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1 Introduction and main result

Consider a differential operator in divergence form on Rd, d ≥ 3,

P = −div (G(x)∇) ,

with G(x) a real, symmetric, positive definite matrix, such that,

c ≤ G(x) ≤ C, x ∈ Rd,

for some C, c > 0. When G(x) = Id, the identity matrix, P is of course the usual
flat Laplacian −∆. Here, we will assume that P is asymptotically flat, and more
precisely a long range perturbation of the flat Laplacian, in the sense that, for some
real number ρ > 0,

|∂α (G(x)− Id) | ≤ Cα〈x〉−ρ−|α|, (1.1)

where 〈x〉 = (1 + |x|2)1/2 is the usual japanese bracket. Let us point out that (1.1)
is a condition at infinity. It only states that P is close to −∆ when x is large, but
P is arbitrary in a compact set.

Equipped with the domain H2(Rd) (the usual Sobolev space), P is self-adjoint
on L2(Rd). Its spectrum is [0,∞) and is purely absolutely continuous: there are
no singular continuous spectrum [10] nor embedded eigenvalues [9]. In this paper,
we are interested in the resolvent (P − z)−1, defined for z ∈ C \ [0,∞), and more
specifically to its powers (P − z)−k as z approaches 0.

Let us briefly recall that the justification of the limiting absorption principle,
namely the uniform boundedness of (P−λ−iε)−1 with respect to ε > 0 (in weighted
L2 spaces, see below) and, even better, the existence of the limits

(P − λ∓ i0)−1 = lim
ε→0, ε>0

(P − λ∓ iε)−1, (1.2)
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is a basic question in scattering theory. For the stationary problem, this allows to
construct the scattering matrix and the scattering amplitude as well as the gener-
alized eigenfunctions. For the time dependent problems, ie the Schrödinger or wave
equations associated to P , it is a key tool in the proof of asymptotic completeness.
Without refering to scattering theory, one may even see the interest of the limiting
absorption principle in the so called Stone formula

dEλ = lim
ε↓0

1

2iπ

(
(P − λ− iε)−1 − (P − λ+ iε)−1

)
dλ, (1.3)

which relates the spectral familly Eλ of P to its resolvent. See Reed-Simon [15].
The existence of the limits (1.2) has been proved a long time ago for the operators

considered in this paper; since this is not the present purpose to trace back the
history of such estimates, which hold for a very large class of operators, we only quote
the historical paper [10] from which they all follow (see also [14]). To state those
estimates precisely, we introduce the following notation. Given any real number ν,
we denote by L2

ν the space of functions u ∈ L2
loc(Rd) such that 〈x〉νu ∈ L2, with

norm ∣∣∣∣u∣∣∣∣
L2
ν

=
∣∣∣∣〈x〉νu∣∣∣∣

L2 .

Then, for any λ > 0, (P − λ∓ i0)−1 are bounded from L2
ν to L2

−ν for any ν > 1/2.
Furthermore, by choosing appropriate weights, the resolvents (1.2) are smooth with
respect to λ in the sense that

(P − λ∓ i0)−k =
1

(k − 1)!

dk−1

dλk−1
(P − λ∓ i0)−1, (1.4)

are well defined and bounded from L2
ν to L2

−ν , if ν > k − 1/2. See [8].
These are local results. The next natural question is the asymptotic behaviour

of such estimates as λ approaches the boundary (or thresholds) of the spectrum,
namely λ → +∞ and λ → 0. The high energy asymptotic λ → +∞ is fairly
well understood through its dependence on the classical flow, here the geodesic flow
associated to G−1. If this flow is non trapping, ie if all geodesics escape to infinity,
then ||(P−λ∓i0)−k||L2

ν→L2
−ν

is of order λ−k/2 (see [16] and references therein). In the

general case, there is an exponential upper bound [3, 4], but there are intermediate
situations where the classical flow exhibit some trapping and the resolvent decays
as λ → ∞, but not as fast as in the non trapping case, see for instance [11, 13] in
the semiclassical setting.

