)dt, (2.41)

Proceeding as in the case of Ik,j , we see that the H norm of the integral in (2.41) is bounded with
respect to r which proves that IIj,k belongs to L∞expH hence to L2

expH . �

To justify integrations by part and get rid of boundary terms at infinity, we shall need the
following lemma.

Lemma 2.10. Let τ0, τ1, τ2 and u be as in Proposition 2.7. Then, for all integers k ≥ 1 and
l = 0, 1, we have ∣∣∣∣e−2rQk∂lru(r)

∣∣∣∣
H → 0, r → +∞.

Proof. It is sufficient to show that the H-valued function of r

∂

∂r

(
e−2rQk∂lu(r)

)
, (2.42)

is integrable at infinity (in the Riemann sense), for this will imply that e−2rQk∂lru(r) has a limit
as r goes to infinity which is necessarily zero by (2.34)-(2.35). Notice that (2.42) makes sense for
l = 0 by (2.8) and, for l = 1, by item 6 of Proposition 2.2. Let us prove the integrability of (2.42).
For l = 0, we have

∂

∂r

(
e−2rQku(r)

)
= −2e−2rQku(r) + e−2rQk∂ru(r),

which is integrable by (2.34) and (2.35). For l = 1, the equation (2.10) shows that

∂

∂r

(
e−2rQk∂ru(r)

)
= e−2rQk

(
−2∂ru(r) + V1(r)∂ru(r) + V2(r)u(r) + e−2rQ(r)u(r)

)
= B(r)e−2rQk∂ru(r) + B̃(r)e−2rQku(r) + B̂(r)e−4rQk+1u(r), (2.43)

where

B(r) = −2 +QkV1(r)Q−k, B̃(r) = QkV2(r)Q−k, B̂(r) = QkQ(r)Q−k−1,

all belong to B, by (A0), (A1) and (A2). Thus (2.34) and (2.35) show that all terms of (2.43) are
integrable which completes the proof. �

From now on we assume that τ0, τ1, τ2 are chosen as in Theorem 2.5 and we fix ε > 0 such that

τ0 ≥ 1 + ε, τ1 ≥ 2 + ε, τ2 ≥ 2 + ε. (2.44)

Let us then introduce the following subspace of B (defined by (2.6))

S =
{
S = (S(r))r≥R0+1 ∈ B | ||Qj∂lrS(r)Q−j ||H→H ≤ Cjr−2−ε, j ≥ 0, 1 ≤ l ≤ 2

}
,

where we implicitly assume that, for all j, r 7→ QjS(r)Q−j is strongly C2. Notice that, since
||Qk∂rS(r)Q−k||H→H is integrable at infinity, QkS(r)Q−k has a limit as r → +∞. A useful
example of element of S is given by

S(r) := Q(r)Q−1, (2.45)
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as can be seen easily using (A0). For q = 0, 1, it is also convenient to introduce the sets

Aq =
{
v ∈ C0

(
(R0,∞);H

)
| ||v(r)||H ≤ Cr−q−ε sup

t≥r
||u(t)||H

}
,

where u is the function considered in Theorem 2.5. Notice that supt≥r ||u(t)||H is well defined since
u ∈ H2H implies that t 7→ ||u(t)||H is bounded, by Proposition 2.2.

The following technical proposition will be useful to prove Theorem 2.5 using an induction
argument.

Proposition 2.11. Let τ0, τ1, τ2 and u be as in Theorem 2.5. Let

k ≥ 1, S ∈ S and χ ∈ C∞0 , χ = 1 near 0.

Define
S̃(r) = S(r)QkQ(r)Q−k−1.

Then (
S̃(r)

)
r≥R0+1

∈ S, (2.46)

and

(2k)2

∫ ∞
r

S(t)e−2ktQku(t)dt =
∫ ∞
r

S̃(t)e−2(k+1)tQk+1u(t)dt− ∂r
(
S(r)e−2krQkχ(e−2rQ)u(r)

)
+2S(r)e−2krQk∂ru(r) mod L2

expH+A1. (2.47)

Proof. The statement (2.46) follows easily from (A0). Let us prove (2.47). Integrating by part
twice in the left hand side of (2.47), using (2k)−2∂2

t (e−2kt) = e−2kt and Lemma 2.10 to handle the
boundary terms at infinity, we obtain

(2k)2

∫ ∞
r

S(t)e−2ktQku(t)dt =
∫ ∞
r

e−2kt
(
S′′(t)Qku(t) + 2S′(t)Qk∂tu(t) + S(t)Qk∂2

t u(t)
)
dt

+ (S′(r) + 2kS(r)) e−2krQku(r) + S(r)e−2krQk∂ru(r). (2.48)

Inside the integral in the right hand side of (2.48), we replace the term ∂2
t u(t) by its expression

given by the equation (2.10). This yields∫ ∞
r

S(t)e−2ktQk∂2
t u(t)dt =

∫ ∞
r

B1(t)e−2ktQk∂tu(t)dt+
∫ ∞
r

B2(t)e−2ktQku(t)dt

+
∫ ∞
r

e−2(k+1)tS̃(t)Qk+1u(t)dt, (2.49)

with
Bi(t) = S(t)QkVi(t)Q−k, i = 1, 2.

We next get rid of the terms ∂tu(t) inside the integrals in (2.48) and (2.49) by integrating by part.
These integrals read∫ ∞

r

e−2ktS′(t)Qk∂tu(t)dt = −S′(r)e−2krQku(r) +
∫ ∞
r

(2kS′(t)− S′′(t)) e−2ktQku(t)dt, (2.50)
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and∫ ∞
r

B1(t)e−2ktQk∂tu(t)dt = −B1(r)e−2krQku(r) +
∫ ∞
r

(2kB1(t)−B′1(t)) e−2ktQku(t)dt. (2.51)

By (2.44), we have

||S′′(r)||H→H + ||S′(r)||H→H + ||B′1(r)||H→H + ||B1(r)||H→H + ||B2(r)||H→H . r−2−ε,

hence, using (2.36), we see that (2.50), (2.51) as well as the integrals involving S′′ in (2.48) and B2

in (2.49) all belong to A1 + L2
expH. The same holds for S′(r)e−2krQku(r) in (2.48) hence (2.48)

reads

(2k)2

∫ ∞
r

S(t)e−2ktQku(t)dt =
∫ ∞
r

S̃(t)e−2(k+1)tQk+1u(t)dt+ 2kS(r)e−2krQku(r)

+S(r)e−2krQk∂ru(r) mod A1 + L2
expH.

The conclusion follows once observed that,

S(r)e−2krQku(r) = S(r)e−2krQkχ(e−2rQ)u(r) mod L2
expH,

by (2.36), and

2kS(r)e−2krQkχ(e−2rQ)u(r) = −∂r
(
S(r)e−2krQkχ(e−2rQ)u(r)

)
+ S(r)e−2krQkχ(e−2rQ)∂ru(r)

+e−2kr
(
S′(r)χ(e−2rQ)− 2S(r)e−2rQχ′(e−2rQ)

)
Qku(r),

whose second line belongs to A1 + L2
expH, by (2.36) and the fact that ||S′(r)||H→H . r−1−ε, and

where in the first line e−2krQkχ(e−2rQ)∂ru(r) can be replaced by e−2krQk∂ru(r) thanks to (2.36).
This completes the proof. �

Theorem 2.5 will be proven thanks to the following proposition.