These results can be used to prove local energy decay estimates for evolution
equations, but only for initial data spectrally localized away from 0. For instance,
if u(t) denotes the solution to the Schrödinger equation

i∂tu = Pu, u|t=0 = u0,
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namely u(t) = e−itPu0, it follows from formal integrations by parts in the Fourier
transform,

e−itPu0 =

∫
[0,∞)

e−itλdEλu0,

using the Stone formula (1.3) and (1.4), that

||u(t)||L2
−ν
≤ C〈t〉−k||u0||L2

ν
,

if ν > k + 1/2, and provided that

u0 = χ(P )u0,

with either χ ∈ C∞0 (0,+∞) in the general case, or possibly χ ≡ 1 near infinity and
χ ≡ 0 near 0 if the behaviour of (P − λ∓ i0)−k−1 is nice as λ→∞.

To relax this spectral localization, one must study the behaviour of powers of
the resolvent as λ→ 0. This is the first motivation of the results below, though, in
a wider perspective, the study of the behaviour of the resolvent at low energies is
anyway a natural problem. Recently there has been some interest and progress on
the low energy estimates of the resolvent itself for metric perturbations [7, 2, 1, 17],
but here we are interested in powers of the resolvent. The latter question has
been treated for potentials V in [12] (for V sufficiently positive) and in [6] (for V
sufficiently small or negative at infinity). For very short range perturbations of exact
conical metrics, this question has been considered in [5, 18]. Our purpose here is to
deal with the long range metric case.

To state Theorem 1.2, and to simplify certain statements afterwards, we in-
troduce the following notation. Denote by k(d) the largest even integer < d

2
+ 1,

namely
k(d) = 2n, if 4n− 1 ≤ d ≤ 4n+ 2.

Note in particular that
k(d) ≥ 2,

and for instance that
k(3) = 2.

Definition 1.1. Given 1 ≤ k ≤ k(d) and a non negative function defined near 0,
f : (0, λ0]→ [0,+∞), one writes

f(λ) = Rk,d(λ)

to state that,
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• when 1 ≤ k ≤ k(d)− 1,
f is bounded,

• when k = k(d),

1. when d ≡ 1 or d ≡ 2 mod 4,

f is bounded,

2. when d ≡ 3 mod 4,
f(λ) ≤ Cλ−1/2,

3. when d ≡ 0 mod 4,
f(λ) ≤ Csλ

−s,

for all s > 0.

The typical example to illustrate this definition and the theorem below is the
following. Consider the kernel of the resolvent of the Laplacian (−∆ − z)−1 in R3,
namely

Gz(x, y) =
1

4π

eiz
1/2|x−y|

|x− y|
, Im(z) > 0.

From this expression and the fact that (−∆ − z)−2 = d
dz

(−∆ − z)−1, one easily
checks that, for any ν > 3/2,∣∣∣∣(−∆− λ− iε)−1

∣∣∣∣
L2
ν→L2

−ν
≤ C,∣∣∣∣(−∆− λ− iε)−2

∣∣∣∣
L2
ν→L2

−ν
≤ Cλ−1/2

which reads, in a more compact form,

sup
ε>0

∣∣∣∣(−∆− λ− iε)−k
∣∣∣∣
L2
ν→L2

−ν
= Rk,3(λ), 1 ≤ k ≤ 2.

Our result is the following.

Theorem 1.2. For all d ≥ 3, there exists ν > 0 such that, for all 1 ≤ k ≤ k(d),

sup
ε>0

∣∣∣∣(P − λ− iε)−k∣∣∣∣
L2
ν→L2

−ν
= Rk,d(λ),

for λ ∈ (0, 1].
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To give a concrete value, we can take any ν > k(d) + d
2

in this theorem. This is
certainly not sharp, but our point here is the behaviour with respect to λ. To the
latter extent, our result is sharp in dimension 3, as shown by the above example of
the flat Laplacian. Indeed, if d = 3, Theorem 1.2 reads more explicitly∣∣∣∣(P − λ− iε)−1

∣∣∣∣
L2
ν→L2

−ν
≤ C,∣∣∣∣(P − λ− iε)−2

∣∣∣∣
L2
ν→L2

−ν
≤ Cλ−1/2,

for all ε > 0 and λ ∈ (0, 1]. In higher dimensions, one may notice that, at least
in odd dimensions, the kernel of the resolvent of the flat Laplacian is an analytic
function of z1/2. One may thus fear that the |z|−1/2 singularity already shows up for
the first derivative (ie for (−∆ − z)−2). Our result shows that the latter does not
happen, and more precisely that the resolvent does not blow up as long as one does
not differentiate more than d/2 − 1 times. This can be seen directly from Bessel
functions expansions in the flat case, but it is a consequence of our estimates in the
non flat case. We also mention that this d/2 order is a natural threshold for it is
related to the (expected) dispersion decay rate of the Schrödinger group e−itP (ie
the bound ||eit∆||L1→L∞ = cd|t|−d/2 in the flat case).

The full proof (and the applications) of Theorem 1.2 will appear in a more
detailed paper. However we hope to give in the following sections the main points
of the analysis.

The proof is divided into two steps. The first one, which is the purpose of Section
2, is to prove the result when G− Id is uniformly small on Rd. By uniformly small
we mean not only that it satisfies (1.1), which guarantees the smallness at infinity,
but also that it is small on every compact set. The proof in this case is based on a
scaling argument, although the condition (1.1) is not scale invariant. More precisely,
for µ ∈ R, let us recall that Sµ is the space of functions a such that

sup
x∈Rd
|〈x〉−µ+|α|∂αa(x)| <∞, (1.5)

where the left hand side define seminorms which give the topology of Sµ and make
it a Fréchet space. For instance, the condition (1.1) states that (the coefficients of)
G− Id belongs to S−ρ. Theses spaces are commonly used in scattering theory. They
are natural and convenient for microlocal techniques but have the drawback of not
being scale invariant, in sense that, given a ∈ Sµ, the family (at)t>0, at(x) = a(x/t),
is in general not bounded in Sµ. However, our analysis is based on the following
observations: for all k,

a ∈ S0 ⇒ (x · ∇)ka ∈ L∞, (1.6)
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and, if µ < 0,

a ∈ Sµ ⇒ ∂αa ∈ Ld/|α|, (1.7)

and the properties in the right hand sides are scale invariant.
To guarantee the smallness of G − Id, we will require that it is small in S−ρ/2.

Notice that, if G − Id ∈ S−ρ, then, if µ = −ρ′ > −ρ, the quantities obtained by
restricting the sup of (1.5) outside a ball of radius R go to 0 as R→∞1. Thus, by
possibly replacing ρ by a smaller value, e.g. ρ/2, requiring the smallness of G − Id
in S−ρ/2 is equivalent to require its smallness on any compact set.

In the second step, which is the purpose of Section 3, we will consider the general
case by combining a compactness argument with the result of Section 2. This will
be obtained by writing G as the sum of a compactly supported term and of a one
uniformly close to Id.

Acknoledgments It is a pleasure to thank the organizers of the Workshop on Spec-
tral Theory and Harmonic Analysis for their invitation and the financial support. I
am also grateful to the anonymous refere for helpful suggestions.

2 Proof of Theorem 1.2 when G− Id is small

The proof in this case follows from a scaling argument, using the usual unitary group
eiτA of L2 dilations, ie

eiτAψ(x) = eτd/2ψ(eτx),

whose generator is

A =
x · ∇+∇ · x

2i
.

The proof starts as follows. For λ > 0 and ε 6= 0 real, we can write

P − λ− iε = λ

(
P

λ
− 1− δ

)
, (2.1)

with of course δ = ε/λ. Using the rescaling,

Gλ(x) = G
( x

λ1/2

)
,

and then by setting

Pλ = −div (Gλ(x)∇) ,

1This implies the standard fact that compactly supported functions are dense in S−ρ for the
topology of Sµ for all µ > −ρ
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it is elementary to check that

P

λ
= eiτAPλe

−iτA, (2.2)

with τ ∈ R such that

e±iτAψ(x) = λ±d/4ψ
(
λ±1/2x

)
, (2.3)

ie τ = ln(λ1/2). Therefore, (2.1) and (2.2) give(
P − λ− iε

)−1
= eiτA

(
λ−1
(
Pλ − 1− iδ

)−1
)
e−iτA, (2.4)

which reduces the problem to get estimates on the resolvent of Pλ.