Proposition 2.12. Let τ0, τ1, τ2 and u be as in Theorem 2.5. For all N ≥ 1, there exist

B1, . . . , BN−1 ∈ S,

an integer JN and

Dj,k ∈ S, Sj,k ∈ S, 1 ≤ k ≤ N, 1 ≤ j ≤ JN ,

such that, for all χ ∈ C∞0 (R) satisfying

χ = 1 near 0, (2.52)

we have

∂ru(r) =
N∑
k=1

JN∑
j=1

Dk,j(r)(e−2rQ)N−k
∫ ∞
r

Sk,j(t)(e−2tQ)ku(t)dt +

N−1∑
j=1

∂r
(
Bj(r)(e−2rQ)jχ(e−2rQ)u(r)

)
mod A1 + L2

expH, (2.53)

for all r large enough.
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Before starting the proof of Proposition 2.12, we record the following useful simple computation
in which we use the notation (2.45). By integrating (2.10) on [r,+∞) and using (2.44) (plus item
2 of Proposition 2.2 to handle the boundary terms at infinity in the integration by part), we have

−∂ru(r) =
∫ ∞
r

e−2tQ(t)u(t)dt+
∫ ∞
r

V1(t)∂tu(t)dt+
∫ ∞
r

V2(t)u(t)dt (2.54)

=
∫ ∞
r

e−2tQ(t)u(t)dt+
∫ ∞
r

(
V2(t)− ∂tV1(t)

)
u(t)dt− V1(r)u(r) (2.55)

=
∫ ∞
r

e−2tS(t)Qu(t)dt mod A1. (2.56)

Proof of Proposition 2.12. We proceed by induction. The case N = 1 is a direct consequence
of (2.56). To go from step N to N + 1, it is sufficient to consider the first sum in the right hand
side of (2.53). We focus on a single term,

T (r) := D(r)(e−2rQ)N−k
∫ ∞
r

S(t)(e−2tQ)ku(t)dt,

where we drop the indices k, j to simplify the notation. It suffices to show that, for some BN ∈ S
and D1, Dk+1, Sk+1 ∈ S independent of χ, we can write

T (r) = ∂r
(
BN (r)(e−2rQ)Nχ(e−2rQ)u(r)

)
+D1(r)(e−2rQ)N

∫ ∞
r

S(t)e−2tQu(t)dt +

Dk+1(r)(e−2rQ)N−k
∫ ∞
r

Sk+1(t)
(
e−2tQ

)k+1
u(t)dt mod A1 + L2

expH. (2.57)

Let us prove this fact. By Proposition 2.9, we have

T (r) = D(r)(e−2rQ)N−kχ(e−2rQ)
∫ ∞
r

S(t)(e−2tQ)ku(t)dt mod L2
expH. (2.58)

Using Proposition 2.11 and the fact that the space L2
expH + A1 is preserved by the action of

D(r)(e−2rQ)N−kχ(e−2rQ), the right hand side of (2.58) is a linear combination of

T1 := D(r)(e−2rQ)N−kχ(e−2rQ)S(r)e−2krQk∂ru(r),
T2 := D(r)(e−2rQ)N−kχ(e−2rQ)∂r

(
S(r)e−2krQkχ(e−2rQ)u(r)

)
,

T3 := D(r)(e−2rQ)N−kχ(e−2rQ)
∫ ∞
r

S̃(t)e−2(k+1)tQk+1u(t)dt,

and of a term in L2
expH+A1. Here S̃ ∈ S is defined as in Proposition 2.11. By setting

Ŝ(r) = QN−kS(r)Qk−N ,

we have

T1 = D(r)χ(e−2rQ)Ŝ(r)
(
e−2rQ

)N
∂ru(r)

= D(r)Ŝ(r)
(
e−2rQ

)N
∂ru(r) mod L2

expH,

= D(r)Ŝ(r)χ(e−2rQ)
(
e−2rQ

)N
∂ru(r) mod L2

expH,

= D(r)Ŝ(r)χ(e−2rQ)
(
e−2rQ

)N ∫ ∞
r

e−2tS(t)Qu(t)dt mod A1 + L2
expH,

= D(r)Ŝ(r)
(
e−2rQ)N

∫ ∞
r

e−2tS(t)Qu(t)dt mod A1 + L2
expH, (2.59)
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which is as the right hand side of (2.57). Here we have used (2.36) in the second and third
lines, (2.56) in the fourth one and Proposition 2.9 in the fifth one jointly with the fact that
D(r)Ŝ(r)χ(e−2rQ)(e−2rQ)N belongs to B hence preserves A1. As a direct consequence of Propo-
sition 2.9, we also have

T3 = D(r)(e−2rQ)N−k
∫ ∞
r

S̃(t)e−2(k+1)tQk+1u(t)dt mod L2
expH, (2.60)

which, as T1, is also of the form of the right hand side of (2.57). It remains to prove that T2 is of
this form too. By (2.36) and the fact that ||S′(r)||H→H . r−1−ε, we have

T2 = D(r)(e−2rQ)N−kχ(e−2rQ)S(r)e−2krQkχ(e−2rQ)(∂ru(r)− 2ku(r)) mod A1 + L2
expH,

= D(r)Ŝ(r)
(
e−2rQ

)N (∂ru(r)− 2ku(r)) mod A1 + L2
expH. (2.61)

Therefore, if we set
B(r) = D(r)Ŝ(r),

the contribution of ∂ru(r) in (2.61) is given by

B(r)
(
e−2rQ

)N
∂ru(r) = B(r)

(
e−2rQ

)N
χ(e−2rQ)∂ru(r) mod L2

expH,

= −B(r)
(
e−2rQ

)N
χ(e−2rQ)

∫ ∞
r

S(t)e−2tQu(t)dt mod A1 + L2
expH,

= −B(r)
(
e−2rQ

)N ∫ ∞
r

S(t)e−2tQu(t)dt mod A1 + L2
expH, (2.62)

using (2.36) in the first line, (2.56) in the second one and Proposition 2.9 in the third one. The
contribution of −2ku(r) in (2.61) is obtained by using

2NB(r)
(
e−2rQ

)N
u(r) = 2NB(r)

(
e−2rQ

)N
χ(e−2rQ)u(r) mod L2

expH,

= B(r)
(
e−2rQ

)N
χ(e−2rQ)∂ru(r)− ∂r

(
B(r)

(
e−2rQ

)N
χ(e−2rQ)u(r)

)
mod A1 + L2

expH. (2.63)

where the first line follows from (2.36) and the second one from the fact that B belongs to S and
again (2.36). Using (2.36), (2.56), (2.62) and (2.63), we obtain

T2 =
(
k

N
− 1
)
B(r)

(
e−2rQ

)N ∫ ∞
r

S(t)e−2tQu(t)dt+ ∂r

(
k

N
B(r)

(
e−2rQ

)N
χ(e−2rQ)u(r)

)
mod A1 + L2

expH

which is as the right hand side of (2.57). The proof is complete. �

Proof of Theorem 2.5. For any χ ∈ C∞0 satisfying (2.52) to be fixed below and for any fixed
N ≥ 1, we introduce

vχ,N ∈ A1, sχ,N ∈ L2
expH,

such that
∂ru − ( sums in the right hand side of (2.53)) = vχ,N + sχ,N .
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By item 2 of Proposition 2.4, we have

r 7→
∫ ∞
r

sχ,N (t)dt ∈ L∞expH. (2.64)

We also clearly have

ṽN,χ :=
[
r 7→

∫ ∞
r

vχ,N (t)dt
]
∈ A0.

On the other hand, let us observe that, if we set

S̃k,j(t) = QN−kSk,j(t)Qk−N ,

which defines a family in S, then

QN−k
∫ ∞
r

e−2ktSk,j(t)Qku(t)dt =
∫ ∞
r

e−2ktS̃k,j(t)QNu(t)dt

and we have, by (2.34), ∣∣∣∣∣∣∣∣∫ ∞
r

e−2ktS̃k,j(t)QNu(t)dt
∣∣∣∣∣∣∣∣
H
≤ Ce−2(k−1)r.