Proposition 2.1. Let k ≥ 1 be an integer. If the norm∑
j≤k+1

∣∣∣∣(x · ∇)j(G− Id)
∣∣∣∣
L∞
, (2.5)

is small enough, then there exists C > 0 such that,∣∣∣∣〈A〉−k(Pλ − 1− iδ
)−k〈A〉−k∣∣∣∣

L2→L2 ≤ C,

for all real numbers δ 6= 0 and λ > 0.

This result follows basically from the multiple commutators estimates of Jensen-
Mourre-Perry [8]. The smallness of G−Id guarantees the strong positive commutator
estimate

ϕ(Pλ)i
[
Pλ, A

]
ϕ(Pλ) ≥ ϕ(Pλ)

2,

with ϕ ∈ C∞0 (R,R) supported close to 1. By strong we mean that there is no
compact remainder on the right hand side (see [8] for the details). We simply recall
that this estimate follows from the elementary identity

i[∆, A] = 2∆,

for this identity implies that i[Pλ, A] is close to 2Pλ (i[Pλ, A] and Pλ are respectively
close to −2∆ and −∆) if G − Id is small. More precisely, one actually only needs
G − Id and x · ∇G to be small in L∞ to get a positive commutator estimate, but
(x ·∇)jG don’t need to be small for j ≥ 2. To this extent, our assumption may seem
too strong. However, since we shall require (2.5) to be small in Proposition 2.2 too,
there is actually no real loss of generality for our final purpose.
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The uniformity with respect to λ in Proposition 2.1 relies on the easy to check
observation that∣∣∣∣(x · ∇)j(Gλ − Id)

∣∣∣∣
L∞

=
∣∣∣∣(x · ∇)j(G− Id)

∣∣∣∣
L∞
.

We finally note that the weights 〈A〉−k can be replaced by any non vanishing function
of A of the same order as 〈·〉−k near infinity: in the sequel we will for instance use
(hA+ i)−k for some fixed number h. This is related to the following result.

Proposition 2.2. 1- Assume that n is an integer such that

2n <
d

2
+ 1. (2.6)

If the norm ∑
|α|≤2n−1

∣∣∣∣∂α(G− Id
)∣∣∣∣

L
d
|α|
, (2.7)

is small enough, then there exists C > 0 such that

C−1||u||H2n ≤
∣∣∣∣(Pλ + 1)nu

∣∣∣∣
L2 ≤ C||u||H2n , (2.8)

for all λ > 0 and u ∈ S(Rd).
2- More generally, fix an integer N ≥ 0 and assume (2.6): if the norm∣∣∣∣∣∣G− Id

∣∣∣∣∣∣
2n−1,N

:=
∑
j≤N

∑
|α|≤2n−1

∣∣∣∣∂α(x · ∇)j
(
G− Id

)∣∣∣∣
L
d
|α|
, (2.9)

is small enough and h is small enough, then

C−1||u||H2n ≤
∣∣∣∣(hA+ i)−N(Pλ + 1)n(hA+ i)Nu

∣∣∣∣
L2 ≤ C||u||H2n , (2.10)

for all λ > 0 and u ∈ S(Rd).

The proof of this proposition is fairly elementary. We only emphasize the fol-
lowing points.

1. The norms (2.5) and (2.7) are special cases of the norm (2.9). Their interest
for our approach is that they are scale invariant, ie that∣∣∣∣∣∣G− Id

∣∣∣∣∣∣
2n−1,N

=
∣∣∣∣∣∣Gλ − Id

∣∣∣∣∣∣
2n−1,N

.

The uniformity of the estimates of Proposition 2.2 with respect to λ follows
from this scale invariance.
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2. We have the following continuity property, which follow from (1.6) and (1.7).
If µ < 0,

G− Id→ 0 in Sµ =⇒
∣∣∣∣∣∣G− Id

∣∣∣∣∣∣
n,N
→ 0. (2.11)

Thus, even though the spaces Sµ have not scale invariant seminorms, they can
be embedded into a space with scale invariant norms and adapted to the study
of resolvent estimates .

3. The interest of considering the resolvent of A rather than 〈A〉−1 is that we
have the simple formula

(hA+ i)−1 =
1

i

∫ +∞

0

e−τeiτhAdτ, (2.12)

which is convenient to study the behaviour of the resolvent of A on Sobolev
spaces. The smallness of h is required to show the boundedness of (hA+ i)−1

on Sobolev spaces: using (2.12) and the explicit form of eiτhA it is easy to show
that, for all real number s ≥ 0,∣∣∣∣|D|s(hA+ i)−1ψ

∣∣∣∣
L2 ≤

1

1− hs
∣∣∣∣|D|sψ∣∣∣∣

L2 , (2.13)

from which the boundedness of (hA+ i)−1 on Hs follows easily.

We next use Proposition 2.2 to turn the L2 → L2 estimates of Proposition 2.1
into H−k → Hk estimates.

Proposition 2.3. Fix an even integer k such that

k = 2n <
d

2
+ 1. (2.14)

Then, if G− Id is small enough in S−ρ/2, there exist h > 0 and C > 0 such that∣∣∣∣(hA+ i)−k(Pλ − 1− iδ)−k(hA− i)−k
∣∣∣∣
H−k→Hk ≤ C, (2.15)

for all real numbers δ 6= 0 and λ > 0.

Notice that the constant C depends on h here (and blows up as h→ 0). Although
the estimates of Proposition 2.2 and Lemma 2.4 below are uniform with respect to
h small, we shall use at some point Proposition 2.1 in which we will replace 〈A〉−1

by (hA± i)−1 which is the reason of the h dependence of C.
We will need one more lemma.
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Lemma 2.4. For all ϕ ∈ C∞0 (R), there exists C > 0 such that∣∣∣∣(hA+ i)−kϕ(Pλ)(hA− i)k
∣∣∣∣
L2→L2 ≤ C, (2.16)

for all λ > 0.

Slightly more precisely, the lemma states implicitly that the operator in (2.16),
defined on Dom(Ak), has a bounded closure on L2. The latter result is fairly stan-
dard. The operator (hA − i)k on the right hand side can be replaced by (hA + i)k

for (hA+ i)(hA− i)−1 is unitary. The result follows then basically from (iterations
of) the identity

(hA+ i)−1(Pλ− ζ)−1(hA+ i) = (Pλ− ζ)−1− (hA+ i)−1(Pλ− ζ)−1[Pλ, hA](Pλ− ζ)−1,

and the Helffer-Sjöstrand formula to pass from the resolvent (Pλ − ζ)−1 to bump
functions of Pλ.

Proof of Proposition 2.3. Pick φ ∈ C∞0 (R), real valued, such that φ ≡ 1 near 1
and let Φ = 1− φ2. We then have the following spectral partition of unity

IL2 = φ(Pλ)
2 + Φ(Pλ)

which we use to decompose(
Pλ − z

)−k
= φ(Pλ)

(
Pλ − z

)−k
φ(Pλ) + Φ(Pλ)(Pλ − z)−k,

= I + II,

where, for simplicity,
z = 1 + iδ.

Contribution of II. Using that 1 /∈ supp(Φ), and that (p−z)−k decays as p−k ∼ p−2n

at infinity, the spectral theorem yields∣∣∣∣(Pλ + 1)nII(Pλ + 1)n
∣∣∣∣
L2→L2 ≤ C,

for all λ > 0 and δ ∈ R. By (2.11), we can use (2.8) and we get∣∣∣∣II∣∣∣∣
H−k→Hk ≤ C. (2.17)

By the boundedness of (hA+ i)−k on Hk (ie essentially (2.13)), we conclude that∣∣∣∣(hA+ i)−kII(hA− i)−k
∣∣∣∣
H−k→Hk ≤ C,

for all λ > 0 and δ ∈ R.
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Contribution of I. We write first

(hA+ i)−kI(hA− i)−k = B(hA+ i)−k(Pλ − z)−k(hA− i)−kB∗, (2.18)

where
B = (hA+ i)−kφ(Pλ)(hA+ i)k.

If we define φ̃ ∈ C∞0 (R) by

φ̃(p) = (p+ 1)nφ(p), p ∈ R,

we obtain

B = (hA+ i)−k(Pλ + 1)−n(hA+ i)k
(

(hA+ i)−kφ̃(Pλ)(hA− i)k
)
.