Therefore, the first line of (2.53) is O(e−2(N−1)r) in H. Integrating (2.53) using item 2 of Propo-
sition 2.2, Lemma 2.10 and (2.64), we see that, for all χ satisfying (2.52), we have∣∣∣∣∣∣
∣∣∣∣∣∣
IH − N∑

j=1

Bj(r)(e−2rQ)jχ(e−2rQ)

u(r)

∣∣∣∣∣∣
∣∣∣∣∣∣
H

≤ CN,χe−2(N−1)r + ||ṽN,χ(r)||H, r � 1.(2.65)

By choosing χ with support close enough to 0, the norm ||(e−2rQ)jχ(e−2rQ)||H→H is small uni-
formly in r since, for each j ≥ 1, supλ∈R |λjχ(λ)| is as small as wish by shrinking the support of χ
to {0}. Thus, using that B1(r), . . . , BN (r) don’t depend on χ and are uniformly bounded, we may
assume that χ is chosen so that∣∣∣∣∣∣

∣∣∣∣∣∣
N∑
j=1

Bj(r)(e−2rQ)jχ(e−2rQ)

∣∣∣∣∣∣
∣∣∣∣∣∣
H→H

≤ 1/2,

Using such a χ, the left hand side of (2.65) is bounded below by ||u(r)||H/2 so we obtain

||u(r)||H ≤ C ′N,χe−2(N−1)r + C ′N,χr
−ε sup

t≥r
||u(t)||H,

where the left hand side can be replaced by supt≥r ||u(t)||H since the right hand side is a non
increasing function of r. Then, for r large enough, the second term of the right hand side can be
absorbed in the left hand side and we obtain

sup
r≥t
||u(t)||H ≤ 2C ′N,χe

−2(N−1)r, r ≥ RN,χ.

Since N is arbitrary, this shows that u belongs to L∞expH. Then, by writing

Qku = Qkχ(e−2rQ)u+Qk(1− χ(e−2rQ))u,

where the first term in the right hand side belongs to L∞expH since u does, and where the second
term belongs to L2

expH by Proposition 2.8, we obtain that Qku belongs to L2
expH. Finally, using

that u ∈ L∞expH and Q(r)u ∈ L2
expH (by writing Q(r)u = Q(r)Q−1Qu), (2.55) implies that ∂ru

belongs to L∞expH. �
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3 Proof of Theorem 1.1

We start by checking that the equation (1.9) can be reduced to Pu = 0 with P as in Section 2 and
u statisfying the conditions (2.8) and (2.9) of Theorem 2.5.

On M \K ≈ (R0,+∞)× S, the Laplace-Beltrami operator associated to (1.2) takes the form

∆G = ∂2
r + e−2r∆g(r) + c(r, ω)∂r + (n− 1)∂r,

where

c(r, ω) =
1
2
∂rdet(g(r, ω))
det(g(r, ω))

, ω ∈ S,

is intrinsincally defined, for each r, as a function on S. The Laplacian ∆G is symmetric with
respect to the Riemannian measure which is of the form

dvolG = e(n−1)rdrdvolg(r),

where, for each r, dvolg(r) is the Riemannian measure on S associated to the metric g(r). Let us
set

f(r, ω) =
(

det(g(r, ω))
det(g(ω))

)1/2

,

which is again a well defined function, so that

dvolG = e(n−1)rfdrdvolg.

We thus have a unitary mapping
ϕ 7→ e

(n−1)r
2 f1/2ϕ

between L2 (M \K, dvolG) and

L2((R0,+∞)× S, drdvolg) ≈ L2(R0,∞)⊗ L2(S, dvolg).