Using (2.11), we can assume that (2.10) holds. By Lemma 2.4 , this yields∣∣∣∣B∣∣∣∣
L2→Hk ≤ C, λ > 0. (2.19)

Using Proposition 2.1 and (2.18), we conclude that∣∣∣∣(hA+ i)−kI(hA− i)−k
∣∣∣∣
H−k→Hk ≤ C, λ > 0,

for all δ 6= 0 and λ > 0. This completes the proof. �

Proof of Theorem 1.2. Recall first the Sobolev embeddings

Hk ⊂ L
2d

d−2k , if k <
d

2
,

H
d
2 ⊂ Lp, for all p ∈ [2,∞),

Hk ⊂ L∞, if k >
d

2
,

and then define

p(k) =


2d

d−2k
if k < d

2
,

p if k = d
2
,

∞ if k > d
2
,

(2.20)

with an arbitrary p ∈ [2,∞) (large in the application below) in the second case.
Proposition 2.3 implies that∣∣∣∣(hA+ i)−k(Pλ − 1− iδ)−k(hA− i)−k

∣∣∣∣
Lp(k)

′→Lp(k) ≤ C, (2.21)
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for all λ > 0 and δ 6= 0. On the other hand, using (2.3), we have∣∣∣∣eiτA∣∣∣∣
Lp(k)→Lp(k) =

∣∣∣∣e−iτA∣∣∣∣
Lp(k)

′→Lp(k)′ = λσ(k), (2.22)

with

σ(k) =


k
2

if k < d
2
,

d
2

(
1
2
− 1

p

)
if k = d

2
,

d
4

if k > d
2
.

Therefore, using (2.4), (2.21) and (2.22) yield∣∣∣∣(hA+ i)−k(P − λ− iε)−k(hA− i)−k
∣∣∣∣
Lp(k)

′→Lp(k) ≤ Cλ2σ(k)−k,

for all λ > 0 and ε 6= 0. Recall the assumption (2.14) which gives

2σ(k)− k =


0 if k < d

2
,

−d
p

if k = d
2
,

d
2
− k if d

2
< k < 1 + d

2
.

(2.23)

A elementary examination of the values of 2σ(k) − k implies that, for all 1 ≤ k ≤
k(d),

sup
ε>0

∣∣∣∣(hA+ i)−k(P − λ− iε)−k(hA− i)−k
∣∣∣∣
L(p(k))′→Lp(k) = Rk,d(λ).

The replacement of (hA± i)−k by the weight 〈x〉−k follows easily from the following
proposition by splitting

(P − λ− iε)−k = ϕ(P )(P − λ− iε)−kϕ(P ) + (1− ϕ(P )2)(P − λ− iε)−k,

with ϕ ≡ 1 on a neighborhood of the interval where λ lives.

Proposition 2.5. For all ϕ ∈ C∞0 (R),

〈x〉−kϕ(P )(hA+ i)k is bounded on Lp(k).

By choosing ν > d
2

+ k, we finally obtain L2
ν → L2

−ν estimates using the bound-
edness of the multiplication operator

〈x〉k−ν : Lp(k) → L2,

and its adjoint. �
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3 Non small perturbations

To treat the general case, we will consider long range perturbations as compactly
supported perturbations of small long range perturbations, for which we already have
resolvent estimates by Section 2.

Throughout this section, we shall thus consider G0 such that

G−G0 is compactly supported, (3.1)

and such that,

G0 − Id is small in S−ρ/2. (3.2)

More precisely, this means that we may consider a family of matrices G0 = G0,ε

satisfying (3.1) for each ε, such that G0,ε − Id → 0 in S−ρ/2 as ε → 0, and then by
choosing ε small enough when necessary.

By (3.2), we may in particular assume that

P0 = −div (G0(x)∇) ,

is uniformly elliptic. We then define V by

P = P0 + V. (3.3)

The condition (3.2) will be used in a couple of places. First, by Section 2, we
have the following result.

Proposition 3.1. Theorem 1.2 holds for P0.

Our strategy is then based on the resolvent identity

(P − z)−1 = (P0 − z)−1 − (P0 − z)−1V (P − z)−1, (3.4)

= (P0 − z)−1 − (P − z)−1V (P0 − z)−1, (3.5)

and the fact that

(P − z)−k =
1

(k − 1)!

(
d

dz

)k−1

(P − z)−1. (3.6)

More precisely, since we want to study the resolvent when z is small, it is sufficient
(and convenient) to consider

Rφ(z) = φ(P )(P − z)−1,
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with φ ∈ C∞0 (R) such that φ ≡ 1 near 0 (the support of φ will have to be chosen

small enough below). If φ̃ ∈ C∞0 (R) is real valued and such that

φ̃ ≡ 1 near the support of φ, (3.7)

and if we set
Sφ̃(z) = V (P0 − z)−1φ̃(P ),

we then get

Rφ(z) = B1(z) + Sφ̃(z̄)∗Rφ(z)Sφ̃(z), (3.8)

with

B1(z) = φ̃(P )(P0 − z)−1φ(P )− φ̃(P )(P0 − z)−1V φ(P )(P0 − z)−1φ̃(P ).

This is easily obtained by composing (3.4) on the right hand side with φ(P ), then
by replacing (P − z)−1 by (3.5) therein and finally by composing on both sides by

φ̃(P ).

The idea is then to show that, if the support of φ̃ is small enough and z close
enough to 0, then ∣∣∣∣Sφ̃(z)

∣∣∣∣
L2
ν→L2

ν
≤ 1/2, (3.9)

(or smaller than a fixed real number < 1). Using (3.8), this easily implies that∣∣∣∣Rφ(z)
∣∣∣∣
L2
ν→L2

−ν
≤ 4

3

∣∣∣∣B1(z)
∣∣∣∣
L2
ν→L2

−ν
,

where the right hand side is uniformly bounded as Im(z) → 0 by Proposition 3.1.
Note that the support of φ has to be small enough too, due to the condition (3.7).
For higher powers of (P − z)−1, we use (3.6) to deduce, after a finite induction on
k ≤ k(d), that

Rk
φ(z) := (P − z)−kφ(P ),

satisfies
Rk
φ(z) = Bk(z) + Sφ̃(z̄)∗Rk

φ(z)Sφ̃(z),

where
sup
ε>0

∣∣∣∣Bk(λ+ iε)
∣∣∣∣
L2
ν→L2

−ν
= Rk,d(λ)

for λ close to 0. The latter uses the induction assumption and the resolvent estimates
for P0 guaranteed by Proposition 3.1. Since∣∣∣∣Rk

φ(z)
∣∣∣∣
L2
ν→L2

−ν
≤ 4

3

∣∣∣∣Bk(z)
∣∣∣∣
L2
ν→L2

−ν
,
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Theorem 1.2 follows.

Granted this discussion, the proof of Theorem 1.2 is a consequence of the estimate
(3.9). The rest of the section is devoted to the proof of this estimate.

The first step is the following proposition.

Proposition 3.2. We have∣∣∣∣V ((P0 − λ− iε)−1 − (P0 − iε)−1
) ∣∣∣∣

L2
ν→L2

ν
→ 0, as |λ|+ |ε| → 0. (3.10)

Up to minor technical details (such as writing V (P0 + 1)−1(P0 + 1) to replace
the unbounded operator V by the bounded one V (P0 + 1)−1 which has still a strong
spatial decay), this proposition follows from the fast decay of (the coefficients of) V
and the fact that∣∣∣∣(P0 − λ− iε)−1 − (P0 − iε)−1

∣∣∣∣
L2
ν→L2

−ν
≤
∫ λ

0

∣∣∣∣(P0 − γ − iε)−2
∣∣∣∣
L2
ν→L2

−ν
dγ → 0,

as λ ↓ 0, uniformly with respect to ε 6= 0 real. Here we use the fact that the largest
power of the resolvent that we can consider in Theorem 1.2 is at least 2 and that
the upper bounds are integrable at 0.

The second place where we need G0 − Id to be small is the following.

Proposition 3.3. If the norm∑
|α|≤1

∣∣∣∣∂α(G0 − Id)
∣∣∣∣
L
d
|α|
,

is small enough, then there exists C > 0 such that,∣∣∣∣∆(P0 − iε)−1
∣∣∣∣
L2→L2 ≤ C, (3.11)

for all real number ε 6= 0.