Then it is not hard to see that −e
(n−1)r

2 f1/2∆Gf
−1/2e−

(n−1)r
2 reads

−∂2
r − e−2rf1/2∆g(r)f

−1/2 +
(n− 1)

2
∂rf

f
+

1
2
∂2
rf

f
+

1
4

(∂rf)2

f2
+

(n− 1)2

4
.

This operator is symmetric with respect to drdvolg and of the form

−e
(n−1)r

2 f1/2∆Gf
−1/2e−

(n−1)r
2 = P0 +

(n− 1)2

4

with P0 as in (2.2) by taking

H = L2(S, dvolg), Q = 1−∆g, Q(r) = f1/2
(
1−∆g(r)

)
f−1/2

and

V1 = 0, V2 =
(n− 1)

2
∂rf

f
+

1
2
∂2
rf

f
+

1
4

(∂rf)2

f2
− e−2r.

We note also in passing that

Dom(Qs) = H2s(S), (3.1)
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where Hσ(S) is the L2 Sobolev space of order σ on S. By (1.3), it is not hard to check that f − 1
has the same decay properties as g(r)− g with respect to r (see (1.3)), hence (A0),(A1) and (A2)
hold with

τ1 = τ2 = τ0 + 1.

If V is an admissible perturbation, one checks similarly that

P := P0 + e
(n−1)r

2 f1/2V e−
(n−1)r

2 f−1/2

also satisfies the conditions (A0), (A1) and (A2). By assuming that τ0 > 1 (as in Theorem 1.1),
we see that (2.7) is satisfied. Consider now ψ ∈ L2(M,dvolG) such that

(−∆G + V )ψ =
(n− 1)2

4
ψ,

and define

u = e
(n−1)r

2 f1/2ψ
∣∣∣
M\K

, (3.2)

which satisfies Pu = 0. By standard elliptic regularity, u is smooth on (R0,∞) × S hence, using
(3.1), u clearly satisfies (2.8) and it remains to check (2.9). To prove this, we observe that the
principal symbol of P is of the form

p = ρ2 + e−2r

 n−1∑
j,k=1

gjk(r, θ)ηjηk +O(r−τ0 |η|2)

 ,

with
∑
gjk(r, θ)ηjηk the principal symbol of −∆g(r). This expression shows that p takes its values

in a sector ei[−γ,γ][0,+∞) with γ as small as we wish by possibly taking R0 large enough. Choose
z ∈ C at positive distance from this sector and observe that

(P − z)u = −zu, (3.3)

whose right hand side belongs to L2. Fix next χ which is supported in r > R0 and which is equal
to 1 near infinity. By using a parametrix for (P ∗ − z̄) as in [1] (see the formula (2.19) and use that
z̄ is at positive distance from the set of values of p̄), we can find operators Q and R such that

(P ∗ − z̄)Q = χ+R, (3.4)

and with the property that (e−r∂θ)α∂krQ
∗ and (e−r∂θ)α∂krR

∗ are bounded on L2 if |α| + k ≤ 2.
By taking the adjoint of (3.4) and using (3.3), we have

χu = −
(
zQ∗ +R∗

)
u

from which we get that D2
r(χu) and e−2r∆ḡ(χu) belong to L2 hence that (2.9) is satisfied. �

Proof of Theorem 1.1. By (2.11), u and ∂ru belong to L∞expH and this implies that eCrψ and
∂r(eCrψ) belong to L2 (the contribution of f is easily studied using (1.3)). Then, using that

−∆G + V =
(n− 1)2

4
+ e−

(n−1)r
2 f−1/2Pf1/2e

(n−1)r
2 ,

it suffices to show that P (eCru) belongs to L2(R0,∞) ⊗ H to guarantee that (−∆G + V )(eCrψ)
belongs to L2. This follows on one hand from the fact that [P, eCr] is a first order differential
operator involving only derivatives with respect to r and with bounded coefficients and on the
other hand from the fact that Pu = 0. This completes the proof of (1.10) hence of Theorem 1.1.
�
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