This result is an easy consequence of the estimate

||∆u||L2 ≤ C||P0u||L2 , u ∈ H2(Rd),

which is obtained as follows. If we denote by hjk the coefficients of G0 − Id, we can
write

P0 = −∆−
∑
j,k

∂j(hjk(x)∂k)

= −

(
1−

∑
j,k

hjk(x)
∂j∂k
|D|2

+ (∂jhjk(x))
1

|D|
∂k
|D|

)
∆,
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where the bracket is invertible on L2 (as a small perturbation of identity) using the
smallness of ||hjk||L∞ and∣∣∣∣∣∣∣∣(∂jhjk) 1

|D|
ψ

∣∣∣∣∣∣∣∣
L2

≤ ||(∂jhjk)||Ld
∣∣∣∣∣∣∣∣ 1

|D|
ψ

∣∣∣∣∣∣∣∣
2d
d−2

≤ C
∣∣∣∣∇(G0 − Id)

∣∣∣∣
Ld
||ψ||L2 .

The last tool we need is the following.

Proposition 3.4. For all N ≥ 0, there exists a bounded operator

BN : L2 → L2,

such that

V = 〈x〉−NBN∆. (3.12)

The weight 〈x〉−N in (3.12) could even be replaced by a compactly supported
function but this is useless for our purpose. This proposition is based on the
same kind of estimate as the one used to prove Proposition 3.3, namely, if V =∑

j,k ∂j(vjk(x)∂k),

V =
∑
j,k

vjk(x)∂j∂k + (∂jvjk(x))∂k

= −

(∑
j,k

vjk(x)
∂j∂k
|D|2

+ (∂jvjk(x))
1

|D|
∂k
|D|

)
∆

where the bracket maps L2 to L2
N .

Before proving (3.9), we record two more propositions which are completely
standard but whose roles are crucial.

Proposition 3.5. For any ϕ ∈ C∞0 (R) and µ > 0,∣∣∣∣ϕ(P/η)〈x〉−µ
∣∣∣∣
L2→L2 → 0, η → 0.

This one follows from the fact that 0 is not an eigenvalue of P and thus that
ϕ(P/η)→ 0 in the weak sense.

Proposition 3.6. For any φ ∈ C∞0 (R), L2
ν is stable by φ(P ) and

〈x〉νφ(P )〈x〉−ν is bounded on L2.
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The proof of this proposition is similar to the one of Lemma 2.4.

Proof of (3.9). We want to show that (3.9) holds if z is close enough to 0 and φ̃
has a small enough support. We write

Sφ̃(λ+ iε) = V (P0 − iε)−1φ̃(P ) + V
(
(P0 − λ− iε)−1 − (P0 − iε)−1

)
φ̃(P ),

= I + II.

By (3.11) and (3.12),

||V (P0 − iε)−1||L2→L2
ν
≤ C, ε 6= 0. (3.13)

On the other hand, if we choose

φ̃(·) = ϕ(·/η),

Proposition (3.5) shows that

||φ̃(P )||L2
ν→L2 → 0, η → 0. (3.14)

Hence (3.13) and (3.14) imply that, if η is small enough,∣∣∣∣I∣∣∣∣
L2
ν→L2

ν
≤ 1/4, ε 6= 0. (3.15)

Once η is fixed, Proposition 3.6 shows that φ̃(P ) is bounded on L2
ν and, using

Proposition 3.2, we have ∣∣∣∣II∣∣∣∣
L2
ν→L2

ν
≤ 1/4, (3.16)

for λ and ε small enough (which is sufficient for the result is trivial if ε is outside a
neighborhood of 0). Then (3.15) and (3.16) give (3.9). �
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perturbations du second ordre du Laplacien, Ann. Sci. de l’ENS, vol. 25, n. 2,
107-134 (1992).

[17] A. Vasy, J. Wunsch, Positive commutators at the bottom of the spectrum,
arXiv:0909.4583.

18



[18] X. P. Wang, Asymptotic expansion in time of the Schrödinger group on conical
manifolds, Ann. Inst. Fourier (Grenoble) 56 no. 6, 1903-1945 (2006).

19


